JP3248423B2 - Exhaust manifold of internal combustion engine - Google Patents

Exhaust manifold of internal combustion engine

Info

Publication number
JP3248423B2
JP3248423B2 JP11083396A JP11083396A JP3248423B2 JP 3248423 B2 JP3248423 B2 JP 3248423B2 JP 11083396 A JP11083396 A JP 11083396A JP 11083396 A JP11083396 A JP 11083396A JP 3248423 B2 JP3248423 B2 JP 3248423B2
Authority
JP
Japan
Prior art keywords
pipe
branch
branch pipe
fixed
exhaust manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11083396A
Other languages
Japanese (ja)
Other versions
JPH09296722A (en
Inventor
義正 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11083396A priority Critical patent/JP3248423B2/en
Publication of JPH09296722A publication Critical patent/JPH09296722A/en
Application granted granted Critical
Publication of JP3248423B2 publication Critical patent/JP3248423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Silencers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の排気マニ
ホルドに関する。
The present invention relates to an exhaust manifold for an internal combustion engine.

【0002】[0002]

【従来の技術】従来より、各枝管が内管および外管を備
えた二重管から形成し、各内管および外管間に環状の断
熱層を形成した内燃機関の排気マニホルドが知られてい
る。この排気マニホルドでは、排気マニホルドからの排
気ガスの放熱量をできるだけ小さくして排気マニホルド
下流に設けられる触媒が排気ガスによって速やかに加熱
されるようにしている。
2. Description of the Related Art Conventionally, there is known an exhaust manifold of an internal combustion engine in which each branch pipe is formed of a double pipe having an inner pipe and an outer pipe, and an annular heat insulating layer is formed between the inner pipe and the outer pipe. ing. In this exhaust manifold, the amount of heat radiation of the exhaust gas from the exhaust manifold is made as small as possible so that the catalyst provided downstream of the exhaust manifold is quickly heated by the exhaust gas.

【0003】ところが、このように各枝管を二重管から
構成すると内管と外管間に大きな温度差が生じ、このた
め内管と外管間に大きな軸線方向熱膨張量差が生ずる。
そこで、各内管を上流端に設けられた固定支持部おいて
それぞれ対応する外管に固定し、下流端に設けられた摺
動支持部において外管により、軸線方向に摺動可能に支
持した排気マニホルドが公知である(特開平7−224
649号公報参照)。
However, when each branch pipe is formed of a double pipe in this way, a large temperature difference occurs between the inner pipe and the outer pipe, and therefore a large difference in the amount of thermal expansion in the axial direction occurs between the inner pipe and the outer pipe.
Therefore, each inner pipe was fixed to the corresponding outer pipe at a fixed support portion provided at the upstream end, and supported slidably in the axial direction by the outer pipe at the slide support portion provided at the downstream end. Exhaust manifolds are known (JP-A-7-224).
649).

【0004】[0004]

【発明が解決しようとする課題】ところで、このように
内管を外管により軸線方向に摺動可能に支持した場合、
熱膨張により軸線方向に延びようとする内管の内部応力
が、内管の外周面と外管の内周面間の摩擦力よりも大き
くなると内管が外管に対し相対移動しはじめる。言い換
えると、内管の内部応力が摩擦力を克服しない限り内管
が相対移動しない。しかしながら、上述したように内管
の温度は比較的高いので内管の剛性が低下して内管の内
部応力が摩擦力よりも大きくならない場合があり、その
結果内管が塑性変形しまたは内管に亀裂が生ずる恐れが
ある。固定支持部と摺動支持部間の支持部間距離が長い
枝管ほど剛性が低く、しかも軸線方向の熱膨張量が大き
いので各枝管の内管と外管間の摩擦力がほぼ同じ場合に
は、固定支持部と摺動支持部間の支持部間距離が長い枝
管ほど内管の内部応力が摩擦力を克服するのが困難にな
り、その結果塑性変形または亀裂が生じやすくなるとい
う問題点がある。
By the way, when the inner pipe is supported by the outer pipe so as to be slidable in the axial direction,
When the internal stress of the inner tube, which tends to extend in the axial direction due to thermal expansion, becomes larger than the frictional force between the outer peripheral surface of the inner tube and the inner peripheral surface of the outer tube, the inner tube starts to move relative to the outer tube. In other words, unless the internal stress of the inner tube overcomes the frictional force, the inner tube does not move relatively. However, as described above, since the temperature of the inner pipe is relatively high, the stiffness of the inner pipe may be reduced and the internal stress of the inner pipe may not be larger than the frictional force. As a result, the inner pipe may be plastically deformed or the inner pipe may be deformed. Cracks may occur. When the branch pipes with a longer distance between the fixed support and the sliding support have a lower rigidity and a larger amount of thermal expansion in the axial direction, so the frictional force between the inner pipe and the outer pipe of each branch pipe is almost the same. It is said that the longer the distance between the support parts between the fixed support part and the slide support part is, the more difficult it is for the internal stress of the inner pipe to overcome the frictional force, and as a result, plastic deformation or cracks are more likely to occur. There is a problem.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に1番目の発明によれば、各枝管を内管および外管を備
えた二重管から形成し、各内管を固定支持部においてそ
れぞれ対応する外管に固定し、かつ摺動支持部において
該外管により軸線方向に摺動可能に支持した内燃機関の
排気マニホルドにおいて、固定支持部と摺動支持部間の
支持部間距離が長い枝管ほど該枝管の内管の剛性を高く
している。すなわち1番目の発明では、支持部間距離が
長い枝管においても内管の内部応力が摩擦力を克服する
のが容易にされ、したがって枝管の耐久性および信頼性
が確保される。
According to a first aspect of the present invention, each branch pipe is formed of a double pipe having an inner pipe and an outer pipe, and each inner pipe is fixedly supported. In the exhaust manifold of the internal combustion engine, which is fixed to the corresponding outer tube and slidably supported by the outer tube in the axial direction at the sliding support portion, the distance between the supporting portions between the fixed supporting portion and the sliding supporting portion. The longer the branch pipe, the higher the rigidity of the inner pipe of the branch pipe. That is, in the first aspect, even in a branch pipe having a long distance between support portions, it is easy for the internal stress of the inner pipe to overcome the frictional force, and therefore, the durability and reliability of the branch pipe are ensured.

【0006】2番目の発明によれば上記課題を解決する
ために、各枝管を内管および外管を備えた二重管から形
成し、各内管を固定支持部においてそれぞれ対応する外
管に固定し、かつ摺動支持部において該外管により軸線
方向に摺動可能に支持した内燃機関の排気マニホルドに
おいて、固定支持部と摺動支持部間の支持部間距離が長
い枝管ほど該枝管の摺動支持部における内管と外管間の
摩擦力を小さくしている。すなわち2番目の発明でも、
支持部間距離が長い枝管においても内管の内部応力が摩
擦力を克服するのが容易にされ、したがって枝管の耐久
性および信頼性が確保される。
According to a second aspect of the present invention, in order to solve the above-mentioned problem, each branch pipe is formed of a double pipe having an inner pipe and an outer pipe, and each inner pipe corresponds to an outer pipe at a fixed support portion. In the exhaust manifold of an internal combustion engine fixed to the sliding support portion and slidably supported in the axial direction by the outer tube at the sliding support portion, the branch pipe having a longer distance between the support portion between the fixed support portion and the sliding support portion has a larger length. The frictional force between the inner pipe and the outer pipe in the sliding support portion of the branch pipe is reduced. That is, even in the second invention,
Even in a branch pipe having a long distance between the support portions, the internal stress of the inner pipe makes it easy to overcome the frictional force, and thus the durability and reliability of the branch pipe are ensured.

【0007】3番目の発明によれば上記課題を解決する
ために2番目の発明において、上記摺動支持部を各枝管
の一端に形成し、少なくとも1つの枝管の摺動支持部に
位置する内管または外管に切欠きを設けている。上述し
たように内管の温度は外管の温度よりも高く、このため
内管の半径方向の熱膨張量が外管の半径方向の熱膨張量
よりも大きい。このため内管および外管の温度が熱膨張
すると、摺動支持部における内管と外管間の摩擦力が増
大しうる。そこで3番目の発明では、枝管の摺動支持部
に位置する内管または外管に切欠きを設けて内管の半径
方向の熱膨張量が外管の半径方向の熱膨張量よりも大き
くなったときに内管が半径方向内側に、或いは外管が半
径方向外側に変形可能であるようにし、それによって枝
管の摺動支持部における摩擦力が増大しないようにして
いる。したがって、枝管の耐久性および信頼性が確保さ
れる。
According to a third aspect of the present invention, in order to solve the above-mentioned problems, in the second aspect, the sliding support portion is formed at one end of each branch pipe, and is located at the sliding support portion of at least one branch pipe. A notch is provided in the inner pipe or the outer pipe. As described above, the temperature of the inner tube is higher than the temperature of the outer tube, so that the amount of thermal expansion in the radial direction of the inner tube is larger than the amount of thermal expansion in the radial direction of the outer tube. For this reason, when the temperature of the inner tube and the outer tube thermally expands, the frictional force between the inner tube and the outer tube in the sliding support portion may increase. Therefore, in the third invention, a notch is provided in the inner pipe or the outer pipe located at the sliding support portion of the branch pipe so that the amount of thermal expansion in the radial direction of the inner pipe is larger than the amount of thermal expansion in the radial direction of the outer pipe. When this occurs, the inner tube can be deformed radially inward or the outer tube can be deformed radially outward, so that the frictional force at the sliding support of the branch tube does not increase. Therefore, the durability and reliability of the branch pipe are ensured.

【0008】4番目の発明によれば上記課題を解決する
ために、各枝管を内管および外管を備えた二重管から形
成し、各内管を固定支持部においてそれぞれ対応する外
管に固定し、かつ摺動支持部において該外管により軸線
方向に摺動可能に支持した内燃機関の排気マニホルドに
おいて、少なくとも1つの枝管の内管を互いに直列接続
された複数の管部材から形成し、各管部材をそれぞれの
固定支持部において外管に固定し、かつそれぞれの摺動
支持部において該外管により軸線方向に摺動可能に支持
している。すなわち4番目の発明では、枝管の支持部間
距離が比較的長くなるのが阻止されるので、内管を単一
の管部材から構成した場合に比べて内管の内部応力が高
められる。
According to a fourth aspect of the present invention, in order to solve the above-mentioned problem, each branch pipe is formed of a double pipe having an inner pipe and an outer pipe, and each inner pipe corresponds to an outer pipe corresponding to a fixed support portion. And an inner pipe of at least one branch pipe is formed of a plurality of pipe members connected in series to each other in an exhaust manifold of an internal combustion engine fixed to the inner pipe and slidably supported by the outer pipe in the sliding support portion in the axial direction. Each of the tube members is fixed to the outer tube at each fixed support portion, and is slidably supported in the axial direction by the outer tube at each slide support portion. That is, in the fourth invention, the distance between the support portions of the branch pipes is prevented from becoming relatively long, so that the internal stress of the inner pipe is increased as compared with the case where the inner pipe is formed of a single pipe member.

【0009】5番目の発明によれば上記課題を解決する
ために、長さが長い枝管と短い枝管とを備え、各枝管を
内管および外管を備えた二重管から形成し、各内管を固
定支持部においてそれぞれ対応する外管に固定し、かつ
摺動支持部において該外管により軸線方向に摺動可能に
支持した内燃機関の排気マニホルドにおいて、長い枝管
において固定支持部を該枝管の一端に形成し、かつ摺動
支持部を該枝管の両端間の中間部分に形成すると共に、
短い枝管において固定支持部を該枝管の一端に形成し、
かつ摺動支持部を該枝管の他端に形成している。すなわ
ち5番目の発明では、長い枝管における支持部間距離が
短い枝管における支持部間距離よりも短くされるので、
長い枝管において固定支持部と摺動支持部とを枝管の両
端に設けた場合に比べて内管の内部応力が高められる。
According to a fifth aspect of the present invention, in order to solve the above problems, a long pipe and a short branch pipe are provided, and each branch pipe is formed of a double pipe having an inner pipe and an outer pipe. In an exhaust manifold of an internal combustion engine, each inner pipe is fixed to a corresponding outer pipe at a fixed support portion and slidably supported by the outer pipe at a sliding support portion, a fixed support is provided at a long branch pipe. A part is formed at one end of the branch pipe, and a sliding support part is formed at an intermediate portion between both ends of the branch pipe ,
Forming a fixed support at one end of the short branch pipe;
And a sliding support portion is formed at the other end of the branch pipe . That is, in the fifth invention, the distance between the support portions in the long branch pipe is
Since it is shorter than the distance between the support parts in a short branch pipe ,
In a long branch pipe, the internal stress of the inner pipe is increased as compared with the case where the fixed support part and the sliding support part are provided at both ends of the branch pipe.

【0010】[0010]

【発明の実施の形態】図1に本発明を、3つの気筒を備
えた内燃機関に適用した場合を示す。しかしながら、本
発明を2つまたは4つ以上の気筒を備えた内燃機関に適
用することもできる。図1を参照すると、排気マニホル
ド1は、それぞれ対応する内燃機関の気筒に接続される
3つの枝管2a,2b,2cを具備する。これら枝管2
a,2b,2cは共通のフランジ3を介して機関本体
(図示しない)に接続される。また、これら枝管2a,
2b,2cは共通の集合管4に接続され、集合管4はフ
ランジ5を介して触媒を収容した触媒コンバータ(図示
しない)に接続される。
FIG. 1 shows a case where the present invention is applied to an internal combustion engine having three cylinders. However, the present invention can also be applied to an internal combustion engine having two or more cylinders. Referring to FIG. 1, the exhaust manifold 1 includes three branch pipes 2a, 2b, and 2c connected to corresponding cylinders of an internal combustion engine, respectively. These branch pipes 2
a, 2b, 2c are connected to an engine body (not shown) through a common flange 3. In addition, these branch pipes 2a,
2b and 2c are connected to a common collecting pipe 4, and the collecting pipe 4 is connected via a flange 5 to a catalytic converter (not shown) containing a catalyst.

【0011】図1に示されるように、各枝管2a,2
b,2cは二重管から構成される。すなわち、枝管2a
は内管6aと外管7aとを備え、枝管2bは内管6bと
外管7bとを備え、枝管2cは内管6cと外管7cとを
備えている。各枝管2a,2b,2cは、外管7a,7
b,7cが上流端においてフランジ3に、下流におい
て集合管4に、例えば溶接により結合されることにより
これらフランジ3および集合管4にそれぞれ固定され
る。
As shown in FIG. 1, each branch pipe 2a, 2
b and 2c are composed of double tubes. That is, the branch pipe 2a
Has an inner tube 6a and an outer tube 7a, the branch tube 2b has an inner tube 6b and an outer tube 7b, and the branch tube 2c has an inner tube 6c and an outer tube 7c. Each of the branch pipes 2a, 2b, 2c has an outer pipe 7a, 7
The b and 7c are fixed to the flange 3 at the upstream end and to the collecting pipe 4 at the downstream end , for example, by welding, to the flange 3 and the collecting pipe 4, respectively.

【0012】各内管6a,6b,6cは環状の固定支持
部8a,8b,8cにおいてそれぞれ対応する外管7
a,7b,7cに例えば溶接により固定される。また、
各内管6a,6b,6cは環状の摺動支持部9a,9
b,9cにおいてそれぞれ対応する外管7a,7b,7
cにより、軸線方向に摺動可能に支持される。したがっ
て、内管6a,6b,6cが好ましくなく移動したり、
或いは振動するのが阻止される。
Each of the inner tubes 6a, 6b, 6c has a corresponding outer tube 7 at the annular fixed support portions 8a, 8b, 8c.
a, 7b and 7c are fixed, for example, by welding. Also,
Each of the inner tubes 6a, 6b, 6c has an annular sliding support 9a, 9
Outer tubes 7a, 7b, 7 respectively corresponding to b, 9c
By c, it is slidably supported in the axial direction. Therefore, the inner tubes 6a, 6b, 6c move undesirably,
Alternatively, it is prevented from vibrating.

【0013】各固定支持部8a,8b,8cおよび各摺
動支持部9a,9b,9cにおいて内管6a,6b,6
cは外管7a,7b,7cに直接的に支持されており、
すなわち内管6a,6b,6cと外管7a,7b,7c
間に中間部材が介在することなく内管6a,6b,6c
が外管7a,7b,7cにより支持されている。図1に
示す例では各固定支持部8a,8b,8cは内管6a,
6b,6cおよび外管7a,7b,7cの上流端に、摺
動支持部9a,9b,9cは内管6a,6b,6cおよ
び外管7a,7b,7cの下流端にそれぞれ設けられ
る。各枝管2a,2b,2cにおいて、機関本体に隣接
する上流端のほうが下流端よりも温度が低くなってい
る。したがって本実施態様のように固定支持部8a,8
b,8cを各枝管2a,2b,2cの上流端に設けるこ
とによって溶接部が著しく劣化するのが阻止されてい
る。
The inner tubes 6a, 6b, 6c are provided at the fixed support portions 8a, 8b, 8c and the slide support portions 9a, 9b, 9c.
c is directly supported by the outer tubes 7a, 7b, 7c,
That is, the inner tubes 6a, 6b, 6c and the outer tubes 7a, 7b, 7c
Inner pipes 6a, 6b, 6c without intermediate members
Are supported by the outer tubes 7a, 7b, 7c. In the example shown in FIG. 1, each of the fixed support portions 8a, 8b, 8c is an inner tube 6a,
Sliding supports 9a, 9b, 9c are provided at the upstream ends of 6b, 6c and outer tubes 7a, 7b, 7c, respectively, at the downstream ends of inner tubes 6a, 6b, 6c and outer tubes 7a, 7b, 7c. In each of the branch pipes 2a, 2b, 2c, the temperature at the upstream end adjacent to the engine body is lower than that at the downstream end. Therefore, as in the present embodiment, the fixed support portions 8a and 8
By providing b, 8c at the upstream end of each branch pipe 2a, 2b, 2c, the weld is prevented from being significantly deteriorated.

【0014】このように固定支持部8a,8b,8cを
各枝管2a,2b,2cの上流端に設け、摺動支持部9
a,9b,9cを各枝管2a,2b,2cの下流端に設
けた場合、各固定支持部8a,8b,8cと摺動支持部
9a,9b,9c間の軸線方向長さ、すなわち支持部間
距離はそれぞれ対応する内管6a,6b,6cの軸線方
向長さに一致している。図1に示されるように、枝管2
bの支持部間距離Lbと、枝管2cの支持部間距離Lc
とはほぼ等しく定められ、これに対し枝管2aの支持部
間距離Laは枝管2b,2cの支持部間距離Lb,Lc
よりも長く定められている。
As described above, the fixed support portions 8a, 8b, 8c are provided at the upstream ends of the respective branch pipes 2a, 2b, 2c.
When a, 9b, 9c is provided at the downstream end of each branch pipe 2a, 2b, 2c, the axial length between the fixed support portions 8a, 8b, 8c and the slide support portions 9a, 9b, 9c, that is, the support The distance between the parts corresponds to the axial length of the corresponding inner tubes 6a, 6b, 6c. As shown in FIG.
b and the distance Lc between the support parts of the branch pipe 2c.
The distance La between the support parts of the branch pipe 2a is substantially equal to the distance Lb, Lc between the support parts of the branch pipes 2b and 2c.
It is set longer than this.

【0015】各外管7a,7b,7cの肉厚は互いにほ
ぼ等しく定められている。一方、内管6b,6cの肉厚
は互いにほぼ等しく定められており、しかしながら内管
6aの肉厚は内管6b,6cの肉厚よりも大きく定めら
れている。さらに、内管6a,6b,6cの肉厚は外管
7a,7b,7cの肉厚よりも小さく定められている。
The thickness of each of the outer tubes 7a, 7b, 7c is set substantially equal to each other. On the other hand, the thicknesses of the inner tubes 6b and 6c are set substantially equal to each other, however, the thickness of the inner tube 6a is set larger than the thicknesses of the inner tubes 6b and 6c. Further, the thickness of the inner tubes 6a, 6b, 6c is set smaller than the thickness of the outer tubes 7a, 7b, 7c.

【0016】さらに図1を参照すると、各内管6a,6
b,6cとそれぞれ対応する外管7a,7b,7cとは
互いに離間して配置されており、これら内管6a,6
b,6cと外管7a,7b,7c間に環状の断熱層10
a,10b,10cがそれぞれ設けられる。本実施態様
において断熱層は空気層から形成されるが、内管6a,
6b,6cと外管7a,7b,7c間の間隙に別の流体
または粉粒体などを充填して断熱層を形成することもで
きる。
Still referring to FIG. 1, each inner tube 6a, 6
b, 6c and the corresponding outer tubes 7a, 7b, 7c are disposed apart from each other, and these inner tubes 6a, 6c
b, 6c and the outer heat insulating layer 10 between the outer pipes 7a, 7b, 7c.
a, 10b, and 10c are provided, respectively. In the present embodiment, the heat insulating layer is formed from an air layer, but the inner pipe 6a,
A gap between the outer tubes 6a, 6b and the outer tubes 7a, 7b, 7c may be filled with another fluid or a granular material to form a heat insulating layer.

【0017】枝管2aのように軸線方向長さが比較的長
い枝管には通常、湾曲部11が設けられる。ところがこ
のような湾曲部11を設けると湾曲部11において枝管
2aの曲げ剛性が低くなる。そこで、図2に示すように
湾曲部11における枝管2aの断面を楕円状にし、それ
によって湾曲部11における枝管2aの曲げ剛性が低下
するのを阻止するようにしている。
A branch pipe having a relatively long axial length, such as the branch pipe 2a, is usually provided with a curved portion 11. However, when such a curved portion 11 is provided, the bending rigidity of the branch pipe 2a in the curved portion 11 decreases. Therefore, as shown in FIG. 2, the cross section of the branch pipe 2a in the bending portion 11 is made elliptical, thereby preventing the bending rigidity of the branch pipe 2a in the bending portion 11 from being reduced.

【0018】ところで、機関始動時、特に冷間始動時に
は排気マニホルド1下流の触媒がその活性温度になって
いない場合があり、この状態で排気ガスを触媒に導いて
も排気ガスを良好に浄化することができない恐れがあ
る。そこで、図1の排気マニホルドでは内管6a,6
b,6cと外管7a,7b,7c間に断熱層10a,1
0b,10cをそれぞれ設け、それによって排気マニホ
ルド1を介し放熱される排気ガスの熱量が小さくなるよ
うにしている。また、内管6a,6b,6cの肉厚を比
較的小さくしてこれら内管6a,6b,6cの熱容量が
大きくなるようにし、外管7a,7b,7cの肉厚を比
較的大きくしてこれら外管7a,7b,7cの熱容量が
小さくなるようにし、それによっても排気マニホルド1
内を流通した排気ガスの温度低下が小さくなるようにし
ている。その結果、触媒を速やかに活性温度まで昇温す
ることができ、したがって排気ガスの良好な浄化を確保
することができる。
When the engine is started, particularly when the engine is started in a cold state, the catalyst downstream of the exhaust manifold 1 may not be at its activation temperature. In this state, even if the exhaust gas is guided to the catalyst, the exhaust gas is satisfactorily purified. May not be able to do so. Therefore, in the exhaust manifold shown in FIG.
b, 6c and the heat insulating layers 10a, 1 between the outer tubes 7a, 7b, 7c.
0b and 10c are provided so that the amount of heat of the exhaust gas radiated through the exhaust manifold 1 is reduced. Also, the thickness of the inner tubes 6a, 6b, 6c is made relatively small so that the heat capacity of the inner tubes 6a, 6b, 6c is increased, and the thickness of the outer tubes 7a, 7b, 7c is made relatively large. The heat capacity of these outer tubes 7a, 7b, 7c is reduced so that the exhaust manifold 1
The temperature of the exhaust gas flowing through the inside is made small. As a result, the temperature of the catalyst can be quickly raised to the activation temperature, so that good purification of exhaust gas can be ensured.

【0019】このようにして排気マニホルド1からの放
熱量を低減するようにすると内管6a,6b,6cの温
度が外管7a,7b,7cの温度よりも大幅に高くな
り、その結果内管6a,6b,6cの軸線方向熱膨張量
が外管7a,7b,7cの軸線方向熱膨張量よりも大幅
に大きくなる。したがって、例えば内管6a,6b,6
cの両端を外管7a,7b,7cに溶接して固定すると
内管6a,6b,6cと外管7a,7b,7c間の軸線
方向熱膨張量差によって内管6a,6b,6cの、例え
ば溶接部や湾曲部などに応力が集中して作用し、斯くし
て内管6a,6b,6cが塑性変形し、または内管6
a,6b,6cに亀裂が生ずる恐れがある。
When the amount of heat radiation from the exhaust manifold 1 is reduced in this way, the temperature of the inner tubes 6a, 6b, 6c becomes significantly higher than the temperature of the outer tubes 7a, 7b, 7c, and as a result, The amount of thermal expansion in the axial direction of 6a, 6b, 6c is significantly larger than the amount of thermal expansion in the axial direction of outer tubes 7a, 7b, 7c. Therefore, for example, the inner tubes 6a, 6b, 6
When both ends of c are welded and fixed to the outer tubes 7a, 7b, 7c, the difference in the amount of thermal expansion in the axial direction between the inner tubes 6a, 6b, 6c and the outer tubes 7a, 7b, 7c causes the inner tubes 6a, 6b, 6c to For example, stress concentrates on a welded portion, a curved portion, or the like, and thus the inner tubes 6a, 6b, and 6c are plastically deformed or the inner tubes 6a, 6b, and 6c are deformed.
Cracks may occur in a, 6b and 6c.

【0020】そこで、枝管2a,2b,2cの下流端に
摺動支持部9a,9b,9cを設けてこれら摺動支持部
9a,9b,9cにおいて内管6a,6b,6cを軸線
方向に、外管7a,7b,7cに対し相対移動可能に支
持している。すなわち、枝管2a,2b,2cの温度が
高くなって内管6a,6b,6cの軸線方向の熱膨張量
が外管7a,7b,7cよりも大きくなると内管6a,
6b,6cが外管7a,7b,7cに支持されつつ摺動
支持部9a,9b,9cにおいて軸線方向に摺動するよ
うになる。その結果、内管6a,6b,6cが図3にお
いて破線でもって示されるように外管7a,7b,7c
に対して相対移動し、したがって内管6a,6b,6c
に応力集中部位が生ずるのが阻止される。
Therefore, sliding supports 9a, 9b, 9c are provided at the downstream ends of the branch pipes 2a, 2b, 2c, and the inner pipes 6a, 6b, 6c are axially moved in these sliding supports 9a, 9b, 9c. And the outer tubes 7a, 7b, 7c. That is, when the temperature of the branch pipes 2a, 2b, 2c rises and the amount of thermal expansion of the inner pipes 6a, 6b, 6c in the axial direction becomes larger than that of the outer pipes 7a, 7b, 7c, the inner pipes 6a,
While being supported by the outer tubes 7a, 7b, 7c, the outer tubes 6b, 6c slide in the sliding support portions 9a, 9b, 9c in the axial direction. As a result, the inner pipes 6a, 6b, 6c are connected to the outer pipes 7a, 7b, 7c as shown by broken lines in FIG.
Relative to the inner tubes 6a, 6b, 6c
This prevents the occurrence of stress concentration sites.

【0021】ところで、冒頭で述べたように、内管6
a,6b,6cを外管7a,7b,7cにより、軸線方
向に摺動可能に支持した場合、熱膨張でもって軸線方向
に延びようとする内管6a,6b,6cの内部応力が、
摺動支持部9a,9b,9cにおける内管6a,6b,
6cの外周面と外管7a,7b,7cの内周面間の摩擦
力よりも大きくなるとはじめて内管6a,6b,6cが
外管7a,7b,7cに対し相対移動しはじめる。しか
しながら、上述したように内管6a,6b,6cの温度
は比較的高いので内管6a,6b,6cの剛性が低下し
ており、その結果内管6a,6b,6cの内部応力が摩
擦力克服できない場合がある。この場合、内管6a,6
b,6cに応力集中部位が生じて塑性変形しまたは内管
6a,6b,6cに亀裂が生ずる恐れがある。
By the way, as described at the beginning, the inner tube 6
When a, 6b, and 6c are supported by the outer tubes 7a, 7b, and 7c so as to be slidable in the axial direction, the internal stress of the inner tubes 6a, 6b, and 6c that tends to extend in the axial direction due to thermal expansion is:
Inner pipes 6a, 6b, in sliding support portions 9a, 9b, 9c,
Only when the frictional force between the outer peripheral surface of the outer tube 6c and the inner peripheral surfaces of the outer tubes 7a, 7b, 7c becomes larger does the inner tubes 6a, 6b, 6c begin to move relative to the outer tubes 7a, 7b, 7c. However, as described above, since the temperatures of the inner tubes 6a, 6b, 6c are relatively high, the rigidity of the inner tubes 6a, 6b, 6c is reduced, and as a result, the internal stress of the inner tubes 6a, 6b, 6c is reduced by the frictional force. There are some cases that cannot be overcome. In this case, the inner tubes 6a, 6
There is a possibility that a stress concentration portion is generated in b, 6c and plastic deformation occurs, or a crack is generated in the inner tubes 6a, 6b, 6c.

【0022】支持部間距離が長い枝管ほど剛性が低く、
しかも軸線方向の熱膨張量が大きいので内管と外管間の
摩擦力がほぼ同じ場合には支持部間距離が長い枝管ほど
内管の内部応力が摩擦力を克服するのが困難になり、内
管に塑性変形または亀裂が生じやすくなる。すなわち、
図1の例では内管6aに塑性変形または亀裂が生じやす
くなることになる。
A branch pipe having a longer distance between support portions has lower rigidity.
Moreover, since the amount of thermal expansion in the axial direction is large, when the frictional force between the inner pipe and the outer pipe is almost the same, it becomes more difficult for the branch pipe with a longer distance between the support parts to overcome the frictional force due to the internal stress of the inner pipe. In addition, plastic deformation or cracks easily occur in the inner pipe. That is,
In the example of FIG. 1, the inner tube 6a is liable to be plastically deformed or cracked.

【0023】そこで、本実施態様では支持部間距離が長
い枝管ほどその内管の剛性が高くなるようにし、それに
よって熱膨張により軸線方向に延びようとする内管の内
部応力が高められるようにしている。すなわち、図1の
例では内管6aの肉厚を内管6b,6cの肉厚よりも大
きくすることによって内管6aの剛性を高め、それによ
って内管6aの内部応力を高めている。その結果、内管
6aの内部応力が内管6aと外管7a間の摩擦力を容易
に克服できるようになり、したがって内管6aに塑性変
形または亀裂が生じるのを阻止することができる。斯く
して排気マニホルド1の耐久性および信頼性を向上させ
ることができる。
Therefore, in this embodiment, the rigidity of the inner pipe is made higher as the distance between the support portions is longer, so that the internal stress of the inner pipe which tends to extend in the axial direction by thermal expansion is increased. I have to. That is, in the example of FIG. 1, the rigidity of the inner tube 6a is increased by making the thickness of the inner tube 6a larger than the thickness of the inner tubes 6b and 6c, thereby increasing the internal stress of the inner tube 6a. As a result, the internal stress of the inner tube 6a can easily overcome the frictional force between the inner tube 6a and the outer tube 7a, and therefore, it is possible to prevent the inner tube 6a from being plastically deformed or cracked. Thus, the durability and reliability of the exhaust manifold 1 can be improved.

【0024】なお、内管6aの剛性を高めるために、内
管6aにリブを設けてもよく、或いは内管6aの断面を
全体的に楕円状にしてもよい。図4は別の実施態様を示
している。図4において図1の実施態様と同様の構成要
素は同一の番号により示される。ところで、上述したよ
うに内管6a,6b,6cの内部応力が摩擦力よりも大
きくなれば内管6a,6b,6cが外管7a,7b,7
cに対し相対移動し始める。したがって内管6a,6
b,6cと外管7a,7b,7c間の摩擦力が小さくな
れば内管6a,6b,6cの相対移動が容易になる。そ
こで、本実施態様では支持部間距離が長い枝管ほど摺動
支持部における内管と外管間の摩擦力が小さくなるよう
にしている。
In order to increase the rigidity of the inner tube 6a, ribs may be provided on the inner tube 6a, or the cross section of the inner tube 6a may be made elliptical as a whole. FIG. 4 shows another embodiment. In FIG. 4, components similar to those in the embodiment of FIG. 1 are indicated by the same reference numerals. Incidentally, as described above, if the internal stress of the inner tubes 6a, 6b, 6c becomes larger than the frictional force, the inner tubes 6a, 6b, 6c become the outer tubes 7a, 7b, 7
Start to move relative to c. Therefore, the inner tubes 6a, 6
If the frictional force between the outer tubes b, 6c and the outer tubes 7a, 7b, 7c is reduced, the relative movement of the inner tubes 6a, 6b, 6c becomes easier. Therefore, in this embodiment, the frictional force between the inner tube and the outer tube in the sliding support portion is reduced as the distance between the support portions increases.

【0025】この摩擦力は、内管6a,6b,6cの外
側面と外管7a,7b,7cの内側面間の摩擦係数と、
内管6a,6b,6cと外管7a,7b,7c間の接触
面積と、内管6a,6b,6cと外管7a,7b,7c
間の面圧との積として求められる。したがって、これら
摩擦係数、接触面積、および面圧のうち少なくとも1つ
を低減すれば摩擦力を低減することができる。そこで、
本発明では支持部間距離が長い枝管ほどこれら摩擦係
数、接触面積、および面圧のうちの少なくとも1つが小
さくなるようにしている。
This frictional force is determined by the coefficient of friction between the outer surfaces of the inner tubes 6a, 6b, 6c and the inner surfaces of the outer tubes 7a, 7b, 7c,
The contact area between the inner pipes 6a, 6b, 6c and the outer pipes 7a, 7b, 7c, the inner pipes 6a, 6b, 6c and the outer pipes 7a, 7b, 7c
It is obtained as the product of the surface pressure between them. Therefore, the frictional force can be reduced by reducing at least one of these friction coefficient, contact area, and surface pressure. Therefore,
In the present invention, at least one of the friction coefficient, the contact area, and the surface pressure is set to be smaller as the distance between the support portions is longer.

【0026】すなわち、図4に示す例では、内管6aの
外側面の表面粗さを内管6b,6cの外側面の表面粗さ
よりも小さくし、かつ外管7aの内側面の表面粗さを外
管7b,7cの内側面の表面粗さよりも小さくし、それ
によって摺動支持部9aにおける摩擦係数が、摺動支持
部9b,9cにおける摩擦係数よりも小さくなるように
している。なお、内管6aと外管7aとのうちいずれか
一方の摩擦係数を、内管6b,6cおよび外管7b,7
cの摩擦係数よりも小さくするようにしてもよい。
That is, in the example shown in FIG. 4, the surface roughness of the outer surface of the inner tube 6a is smaller than the surface roughness of the outer surface of the inner tubes 6b and 6c, and the surface roughness of the inner surface of the outer tube 7a. Is smaller than the surface roughness of the inner surfaces of the outer tubes 7b and 7c, so that the coefficient of friction at the sliding supports 9a is smaller than the coefficient of friction at the sliding supports 9b and 9c. The friction coefficient of one of the inner pipe 6a and the outer pipe 7a is determined by the inner pipe 6b, 6c and the outer pipe 7b, 7
You may make it smaller than the friction coefficient of c.

【0027】また、図4からわかるように摺動支持部9
aの軸線方向長さ、すなわち内管6aと外管7aとの接
触部分の軸線方向長さWaを、摺動支持部9bの軸線方
向長さWbおよび摺動支持部9cの軸線方向長さWcよ
りも短くしている。枝管2a,2b,2cの管径は概ね
互いに等しく、したがって摺動支持部9aにおける内管
6aと外管7a間の接触面積が、摺動支持部9b,9c
におけるよりも小さくなるようにしている。その結果、
摺動支持部9aにおける摩擦力をさらに低減することが
でき、したがって支持部間距離が長い内管6aの耐久性
および信頼性を確保することができる。なお、摺動支持
部9bの軸線方向長さWbと摺動支持部9cの軸線方向
長さWcとはほぼ等しく定められている。
Further, as can be seen from FIG.
a, the axial length Wa of the contact portion between the inner pipe 6a and the outer pipe 7a is determined by the axial length Wb of the sliding support portion 9b and the axial length Wc of the sliding support portion 9c. Shorter than it is. The pipe diameters of the branch pipes 2a, 2b, 2c are substantially equal to each other, so that the contact area between the inner pipe 6a and the outer pipe 7a in the sliding support 9a is equal to the sliding support 9b, 9c.
It is made smaller than in. as a result,
The frictional force at the sliding support portion 9a can be further reduced, so that the durability and reliability of the inner tube 6a having a long distance between the support portions can be secured. The axial length Wb of the sliding support 9b and the axial length Wc of the sliding support 9c are set substantially equal.

【0028】図4に示す実施態様では、摺動支持部9a
における内管6aおよび外管7aの表面粗さを摺動支持
部9b,9cにおけるよりも小さくし、かつ摺動支持部
9aの軸線方向長さを摺動支持部9b,9cにおけるよ
りも短くしている。しかしながら、これらのうち一方を
排気マニホルド1に適用するようにしてもよい。図5お
よび図6は別の実施態様を示している。図5および図6
において図1の実施態様と同様の構成要素は同一の番号
により示される。
In the embodiment shown in FIG. 4, the sliding support 9a
, The surface roughness of the inner tube 6a and the outer tube 7a is made smaller than that of the sliding support portions 9b and 9c, and the axial length of the sliding support portion 9a is made shorter than that of the sliding support portions 9b and 9c. ing. However, one of these may be applied to the exhaust manifold 1. 5 and 6 show another embodiment. 5 and 6
In the figure, the same components as those in the embodiment of FIG. 1 are denoted by the same reference numerals.

【0029】図1を参照して説明したように、枝管2a
の支持部間距離は枝管2b,2cの支持部間距離Lb,
Lcよりも長く、したがって枝管2aにより構成される
枝管群を第1の枝管群1aと称し、枝管2b,2cによ
り構成される枝管群を第2の枝管群1bと称すれば第1
の枝管群1aの各枝管の支持部間距離が第2の枝管群1
bの各枝管の支持部間距離よりも長くなっている。な
お、各枝管群は少なくとも1つの枝管から構成される。
As described with reference to FIG. 1, the branch pipe 2a
Is the distance Lb between the support parts of the branch pipes 2b and 2c.
The branch pipe group longer than Lc, and thus, is referred to as a first branch pipe group 1a, and the branch pipe group including the branch pipes 2b and 2c is referred to as a second branch pipe group 1b. First
The distance between the support portions of the respective branch pipes of the branch pipe group 1a is the second branch pipe group 1
b is longer than the distance between the support portions of the branch pipes. Each branch pipe group is composed of at least one branch pipe.

【0030】上述したように、摺動支持部における面圧
を小さくすれば内管6a,6b,6cと外管7a,7
b,7c間の摩擦力を低減することができる。そこで、
本実施態様では支持部間距離が長い枝管ほど摺動支持部
における面圧が小さくなるようにし、それによって支持
部間距離が長い枝管ほど摩擦力が小さくなるようにして
いる。
As described above, if the surface pressure in the sliding support portion is reduced, the inner tubes 6a, 6b, 6c and the outer tubes 7a, 7
The frictional force between b and 7c can be reduced. Therefore,
In the present embodiment, the surface pressure at the sliding support portion is set to be smaller as the distance between the support portions is longer, so that the frictional force is reduced as the distance between the support portions is longer.

【0031】ところで、上述したように内管6a,6
b,6cの温度は外管7a,7b,7cの温度よりも高
く、このため内管6a,6b,6cの半径方向の熱膨張
量が外管7a,7b,7cの半径方向の熱膨張量よりも
大きくなる。したがって、枝管2a,2b,2cの温度
が高くなると摺動支持部における面圧が増大することに
なる。
By the way, as described above, the inner tubes 6a, 6
The temperatures of b and 6c are higher than the temperatures of the outer tubes 7a, 7b and 7c, so that the radial thermal expansion of the inner tubes 6a, 6b and 6c is the radial thermal expansion of the outer tubes 7a, 7b and 7c. Larger than. Therefore, when the temperature of the branch pipes 2a, 2b, 2c increases, the surface pressure at the sliding support portion increases.

【0032】一方、摺動支持部9a,9b,9cに位置
する内管6a,6b,6cまたは外管7a,7b,7c
に、すなわち本実施態様では内管6a,6b,6cまた
は外管7a,7b,7cの下流端に切欠きを設けると内
管6a,6b,6cと外管7a,7b,7c間の面圧が
増大したときに内管6a,6b,6cが半径方向内側に
向けてまたは外管7a,7b,7cが半径方向外側に向
けて変形可能になる。内管6a,6b,6cが半径方向
内側に向けてまたは外管7a,7b,7cが半径方向外
側に向けて変形すると摺動支持部9a,9b,9cにお
ける面圧が増大するのを阻止することができる。
On the other hand, the inner tubes 6a, 6b, 6c or the outer tubes 7a, 7b, 7c located on the sliding support portions 9a, 9b, 9c.
In other words, in this embodiment, when a notch is provided at the downstream end of the inner tubes 6a, 6b, 6c or the outer tubes 7a, 7b, 7c, the surface pressure between the inner tubes 6a, 6b, 6c and the outer tubes 7a, 7b, 7c is increased. Is increased, the inner tubes 6a, 6b, 6c can be deformed radially inward or the outer tubes 7a, 7b, 7c can be deformed radially outward. When the inner pipes 6a, 6b, 6c are deformed radially inward or the outer pipes 7a, 7b, 7c are deformed radially outward, the surface pressure at the sliding support portions 9a, 9b, 9c is prevented from increasing. be able to.

【0033】そこで図5および図6に示す例では、第1
の枝管群1aのみの枝管1aの内管6aおよび外管7a
に、摺動支持部9aにおいて例えば4つの切欠き12,
13をそれぞれ設けて、内管6aの半径方向の熱膨張量
が外管7aの熱膨張量よりも大きいときにも摺動支持部
9aにおける面圧が増大するのを阻止するようにしてい
る。また、このように切欠きを設けると内管6aと外管
7a間の接触面積も低減される。その結果、摺動支持部
9aにおける摩擦力を低減することができ、したがって
第1の枝管群1aの枝管2aの耐久性および信頼性を確
保することができる。
Therefore, in the example shown in FIGS.
Inner tube 6a and outer tube 7a of branch tube 1a of only branch tube group 1a
In the sliding support portion 9a, for example, four notches 12,
13 are provided so as to prevent the surface pressure in the sliding support portion 9a from increasing even when the amount of thermal expansion of the inner tube 6a in the radial direction is larger than the amount of thermal expansion of the outer tube 7a. Also, providing such a notch also reduces the contact area between the inner tube 6a and the outer tube 7a. As a result, the frictional force in the sliding support portion 9a can be reduced, so that the durability and reliability of the branch pipe 2a of the first branch pipe group 1a can be secured.

【0034】なお、本実施態様では図6に示されるよう
に、内管6aに設けられる切欠き12と、外管7aに設
けられる切欠き13とが周方向に互いに整列されてい
る。このようにすると摺動支持部9aを形成した後に切
欠き12,13を形成することができ、したがって切欠
き12,13を容易に形成することができる。また、本
実施態様では内管6aと外管7aとの両方に切欠き1
2,13を形成するようにしているが、内管6aと外管
7aとのうちいずれか一方に切欠きを形成するようにし
てもよい。
In this embodiment, as shown in FIG. 6, the notch 12 provided on the inner tube 6a and the notch 13 provided on the outer tube 7a are circumferentially aligned with each other. By doing so, the notches 12, 13 can be formed after the formation of the sliding support portion 9a, so that the notches 12, 13 can be easily formed. In this embodiment, notches 1 are formed in both the inner pipe 6a and the outer pipe 7a.
Although notches 2 and 13 are formed, a notch may be formed in one of the inner tube 6a and the outer tube 7a.

【0035】さらに、第2の枝管群1bの各枝管の摺動
支持部に切欠きを形成してもよい。図7はさらに別の実
施態様を示している。図7において図1の実施態様と同
様の構成要素は同一の番号により示される。図7を参照
すると、第1の枝管群1aを構成する枝管2aは互いに
直列接続された一対の二重管、すなわち上流側二重管2
aaと下流側二重管2abとから形成される。上流側二
重管2aaは内管6aaと外管7aaとこれら間の断熱
層10aaとを備えている。外管7aaは上流端におい
てフランジ3に接続され、下流端において下流側二重管
2abに接続される。内管6aaは上流端に設けられた
固定支持部8aaにおいて外管7aaに固定され、下流
端に設けられた摺動支持部9aaにおいて外管7aaに
より軸線方向に摺動可能に支持される。一方、下流側二
重管2abは内管6abと外管7abとこれら間の断熱
層10abとを備えている。外管7abは上流端におい
て上流側二重管2aaに接続され、下流端において集合
管4に接続される。内管6abは上流端に設けられた固
定支持部8abにおいて外管7abに固定され、下流端
に設けられた摺動支持部9abにおいて外管7abによ
り軸線方向に摺動可能に支持される。
Further, a notch may be formed in the sliding support portion of each branch pipe of the second branch pipe group 1b. FIG. 7 shows yet another embodiment. 7, the same components as those in the embodiment of FIG. 1 are indicated by the same reference numerals. Referring to FIG. 7, the branch pipes 2a constituting the first branch pipe group 1a are a pair of double pipes connected in series to each other, that is, the upstream double pipe 2
aa and the downstream double tube 2ab. The upstream double tube 2aa includes an inner tube 6aa, an outer tube 7aa, and a heat insulating layer 10aa therebetween. The outer pipe 7aa is connected to the flange 3 at the upstream end, and connected to the downstream double pipe 2ab at the downstream end. The inner tube 6aa is fixed to the outer tube 7aa at a fixed support portion 8aa provided at the upstream end, and is slidably supported in the axial direction by the outer tube 7aa at a slide support portion 9aa provided at the downstream end. On the other hand, the downstream double pipe 2ab includes an inner pipe 6ab, an outer pipe 7ab, and a heat insulating layer 10ab therebetween. The outer pipe 7ab is connected at an upstream end to the upstream double pipe 2aa, and at a downstream end to the collecting pipe 4. The inner tube 6ab is fixed to the outer tube 7ab at a fixed support portion 8ab provided at the upstream end, and is slidably supported in the axial direction by the outer tube 7ab at a slide support portion 9ab provided at the downstream end.

【0036】枝管2aの温度が高くなって熱膨張したと
きに、内管6aaが摺動支持部9aaにおいて摺動して
外管7aaに対し相対移動し、内管6abが摺動支持部
9abにおいて摺動して外管7abに対し相対移動す
る。したがって内管6aa,6abに好ましくない応力
集中が生ずるのが阻止される。このように枝管2aを複
数の二重管2aa,2abから構成すると各二重管2a
a,2abにおける支持部間距離Laa,Labを、図
1から図6までを参照して説明した実施態様におけるよ
りも短くすることができる。すなわち、内管6aa,6
abの剛性を高めることができる。したがって、第1の
枝管群1aの枝管2aの耐久性および信頼性を確保する
ことができる。なお本実施態様では、二重管2aa,2
abにおける支持部間距離Laa,Labは、第2の枝
管群1bの枝管2b,2cの支持部間距離Lb,Lcと
ほぼ同じか或いは支持部間距離Lb,Lcよりも短くな
っている。
When the temperature of the branch pipe 2a rises and thermally expands, the inner pipe 6aa slides on the sliding support 9aa to move relative to the outer pipe 7aa, and the inner pipe 6ab moves to the sliding support 9ab. To move relative to the outer tube 7ab. Therefore, undesirable stress concentration on the inner tubes 6aa and 6ab is prevented. When the branch pipe 2a is composed of a plurality of double pipes 2aa and 2ab in this manner, each double pipe 2a
The distances Laa, Lab between the support portions at a, 2ab can be shorter than in the embodiment described with reference to FIGS. 1 to 6. That is, the inner tubes 6aa, 6
The rigidity of ab can be increased. Therefore, the durability and reliability of the branch pipe 2a of the first branch pipe group 1a can be secured. In the present embodiment, the double tubes 2aa, 2aa
The distances Laa, Lab between the support parts in ab are almost the same as the distances Lb, Lc between the support parts of the branch pipes 2b, 2c of the second branch pipe group 1b or shorter than the distances Lb, Lc between the support parts. .

【0037】図7に示す実施態様では、枝管2aの内管
を複数の管部材から構成しかつ外管も複数の管部材から
構成している。しかしながら、枝管2aの内管のみを複
数の管部材から構成し、外管を単一管から構成すること
もできる。また、第2の枝管群の枝管の各内管をも複数
の構成することもできる。図8はさらに別の実施態様を
示している。図8において図1の実施態様と同様の構成
要素は同一の番号により示される。
In the embodiment shown in FIG. 7, the inner pipe of the branch pipe 2a is composed of a plurality of pipe members, and the outer pipe is also composed of a plurality of pipe members. However, it is also possible to configure only the inner pipe of the branch pipe 2a from a plurality of pipe members, and to configure the outer pipe from a single pipe. In addition, each of the inner pipes of the branch pipes of the second branch pipe group may be configured in a plurality. FIG. 8 shows still another embodiment. 8, the same components as those in the embodiment of FIG. 1 are indicated by the same reference numerals.

【0038】図8を参照すると、第1の枝管群1aの枝
管2aの固定支持部8aはこれまで述べてきた実施態様
におけるように枝管2aの上流端に設けられる。しかし
ながら、摺動支持部9aは枝管2aの上流端と下流端間
の中間部分に設けられる。したがって、枝管2aの支持
部間距離LLaが図1から図6までを参照して説明した
実施態様におけるよりも短くされる。
Referring to FIG. 8, the fixed support portion 8a of the branch pipe 2a of the first branch pipe group 1a is provided at the upstream end of the branch pipe 2a as in the embodiments described above. However, the sliding support portion 9a is provided at an intermediate portion between the upstream end and the downstream end of the branch pipe 2a. Therefore, the distance LLa between the support portions of the branch pipe 2a is made shorter than in the embodiment described with reference to FIGS.

【0039】このように支持部間距離が短くなると内管
6aの剛性が低下するのが阻止されるので内管6aの耐
久性および信頼性を確保することができることになる。
支持部間距離が短くなるにつれて内管6aの剛性を高め
ることができる。しかしながら、支持部間距離が短くな
るにつれて、すなわち枝管2aの下流端から摺動支持部
までの軸線方向距離Dが大きくなるにつれて内管6aを
良好に支持できなくなる。したがって、軸線方向距離D
をあまり大きくすることはできない。
As described above, when the distance between the support portions is reduced, the rigidity of the inner tube 6a is prevented from being reduced, so that the durability and reliability of the inner tube 6a can be ensured.
As the distance between the support portions becomes shorter, the rigidity of the inner tube 6a can be increased. However, as the distance between the support parts becomes shorter, that is, as the axial distance D from the downstream end of the branch pipe 2a to the sliding support part becomes larger, the inner pipe 6a cannot be favorably supported. Therefore, the axial distance D
Cannot be too large.

【0040】これまで述べてきた実施態様では、各枝管
2a,2b,2cの固定支持部8a,8b,8cをそれ
ぞれ対応する枝管2a,2b,2cの上流端に形成して
いる。しかしながら、これら固定支持部8a,8b,8
cをそれぞれ対応する枝管2a,2b,2cの中間部分
に形成してもよい。或いは固定支持部を枝管2a,2
b,2cの下流端に、摺動支持部9a,9b,9cを上
流端に形成してもよい。
In the embodiments described above, the fixed support portions 8a, 8b, 8c of the branch pipes 2a, 2b, 2c are formed at the upstream ends of the corresponding branch pipes 2a, 2b, 2c. However, these fixed support portions 8a, 8b, 8
c may be formed at an intermediate portion between the corresponding branch pipes 2a, 2b, 2c. Alternatively, the fixed support portions are connected to the branch pipes 2a, 2a.
Sliding supports 9a, 9b, 9c may be formed at the upstream end at the downstream end of b, 2c.

【0041】また、これまで述べてきた実施態様では各
枝管に対し1つの固定支持部と1つの摺動支持部を設け
ている。しかしながら各枝管に対し複数の固定支持部お
よび複数の摺動支持部を設けてもよい。
In the embodiments described above, one fixed support and one slide support are provided for each branch pipe. However, a plurality of fixed supports and a plurality of sliding supports may be provided for each branch pipe.

【0042】[0042]

【発明の効果】枝管の耐久性および信頼性を確保するこ
とができる。
As described above, the durability and reliability of the branch pipe can be ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】排気マニホルドの全体を示す断面図である。FIG. 1 is a cross-sectional view showing the entire exhaust manifold.

【図2】図1の線II−IIに沿ってみた枝管の断面図
である。
FIG. 2 is a cross-sectional view of the branch pipe taken along line II-II in FIG.

【図3】熱膨張した場合を示す摺動支持部の部分拡大図
である。
FIG. 3 is a partially enlarged view of a sliding support portion showing a case where thermal expansion has occurred.

【図4】別の実施態様による排気マニホルドの全体図で
ある。
FIG. 4 is an overall view of an exhaust manifold according to another embodiment.

【図5】さらに別の実施態様による排気マニホルドの全
体図である。
FIG. 5 is an overall view of an exhaust manifold according to yet another embodiment.

【図6】図5に示す排気マニホルドの部分拡大図であ
る。
FIG. 6 is a partially enlarged view of the exhaust manifold shown in FIG.

【図7】さらに別の実施態様による排気マニホルドの全
体図である。
FIG. 7 is an overall view of an exhaust manifold according to yet another embodiment.

【図8】さらに別の実施態様による排気マニホルドの全
体図である。
FIG. 8 is an overall view of an exhaust manifold according to yet another embodiment.

【符号の説明】[Explanation of symbols]

1…排気マニホルド 1a…第1の枝管群 1b…第2の枝管群 2a,2b,2c…枝管 2aa…上流側二重管 2ab…下流側二重管 4…集合管 6a,6b,6c…内管 7a,7b,7c…外管 8a,8b,8c…固定支持部 9a,9b,9c…摺動支持部 10a,10b,10c…断熱層 La,Lb,Lc…支持部間距離 DESCRIPTION OF SYMBOLS 1 ... Exhaust manifold 1a ... First branch pipe group 1b ... Second branch pipe group 2a, 2b, 2c ... Branch pipe 2aa ... Upstream double pipe 2ab ... Downstream double pipe 4 ... Collecting pipe 6a, 6b, 6c: inner pipes 7a, 7b, 7c: outer pipes 8a, 8b, 8c: fixed support parts 9a, 9b, 9c: sliding support parts 10a, 10b, 10c: heat insulating layers La, Lb, Lc: distance between support parts

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 各枝管を内管および外管を備えた二重管
から形成し、各内管を固定支持部においてそれぞれ対応
する外管に固定し、かつ摺動支持部において該外管によ
り軸線方向に摺動可能に支持した内燃機関の排気マニホ
ルドにおいて、固定支持部と摺動支持部間の支持部間距
離が長い枝管ほど該枝管の内管の剛性を高くした排気マ
ニホルド。
1. Each branch pipe is formed of a double pipe having an inner pipe and an outer pipe, each inner pipe is fixed to a corresponding outer pipe at a fixed support portion, and the outer pipe is formed at a sliding support portion. An exhaust manifold for an internal combustion engine, which is supported so as to be slidable in the axial direction by increasing the rigidity of an inner pipe of the branch pipe as the distance between the support parts between the fixed support part and the slide support part is longer.
【請求項2】 各枝管を内管および外管を備えた二重管
から形成し、各内管を固定支持部においてそれぞれ対応
する外管に固定し、かつ摺動支持部において該外管によ
り軸線方向に摺動可能に支持した内燃機関の排気マニホ
ルドにおいて、固定支持部と摺動支持部間の支持部間距
離が長い枝管ほど該枝管の摺動支持部における内管と外
管間の摩擦力を小さくした排気マニホルド。
2. Each of the branch pipes is formed of a double pipe having an inner pipe and an outer pipe, each inner pipe is fixed to a corresponding outer pipe at a fixed support, and the outer pipe is fixed at a slide support. In the exhaust manifold of the internal combustion engine supported slidably in the axial direction by the inner pipe and the outer pipe in the sliding support section of the branch pipe, the longer the distance between the support sections between the fixed support section and the sliding support section, the longer the distance between the support sections. Exhaust manifold with reduced friction between them.
【請求項3】 上記摺動支持部を各枝管の一端に形成
し、少なくとも1つの枝管の摺動支持部に位置する内管
または外管に切欠きを設けた請求項2に記載の排気マニ
ホルド。
3. The sliding support section according to claim 2, wherein the sliding support section is formed at one end of each branch pipe, and the inner pipe or the outer pipe located at the sliding support section of at least one branch pipe is provided with a notch. Exhaust manifold.
【請求項4】 各枝管を内管および外管を備えた二重管
から形成し、各内管を固定支持部においてそれぞれ対応
する外管に固定し、かつ摺動支持部において該外管によ
り軸線方向に摺動可能に支持した内燃機関の排気マニホ
ルドにおいて、少なくとも1つの枝管の内管を互いに直
列接続された複数の管部材から形成し、各管部材をそれ
ぞれの固定支持部において外管に固定し、かつそれぞれ
の摺動支持部において該外管により軸線方向に摺動可能
に支持した排気マニホルド。
4. Each branch pipe is formed of a double pipe having an inner pipe and an outer pipe, each inner pipe is fixed to a corresponding outer pipe at a fixed support portion, and said outer pipe is formed at a sliding support portion. In the exhaust manifold of the internal combustion engine supported slidably in the axial direction, the inner pipe of at least one branch pipe is formed from a plurality of pipe members connected in series with each other, and each pipe member is externally connected to each fixed support portion. An exhaust manifold fixed to a pipe and slidably supported in an axial direction by the outer pipe at each sliding support portion.
【請求項5】 長さが長い枝管と短い枝管とを備え、
枝管を内管および外管を備えた二重管から形成し、各内
管を固定支持部においてそれぞれ対応する外管に固定
し、かつ摺動支持部において該外管により軸線方向に摺
動可能に支持した内燃機関の排気マニホルドにおいて、
長い枝管において固定支持部を該枝管の一端に形成し、
かつ摺動支持部を該枝管の両端間の中間部分に形成する
と共に、短い枝管において固定支持部を該枝管の一端に
形成し、かつ摺動支持部を該枝管の他端に形成した排気
マニホルド。
5. A branch pipe having a long branch pipe and a short branch pipe, each branch pipe being formed of a double pipe having an inner pipe and an outer pipe, each inner pipe being a corresponding outer pipe at a fixed support. In an exhaust manifold of an internal combustion engine fixed to a pipe and slidably supported in an axial direction by the outer pipe at a sliding support portion,
Forming a fixed support at one end of the long branch tube;
And a sliding support portion is formed at an intermediate portion between both ends of the branch pipe.
Along with the short branch pipe, a fixed support is attached to one end of the branch pipe.
An exhaust manifold formed and having a sliding support portion formed at the other end of the branch pipe .
JP11083396A 1996-05-01 1996-05-01 Exhaust manifold of internal combustion engine Expired - Fee Related JP3248423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11083396A JP3248423B2 (en) 1996-05-01 1996-05-01 Exhaust manifold of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11083396A JP3248423B2 (en) 1996-05-01 1996-05-01 Exhaust manifold of internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09296722A JPH09296722A (en) 1997-11-18
JP3248423B2 true JP3248423B2 (en) 2002-01-21

Family

ID=14545829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11083396A Expired - Fee Related JP3248423B2 (en) 1996-05-01 1996-05-01 Exhaust manifold of internal combustion engine

Country Status (1)

Country Link
JP (1) JP3248423B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083045A (en) * 2001-09-07 2003-03-19 Honda Motor Co Ltd Exhaust emission control device for internal combustion engine
JP6614115B2 (en) 2016-11-30 2019-12-04 トヨタ自動車株式会社 Internal combustion engine
JP2018189046A (en) * 2017-05-10 2018-11-29 日野自動車株式会社 Heat insulation exhaust pipe

Also Published As

Publication number Publication date
JPH09296722A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
US6334981B1 (en) Double-walled housing, in particular for exhaust gas catalytic converters of motor vehicles and method of producing a double-walled housing
US5390494A (en) Pipe assembly for efficient light-off of catalytic converter
US5079210A (en) Metallic support for exhaust gas purifying catalyst
US6360782B1 (en) Exhaust pipe assembly of two-passage construction
JPH08504917A (en) Metal honeycomb bodies, especially catalyst carrier bodies retained in inner and outer jacket tubes
JPH051528A (en) Metal carrier for exhaust gas purification catalyst
US5579639A (en) Double walled exhaust pipe for an engine
JPH07317540A (en) Thin walled double-pipe type exhaust manifold
JP2004509264A (en) Honeycomb body with a jacket tube with slits
JP3248423B2 (en) Exhaust manifold of internal combustion engine
US7241427B2 (en) Catalyst carrier body with sleeve and shortened tubular jacket and catalytic converter having the catalyst carrier body
JP2001132872A (en) Double pipe structure and manufacturing method thereof
JP3250454B2 (en) Double pipe
JP2007315368A (en) Vehicle exhaust pipe
JP2001263054A (en) Exhaust pipe
JP2004537414A (en) Shrinkage limit for honeycomb elements
JPS593136Y2 (en) Heat-retaining exhaust pipe
JP3964321B2 (en) Vehicle exhaust system
JPH0679181A (en) Metal carrier for exhaust gas cleaning catalyst
JPH0868319A (en) Exhaust double-pipe structure
JP3971523B2 (en) Insulated exhaust manifold for engine
JP3811452B2 (en) Exhaust pipe structure
JP3355989B2 (en) Exhaust system for internal combustion engine
JPH08170530A (en) Double exhaust manifold structure
JP3006376B2 (en) Exhaust pipe of internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees