JP3497392B2 - Heated exhaust pipe for engine - Google Patents

Heated exhaust pipe for engine

Info

Publication number
JP3497392B2
JP3497392B2 JP32810098A JP32810098A JP3497392B2 JP 3497392 B2 JP3497392 B2 JP 3497392B2 JP 32810098 A JP32810098 A JP 32810098A JP 32810098 A JP32810098 A JP 32810098A JP 3497392 B2 JP3497392 B2 JP 3497392B2
Authority
JP
Japan
Prior art keywords
pipe
exhaust
engine
tube
collecting pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32810098A
Other languages
Japanese (ja)
Other versions
JP2000154717A (en
Inventor
一弘 古橋
達己 山田
宏 橋本
和夫 石井
浩一 藤森
誠司 加藤
清隆 大塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Yutaka Giken Co Ltd
Original Assignee
Honda Motor Co Ltd
Yutaka Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Yutaka Giken Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP32810098A priority Critical patent/JP3497392B2/en
Publication of JP2000154717A publication Critical patent/JP2000154717A/en
Application granted granted Critical
Publication of JP3497392B2 publication Critical patent/JP3497392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、筒状の断熱空間を
挟んで内外二重に配置される薄肉の内側管及び厚肉の外
側管の一端部を相互に固着すると共に、内側管の他端部
を外側管の内周面に摺動可能に支承させてなる、エンジ
ン用保温型排気管に関する。 【0002】 【従来の技術】かゝるエンジン用保温型排気管は、例え
ば特開平7−189681号公報に開示されるように、
既に知られている。 【0003】 【発明が解決しようとする課題】かゝるエンジン用保温
型排気管では、エンジンの排ガスに直接触れる内側管
と、外気に直接触れる外側管とでは、特に、軸方向の熱
膨張量が大きく相違し、即ち内側管は外側管よりも軸方
向に多く膨張し、その膨張量の差が内側管及び外側管の
他端部相互の摺動により吸収される。また内側管は薄肉
であるので、ヒートマスが小さく、その内部を流れる高
温の排ガスにより加熱されて速やかに昇温し、外周の断
熱空間との協働により後続の排ガスを、その温度低下を
抑えながら下流側の排気浄化装置へ誘導して、その活性
化の促進に寄与する。 【0004】ところで、エンジンの暖機運転中は、断熱
空間による内側管の保温性を高めて、排気浄化装置の活
性化を促進する必要があるものゝ、暖機後は、内側管を
通る排ガスの放熱を適度に促すことが、内側管の過熱を
防ぎ、その耐久性を確保する上に有効である。 【0005】本発明は、かゝる点に鑑みてなされたもの
で、簡単な構造をもって、エンジンの暖機運転中は断熱
空間による内側管の保温性を高め、暖機後は内側管を通
る排ガスの放熱を適度に促すことができるようにした、
前記エンジン用保温型排気管を提供することを目的とす
る。 【0006】 【課題を解決するための手段】上記目的を達成するため
に、本発明は、筒状の断熱空間を挟んで内外二重に配置
される薄肉の内側管及び厚肉の外側管の一端部を相互に
固着すると共に、内側管の他端部を外側管の内周面に摺
動可能に支承させてなる、エンジン用保温型排気管にお
いて、内側管の他端面に対向して、それとの間隙を、内
側管が外側管より大きく軸方向に熱膨張するに応じて絞
る間隙調節段部を外側管に一体的に連設し、その間隙調
節段部は、外側管の他端部外周面に一端部が固着される
第2の内側管に一体に形成され、その第2の内側管の一
端部には、筒状の第2の断熱空間を挟んで該第2の内側
管の外側に配置した第2の外側管の一端部が固着される
ことを特徴とする。 【0007】この特徴によれば、エンジンの暖機中は、
薄肉でヒートマスが小さい内側管は、その内部を通る排
ガスにより素早く加熱されることから、外側管よりも大
きく軸方向に熱膨張して、内側管及び外側管の軸方向の
熱膨張量の差が吸収される。このような内側管及び外側
管の軸方向の熱膨張量の差は、エンジンの暖機運転中が
最も大きいので、内側管の他端面と、それに対向する間
隙調節段部との間隙が、このとき最も狭められる。その
結果、内側管を通過した排ガスは、絞られた上記間隙に
より、内側管外周の断熱空間へ入り込むことが極力抑え
られ、したがって断熱空間の内側管に対する保温効果が
確実に発揮される。 【0008】エンジンの暖機後は、外側管も内側管から
の放射熱により充分に加熱され、内側管及び外側管の熱
膨張量の差が減少するから、内側管の他端面と、それに
対向する間隙調節段部との間隙は拡大する。その結果、
内側管を通過した排ガスの一部が上記間隙から内側管外
周の断熱空間に比較的容易に入り込むようになり、排ガ
スの放熱が適度に促されるため、内側管の過熱が回避さ
れる。 【0009】 【発明の実施の形態】本発明の実施の形態を、添付図面
に示す本発明の実施例に基づいて以下に説明する。 【0010】図1は本発明の保温型排気管を備えた排気
マニホールドをエンジンへの取付け状態で示す側面図、
図2は上記排気マニホールドの斜視図、図3は上記排気
マニホールドの一部縦断正面図、図4は図3の4部拡大
図(エンジン運転停止状態)、図5はエンジン暖機運転
中での、図4に対応する作用説明図、図6はエンジン暖
機運転後での、図4に対応する作用説明図、図7は図1
の7−7線断面図(エンジン運転停止状態)、図8はエ
ンジン暖機運転中での、図7に対応する作用説明図、図
9はエンジン暖機運転後での、図7に対応する作用説明
図、図10は図7の10−10線断面図である。 【0011】先ず、図1〜図3において、4気筒エンジ
ンEのシリンダヘッド1の前面に、その気筒に対応して
4本の排気ポート21 〜24 が開口しており、これら排
気ポート21 〜24 から排出される排ガスを誘導する保
温型排気マニホールドMが複数のスタッドボルト3及び
ナット4によりシリンダヘッド1に取付けられる。この
排気マニホールドMは、前記4本の排気ポート21 〜2
4 に上端を個別に連通する4本の排気単管51 〜54
備えており、これらを図3で上流端左側から第1〜第4
排気単管と呼ぶことにする。 【0012】第1〜第4排気単管51 〜54 の上流側端
部に上部フランジ7が接続され、第2及び第3排気単管
2 ,53 の下流側端部に第1排気集合管61 が接続さ
れ、第1及び第4排気単管51 4 の下流側端部に第2
排気集合管62 が接続される。そして第1及び第2排気
集合管61 ,62 の下流側端部に下部フランジ8が接続
される。 【0013】上部フランジ7は、前記スタッドボルト3
及びナット4によりシリンダヘッド1の前面に形成され
た鉛直方向の取付け面に固着される。各排気単管51
4は、上部フランジ7から前方に延びると共に、中間
部に下方へ略90°の範囲で曲がった曲がり部9が形成
され、これにより下部フランジ8は下向きに配置され
る。この下部フランジ8には、車両の床下に配置される
図示しない共通の触媒コンバータ(排気浄化装置)に連
なる中間排気管21が接続される。尚、下部フランジ8
には、上記触媒コンバータを直接接続することもでき
る。 【0014】各排気単管51 〜54 は、内外2重に配置
した内側単管10及び外側集合管11からなるもので、
内側及び外側集合管10,11間には筒状の断熱空間1
2が形成される。内側単管10は薄肉のステンレス鋼管
製であり、外側集合管11もステンレス鋼管製である
が、内側単管10よりは厚肉である。 【0015】図1に示すように、外側集合管11の上流
側端部は、内側単管10の上流側端部外周面に嵌合する
ように縮径され、それらの上流側端部が上部フランジ7
の、対応する排気ポート21 〜24 に連なる通孔131
〜134 に嵌合されると共に、その通孔131 〜134
の内周面に溶接により固着される。 【0016】図3及び図4に示すように、内側単管10
の下流側端部外周面には環状突起14が形成され、この
突起14を介して内側単管10の下流側端部は外側集合
管11の下流側端部内周面に摺動可能に支承される。 【0017】図3、図4、図7及び図10において、各
排気集合管61 ,62 は、内外二重に配置した内側集合
管15及び外側集合管16からなるもので、内側及び外
側集合管15,16の間にも断熱空間17が形成され
る。内側集合管15の上流側端部には、内側二股管1
8,18が形成され、これらに、対応する2本の前記外
側集合管11,11の下流側端部が嵌入される。 【0018】内側集合管15は、半径方向に分割された
薄肉のステンレス鋼板製の一対の内側集合管半体15
a,15bの相対向する端部を相互に重ね、その重ね端
部全体を溶接して構成される。 【0019】また外側集合管16もステンレス鋼板製の
一対の外側集合管半体16a,16bの相対向する端部
を相互に重ね、その重ね部全体を溶接して構成される
が、その板厚は内側集合管15より厚い。この外側集合
管16の上流側端部には、上記内側二股管18,18を
それぞれ覆う外側二股管19、19が形成される。この
外側二股管19,19の先端部は内側二股管18,18
の外周面に嵌合するように縮径され、それらの嵌合部
が、対応する2本の前記外側集合管11,11の下流側
端部外周面に溶接により固着される。 【0020】外側集合管16の下流側端部に前記下部フ
ランジ8が溶接により固着される。また外側集合管16
の下流側端部の内周面には、ステンレスワイヤを編んで
なる環状二つ割りのメッシュ部材20が溶接により付設
され、このメッシュ部材20の内周面に内側集合管15
の下流側端部が摺動自在に嵌合される。こうして内側集
合管15の下流側端部は、メッシュ部材20を介して外
側集合管16に摺動自在に支承される。 【0021】図3及び図4に示すように、各内側集合管
15の上流側端部には、各排気単管51 〜54 の断熱空
間12の下方開口部を横切って内側単管10の下流側端
面に対向する間隙調節段部23が一体的に連設される。
この間隙調節段部23は,内側単管10の下流側端面と
の間に所定の間隙25を画成するもので、その間隙25
は、内側単管10が外側集合管16より大きく軸方向に
熱膨張するに応じて絞るようになっている。 【0022】また図7に示すように、下部フランジ8に
は、各排気集合管61 ,62 の断熱空間17の下方開口
部を横切って内側集合管15の下流側端面に対向する間
隙調節段部24が一体的に連設される。この間隙調節段
部24は、内側集合管15の下流側端面との間に所定の
間隙26を画成するもので、その間隙26は、内側単管
10が外側集合管16より大きく軸方向に熱膨張するに
応じて絞るようになっている。 【0023】以上において、排気単管51 〜54 及び排
気集合管61 ,62 は、それぞれ本発明の保温型排気管
に対応し、また内側単管10及び内側集合管15は、そ
れぞれ本発明の内側管に対応し、外側単管11及び外側
集合管16は、それぞれ本発明の外側管に対応する。 【0024】次に、この実施例の作用について説明す
る。 【0025】エンジンEの作動中、排ガスが4本の排気
ポート21 ,22 ,24 ,23 から第1排気単管51
第2排気単管52 、第4排気単管54 、第3排気単管5
3 に順次排出される。そして第1及び第4排気単管
1 ,54 を通過した排ガスは第1排気集合管61 で合
流し、第2及び第3排気単管52 ,53 を通過した排ガ
スは第2排気合流管62 で合流し、その後、排ガスは中
間排気管21で更に合流しながら図示しない共通の触媒
コンバータへと誘導され、浄化される。 【0026】ところで、各排気単管51 〜54 は内外二
重配置の内側単管10及び外側集合管11から構成さ
れ、その内側単管10は薄肉に形成されると共に、内側
及び外側集合管10,11の間には断熱空間12が形成
され、また各排気集合管61 ,62 も内外二重配置の内
側集合管15及び外側集合管16から構成され、その内
側集合管15は薄肉に形成されると共に、内側及び外側
集合管15,16の間にも断熱空間17が形成されるの
で、ヒートマスの小なる内側単管10及び内側集合管1
5は、その内部を流れる高温の排ガスにより加熱されて
速やかに昇温し、これが断熱空間12,17により保温
される。したがって、後続の排ガスを、その温度低下を
抑えながら前記触媒コンバータへ誘導して、その活性化
を促進し、排ガスの浄化効率を高めることができる。 【0027】その間に、各排気単管51 〜54 において
は、排ガスに直接接する内側単管10は、外気に直接接
する外側集合管11よりも大きく軸方向に熱膨張する
が、その熱膨張に伴い内側単管10の下流側端部外周面
の環状突起14が、それらを支承する外側集合管11の
内周面に対して滑り、内側及び外側集合管10,11の
軸方向の熱膨張量の差が吸収される。 【0028】また内側単管10は、上流側端部が外側集
合管11に固着され、下流側端部が外側集合管11に摺
動可能に支承されることから、両持ち式に支持されるこ
とになり、その支持を安定させて、振動音の発生を防ぐ
ことができる。 【0029】一方、各排気集合管61 ,62 において
も、内側集合管15に外側集合管16側よりも大きな軸
方向の熱膨張が生ずるが、その熱膨張に伴い内側集合管
15の下流側端部が、外側集合管16に支持されるメッ
シュ部材20に対して摺動し、内側及び外側集合管1
5、16の軸方向の熱膨張量の差が吸収される。 【0030】このように、保温型排気マニホールドMに
おいて、内外二重壁の軸方向の熱伸びの差を吸収する摺
動部を各排気単管51 〜54 の下流側端部と各排気集合
管61 ,62 の下流側端部とに分けて設けることによ
り、各摺動部での摺動ストロークを小さく設定すること
が可能となり、摺動過程で、その摺動部相互に傾きが起
こり難くなり、排気マニホールドM各部に熱歪みが生ず
ることを効果的に防ぎ、その耐久性の向上を図ることが
できる。 【0031】ところで、内側単管10の下流側端面と、
内側集合管15に形成された間隙調節段部23との間隙
25、並びに内側集合管15の下流側端面と、下部フラ
ンジ8に形成された間隙調節段部24との間隙26は、
エンジンの運転を停止した冷機状態で最も大きい(図4
及び図7参照)。しかし、エンジンが始動されて暖機運
転に入ると、内側単管10及び内側集合管15は薄肉で
ヒートマスが比較的小さく、しかも排ガスに直接接する
こと、外側集合管16及び外側集合管16は厚肉でヒー
トマスが比較的大きく、しかも外気に直接触れているこ
とから、内側単管10及び内側集合管15は、外側集合
管16及び外側集合管16より特に大きく軸方向に熱膨
張し、これに伴い内側単管10及び内側集合管15の下
流側端面は前記間隙調節段部23,24に対してそれぞ
れ接近して、前記間隙25,26を最小に絞るようにな
る(図5及び図8参照)。 【0032】その結果、内側単管10及び内側集合管1
5をそれぞれ通過した排ガスは、絞られた上記間隙2
5,26により、内側単管10及び内側集合管15の各
外周の断熱空間12,17へ入り込むことが極力抑えら
れ、したがって断熱空間12,17の内側単管10及び
内側集合管15に対する保温効果が確実に発揮されるか
ら、排ガスの低下を効果的に抑えて、下流側の触媒コン
バータの活性化を促進し、排ガス浄化効率の向上に寄与
し得る。 【0033】エンジンの暖機後は、外側集合管16及び
外側集合管16も内側単管10及び外側集合管16から
の放射熱により加熱され、内側単管10と外側集合管1
6,内側集合管15と外側集合管16の各熱膨張量の差
が減少するから、前記間隙調節段部23,24は、内側
単管10及び内側集合管15の各下流側端面から離れる
方向へ変位して、前記間隙25,26を拡大させる(図
6及び図9参照)。その結果、内側単管10及び内側集
合管15を通過した排ガスの一部が前記間隙25,26
から内側単管10及び内側集合管15外周の断熱空間1
2,17に比較的容易に入り込むようになり、排ガスの
放熱が適度に促されるため、内側単管10及び内側集合
管15の過熱が回避され、それらの耐久性が確保され
る。 【0034】以上、本発明の実施例を詳述したが、本発
明はその要旨を逸脱しない範囲で種々の設計変更を行う
ことができる。 【0035】 【発明の効果】以上のように本発明によれば、筒状の断
熱空間を挟んで内外二重に配置される薄肉の内側管及び
厚肉の外側管の一端部を相互に固着すると共に、内側管
の他端部を外側管の内周面に摺動可能に支承させてな
る、エンジン用保温型排気管において、内側管の他端面
に対向して、それとの間隙を、内側管が外側管より大き
く軸方向に熱膨張するに応じて絞る間隙調節段部を外側
管に一体的に連設したので、エンジンの暖機運転中は、
内側管及び外側管の軸方向の大なる熱膨張量の差を利用
して、前記間隙を絞ることにより、内側管内を通る排ガ
スの断熱空間への入り込みを防ぎ、断熱空間の内側管に
対する保温効果を高め、下流側に位置する排気浄化装置
の活性化促進を図ることができ、またエンジンの暖機後
は内側管及び外側管の熱膨張量の差の減少により、前記
間隙を拡大させて、排ガスの一部をその間隙から断熱空
間に入り込ませ、排ガスの放熱を適度に促することによ
り、内側管の過熱を回避して、その耐久性を確保するこ
とができる。しかも前記間隙の調節に特別なアクチュエ
ータは不要であり、構造が極めて簡単である。 【0036】また上記間隙調節段部は、外側管の他端部
外周面に一端部が固着される第2の内側管に一体に形成
され、その第2の内側管の一端部に、筒状の第2の断熱
空間を挟んで該第2の内側管の外側に配置した第2の外
側管の一端部が固着される
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin inner pipe and a thick outer pipe which are arranged inside and outside of a tubular heat insulating space. The present invention relates to a warmed exhaust pipe for an engine, wherein the exhaust pipes are fixed to each other and the other end of an inner pipe is slidably supported on an inner peripheral surface of an outer pipe. 2. Description of the Related Art Such a heat-insulating exhaust pipe for an engine is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-189681.
Already known. [0003] In such a warmed exhaust pipe for an engine, the inner pipe that directly contacts the exhaust gas of the engine and the outer pipe that directly touches the outside air have a particularly large thermal expansion amount in the axial direction. The inner pipe expands more in the axial direction than the outer pipe, and the difference in the amount of expansion is absorbed by sliding between the other ends of the inner pipe and the outer pipe. In addition, since the inner tube is thin, the heat mass is small, it is heated by the high-temperature exhaust gas flowing inside it, and the temperature rises quickly. It guides to the downstream exhaust purification device and contributes to the promotion of its activation. By the way, during the warm-up operation of the engine, it is necessary to enhance the heat retention of the inner pipe by the heat insulating space to promote the activation of the exhaust gas purification device. After the warm-up, the exhaust gas passing through the inner pipe is required. Properly radiating the heat of the inner tube is effective in preventing overheating of the inner tube and ensuring its durability. SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has a simple structure, which enhances the heat retention of an inner pipe by an adiabatic space during warm-up operation of an engine, and passes through the inner pipe after warm-up. The heat release of exhaust gas can be promoted appropriately.
An object of the present invention is to provide a warmed exhaust pipe for the engine. [0006] In order to achieve the above object, the present invention provides a thin inner pipe and a thick outer pipe which are arranged inside and outside with a tubular heat insulating space interposed therebetween. With one end fixed to each other, the other end of the inner pipe is slidably supported on the inner peripheral surface of the outer pipe, in a warmed exhaust pipe for an engine, facing the other end of the inner pipe, the gap between it and integrally connected to the outer tube a gap adjusting step portion to narrow in response to the inner tube thermally expands in the larger axially than the outer tube, the gap adjustment
One end of the nodal step is fixed to the outer peripheral surface of the other end of the outer tube
One piece of the second inner tube is formed integrally with the second inner tube.
At the end, the second inner side of the second heat insulating space is sandwiched.
One end of a second outer tube disposed outside the tube is fixed . According to this feature, during warm-up of the engine,
Since the inner tube having a small thickness and a small heat mass is quickly heated by exhaust gas passing through the inside, the inner tube expands more in the axial direction than the outer tube, and the difference in the amount of thermal expansion between the inner tube and the outer tube in the axial direction is reduced. Absorbed. Such a difference in the amount of thermal expansion between the inner pipe and the outer pipe in the axial direction is the largest during the warm-up operation of the engine, so that the gap between the other end face of the inner pipe and the gap adjusting step facing the inner pipe has this difference. Sometimes narrowed most. As a result, the exhaust gas that has passed through the inner pipe is minimized from entering the heat insulating space around the outer circumference of the inner pipe due to the narrowed gap, so that the heat insulating effect of the heat insulating space on the inner pipe is reliably exhibited. After the engine is warmed up, the outer pipe is also sufficiently heated by the radiant heat from the inner pipe, and the difference in the amount of thermal expansion between the inner pipe and the outer pipe is reduced. The gap with the gap adjusting step portion is enlarged. as a result,
Part of the exhaust gas that has passed through the inner pipe relatively easily enters the heat insulating space around the inner pipe from the gap, and the heat release of the exhaust gas is appropriately promoted, so that overheating of the inner pipe is avoided. Embodiments of the present invention will be described below based on embodiments of the present invention shown in the accompanying drawings. FIG. 1 is a side view showing an exhaust manifold provided with a heat retaining type exhaust pipe according to the present invention when the exhaust manifold is attached to an engine.
FIG. 2 is a perspective view of the exhaust manifold, FIG. 3 is a partially longitudinal front view of the exhaust manifold, FIG. 4 is an enlarged view of a part of FIG. 3 (engine stopped state), and FIG. , FIG. 6 is an explanatory view corresponding to FIG. 4 after the engine warm-up operation, and FIG. 7 is an explanatory view corresponding to FIG.
8 is a sectional view taken along line 7-7 (in an engine stopped state), FIG. 8 is an explanatory diagram of the operation corresponding to FIG. 7 during the engine warm-up operation, and FIG. 9 corresponds to FIG. 7 after the engine warm-up operation. FIG. 10 is a sectional view taken along line 10-10 of FIG. [0011] First, in FIGS. 1 to 3, 4 to the front surface of the cylinder head 1 of cylinder engine E, and then the exhaust port 21 to 24 is the opening of the four corresponding to the cylinders, these exhaust ports 2 insulation type exhaust manifold M to induce exhaust gas discharged from 21 to 24 is mounted by a plurality of stud bolts 3 and nuts 4 on the cylinder head 1. The exhaust manifold M, the four exhaust ports 2 1 to 2
4 includes four exhaust single pipe 5 1 to 5 4 for communicating individually upper end, the first to fourth from the upstream end left them in FIG. 3
I will call it a single exhaust pipe. [0012] The first to the first to the upper flange 7 is connected to the fourth upstream end of the exhaust monotube 5 1 to 5 4, the downstream end of the second and third exhaust monotube 5 2, 5 3 exhaust collecting pipe 61 is connected, the second to the downstream end of the first and fourth exhaust monotube 5 1 5 4
Exhaust collecting pipe 6 2 are connected. A lower flange 8 is connected to downstream ends of the first and second exhaust manifolds 6 1 , 6 2 . The upper flange 7 is provided with the stud bolt 3.
And a nut 4 fixed to a vertical mounting surface formed on the front surface of the cylinder head 1. Each exhaust single pipes 5 1 -
5 4, extends from the upper flange 7 in the front bend portion 9 bent in the range of approximately 90 ° downward is formed in the middle portion, which lower flange 8 by is arranged downward. An intermediate exhaust pipe 21 connected to a common catalytic converter (exhaust gas purification device) (not shown) arranged under the floor of the vehicle is connected to the lower flange 8. The lower flange 8
, The above-mentioned catalytic converter can be directly connected. [0014] Each exhaust monotube 5 1 to 5 4, made of an inner monotube 10 and the outer collecting pipe 11 disposed inside and outside double,
A cylindrical heat insulating space 1 is provided between the inner and outer collecting pipes 10 and 11.
2 are formed. The inner single pipe 10 is made of a thin stainless steel pipe, and the outer collecting pipe 11 is also made of a stainless steel pipe, but is thicker than the inner single pipe 10. As shown in FIG. 1, the upstream end of the outer collecting pipe 11 is reduced in diameter so as to fit on the outer peripheral surface of the upstream end of the inner single pipe 10, and their upstream ends are formed in the upper part. Flange 7
Of, connected to corresponding exhaust ports 21 to 24 through-holes 13 1
To 13 together are fitted to 4, the through hole 131-134
Is fixed by welding to the inner peripheral surface. As shown in FIG. 3 and FIG.
An annular projection 14 is formed on the outer peripheral surface of the downstream end of the inner tube 10, and the downstream end of the inner single pipe 10 is slidably supported on the inner peripheral surface of the downstream end of the outer collecting pipe 11 via the projection 14. You. In FIGS. 3, 4, 7 and 10, each of the exhaust manifolds 6 1 and 6 2 comprises an inner manifold 15 and an outer manifold 16 arranged in an inner and outer doubly. A heat insulating space 17 is also formed between the collecting pipes 15 and 16. At the upstream end of the inner collecting pipe 15, an inner forked pipe 1 is provided.
8 and 18 are formed, into which the downstream ends of the two corresponding outer collecting pipes 11 and 11 are fitted. The inner collecting pipe 15 is composed of a pair of inner collecting pipe halves 15 made of a thin stainless steel plate divided in the radial direction.
A and 15b are formed by overlapping opposing ends and welding the entire overlapping end. The outer collecting pipe 16 is also formed by overlapping opposing ends of a pair of outer collecting pipe halves 16a and 16b made of a stainless steel plate and welding the entire overlapped portion. Is thicker than the inner collecting pipe 15. At the upstream end of the outer collecting pipe 16, outer bifurcated pipes 19, 19 respectively covering the inner bifurcated pipes 18, 18 are formed. The distal ends of the outer forked pipes 19, 19 are connected to the inner forked pipes 18, 18, respectively.
Are fitted to the outer peripheral surfaces of the downstream ends of the corresponding two outer collecting pipes 11, 11 by welding. The lower flange 8 is fixed to the downstream end of the outer collecting pipe 16 by welding. In addition, the outer collecting pipe 16
An annular split mesh member 20 formed by knitting a stainless steel wire is attached to the inner peripheral surface of the downstream end portion by welding, and the inner collecting pipe 15 is attached to the inner peripheral surface of the mesh member 20.
Are slidably fitted at the downstream end. Thus, the downstream end of the inner collecting pipe 15 is slidably supported by the outer collecting pipe 16 via the mesh member 20. As shown in FIGS. 3 and 4, the upstream end of the inner collector pipe 15, the inner single tube 10 across the lower opening of the heat insulation space 12 of the exhaust monotube 5 1 to 5 4 A gap adjusting step 23 facing the downstream end face of the first member is integrally and continuously provided.
The gap adjusting step portion 23 defines a predetermined gap 25 between the inner single pipe 10 and the downstream end face thereof.
The inner pipe 10 is configured to be throttled as the inner single pipe 10 thermally expands more in the axial direction than the outer collecting pipe 16. [0022] As shown in FIG. 7, the lower flange 8, gap adjustment facing the downstream end face of the inner collecting pipe 15 across the lower opening of the exhaust collecting pipe 6 and 62 of the heat insulation space 17 The step portion 24 is integrally connected. The gap adjusting step portion 24 defines a predetermined gap 26 between the inner collecting pipe 15 and the downstream end face. The gap 26 is formed such that the inner single pipe 10 is larger than the outer collecting pipe 16 in the axial direction. It is squeezed according to thermal expansion. [0023] In the above, the exhaust monotube 5 1 to 5 4 and the exhaust collecting pipe 6 and 62 respectively correspond to the insulation type exhaust pipe of the present invention, also the inner monotube 10 and the inner collector pipe 15 each The outer single pipe 11 and the outer collecting pipe 16 correspond to the inner pipe of the present invention, respectively, and correspond to the outer pipe of the present invention, respectively. Next, the operation of this embodiment will be described. [0025] During operation of the engine E, an exhaust port 2 1 of the exhaust gas is four, 2 2, 2 4, 2 3 from the first exhaust monotube 5 1,
Second exhaust monotube 5 2, fourth exhaust monotube 5 4, the third exhaust monotube 5
It is sequentially discharged to 3 . The exhaust gas which has passed through the first and fourth exhaust monotube 5 1, 5 4 merged in the first exhaust collecting pipe 61, which has passed through the second and third exhaust monotube 5 2, 5 3 and the second merge at an exhaust merging pipe 6 2, then the exhaust gas is guided to a common catalytic converter (not shown) while being further joined at the intermediate exhaust pipe 21, it is purified. By the way, the exhaust monotube 5 1 to 5 4 are composed of an inner monotube 10 and outer collector pipes 11 of the inner and outer double arrangement, inside the single tube 10 is formed into a thin, inner and outer sets A heat insulating space 12 is formed between the pipes 10 and 11, and each of the exhaust collecting pipes 6 1 and 6 2 is also composed of an inner collecting pipe 15 and an outer collecting pipe 16 arranged in an inner and outer double arrangement. Since the heat insulating space 17 is formed between the inner and outer collecting pipes 15 and 16 while being formed thin, the inner single pipe 10 and the inner collecting pipe 1 having a small heat mass are formed.
5 is heated by the high-temperature exhaust gas flowing through the inside thereof and quickly rises in temperature, which is kept insulated by the heat insulating spaces 12 and 17. Therefore, it is possible to guide the subsequent exhaust gas to the catalytic converter while suppressing the temperature decrease thereof, to promote its activation, and to increase the purification efficiency of the exhaust gas. [0027] Meanwhile, in the exhaust monotube 5 1 to 5 4, inner single tube 10 in direct contact with the exhaust gas is thermally expanded to increase the axial direction than the outer collector pipes 11 in direct contact with the outside air, its thermal expansion Accordingly, the annular projections 14 on the outer peripheral surface of the downstream end portion of the inner single pipe 10 slide with respect to the inner peripheral surface of the outer collecting pipe 11 that supports them, and the thermal expansion in the axial direction of the inner and outer collecting pipes 10 and 11 occurs. The difference in volume is absorbed. The inner single pipe 10 has an upstream end fixed to the outer collecting pipe 11 and a downstream end slidably supported by the outer collecting pipe 11, so that the inner single pipe 10 is supported in a double-supported manner. In other words, the support can be stabilized, and the generation of vibration noise can be prevented. On the other hand, in each of the exhaust manifolds 6 1 and 6 2 , thermal expansion in the axial direction of the inner manifold 15 is larger than that of the outer manifold 16. The side end slides with respect to the mesh member 20 supported by the outer collecting pipe 16, and the inner and outer collecting pipes 1
The difference in the amount of thermal expansion in the axial direction of 5 and 16 is absorbed. [0030] Thus, in thermal insulation type exhaust manifold M, the downstream end of each exhaust monotube 5 1 to 5 4 a sliding portion for absorbing the difference in axial thermal expansion of the inner and outer double wall and the exhaust by providing divided into the downstream end of the collecting pipe 6 and 62, it is possible to set a sliding stroke in the sliding portions small, sliding process, the inclination to the sliding portion mutually Is less likely to occur, and it is possible to effectively prevent the occurrence of thermal distortion in each part of the exhaust manifold M, and to improve the durability thereof. By the way, the downstream end face of the inner single pipe 10
The gap 25 between the gap adjusting step 23 formed on the inner collecting pipe 15 and the gap 26 between the downstream end face of the inner collecting pipe 15 and the gap adjusting step 24 formed on the lower flange 8 are:
The largest in the cold state where the operation of the engine is stopped (FIG. 4
And FIG. 7). However, when the engine is started and the warm-up operation is started, the inner single pipe 10 and the inner collecting pipe 15 are thin and have a relatively small heat mass, and are in direct contact with the exhaust gas, and the outer collecting pipe 16 and the outer collecting pipe 16 are thick. Since the meat has a relatively large heat mass and is in direct contact with the outside air, the inner single pipe 10 and the inner collecting pipe 15 thermally expand in the axial direction particularly larger than the outer collecting pipe 16 and the outer collecting pipe 16. Accordingly, the downstream end faces of the inner single pipe 10 and the inner collecting pipe 15 approach the gap adjusting step portions 23 and 24, respectively, so that the gaps 25 and 26 are reduced to the minimum (see FIGS. 5 and 8). ). As a result, the inner single pipe 10 and the inner collecting pipe 1
Exhaust gas passing through each of the narrowed gaps 2
Due to 5, 26, entry into the heat insulating spaces 12, 17 on the outer periphery of the inner single pipe 10 and the inner collecting pipe 15 is suppressed as much as possible. Is reliably exerted, the reduction of exhaust gas can be effectively suppressed, the activation of the downstream catalytic converter can be promoted, and the exhaust gas purification efficiency can be improved. After the engine is warmed up, the outer collecting pipe 16 and the outer collecting pipe 16 are also heated by radiant heat from the inner single pipe 10 and the outer collecting pipe 16, and the inner single pipe 10 and the outer collecting pipe 1 are heated.
6. Since the difference in the amount of thermal expansion between the inner collecting pipe 15 and the outer collecting pipe 16 is reduced, the gap adjusting steps 23 and 24 are separated from the downstream end faces of the inner single pipe 10 and the inner collecting pipe 15. To enlarge the gaps 25 and 26 (see FIGS. 6 and 9). As a result, a part of the exhaust gas passing through the inner single pipe 10 and the inner collecting pipe 15 is separated by the gaps 25 and 26.
Heat insulation space 1 around the inner single pipe 10 and the inner collecting pipe 15
The inner pipes 2 and 17 are relatively easily introduced, and the heat release of the exhaust gas is appropriately promoted. Therefore, overheating of the inner single pipe 10 and the inner collecting pipe 15 is avoided and their durability is secured. Although the embodiments of the present invention have been described in detail, various design changes can be made in the present invention without departing from the gist thereof. As described above, according to the present invention, one ends of a thin inner pipe and a thick outer pipe which are arranged inside and outside doubly with a tubular heat insulating space therebetween are fixed to each other. At the same time, in a warmed exhaust pipe for an engine, in which the other end of the inner pipe is slidably supported on the inner peripheral surface of the outer pipe, a gap with the other end face of the inner pipe is formed inside the exhaust pipe. A gap adjustment step that narrows as the pipe thermally expands in the axial direction larger than the outer pipe is integrally connected to the outer pipe, so during warm-up operation of the engine,
By utilizing the large difference in the amount of thermal expansion between the inner pipe and the outer pipe in the axial direction, by narrowing the gap, the exhaust gas passing through the inner pipe is prevented from entering the heat-insulated space, and the heat-insulating effect of the heat-insulated space on the inner pipe. , The activation of the exhaust gas purification device located downstream can be promoted, and after the engine is warmed up, the difference in the amount of thermal expansion between the inner pipe and the outer pipe is reduced to enlarge the gap, By allowing a part of the exhaust gas to enter the heat-insulating space through the gap and appropriately promoting heat radiation of the exhaust gas, overheating of the inner pipe can be avoided and its durability can be ensured. Further, no special actuator is required for adjusting the gap, and the structure is extremely simple. The gap adjusting step is provided at the other end of the outer tube.
Formed integrally with the second inner tube whose one end is fixed to the outer peripheral surface
And one end of the second inner tube is provided with a cylindrical second heat insulating member.
A second outer tube disposed outside the second inner tube across a space;
One end of the side tube is fixed .

【図面の簡単な説明】 【図1】本発明の保温型排気管を備えた排気マニホール
ドをエンジンへの取付け状態で示す側面図。 【図2】上記排気マニホールドの斜視図。 【図3】上記排気マニホールドの一部縦断正面図。 【図4】図3の4部拡大図(エンジン運転停止状態)。 【図5】エンジン暖機運転中での、図4に対応する作用
説明図。 【図6】エンジン暖機運転後での、図4に対応する作用
説明図。 【図7】図1の7−7線断面図(エンジン運転停止状
態)。 【図8】エンジン暖機運転中での、図7に対応する作用
説明図。 【図9】エンジン暖機運転後での、図7に対応する作用
説明図。 【図10】図7の10−10線断面図。 【符号の説明】 E・・・・・・エンジン M・・・・・・排気マニホールド 51 〜54 ・・保温型排気管としての排気単管 61 ,62 ・・保温型排気管としての排気集合管 10・・・・・内側管としての内側単管 11・・・・・外側管としての外側単管 12・・・・・断熱空間 15・・・・・第2の内側管としての内側集合管 16・・・・・第2の外側管としての外側集合管 17・・・・・第2の断熱空間 2・・・・・間隙調節段部 2・・・・・間隙
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view showing an exhaust manifold provided with a heat-retaining exhaust pipe of the present invention in a state where the exhaust manifold is attached to an engine. FIG. 2 is a perspective view of the exhaust manifold. FIG. 3 is a partial vertical front view of the exhaust manifold. FIG. 4 is an enlarged view of a part 4 in FIG. 3 (engine operation stopped state). FIG. 5 is an operation explanatory view corresponding to FIG. 4 during an engine warm-up operation; FIG. 6 is an operation explanatory view corresponding to FIG. 4 after an engine warm-up operation; FIG. 7 is a sectional view taken along the line 7-7 in FIG. 1 (engine stopped state). FIG. 8 is an operation explanatory view corresponding to FIG. 7 during an engine warm-up operation; FIG. 9 is an operation explanatory view corresponding to FIG. 7 after an engine warm-up operation; FIG. 10 is a sectional view taken along line 10-10 of FIG. 7; As exhaust monotube 6 1, 6 2 ... insulation type exhaust pipe as [Reference Numerals] E · · · · · · engine M · · · · · · exhaust manifold 5 1 to 5 4 ... insulation-type exhaust pipe The exhaust collecting pipe 10 of the inner pipe 11 as the inner pipe. The outer single pipe 12 as the outer pipe. The heat insulating space 15 as the second inner pipe. outer collector pipes 17 ----- second insulation space 2 3 as an outer tube of the inner collector pipe 16 ----- second ----- gap adjusting step part 2 5 ----- gap

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 宏 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (72)発明者 石井 和夫 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (72)発明者 藤森 浩一 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (72)発明者 加藤 誠司 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (72)発明者 大塩 清隆 埼玉県和光市中央1丁目4番1号 株式 会社本田技術研究所内 (56)参考文献 特開 平8−121158(JP,A) (58)調査した分野(Int.Cl.7,DB名) F01N 7/08 F01N 7/10 F01N 7/14 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Hashimoto 1-4-1 Chuo, Wako-shi, Saitama Prefecture Inside of Honda R & D Co., Ltd. (72) Kazuo Ishii 1-4-1 Chuo, Wako-shi, Saitama Stock Koichi Fujimori, inventor of Honda R & D Co., Ltd. (1-2) 1-4-1, Chuo, Wako-shi, Saitama, Japan Stock Company Seiji Kato (72) Inventor of Honda R & D Co., Ltd. 1-4-1, Chuo, Wako, Saitama Co., Ltd. Inside the Technical Research Institute (72) Inventor Kiyotaka Oshio 1-4-1 Chuo, Wako-shi, Saitama Prefecture Honda Technical Research Institute Co., Ltd. (56) References JP-A-8-121158 (JP, A) (58) Fields investigated ( Int.Cl. 7 , DB name) F01N 7/08 F01N 7/10 F01N 7/14

Claims (1)

(57)【特許請求の範囲】 【請求項1】 筒状の断熱空間(1)を挟んで内外二
重に配置される薄肉の内側管(1)及び厚肉の外側管
(1)の一端部を相互に固着すると共に、内側管(1
)の他端部を外側管(1)の内周面に摺動可能に支
承させてなる、エンジン用保温型排気管において、 内側管(1)の他端面に対向して、それとの間隙(2
)を、内側管(1)が外側管(1)より大きく軸
方向に熱膨張するに応じて絞る間隙調節段部(2)を
外側管(1)に一体的に連設し その間隙調節段部(23)は、外側管(11)の他端部
外周面に一端部が嵌合、固着される第2の内側管(1
5)に一体に形成され、その第2の内側管(15)の一
端部には、筒状の第2の断熱空間(17)を挟んで該第
2の内側管(15)の外側に配置した第2の外側管(1
6)の一端部が固着される ことを特徴とする、エンジン
用保温型排気管。
(57) Patent Claims 1. A tubular insulating space (1 2) interposed therebetween thin inner tube arranged inside and outside double (1 0) and the outer tube of the thick (1 1 ) Are fixed to each other and the inner tube (1)
The other end of the 0) becomes slidably is supported on the inner peripheral surface of the outer tube (1 1), the thermal insulation type exhaust pipe for an engine, so as to face the other end surface of the inner tube (1 0), the same Gap (2
5), integrally continuously provided inner tube (1 0) is gap adjusting step portion to narrow in response to thermal expansion in the larger axially than the outer tube (1 1) and (2 3) in the outer tube (1 1) and, the gap adjusting step portion (23), the other end portion of the outer tube (11)
A second inner tube (1) having one end fitted and fixed to the outer peripheral surface
5) and formed integrally with one of its second inner tubes (15).
At the end, the second heat insulating space (17) is sandwiched.
A second outer tube (1) disposed outside the second inner tube (15).
(6) A heat retaining type exhaust pipe for an engine , wherein one end of the exhaust pipe is fixed .
JP32810098A 1998-11-18 1998-11-18 Heated exhaust pipe for engine Expired - Fee Related JP3497392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32810098A JP3497392B2 (en) 1998-11-18 1998-11-18 Heated exhaust pipe for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32810098A JP3497392B2 (en) 1998-11-18 1998-11-18 Heated exhaust pipe for engine

Publications (2)

Publication Number Publication Date
JP2000154717A JP2000154717A (en) 2000-06-06
JP3497392B2 true JP3497392B2 (en) 2004-02-16

Family

ID=18206516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32810098A Expired - Fee Related JP3497392B2 (en) 1998-11-18 1998-11-18 Heated exhaust pipe for engine

Country Status (1)

Country Link
JP (1) JP3497392B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4232709B2 (en) * 2004-07-28 2009-03-04 日産自動車株式会社 Double pipe exhaust manifold

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121158A (en) * 1994-10-21 1996-05-14 Nissan Motor Co Ltd Double exhaust pipe for internal combustion engine and its manufacture

Also Published As

Publication number Publication date
JP2000154717A (en) 2000-06-06

Similar Documents

Publication Publication Date Title
JP3092400B2 (en) Double exhaust pipe
JP4262381B2 (en) Double exhaust pipe for engine and exhaust manifold for engine
JP3497392B2 (en) Heated exhaust pipe for engine
JPH0742547A (en) Double pipe for exhaust system for vehicle
JP2001132872A (en) Double pipe structure and manufacturing method thereof
JP3554482B2 (en) Engine warmed exhaust manifold
JP3964321B2 (en) Vehicle exhaust system
JP3333707B2 (en) Engine exhaust pipe structure
JP3971523B2 (en) Insulated exhaust manifold for engine
JPH06336921A (en) Exhaust tube of internal combustion engine
JP2002021554A (en) Exhaust system structure with insulator
JP3999382B2 (en) Insulated exhaust manifold for engine
JP3250454B2 (en) Double pipe
JP3248423B2 (en) Exhaust manifold of internal combustion engine
JPH0868319A (en) Exhaust double-pipe structure
JPH11303632A (en) Insulating type exhaust manifold of engine
JP3344210B2 (en) Double pipe exhaust manifold
JP2000145443A (en) Heat insulating type exhaust pipe for engine
JP3259233B2 (en) Exhaust silencer
JP3006376B2 (en) Exhaust pipe of internal combustion engine
JP2000154716A (en) Heat insulation type exhaust pipe for engine
JPH07279657A (en) Exhaust device of internal combustion engine
JPH08334017A (en) Double exhaust pipe of engine
JPH06299848A (en) Exhaust pipe structure for internal combustion engine
JPH1037746A (en) Double exhaust pipe

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees