JPH08277995A - Double exhaust pipe - Google Patents

Double exhaust pipe

Info

Publication number
JPH08277995A
JPH08277995A JP8020995A JP8020995A JPH08277995A JP H08277995 A JPH08277995 A JP H08277995A JP 8020995 A JP8020995 A JP 8020995A JP 8020995 A JP8020995 A JP 8020995A JP H08277995 A JPH08277995 A JP H08277995A
Authority
JP
Japan
Prior art keywords
pipe
inner pipe
rib
double exhaust
outer pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8020995A
Other languages
Japanese (ja)
Inventor
Shinichi Ougiwari
信一 扇割
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8020995A priority Critical patent/JPH08277995A/en
Publication of JPH08277995A publication Critical patent/JPH08277995A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems

Abstract

PURPOSE: To prevent reduction in strength of an inner pipe and deterioration in a catalyst due to high temperature by maintaining a heat retaining property of exhaust gas highly when an engine is started and suppressing excessive increase in temperature when temperature of the exhaust gas is increased because of high load running and the like. CONSTITUTION: In a double exhaust pipe consisting of an outer pipe 8, an inner pipe 7 arranged inside the outer pipe 8 while allowing a clearance 5 between them, and a supporting member 9 which is arranged between the outer pipe 8 and inner pipe 7 and hold the inner pipe 7 on the outer pipe 8 while absorbing relative deformation in the inner pipe 7 and the outer pipe 8, a projecting piece type rib 7a is arranged on the outer circumference of the inner pipe 7, and the rib 7a is free from contact with the outer pipe 8 when the temperature of the inner pipe 7 is low, while following deformation of the inner pipe 7, the rib 7a is displaced toward the outer pipe 8 side so as to be brought into contact with the outer pipe 8 when the temperature of the internal pipe 7 is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジン始動時の排気
ガスの保温効果を高めて、触媒の活性化を図ることので
きる車両用の二重排気管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double exhaust pipe for a vehicle, which can enhance the heat retention effect of exhaust gas at the time of engine start and activate the catalyst.

【0002】[0002]

【従来の技術】自動車においては、排気管の下流部に触
媒を配置し、排気ガスの浄化を図ることが行われてい
る。この場合、浄化効率の面ではエンジン始動時が問題
となる。エンジン始動時には、触媒及び排気ガスが共に
低温である。よって、触媒温度が活性温度に至らないた
めに、化学変化が起こらず、排気ガス内の未燃成分が十
分に反応しきれない状況が発生する。
2. Description of the Related Art In automobiles, a catalyst is arranged downstream of an exhaust pipe to purify exhaust gas. In this case, in terms of purification efficiency, there is a problem when the engine is started. When the engine is started, both the catalyst and the exhaust gas have a low temperature. Therefore, since the catalyst temperature does not reach the activation temperature, a chemical change does not occur, and a situation occurs in which the unburned components in the exhaust gas cannot fully react.

【0003】これに対処するため、排気ガスの保温を図
った二重排気管が提案されている(実開昭62−679
22号公報、実開昭56−65123号公報等)。二重
排気管は、外管の内部に隙間を持たせて内管を同心に配
置し、外管と内管との間に中空の断熱層を確保したもの
である。
In order to deal with this, a double exhaust pipe is proposed in which the temperature of the exhaust gas is kept warm (Shokai 62-679).
No. 22, Japanese Utility Model Publication No. 56-65123, etc.). In the double exhaust pipe, the inner pipe is concentrically arranged with a gap inside the outer pipe, and a hollow heat insulating layer is secured between the outer pipe and the inner pipe.

【0004】二重排気管は、外管で構造上の強度を確保
し、排気ガス通路を構成する内管の肉厚を極力薄くする
ことにより、排気ガスの接触する部分の熱容量を小さく
するができる。また、内管と外管の間に中空の断熱層を
設けていることにより、外管を通しての熱の逃げを減ら
すことができる。従って、エンジンの始動時に、排気管
の内壁の温度を速やかに上昇させることができ、排ガス
の保温効果を高めることができる。しかし、内管と外管
との間に大きな温度差が生じるため、両者の熱膨脹差を
吸収しながら外管で内管を保持する構造をとらなければ
ならない。
The double exhaust pipe secures the structural strength of the outer pipe, and the inner pipe forming the exhaust gas passage is made as thin as possible to reduce the heat capacity of the portion in contact with the exhaust gas. it can. Further, since the hollow heat insulating layer is provided between the inner pipe and the outer pipe, heat escape through the outer pipe can be reduced. Therefore, when the engine is started, the temperature of the inner wall of the exhaust pipe can be quickly raised, and the heat retention effect of the exhaust gas can be enhanced. However, since a large temperature difference occurs between the inner tube and the outer tube, it is necessary to take a structure in which the outer tube holds the inner tube while absorbing the difference in thermal expansion between the two.

【0005】従来、そのような構造の例として、図16
に示すものが知られている(実開昭56−68318号
公報、実開平5−19522号公報等参照)。この二重
排気管では、内管7と外管8の間の空気断熱層15に、
耐熱性ワイヤーを編んだメッシュリング(支持部材)1
6を挿入することにより、内管7と外管8の熱膨脹差を
吸収しながら、外管8で内管7を保持している。
Conventionally, as an example of such a structure, FIG.
Are known (see Japanese Utility Model Laid-Open No. 56-68318, Japanese Utility Model Laid-Open No. 5-19522, etc.). In this double exhaust pipe, in the air heat insulating layer 15 between the inner pipe 7 and the outer pipe 8,
Mesh ring (support member) woven from heat-resistant wire 1
By inserting 6, the inner tube 7 is held by the outer tube 8 while absorbing the difference in thermal expansion between the inner tube 7 and the outer tube 8.

【0006】[0006]

【発明が解決しようとする課題】ところで、排気ガスの
保温性が増すことは、低温始動時の触媒活性化の面では
良い結果をもたらすが、排気ガスの昇温性能が高まり、
高負荷走行時等において排気ガス温度が高くなると、内
管の高温化により耐久性の低下を招いたり、触媒の高温
劣化を招いたりするおそれが出てくる。特に、排気管の
曲がり部や排気管の集合部では、排気ガスから受ける熱
の影響が大きくなるため、熱応力集中の問題を招く恐れ
がある。
By the way, the increase in the heat retention of the exhaust gas brings about a good result in terms of activation of the catalyst at the time of cold start, but the temperature raising performance of the exhaust gas is increased.
If the exhaust gas temperature rises during high-load running or the like, there is a risk that the inner tube will become hot and the durability will be reduced, or that the catalyst will deteriorate at high temperatures. In particular, in the bent portion of the exhaust pipe and the gathered portion of the exhaust pipe, the influence of heat from the exhaust gas becomes large, which may cause a problem of thermal stress concentration.

【0007】本発明は、上記事情を考慮し、エンジン始
動時は排気ガスの保温性を高く維持することができ、高
負荷走行等で排気ガスが高温化したときには、過度の高
温化を抑制して内管の強度低下や触媒の高温劣化を防止
することのできる二重排気管を提供することを目的とす
る。
In consideration of the above circumstances, the present invention can keep the heat retention of exhaust gas high at the time of engine start, and suppresses excessive temperature rise when exhaust gas temperature rises due to high load running or the like. It is an object of the present invention to provide a double exhaust pipe capable of preventing the decrease in strength of the inner pipe and the deterioration of the catalyst at high temperature.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、外管
と、この外管内に隙間をもって配設された内管と、外管
と内管の間に配設され内管と外管の相対変形を吸収しつ
つ内管を外管に保持させる支持部材とからなる二重排気
管において、内管の外周に、内管が低温のとき外管に非
接触で、内管が高温になったとき内管の変形に伴って外
管側に変位することにより外管に接触する突片状のリブ
を突設したことを特徴としている。
According to the invention of claim 1, an outer pipe, an inner pipe arranged with a gap in the outer pipe, and an inner pipe and an outer pipe arranged between the outer pipe and the inner pipe. In a double exhaust pipe consisting of a support member that holds the inner pipe to the outer pipe while absorbing the relative deformation of the inner pipe, the outer pipe of the inner pipe does not come into contact with the outer pipe when the inner pipe is cold, and the inner pipe becomes hot. It is characterized in that a protruding piece-shaped rib that comes into contact with the outer pipe by being displaced toward the outer pipe due to the deformation of the inner pipe when the rib becomes protruding is provided.

【0009】請求項2の発明は、請求項1記載の二重排
気管であって、前記リブが、内管の高温化しやすい部位
の外管方向に変形する側に形成されていることを特徴と
している。
A second aspect of the present invention is the dual exhaust pipe according to the first aspect, wherein the rib is formed on a side of the inner pipe which is apt to be heated to a side which is deformed toward the outer pipe. I am trying.

【0010】請求項3の発明は、請求項1または2記載
の二重排気管であって、前記リブを設けた部位の内管の
管壁を偏平化したことを特徴としている。
A third aspect of the present invention is the double exhaust pipe according to the first or second aspect, wherein the pipe wall of the inner pipe at the portion where the rib is provided is flattened.

【0011】請求項4の発明は、請求項1〜3のいずれ
かに記載の二重排気管であって、前記外管のリブの接触
する位置に、外管の他の部位よりも熱伝導率の高い熱伝
導部材を設けたことを特徴としている。
A fourth aspect of the present invention is the double exhaust pipe according to any one of the first to third aspects, in which heat conduction is conducted at a position where a rib of the outer pipe comes into contact with the portion of the outer pipe more than other portions. It is characterized in that a heat conducting member having a high rate is provided.

【0012】請求項5の発明は、請求項4記載の二重排
気管であって、前記熱伝導部材を、リブに対して近接離
反可能に外管に装着したことを特徴としている。
A fifth aspect of the present invention is the double exhaust pipe according to the fourth aspect, characterized in that the heat conducting member is attached to the outer pipe so as to be able to approach and separate from the rib.

【0013】請求項6の発明は、請求項1〜5のいずれ
かに記載の二重排気管であって、前記内管の高温化しや
すい部位の周辺に、内管の管壁を曲げ変形させてビード
を形成したことを特徴としている。
A sixth aspect of the present invention is the double exhaust pipe according to any one of the first to fifth aspects, wherein the pipe wall of the inner pipe is bent and deformed around a portion of the inner pipe where the temperature tends to rise. It is characterized by forming beads.

【0014】請求項7の発明は、請求項1〜6のいずれ
かに記載の二重排気管であって、前記リブに前記支持部
材としての延長片を一体形成し、該延長片に、内管の径
方向に対して傾斜する傾斜部と、外管の内周面に摺動接
触する摺動接触部とを設け、且つ該延長片を内管の径方
向に弾性変形させた状態で外管と内管の隙間へ配設した
ことを特徴としている。
The invention according to claim 7 is the double exhaust pipe according to any one of claims 1 to 6, wherein an extension piece as the support member is integrally formed on the rib, and the extension piece is internally formed. An inclined portion that is inclined with respect to the radial direction of the pipe and a sliding contact portion that slidably contacts the inner peripheral surface of the outer pipe are provided, and the extension piece is elastically deformed in the radial direction of the inner pipe. It is characterized in that it is arranged in the gap between the pipe and the inner pipe.

【0015】請求項8の発明は、請求項1〜7のいずれ
かに記載の二重排気管であって、前記内管が周方向に複
数に分割されており、その分割部の側縁部に前記リブが
形成され、該リブを相互に接合することにより前記内管
が形成されていることを特徴としている。
The invention according to claim 8 is the double exhaust pipe according to any one of claims 1 to 7, wherein the inner pipe is divided into a plurality of portions in the circumferential direction, and the side edge portion of the divided portion. It is characterized in that the rib is formed on the inner surface of the inner tube and the inner tube is formed by joining the ribs to each other.

【0016】請求項9の発明は、請求項8記載の二重排
気管であって、前記相互に接合するリブの一方を他方よ
り長めに形成し、該一方のリブで他方のリブを包み込
み、その状態でリブ相互を加締めたことを特徴としてい
る。
According to a ninth aspect of the present invention, in the double exhaust pipe according to the eighth aspect, one of the ribs to be joined to each other is formed longer than the other rib, and the one rib wraps the other rib, It is characterized by crimping the ribs together in that state.

【0017】[0017]

【作用】請求項1の発明では、内管が低温のとき、リブ
が外管に対して非接触であるから、内管の熱は熱伝導に
より外管に逃げない。従って、内管の内部を流通する排
気ガスが保温される。一方、内管が高温になったときに
は、リブが外管に接触するから、リブを通して熱伝導に
より内管の熱が外管に逃げ、内管が冷却されることにな
る。従って、内管の高温化が抑制され、熱影響による内
管の強度低下が防止される。また、内管が冷却されるか
ら、内管内を流れる排気ガス温度の過度の高温化が抑制
され、触媒の高温劣化が防止される。また、リブにより
内管自体の強度もアップする。
According to the invention of claim 1, when the inner pipe has a low temperature, the ribs are not in contact with the outer pipe, so that the heat of the inner pipe does not escape to the outer pipe by heat conduction. Therefore, the exhaust gas flowing inside the inner pipe is kept warm. On the other hand, when the inner pipe has a high temperature, the rib contacts the outer pipe, so that heat of the inner pipe escapes to the outer pipe by heat conduction through the rib, and the inner pipe is cooled. Therefore, the temperature rise of the inner pipe is suppressed, and the strength of the inner pipe is prevented from lowering due to the heat effect. Further, since the inner pipe is cooled, the temperature of the exhaust gas flowing in the inner pipe is prevented from being excessively high, and the catalyst is prevented from being deteriorated at high temperature. The ribs also increase the strength of the inner tube itself.

【0018】請求項2の発明では、排気ガスの熱影響を
受けて高温化しやすい部位、例えば管の曲がり部や集合
部にリブが設けられ、そのリブが、内管が高温になった
ときに外管に接触するから、高温化しやすい部位の熱を
局部的に逃がすことができ、その部位の高温化を防ぐこ
とができる。
According to the second aspect of the present invention, ribs are provided on a portion which is likely to be heated to a high temperature due to the influence of exhaust gas, for example, a bent portion or a collecting portion of the pipe, and the ribs are provided when the inner pipe has a high temperature. Since it comes into contact with the outer tube, it is possible to locally dissipate the heat of the part that easily becomes hot, and to prevent the heat of that part from rising.

【0019】請求項3の発明では、リブを設けた部位の
内管の管壁を偏平化したので、内管と外管の隙間があま
り無く、リブの先端と外管との隙間を確保しづらい場合
でも一定の隙間を確保することができ、低温時の排気ガ
ス保温特性と、高温時の高熱化抑制特性を両立させるこ
とができる。
According to the third aspect of the present invention, since the tube wall of the inner tube at the portion where the rib is provided is flattened, there is not much clearance between the inner tube and the outer tube, and a clearance is secured between the tip of the rib and the outer tube. Even if it is difficult, it is possible to secure a constant gap, and it is possible to achieve both the exhaust gas heat retention characteristic at low temperatures and the high heat suppression characteristic at high temperatures.

【0020】請求項4の発明では、高温時に内管の変形
に応じてリブが変位した場合に、リブが熱伝導部材に接
触することになる。従って、熱伝達が促進され、内管の
冷却効果が高まる。
According to the invention of claim 4, when the rib is displaced according to the deformation of the inner pipe at a high temperature, the rib comes into contact with the heat conducting member. Therefore, heat transfer is promoted and the cooling effect of the inner pipe is enhanced.

【0021】請求項5の発明では、熱伝導部材の位置を
調節することにより、リブと熱伝導部材の間隔を調整す
ることができる。
According to the fifth aspect of the present invention, the distance between the rib and the heat conducting member can be adjusted by adjusting the position of the heat conducting member.

【0022】請求項6の発明では、高温化しやすい部位
の周辺にビードがあるので、高温化による熱応力をビー
ドで分散することができ、熱応力の集中を緩和できる。
According to the sixth aspect of the invention, since the bead is provided around the portion where the temperature easily rises, the thermal stress due to the high temperature can be dispersed by the bead, and the concentration of the thermal stress can be relaxed.

【0023】請求項7の発明では、内管と外管の相対変
位が、傾斜部が変形すること、及び摺動接触部が摺動す
ることで吸収される。従って、支持部材に繰り返し発生
する歪エネルギーが小さくなり、支持部材の耐久性が向
上する。
In the invention of claim 7, the relative displacement between the inner pipe and the outer pipe is absorbed by the deformation of the inclined portion and the sliding contact portion sliding. Therefore, the strain energy repeatedly generated in the supporting member is reduced, and the durability of the supporting member is improved.

【0024】請求項8の発明では、内管を周方向に分割
したので、分割した部品を簡単にプレス成形することが
でき、内管の肉厚が薄くて管の形のままでは曲げにくい
場合や、曲げ半径が小さくて曲げにくい場合であって
も、簡単に曲げ部分や管路の集合部を加工することがで
きる。また、分割部の側縁部にリブがあるので、分割し
たもの相互を接合しやすい上、内管の高強度化や高品質
化、及び溶接変形の最小限化が可能である。
In the invention of claim 8, since the inner pipe is divided in the circumferential direction, the divided parts can be easily press-molded, and when the inner pipe has a thin wall thickness and is difficult to bend in the shape of the pipe. Also, even when the bending radius is small and it is difficult to bend, the bent portion and the collecting portion of the pipeline can be easily processed. Further, since there are ribs on the side edge portions of the divided portions, it is easy to join the divided portions to each other, and it is possible to increase the strength and quality of the inner pipe and minimize the welding deformation.

【0025】請求項9の発明では、一方のリブで他方の
リブを包み込んで、相互のリブを加締めたので、リブ接
合部の気密性が確保される。また、溶接が不要であるか
ら、溶接欠陥や溶接変形のない高品質の内管を製作でき
る。
In the ninth aspect of the present invention, one rib is wrapped around the other rib and the mutual ribs are caulked, so that the airtightness of the rib joint is secured. Further, since welding is unnecessary, it is possible to manufacture a high-quality inner pipe without welding defects and welding deformation.

【0026】[0026]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0027】〔第1実施例〕図1は本発明の第1実施例
の二重排気管の高温時の状態を示す縦断面図、図2は図
1のII−II矢視断面図である。また、図3は内管の
組み立て前の状態を示す斜視図、図4は内管の組み立て
後の状態を示す斜視図、図5は内管を外管の内部に組み
込んだ状態を示す横断面図である。
[First Embodiment] FIG. 1 is a vertical sectional view showing a high temperature state of a double exhaust pipe according to a first embodiment of the present invention, and FIG. 2 is a sectional view taken along the line II-II of FIG. . 3 is a perspective view showing a state before the inner pipe is assembled, FIG. 4 is a perspective view showing a state after the inner pipe is assembled, and FIG. 5 is a cross-sectional view showing a state in which the inner pipe is incorporated inside the outer pipe. It is a figure.

【0028】この実施例の二重排気管(ここでは単に
「排気管」という)4は、図1に示すように、管長方向
の略中央部に90度の曲がり部(高温化しやすい部位)
4Yを有する曲がり管として構成されており、鋳造品等
で強度部材としての機能を持つよう肉厚に形成された外
管8と、この外管8の内部に隙間(空気断熱層)5をも
って配設され、ステンレス等で薄肉に形成されて排気ガ
スの通路を構成する内管7と、外管8と内管7の間に配
設され、内管7と外管8の相対変形を吸収しつつ内管7
を外管8に保持させる支持部材9とからなる。
As shown in FIG. 1, the double exhaust pipe (herein, simply referred to as "exhaust pipe") 4 of this embodiment has a 90-degree bent portion (a portion which easily becomes hot) at a substantially central portion in the pipe length direction.
The outer pipe 8 is formed as a bent pipe having 4Y, and is formed thickly so as to have a function as a strength member in a casting or the like, and a gap (air heat insulating layer) 5 is provided inside the outer pipe 8. The inner pipe 7 is provided between the outer pipe 8 and the inner pipe 7, which is thinly formed of stainless steel or the like and constitutes an exhaust gas passage, and absorbs relative deformation of the inner pipe 7 and the outer pipe 8. Inner tube 7
And a support member 9 for holding the outer tube 8 on the outer tube 8.

【0029】内管7の肉厚を薄くするのは、肉厚を薄く
して熱容量を小さくすることで、内管7の壁温を短時間
に排気ガス温度に近付け、排気管4の昇温効果を向上さ
せるためである。そうすることにより、結果的に、エン
ジン始動時の触媒活性化を図ることができることにな
る。
To reduce the wall thickness of the inner pipe 7, the wall thickness of the inner pipe 7 is brought close to the exhaust gas temperature in a short time by decreasing the wall thickness to reduce the heat capacity, and the temperature of the exhaust pipe 4 is raised. This is to improve the effect. By doing so, as a result, the catalyst can be activated at the time of engine start.

【0030】鋳造等によって肉厚に形成された強度部材
としての外管8は、両端に一体のフランジ8fを有し、
このフランジ8fでエンジンの排気ポートや他の排気管
や触媒等と接続される。
The outer tube 8 as a strength member formed to be thick by casting or the like has integral flanges 8f at both ends,
The flange 8f is connected to the exhaust port of the engine, other exhaust pipes, a catalyst and the like.

【0031】内管7は、図3に示すように、湾曲した内
管7の中心線を含む切断面(湾曲部分の法線に沿った切
断面)により、周方向に2分割(半割り)されており、
その分割部の各側縁部には、外向きに、所定高さ(幅)
のフランジ状(突片状)のリブ7aが形成されている。
各リブ7aは、内管7の長手方向に沿って一定の幅で連
続して形成されており、内管7の両端付近には、支持部
材9を設ける関係上、形成されていない。内管7は、図
4に示すように、リブ7aを相手側のリブ7aと重ね
て、リブ7aの外端同士を溶接(溶接部13)すること
により、断面円形の曲管として構成されている。
As shown in FIG. 3, the inner tube 7 is divided into two (half-divided) in the circumferential direction by a cutting surface including the center line of the curved inner tube 7 (a cutting surface along the normal line of the curved portion). Has been done,
At each side edge of the divided part, outwardly, a predetermined height (width)
The rib 7a having a flange shape (projection piece shape) is formed.
Each rib 7a is continuously formed with a constant width along the longitudinal direction of the inner pipe 7, and is not formed in the vicinity of both ends of the inner pipe 7 due to the support members 9 being provided. As shown in FIG. 4, the inner pipe 7 is configured as a curved pipe having a circular cross section by overlapping the rib 7a with the rib 7a on the other side and welding the outer ends of the rib 7a (welded portion 13). There is.

【0032】この場合のリブ7aの高さH1は、1.5
〜3mm程度に設定されている。この値は、プレスで成
形できる値を最小値とし、空気断熱層5(図1参照)の
間隔と内管7の最大変形量との関係から決定される。空
気断熱層5は一般的に3〜5mm程度が好ましく、高温
時の内管7の変形量は概ね1〜2mmであるから、空気
断熱層5の最大値から内管7の最大変形量を差し引いた
値(=3mm)を、リブ7aの高さH1の最大値として
いる。そして、内管7の低温時にリブ7aが外管8と確
実に非接触となり、内管7が高温化した時に、内管7の
熱膨脹に伴ってリブ7aの外端が外管8の内壁に接触す
るようになっている。
The height H1 of the rib 7a in this case is 1.5.
It is set to about 3 mm. This value is determined from the relationship between the interval between the air heat insulating layers 5 (see FIG. 1) and the maximum deformation amount of the inner pipe 7, with the minimum value that can be formed by pressing. Generally, the air insulation layer 5 is preferably about 3 to 5 mm, and the deformation amount of the inner pipe 7 at high temperature is about 1 to 2 mm. Therefore, the maximum deformation amount of the inner pipe 7 is subtracted from the maximum value of the air insulation layer 5. The value (= 3 mm) is the maximum value of the height H1 of the rib 7a. Then, when the inner pipe 7 is at a low temperature, the rib 7a surely comes into non-contact with the outer pipe 8, and when the inner pipe 7 becomes hot, the outer end of the rib 7a becomes an inner wall of the outer pipe 8 due to the thermal expansion of the inner pipe 7. It comes in contact.

【0033】内管7の両端は自由端(図1参照)とさ
れ、自由端となった内管7の外周面に支持部材9が設け
られている。支持部材9は、図4に示すように、内管7
と別体に製作され、内管7の周方向に等間隔をもって複
数個(この例では3個)配設されている。各支持部材9
は、高い弾性をもつ金属材料製の小幅の薄肉板材からな
り、内管7の外周面に溶接(溶接部11)により固着さ
れた基端部9aと、この基端部9aから外管8方向に延
び、内管7の長手方向に沿って傾斜した傾斜部9bと、
この傾斜部9bの先端側に設けられ、外管8の内周面に
圧接状態で摺動する摺動接触部9cとを備えている。
Both ends of the inner pipe 7 are free ends (see FIG. 1), and a support member 9 is provided on the outer peripheral surface of the inner pipe 7 which has become the free end. The support member 9, as shown in FIG.
A plurality of (three in this example) are arranged at equal intervals in the circumferential direction of the inner pipe 7. Each support member 9
Is a small-width thin plate material made of a metal material having high elasticity, and is fixed to the outer peripheral surface of the inner pipe 7 by welding (welding portion 11), and a base end portion 9a and an outer pipe 8 direction from the base end portion 9a. An inclined portion 9b extending in the longitudinal direction of the inner pipe 7 and inclined.
A sliding contact portion 9c is provided on the tip end side of the inclined portion 9b and slides on the inner peripheral surface of the outer tube 8 in a pressure contact state.

【0034】支持部材9の基端部9aは、内管7の外周
面に密着するように平板状に形成され、傾斜部9bは、
内管7及の径方向に対して傾斜する方向、ここでは内管
7の管端外方に向かって傾斜する方向に延びている。ま
た、摺動接触部9cは、接触面側が凸曲面状に湾曲して
いる。そして、この支持部材9は、内管7の径方向へ弾
性変形させられた状態で、図1に示すように、外管8と
内管7の間の空間断熱層5内に配設されている。
The base end 9a of the support member 9 is formed in a flat plate shape so as to be in close contact with the outer peripheral surface of the inner pipe 7, and the inclined portion 9b is
The pipe extends in a direction inclined with respect to the radial direction of the inner pipe 7, here, in a direction inclined outward of the pipe end of the inner pipe 7. Further, the sliding contact portion 9c is curved in a convex curved shape on the contact surface side. The support member 9 is disposed in the space heat insulating layer 5 between the outer pipe 8 and the inner pipe 7 as shown in FIG. 1 while being elastically deformed in the radial direction of the inner pipe 7. There is.

【0035】これにより、支持部材9は、径方向外方へ
の突張力(弾性反力)を発生し、その突張力で、自由端
側に形成した摺動接触部9cを外管8の内周面に圧接さ
せている。従って、内管7が、図5に示すように、管長
方向の任意の部分で、外管8との間に所定間隔の空気断
熱層5を保った状態で、支持部材9の突張力により、外
管8に保持されている。また、この状態で、低温時にリ
ブ7aと外管8との間に、所定の隙間H2が確保されて
いる。
As a result, the supporting member 9 generates a radially outward protruding tension (elastic reaction force), and the protruding tension causes the sliding contact portion 9c formed on the free end side to move inside the outer tube 8. It is pressed against the peripheral surface. Therefore, as shown in FIG. 5, with the inner tube 7 maintaining the air heat insulating layer 5 at a predetermined interval between the inner tube 7 and the outer tube 8 at an arbitrary portion in the tube length direction, due to the protrusion tension of the support member 9, It is held by the outer tube 8. Further, in this state, a predetermined gap H2 is secured between the rib 7a and the outer tube 8 when the temperature is low.

【0036】なお、外管8の内周面に対する圧接力を確
保するために、自由な状態における支持部材9の高さ
は、内管7と外管8の隙間5の径方向寸法より0.2〜
1.0mm程度だけ大きくしてある。そして、この分だ
け支持部材9を径方向に弾性変形させながら、外管8の
内部に挿入することで、外管8の内周面に圧接する突張
力を発生させている。
The height of the support member 9 in the free state is set to be smaller than the radial dimension of the gap 5 between the inner pipe 7 and the outer pipe 8 in order to secure the pressure contact force to the inner peripheral surface of the outer pipe 8. 2 to
It is enlarged by about 1.0 mm. Then, by elastically deforming the support member 9 by this amount and inserting the support member 9 into the outer pipe 8, a projecting tension that presses against the inner peripheral surface of the outer pipe 8 is generated.

【0037】次に作用を説明する。Next, the operation will be described.

【0038】エンジン始動時のように、排気ガス温度が
低く、内管7が低温のとき、内管7の変形は少なく、図
5に示すように、リブ7aは外管8に対して非接触であ
るから、内管7の熱は熱伝導により外管8に逃げない。
従って、内管7の内部を流通する排気ガスが保温され、
触媒の早期活性化が達成される。
When the exhaust gas temperature is low and the inner pipe 7 is at a low temperature, such as when the engine is started, the inner pipe 7 is not deformed so much that the ribs 7a are not in contact with the outer pipe 8 as shown in FIG. Therefore, the heat of the inner pipe 7 does not escape to the outer pipe 8 by heat conduction.
Therefore, the exhaust gas flowing inside the inner pipe 7 is kept warm,
Early activation of the catalyst is achieved.

【0039】一方、高負荷走行時のように、排気ガス温
度及び内管7の温度が高くなると、それに従って熱変形
が増加する。この際、内管7が薄肉であること、内管7
と外管8の間に温度差があること等の理由により、内管
7と外管8の熱変形の形態が異なり、外管8に対して内
管7が大きく変形し、内管7は外管8に対して管長方向
及び径方向に変形する。
On the other hand, when the temperature of the exhaust gas and the temperature of the inner pipe 7 become high, such as during high load running, the thermal deformation increases accordingly. At this time, the inner pipe 7 is thin, and the inner pipe 7
Due to a difference in temperature between the outer tube 8 and the outer tube 8, the inner tube 7 and the outer tube 8 have different thermal deformation modes, and the inner tube 7 is largely deformed with respect to the outer tube 8. The outer pipe 8 is deformed in the pipe length direction and the radial direction.

【0040】曲がり管の場合は、図1中に矢印(イ)、
(ロ)で示すように、排気管4の入口、出口では長手方
向に変形するが、曲がり部4Yでは、矢印(ハ)で示す
ように、曲がり部4の外周方向(曲がり部の法線方向)
に変形する。特に、排気管の曲がり部4Yにおいては、
高温の排気ガスが内管7の内壁面に強く当たるから、熱
の影響を大きく受けて、矢印(ハ)方向に大きく変形す
る。
In the case of a bent pipe, the arrow (a) in FIG.
As shown in (b), the inlet and outlet of the exhaust pipe 4 are deformed in the longitudinal direction, but at the bent portion 4Y, as shown by an arrow (c), the outer circumferential direction of the bent portion 4 (the normal direction of the bent portion). )
Transforms into. Especially, in the bent portion 4Y of the exhaust pipe,
Since the high-temperature exhaust gas strongly hits the inner wall surface of the inner pipe 7, it is greatly affected by heat and is greatly deformed in the arrow (c) direction.

【0041】そして、その部分のリブ7aの外端が外管
8の内壁面に接触し、それにより熱伝導で内管7の熱が
外管8に逃げることになる。従って、内管7が冷却され
て、特に曲がり部4Yでの内管7の応力集中が緩和さ
れ、熱影響による内管7の強度低下が抑えられて、内管
7の信頼性や耐久性が向上する。また、内管7が冷却さ
れることにより、内管7内を流れる排気ガスの過度の高
温化が抑制されるので、触媒の高温劣化が防止される。
Then, the outer ends of the ribs 7a at that portion come into contact with the inner wall surface of the outer pipe 8, whereby the heat of the inner pipe 7 escapes to the outer pipe 8 by heat conduction. Therefore, the inner tube 7 is cooled, the stress concentration of the inner tube 7 is eased particularly at the bent portion 4Y, the strength reduction of the inner tube 7 due to the thermal influence is suppressed, and the reliability and durability of the inner tube 7 are reduced. improves. Further, by cooling the inner pipe 7, it is possible to prevent the exhaust gas flowing in the inner pipe 7 from excessively high temperature, so that the high temperature deterioration of the catalyst is prevented.

【0042】また、内管7と外管8の相対変形について
は次のように吸収される。すなわち長手方向の変形に対
しては、支持部材9の傾斜部9bが長手方向に沿って弾
性変形することによりある程度吸収されるが、それを超
える大部分は、支持部材9の摺動接触部9cが外管8の
内周面上を長手方向に摺動することで、その変形を逃が
す。また、径方向の変形に対しては、支持部材9の傾斜
部9cが径方向に弾性変形すると共に、その変形に伴っ
て摺動接触部9cが外管8の内周面上を長手方向に摺動
することで、その変位を逃がす。従って、支持部材9に
大きな歪エネルギーが発生することなく、内管7の変形
が吸収される。
The relative deformation of the inner pipe 7 and the outer pipe 8 is absorbed as follows. That is, with respect to the deformation in the longitudinal direction, the inclined portion 9b of the support member 9 is elastically deformed along the longitudinal direction to be absorbed to some extent, but most of it exceeds the sliding contact portion 9c of the support member 9. Slides on the inner peripheral surface of the outer tube 8 in the longitudinal direction, so that the deformation is released. Further, with respect to the radial deformation, the inclined portion 9c of the support member 9 elastically deforms in the radial direction, and the sliding contact portion 9c moves along the inner peripheral surface of the outer pipe 8 in the longitudinal direction along with the deformation. By sliding, the displacement is released. Therefore, the deformation of the inner tube 7 is absorbed without generating large strain energy in the support member 9.

【0043】また、この二重排気管は肉薄の曲がり管で
あるものの、内管7を周方向に分割したので、分割した
部分をプレス成形し、後で溶接することにより、簡単に
製作することができる。また、分割部の側縁にリブ7a
があるので、分割したもの相互を接合しやすくなる。例
えば、リブ7aの外端の合わせ部を溶接する際、多少溶
け込みが多くても穴明きが生じないため、電流等の許容
範囲を広く設定することができ、溶接速度を速くして入
熱温度を下げることにより、溶接変形を小さく抑えるこ
とができる。よって、ロボットによる自動溶接が可能と
なり、信頼性の高い溶接ができて高品質化が図れる。
Although this double exhaust pipe is a thin curved pipe, since the inner pipe 7 is divided in the circumferential direction, it can be easily manufactured by pressing the divided portion and welding it later. You can In addition, ribs 7a are provided on the side edges of the divided portion.
Therefore, it is easy to join the divided pieces together. For example, when welding the outer end of the rib 7a, even if there is a large amount of penetration, no hole will be formed, so that the allowable range of current or the like can be set wide, and the welding speed can be increased to increase the heat input. By lowering the temperature, welding deformation can be suppressed to a small level. Therefore, automatic welding by a robot becomes possible, highly reliable welding can be performed, and high quality can be achieved.

【0044】また、リブ7aがあることで、内管7の強
度が向上する。図7は、リブ7aを形成しない場合
(a)と、形成した場合(b)の違いを示している。力
Pが加わった時に発生する歪エネルギー(ミゼス応力)
をFEM解析した結果を見ると、(a)の場合は、力P
が加わった部分に大きな応力集中が見られ、その部分が
大きく変形する可能性があるが、(b)の場合は、リブ
7aの存在により、力Pが加わっても応力が分散される
ので、その部分の変形が小さくなる。このように、リブ
7aがあることにより、内管7が高強度化されるので、
プレス成形後のスプリングバックを防止することがで
き、低歪溶接等による高精度化を図ることができる。ま
た、溶接変形を小さくできるため、溶接治具等の簡素化
や溶接後の矯正工程等が削減できる利点もある。
The presence of the rib 7a improves the strength of the inner pipe 7. FIG. 7 shows the difference between the case where the rib 7a is not formed (a) and the case where the rib 7a is formed (b). Strain energy generated when a force P is applied (Mises stress)
In the case of (a), the force P
A large stress concentration is observed in the portion to which is applied, and that portion may be greatly deformed. However, in the case of (b), since the rib 7a is present, the stress is dispersed even if the force P is applied, The deformation of that part becomes small. In this way, since the inner tube 7 is strengthened due to the rib 7a,
Springback after press molding can be prevented, and high precision can be achieved by low distortion welding or the like. Further, since welding deformation can be reduced, there is an advantage that the welding jig and the like can be simplified and the correction process after welding can be reduced.

【0045】なお、低温時に非接触であるリブ7aと外
管8を、高温時にのみ接触させるには、図5に示したリ
ブ7aと外管8の隙間H2を適正に確保しなくてはなら
ないが、空気断熱層5の間隔が小さい場合は、隙間H2
を適正な値に設定することが難しい。そのような場合
は、図6に示すように、リブ7aを設けた部分を偏平化
し、リブ7aを設けた部分の径D2を、正規の径D1よ
りも小さくすることにより、リブ7aと外管8の間隔H
2を適正値に設定する。これにより、上述した場合と全
く同様の効果が得られる。
In order to bring the rib 7a and the outer tube 8 which are not in contact with each other at a low temperature into contact with each other only at a high temperature, the gap H2 between the rib 7a and the outer tube 8 shown in FIG. 5 must be properly secured. However, when the distance between the air insulating layers 5 is small, the gap H2
Is difficult to set to an appropriate value. In such a case, as shown in FIG. 6, the portion provided with the rib 7a is flattened, and the diameter D2 of the portion provided with the rib 7a is made smaller than the regular diameter D1. 8 intervals H
Set 2 to an appropriate value. As a result, the same effect as the above case can be obtained.

【0046】〔第2実施例〕上記第1実施例は、本発明
を曲がり管に適用した場合を示したが、第2実施例で
は、本発明を排気マニホールドに適用している。図8は
その実際の使用状態を示す断面図である。
[Second Embodiment] The first embodiment has shown the case where the present invention is applied to a bent pipe, but in the second embodiment, the present invention is applied to an exhaust manifold. FIG. 8 is a sectional view showing the actual use state.

【0047】この実施例の排気マニホールド24は集合
管部(高温化しやすい部位)24Yを有しており、一端
がシリンダヘッド1の排気ポート2に接続され、他端が
触媒6に接続されている。排気マニホールド24は、排
気ガス通路を構成する肉薄の内管7と、その外側に空気
断熱層5をあけて配された強度部材としての肉厚の外管
8と、内管7を外管8に保持させる支持部材9とで構成
され、外管8の一端がガスケット3を介してシリンダヘ
ッド1にボルト12で連結され、他端がガスケット3を
介して触媒6にボルト12で連結されている。外管8は
鋳造品から構成され、内管7は周方向に半分に分割され
て、分割部の側縁に沿ってリブ7aを有している。そし
て、内管7の熱膨脹時に、特に集合管部24Yのリブ7
aが外管8に接触するようになっている。その他の構成
は、第1実施例と同様である。
The exhaust manifold 24 of this embodiment has a collecting pipe portion (a portion where temperature rises easily) 24Y, one end of which is connected to the exhaust port 2 of the cylinder head 1 and the other end of which is connected to the catalyst 6. . The exhaust manifold 24 includes a thin inner pipe 7 forming an exhaust gas passage, a thick outer pipe 8 as a strength member arranged with an air heat insulating layer 5 on the outer side thereof, and an inner pipe 7 to the outer pipe 8. The outer tube 8 is connected to the cylinder head 1 via the gasket 3 with the bolt 12 and the other end is connected via the gasket 3 to the catalyst 6 with the bolt 12. . The outer pipe 8 is made of a cast product, and the inner pipe 7 is divided in half in the circumferential direction, and has ribs 7a along the side edges of the divided portions. When the inner pipe 7 is thermally expanded, the ribs 7 of the collecting pipe portion 24Y are
a contacts the outer tube 8. Other configurations are the same as those of the first embodiment.

【0048】この排気マニホールドでは、上記第1実施
例と同様に、低温時には、リブ7aが外管8に対して非
接触であるから、排気ガスの保温性能が確保される。一
方、高温時には、内管7の変形に伴って、リブ7aが外
管8に接触することにより、内管7の熱が外管8に逃が
され、内管7が冷却されると共に、排気ガスの昇温が抑
制され、触媒の高温劣化が防止される。
In this exhaust manifold, the rib 7a is not in contact with the outer pipe 8 at a low temperature as in the first embodiment, so that the heat retention performance of the exhaust gas is secured. On the other hand, at a high temperature, the ribs 7a come into contact with the outer pipe 8 as the inner pipe 7 is deformed, so that the heat of the inner pipe 7 is released to the outer pipe 8 and the inner pipe 7 is cooled, and the exhaust gas is exhausted. The temperature rise of the gas is suppressed and high temperature deterioration of the catalyst is prevented.

【0049】〔第3実施例〕上記第1実施例では、高温
時にリブ7aが外管8の内壁面に接触することで、内管
7の熱を外管8に逃がすようにしていたが、この第3実
施例では、図9に示すように、曲がり部4Yのちょうど
リブ7aの接触する位置に、外管8の材料よりも熱伝導
率の高い例えばアルミニウム(銅、黄銅等も可)からな
るネジ棒(熱伝導部材)14を嵌合固定し、リブ7aが
外側に変位したとき、このアルミニウム製のネジ棒14
の先端14bに接触するようにしている。
[Third Embodiment] In the first embodiment described above, the rib 7a contacts the inner wall surface of the outer pipe 8 at high temperature to release the heat of the inner pipe 7 to the outer pipe 8. In the third embodiment, as shown in FIG. 9, a material having a higher thermal conductivity than the material of the outer tube 8 such as aluminum (copper, brass or the like) is provided at the position where the rib 7a of the bent portion 4Y is in contact. When the rib 7a is displaced outward, the screw rod 14 made of aluminum is fitted and fixed.
It contacts the tip 14b of the.

【0050】この場合、外管8の管壁には予めネジ孔8
hがあけられており、このネジ孔8hにアルミニウム製
のネジ棒14のネジ部14aがねじ込まれており、この
ネジ棒14がリブ7aに対して近接離反可能とされてい
る。ねじ込み位置のセットに当たっては、最初にリブ7
aに当たるまでネジ棒14をねじ込む。次いで、ネジ棒
14を適量ねじ戻すことで、リブ7aとネジ棒14の先
端間の間隔調整が可能となる。つまり、空気断熱層5が
大きくなった場合でも、ネジ棒14を一旦リブ7aに当
ててから適量戻す操作を行うことで、常に所定の隙間を
リブ7aとネジ棒14の先端間に確保することができ
る。
In this case, the outer wall of the outer tube 8 is previously provided with the screw hole 8
h is opened, and the screw portion 14a of the screw rod 14 made of aluminum is screwed into the screw hole 8h, and the screw rod 14 can be moved toward and away from the rib 7a. When setting the screwed position, first set the rib 7
Screw the screw rod 14 until it hits a. Then, the screw rod 14 is unscrewed by an appropriate amount so that the gap between the rib 7a and the tip of the screw rod 14 can be adjusted. That is, even when the air insulating layer 5 becomes large, a predetermined gap is always secured between the rib 7a and the tip of the screw rod 14 by performing an operation of once applying the screw rod 14 to the rib 7a and then returning it by an appropriate amount. You can

【0051】この隙間は、ネジ棒14のねじ込み量で適
当に調整することができるので、高温化に応じて内管7
の熱を逃がすタイミングを、適当に変えることができ
る。つまり、どのくらいの温度の時にリブ7aをネジ棒
14に接触させて内管7の熱を逃がすかを、外部からネ
ジ棒14を操作することで、コントロールすることがで
きる。
This clearance can be adjusted appropriately by the screwing amount of the screw rod 14, so that the inner pipe 7 can be adjusted depending on the temperature rise.
The timing of escaping the heat of can be changed appropriately. That is, the temperature at which the rib 7a is brought into contact with the threaded rod 14 and the heat of the inner tube 7 is released can be controlled by operating the threaded rod 14 from the outside.

【0052】この実施例では、高温時にはリブ7aがア
ルミニウム製のネジ棒14に接触するので、熱伝導が促
進され、内管7の冷却効率が向上する。
In this embodiment, the rib 7a contacts the aluminum screw rod 14 at high temperature, so that heat conduction is promoted and the cooling efficiency of the inner pipe 7 is improved.

【0053】なお、外管8に設けたネジ孔8hは、内管
7を鋳ぐるみで製造する場合、中子造型時の位置決め用
ダボとして利用することができる。さらに鋳造時は砂抜
き用の穴としても利用することができ、砂つまり等の修
正工程等の削減が図れる。
The screw hole 8h provided in the outer pipe 8 can be used as a positioning dowel at the time of core molding when the inner pipe 7 is manufactured by casting. Furthermore, it can be used as a hole for sand removal during casting, and the number of steps for repairing sand clogging can be reduced.

【0054】〔第4実施例〕図10は、本発明の第4実
施例の内管4の構造の概略を示す。支持部材9は図示を
省略してある。また、外管に対する組み付け態様は、第
1実施例と全く同じである。
[Fourth Embodiment] FIG. 10 schematically shows the structure of the inner pipe 4 of the fourth embodiment of the present invention. The support member 9 is not shown. The assembling mode to the outer tube is exactly the same as that of the first embodiment.

【0055】この実施例の内管では、高温の排気ガスが
当たる曲がり部4Yの外周壁側に、曲がり部4Yの中心
部を囲むように、略環状(リブ7aの近傍は省略してあ
る)のビード7bが形成されている。ビード7bは、外
方に凸の円弧状断面として形成されている。
In the inner pipe of this embodiment, a substantially annular shape (the vicinity of the rib 7a is omitted) is provided on the outer peripheral wall side of the bent portion 4Y against which high-temperature exhaust gas hits so as to surround the central portion of the bent portion 4Y. Beads 7b are formed. The bead 7b is formed as an arcuate cross section that is convex outward.

【0056】このように、ビード7bを、高温時に熱応
力が集中しやすい箇所を囲むように設けたので、高温化
による熱応力をビード7bで分散することができ、熱応
力の集中を緩和できて、内管7の信頼性及び耐久性を向
上させることができる。
As described above, since the beads 7b are provided so as to surround a portion where thermal stress is likely to concentrate at high temperature, the thermal stress due to high temperature can be dispersed by the beads 7b and the concentration of thermal stress can be relaxed. Therefore, the reliability and durability of the inner pipe 7 can be improved.

【0057】〔第5実施例〕図11は、本発明の第5実
施例の内管7の構成を示す。この内管7は、図11
(a)に示すように、集合管として構成されており、集
合管部24Yを挟むようにビード7bが形成されてい
る。外管との組み合わせ方は、第1実施例または第2実
施例と同じである。ビード7bの形状は、図11(c)
に示すように断面円弧状となっており、その高さH3
が、リブ高さH1−0.5〜1mmとなっている。これ
は、先にビード7bが外管8に接触しないようにするた
めである。これにより、内管7の集合管部24Yに発生
する熱応力集中が分散できるので、内管7の信頼性や耐
久性が向上する。
[Fifth Embodiment] FIG. 11 shows the structure of an inner pipe 7 according to a fifth embodiment of the present invention. This inner tube 7 is shown in FIG.
As shown in (a), it is configured as a collecting pipe, and a bead 7b is formed so as to sandwich the collecting pipe portion 24Y. The method of combination with the outer tube is the same as in the first or second embodiment. The shape of the bead 7b is shown in FIG. 11 (c).
As shown in, the cross section is arcuate and its height H3
However, the rib height is H1-0.5 to 1 mm. This is to prevent the bead 7b from coming into contact with the outer tube 8 first. Thereby, the concentration of thermal stress generated in the collecting pipe portion 24Y of the inner pipe 7 can be dispersed, so that the reliability and durability of the inner pipe 7 are improved.

【0058】〔第6実施例〕次に本発明の第6実施例に
ついて説明する。図12は第6実施例の二重排気管に用
いられている内管7を示す。この内管7では、リブ7a
が内管7の全長にわたって形成されており、その端部に
おいて対向する一方のリブ7aには、内管7の径方向外
方に突出する延長片19が一体的に形成されている。こ
の延長片19は、支持部材として利用されるものであ
り、適当な長さの帯板状に形成されている。
[Sixth Embodiment] Next, a sixth embodiment of the present invention will be described. FIG. 12 shows the inner pipe 7 used in the double exhaust pipe of the sixth embodiment. In this inner tube 7, the rib 7a
Is formed over the entire length of the inner pipe 7, and an extension piece 19 projecting outward in the radial direction of the inner pipe 7 is integrally formed on one of the ribs 7a facing each other at the end thereof. The extension piece 19 is used as a support member and is formed into a strip plate shape having an appropriate length.

【0059】図13は、内管7を外管8内に組み込んだ
状態を示している。支持部材としての延長片19は、内
管7の円周方向に撓み変形させられ、内管7の接線方向
に傾斜部19bを延ばし、その先端の摺動接触部19c
を外管8の内周面に摺動自在に接触させている。この場
合の傾斜部19bは内管7の接線方向に延びているの
で、内管7の径方向(半径)に対して円周方向に傾斜し
ている。
FIG. 13 shows a state in which the inner pipe 7 is incorporated in the outer pipe 8. The extension piece 19 as a supporting member is bent and deformed in the circumferential direction of the inner pipe 7, extends the inclined portion 19b in the tangential direction of the inner pipe 7, and has a sliding contact portion 19c at the tip thereof.
Is slidably contacted with the inner peripheral surface of the outer tube 8. Since the inclined portion 19b in this case extends in the tangential direction of the inner pipe 7, it is inclined in the circumferential direction with respect to the radial direction (radius) of the inner pipe 7.

【0060】延長片19の長さは、内管7を外管8の内
部に挿入したとき、延長片19の先端の摺動接触部19
cが、適量内方に弾性変形する程度としてある。このよ
うに延長片19を弾性変形させながら、内管7を外管8
内に挿入すると、延長片19の先端の摺動接触部19c
が外管8の内周面に突張力をもって圧接し、それにより
内管7が外管8に保持される。
The length of the extension piece 19 is such that when the inner tube 7 is inserted into the outer tube 8, the sliding contact portion 19 at the tip of the extension piece 19 is inserted.
It is set such that c is elastically deformed inward by an appropriate amount. While elastically deforming the extension piece 19 in this manner, the inner tube 7 is replaced by the outer tube 8
When inserted inside, the sliding contact portion 19c at the tip of the extension piece 19
Comes into pressure contact with the inner peripheral surface of the outer pipe 8 with a protruding tension, whereby the inner pipe 7 is held by the outer pipe 8.

【0061】この二重排気管では、内管7が径方向に変
形したとき、延長片19の特に傾斜部19bが周方向に
弾性変形することで、内管7の変形を吸収する。また、
内管7が長手方向に変形した場合は、摺動接触部19c
が外管8の内周面上を長手方向に摺動することで、内管
7の変形を吸収する。
In this double exhaust pipe, when the inner pipe 7 is deformed in the radial direction, the inclined portion 19b of the extension piece 19 is elastically deformed in the circumferential direction to absorb the deformation of the inner pipe 7. Also,
When the inner pipe 7 is deformed in the longitudinal direction, the sliding contact portion 19c
Slides on the inner peripheral surface of the outer pipe 8 in the longitudinal direction to absorb the deformation of the inner pipe 7.

【0062】また、この実施例によれば、支持部材とし
ての延長片19をリブ7aに一体形成したので、別に支
持部材を設ける必要がなく、部品点数が減り、低コスト
化が図れる利点がある。
Further, according to this embodiment, since the extension piece 19 as a supporting member is integrally formed with the rib 7a, it is not necessary to separately provide a supporting member, and the number of parts can be reduced and the cost can be reduced. .

【0063】〔第7実施例〕次に本発明の第7実施例を
説明する。図14はこの実施例の内管の組み立て前の状
態を示す斜視図、図15は内管を組み立てた状態を示す
正面図である。
[Seventh Embodiment] Next, a seventh embodiment of the present invention will be described. FIG. 14 is a perspective view showing a state before assembling the inner pipe of this embodiment, and FIG. 15 is a front view showing a state where the inner pipe is assembled.

【0064】この実施例では、相互に接合する内管7の
リブのうち、一方のリブ7dを他方のリブ7aよりも長
めに形成し、長めに形成したリブ7dを折り曲げて、短
い方のリブ7aを包み込み、その状態で両方のリブ7
a、7dを相互に加締め固着している。
In this embodiment, among the ribs of the inner pipe 7 to be joined to each other, one rib 7d is formed longer than the other rib 7a, and the longer rib 7d is bent to form the shorter rib. 7a and wraps both ribs 7 in that state
A and 7d are fixed by crimping each other.

【0065】この構造によれば、短い方のリブ7aが、
長い方のリブ7dに包み込まれた状態で加締められてい
るので、そのリブ7a、7dの合わせ部での気密性が良
好に保たれる。従って、内管7の組み立てにおいて、溶
接工程を廃止することができるようになり、溶接欠陥や
変形、残留応力等の廃止によって、製造ばらつきのな
い、高品質な内管が製造できる。また、溶接治具の廃止
や溶接後の矯正工程等の廃止ができる。また、一方のリ
ブ7dで他方のリブ7aを包み込むので、リブの外端が
丸くなり、外管8と接触した際の接触性が良好になり、
熱伝導が促進される。
According to this structure, the shorter rib 7a is
Since the caulking is performed while being wrapped in the longer rib 7d, the airtightness at the mating portion of the ribs 7a and 7d can be kept good. Therefore, in assembling the inner pipe 7, it becomes possible to eliminate the welding process, and by eliminating welding defects, deformation, residual stress, etc., it is possible to produce a high-quality inner pipe without manufacturing variations. Further, the welding jig and the correction process after welding can be eliminated. In addition, since one rib 7d wraps the other rib 7a, the outer ends of the ribs are rounded and the contactability with the outer tube 8 is improved,
Heat conduction is promoted.

【0066】〔その他の実施例〕なお、上記実施例に用
いた支持部材以外に、従来例で用いたメッシュを支持部
材として用いてもよい。
[Other Examples] In addition to the supporting member used in the above-mentioned examples, the mesh used in the conventional example may be used as the supporting member.

【0067】また、上記実施例においては、リブを分割
部の側縁の略全部に形成した場合を示したが、外管方向
に変位する側にだけ設けてもよい。また、曲がり部だけ
に設けてもよい。また、内管を分割形式としない場合
に、前記と同様の機能を果たすリブだけを設けたもよ
い。
Further, in the above embodiment, the rib is formed on substantially the entire side edge of the divided portion, but it may be provided only on the side displaced in the outer tube direction. Alternatively, it may be provided only at the bent portion. Further, when the inner pipe is not of the split type, only ribs having the same function as described above may be provided.

【0068】[0068]

【発明の効果】以上説明したように、請求項1の発明に
よれば、エンジン始動時のように排気ガス温度が低いと
きには、内管の熱が他に逃げにくくなり、排気ガスの保
温効果が高まる。よって、触媒の早期活性化が図れる。
また、高負荷走行時のように、排気ガス温度および内管
温度が高いときには、リブが外管に接触することで内管
の熱を外管に逃がすので、内管が冷却され、熱影響によ
る内管の強度低下が抑えられる。また、リブがあること
により、内管自体の強度もアップすることから、内管の
信頼性や耐久性が向上する。また、内管が冷却されるこ
とで、排気ガス温度も低下させられるので、触媒の高温
劣化も防止される。
As described above, according to the first aspect of the present invention, when the temperature of the exhaust gas is low such as when the engine is started, the heat of the inner pipe is hard to escape to the other side, and the effect of keeping the temperature of the exhaust gas is improved. Increase. Therefore, early activation of the catalyst can be achieved.
Also, when the exhaust gas temperature and the inner pipe temperature are high, such as during high-load running, the ribs contact the outer pipe to release the heat of the inner pipe to the outer pipe, so the inner pipe is cooled and is affected by heat. The decrease in strength of the inner pipe is suppressed. In addition, the presence of the ribs increases the strength of the inner pipe itself, thereby improving the reliability and durability of the inner pipe. Further, since the exhaust gas temperature is lowered by cooling the inner pipe, deterioration of the catalyst at high temperature is prevented.

【0069】請求項2の発明によれば、高温化しやすい
部位の熱を局部的に逃がすことができるので、熱応力集
中を緩和して耐久性を向上することができる。
According to the second aspect of the present invention, the heat of the portion which easily becomes high in temperature can be locally released, so that the concentration of thermal stress can be relaxed and the durability can be improved.

【0070】請求項3の発明によれば、外管と内管の隙
間があまりない場合でも、リブの先端と外管の隙間を適
正な値に設定することができる。従って、低温時の排気
ガス保温特性と、高温時の高熱化抑制特性を両立させる
ことができる。
According to the third aspect of the present invention, even when there is not much gap between the outer pipe and the inner pipe, the gap between the tip of the rib and the outer pipe can be set to an appropriate value. Therefore, it is possible to achieve both the exhaust gas heat retention characteristics at low temperatures and the high heat suppression characteristic at high temperatures.

【0071】請求項4の発明によれば、高温時の内管の
熱の逃げを促進させることができ、高温時の特性(内管
の冷却による強度低下防止と排気ガス低温化による触媒
の高温劣化防止に関する性能)の向上を図ることができ
る。
According to the invention of claim 4, it is possible to promote the escape of heat from the inner pipe at high temperature, and to improve the characteristics at high temperature (preventing strength deterioration due to cooling of the inner pipe and high temperature of the catalyst due to lowering of exhaust gas temperature). (Performance related to deterioration prevention) can be improved.

【0072】請求項5の発明によれば、リブと熱伝導部
材の間隔を調整することができるので、どのくらいの温
度の時に、リブを熱伝導部材に接触させて内管の熱を逃
がすかをコントロールすることができる。
According to the invention of claim 5, the distance between the rib and the heat conducting member can be adjusted. Therefore, at what temperature is the rib contacting the heat conducting member and the heat of the inner tube is released? You can control.

【0073】請求項6の発明によれば、高温化しやすい
部位の熱応力集中を緩和することができ、内管の信頼性
及び耐久性を向上させることができる。
According to the sixth aspect of the present invention, the concentration of thermal stress in the portion where the temperature tends to rise can be alleviated, and the reliability and durability of the inner pipe can be improved.

【0074】請求項7の発明によれば、支持部材をリブ
に一体形成したので、別に支持部材を設ける必要がな
く、部品点数が減り、低コスト化が図れる。また、摺動
接触部が内管と外管の相対変位に応じて摺動するので、
支持部材に繰り返し発生する歪エネルギーを小さくで
き、支持部材の耐久性の向上が図れる。
According to the invention of claim 7, since the supporting member is integrally formed with the rib, it is not necessary to separately provide a supporting member, the number of parts can be reduced, and the cost can be reduced. Also, since the sliding contact part slides according to the relative displacement of the inner pipe and the outer pipe,
The strain energy repeatedly generated in the supporting member can be reduced, and the durability of the supporting member can be improved.

【0075】請求項8の発明によれば、曲がり部や集合
部があっても簡単に加工することができ、また、品質の
向上が図れる。
According to the invention of claim 8, even if there is a bent portion or a gathered portion, it can be easily processed, and the quality can be improved.

【0076】請求項9の発明によれば、一方のリブで他
方のリブを包み込んで、相互のリブを加締めたので、内
管の気密性を確保できると共に、溶接が不要となること
で、溶接欠陥や溶接変形の発生を防ぐことができ、品質
の向上が図れる。また、一方のリブで他方のリブを包み
込むので、リブの外端が丸くなり、外管と接触した際の
接触性が良好になり、熱伝導が促進される。
According to the ninth aspect of the present invention, one rib is wrapped around the other rib and the mutual ribs are caulked. Therefore, the airtightness of the inner tube can be ensured and welding is not required. The occurrence of welding defects and welding deformation can be prevented, and quality can be improved. Further, since one rib wraps the other rib, the outer ends of the ribs are rounded, the contactability with the outer tube is improved, and heat conduction is promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の二重排気管の高温時の状
態を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a state of a double exhaust pipe of a first embodiment of the present invention at a high temperature.

【図2】図1のII−II矢視断面図である。FIG. 2 is a sectional view taken along the line II-II of FIG.

【図3】同実施例の内管の組み立て前の状態を示す斜視
図である。
FIG. 3 is a perspective view showing a state before assembling the inner tube of the embodiment.

【図4】同内管の組み立て後の状態を示す斜視図であ
る。
FIG. 4 is a perspective view showing a state after the inner tube is assembled.

【図5】同内管を外管に組込んだ状態を示す横断面図で
ある。
FIG. 5 is a transverse cross-sectional view showing a state in which the inner tube is incorporated in the outer tube.

【図6】図5の変形例を示す横断面図である。FIG. 6 is a cross-sectional view showing a modified example of FIG.

【図7】同実施例の内管の強度についての説明図であ
る。
FIG. 7 is an explanatory diagram of strength of the inner pipe of the embodiment.

【図8】本発明の第2実施例の二重排気管の使用状態を
示す全体断面図である。
FIG. 8 is an overall sectional view showing a usage state of a double exhaust pipe of a second embodiment of the present invention.

【図9】本発明の第3実施例の二重排気管の縦断面図で
ある。
FIG. 9 is a vertical sectional view of a double exhaust pipe according to a third embodiment of the present invention.

【図10】本発明の第4実施例における内管の構成図で
あり、(a)は側面図、(b)は背面図である。
FIG. 10 is a configuration diagram of an inner pipe in a fourth embodiment of the present invention, (a) is a side view and (b) is a rear view.

【図11】本発明の第5実施例における内管の構成図で
あり、(a)は側面図、(b)は正面図、(c)はビー
ド部分の拡大断面図である。
FIG. 11 is a configuration diagram of an inner pipe in a fifth embodiment of the present invention, (a) is a side view, (b) is a front view, and (c) is an enlarged sectional view of a bead portion.

【図12】本発明の第6実施例における内管の組み立て
前の分解斜視図である。
FIG. 12 is an exploded perspective view of an inner pipe before assembling according to a sixth embodiment of the present invention.

【図13】同内管を外管に組み込んだ状態を示す正面図
である。
FIG. 13 is a front view showing a state in which the inner tube is incorporated in the outer tube.

【図14】本発明の第7実施例における内管の組み立て
前の分解斜視図である。
FIG. 14 is an exploded perspective view of an inner tube of the seventh embodiment of the present invention before assembling.

【図15】同内管の組み立て後の状態を示す正面図であ
る。
FIG. 15 is a front view showing a state after the inner tube is assembled.

【図16】従来の二重排気管の要部を示す縦断面図であ
る。
FIG. 16 is a vertical cross-sectional view showing a main part of a conventional double exhaust pipe.

【符号の説明】[Explanation of symbols]

7 内管 7a リブ 7b ビード 7d 長めに形成したリブ 8 外管 9 支持部材 14 ネジ棒(熱伝導部材) 19 延長片 19b 傾斜部 19c 摺動接触部 7 Inner pipe 7a Rib 7b Bead 7d Longer rib 8 Outer pipe 9 Support member 14 Screw rod (heat conduction member) 19 Extension piece 19b Inclined portion 19c Sliding contact portion

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 外管と、この外管内に隙間をもって配設
された内管と、前記外管と内管の間に配設され内管と外
管の相対変形を吸収しつつ前記内管を外管に保持させる
支持部材とからなる二重排気管において、 前記内管の外周に、内管が低温のとき前記外管に非接触
で、内管が高温になったとき内管の変形に伴って外管側
に変位することにより外管に接触する突片状のリブを突
設したことを特徴とする二重排気管。
1. An outer pipe, an inner pipe disposed with a gap in the outer pipe, and the inner pipe disposed between the outer pipe and the inner pipe while absorbing relative deformation of the inner pipe and the outer pipe. In a double exhaust pipe consisting of a support member for holding the inner pipe to the outer pipe, the outer pipe of the inner pipe is not in contact with the outer pipe when the inner pipe has a low temperature, and the inner pipe deforms when the inner pipe has a high temperature. The double exhaust pipe is characterized in that a rib in the form of a protruding piece is provided so as to come into contact with the outer pipe by being displaced to the outer pipe side with the above.
【請求項2】 請求項1記載の二重排気管であって、前
記リブが、内管の高温化しやすい部位の外管方向に変形
する側に形成されていることを特徴とする二重排気管。
2. The double exhaust pipe according to claim 1, wherein the rib is formed on a side of the inner pipe where the temperature easily rises, which is deformed toward the outer pipe. trachea.
【請求項3】 請求項1または2記載の二重排気管であ
って、前記リブを設けた部位の内管の管壁を偏平化した
ことを特徴とする二重排気管。
3. The double exhaust pipe according to claim 1, wherein the pipe wall of the inner pipe at the portion where the rib is provided is flattened.
【請求項4】 請求項1〜3のいずれかに記載の二重排
気管であって、前記外管のリブの接触する位置に、外管
の他の部位よりも熱伝導率の高い熱伝導部材を設けたこ
とを特徴とする二重排気管。
4. The double exhaust pipe according to any one of claims 1 to 3, wherein the ribs of the outer pipe are in contact with each other and have a higher thermal conductivity than other portions of the outer pipe. Double exhaust pipe characterized by having a member.
【請求項5】 請求項4記載の二重排気管であって、前
記熱伝導部材を、リブに対して近接離反可能に外管に装
着したことを特徴とする二重排気管。
5. The double exhaust pipe according to claim 4, wherein the heat conducting member is attached to an outer pipe so as to be able to approach and separate from a rib.
【請求項6】 請求項1〜5のいずれかに記載の二重排
気管であって、前記内管の高温化しやすい部位の周辺
に、内管の管壁を曲げ変形させてビードを形成したこと
を特徴とする二重排気管。
6. The double exhaust pipe according to claim 1, wherein a bead is formed by bending and deforming a pipe wall of the inner pipe around a portion of the inner pipe where the temperature is likely to rise. A double exhaust pipe characterized by that.
【請求項7】 請求項1〜6のいずれかに記載の二重排
気管であって、前記リブに前記支持部材としての延長片
を一体形成し、該延長片に、内管の径方向に対して傾斜
する傾斜部と、外管の内周面に摺動接触する摺動接触部
とを設け、且つ該延長片を内管の径方向に弾性変形させ
た状態で外管と内管の隙間へ配設したことを特徴とする
二重排気管。
7. The double exhaust pipe according to claim 1, wherein an extension piece as the support member is integrally formed on the rib, and the extension piece is provided in a radial direction of the inner tube. A slanting portion that is inclined with respect to the outer pipe and a sliding contact portion that slidably contacts the inner peripheral surface of the outer pipe are provided, and the extension piece is elastically deformed in the radial direction of the inner pipe. A double exhaust pipe characterized by being placed in a gap.
【請求項8】 請求項1〜7のいずれかに記載の二重排
気管であって、前記内管が周方向に複数に分割されてお
り、その分割部の側縁部に前記リブが形成され、該リブ
を相互に接合することにより前記内管が形成されている
ことを特徴とする二重排気管。
8. The double exhaust pipe according to claim 1, wherein the inner pipe is divided into a plurality of pieces in the circumferential direction, and the rib is formed on a side edge portion of the divided portion. A double exhaust pipe, wherein the inner pipe is formed by joining the ribs to each other.
【請求項9】 請求項8記載の二重排気管であって、前
記相互に接合するリブの一方を他方より長めに形成し、
該一方のリブで他方のリブを包み込み、その状態でリブ
相互を加締めたことを特徴とする二重排気管。
9. The double exhaust pipe according to claim 8, wherein one of the mutually joining ribs is formed longer than the other,
A double exhaust pipe characterized in that the one rib is wrapped in the other rib and the ribs are caulked together in this state.
JP8020995A 1995-04-05 1995-04-05 Double exhaust pipe Pending JPH08277995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8020995A JPH08277995A (en) 1995-04-05 1995-04-05 Double exhaust pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8020995A JPH08277995A (en) 1995-04-05 1995-04-05 Double exhaust pipe

Publications (1)

Publication Number Publication Date
JPH08277995A true JPH08277995A (en) 1996-10-22

Family

ID=13712004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8020995A Pending JPH08277995A (en) 1995-04-05 1995-04-05 Double exhaust pipe

Country Status (1)

Country Link
JP (1) JPH08277995A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320896A (en) * 2004-05-07 2005-11-17 Futaba Industrial Co Ltd Exhaust manifold
JP2007040474A (en) * 2005-08-04 2007-02-15 Nissan Motor Co Ltd Pulsation absorber
JP2008235209A (en) * 2007-03-23 2008-10-02 Furukawa Sky Kk Exhaust pipe for fuel cell vehicle, and its manufacturing method
JP2009057862A (en) * 2007-08-30 2009-03-19 Hino Motors Ltd Heat insulation exhaust pipe
JP2010144523A (en) * 2008-12-16 2010-07-01 Toyota Motor Corp Exhaust manifold of internal combustion engine
DE102012021063A1 (en) * 2012-10-20 2014-04-24 Daimler Ag Air-gap insulated exhaust pipe unit of combustion engine for motor car, has pipe section in sliding seat section, which comprises projection that extends into gap, so that gap in section of sliding seat section is narrowed radially
KR20220034958A (en) * 2020-09-11 2022-03-21 정우이앤이 주식회사 Vacuum insulated piping

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320896A (en) * 2004-05-07 2005-11-17 Futaba Industrial Co Ltd Exhaust manifold
JP4515816B2 (en) * 2004-05-07 2010-08-04 フタバ産業株式会社 Exhaust manifold
JP2007040474A (en) * 2005-08-04 2007-02-15 Nissan Motor Co Ltd Pulsation absorber
JP2008235209A (en) * 2007-03-23 2008-10-02 Furukawa Sky Kk Exhaust pipe for fuel cell vehicle, and its manufacturing method
JP2009057862A (en) * 2007-08-30 2009-03-19 Hino Motors Ltd Heat insulation exhaust pipe
JP4689647B2 (en) * 2007-08-30 2011-05-25 日野自動車株式会社 Insulated exhaust pipe
JP2010144523A (en) * 2008-12-16 2010-07-01 Toyota Motor Corp Exhaust manifold of internal combustion engine
DE102012021063A1 (en) * 2012-10-20 2014-04-24 Daimler Ag Air-gap insulated exhaust pipe unit of combustion engine for motor car, has pipe section in sliding seat section, which comprises projection that extends into gap, so that gap in section of sliding seat section is narrowed radially
KR20220034958A (en) * 2020-09-11 2022-03-21 정우이앤이 주식회사 Vacuum insulated piping

Similar Documents

Publication Publication Date Title
JP2012515295A (en) Connection arrangement of turbine housing and bearing housing and exhaust turbocharger
JPH09264129A (en) Exhaust manifold
US6360782B1 (en) Exhaust pipe assembly of two-passage construction
JP3092400B2 (en) Double exhaust pipe
JPH08277995A (en) Double exhaust pipe
JP3204011B2 (en) Engine double exhaust pipe
JP4262381B2 (en) Double exhaust pipe for engine and exhaust manifold for engine
JP2001132872A (en) Double pipe structure and manufacturing method thereof
JP3857767B2 (en) Double pipe type exhaust manifold
JPS5821092B2 (en) Internal combustion engine exhaust port liner device
JP4513665B2 (en) Method for manufacturing a double exhaust pipe of an internal combustion engine
JPH07224649A (en) Exhaust manifold structure
JP6896687B2 (en) Manufacturing method of connection part
JP3572751B2 (en) Double structure exhaust manifold
JP4595843B2 (en) Method of manufacturing exhaust port liner and cylinder head of internal combustion engine
JP5212097B2 (en) Flange joint
JPH0868319A (en) Exhaust double-pipe structure
JP3275523B2 (en) Engine exhaust pipe
JP2003184548A (en) Exhaust double pipe
JPH08218860A (en) Double exhaust pipe
JP2002285842A (en) Thermal insulation plate fixing method for catalyst converter for vehicle
JP3006376B2 (en) Exhaust pipe of internal combustion engine
KR100633606B1 (en) Method for welding stainless exhaust manifold
JP2005207388A (en) Metallic mesh fixing construction of exhaust double-walled pipe and fixing method thereof
JP3960202B2 (en) Joint structure of exhaust system components of internal combustion engines