JP2018189046A - Heat insulation exhaust pipe - Google Patents

Heat insulation exhaust pipe Download PDF

Info

Publication number
JP2018189046A
JP2018189046A JP2017093557A JP2017093557A JP2018189046A JP 2018189046 A JP2018189046 A JP 2018189046A JP 2017093557 A JP2017093557 A JP 2017093557A JP 2017093557 A JP2017093557 A JP 2017093557A JP 2018189046 A JP2018189046 A JP 2018189046A
Authority
JP
Japan
Prior art keywords
pipe
heat insulation
tube
exhaust pipe
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017093557A
Other languages
Japanese (ja)
Inventor
侑弥 市川
Yuya Ichikawa
侑弥 市川
遠藤 英樹
Hideki Endo
英樹 遠藤
雅仁 島田
Masahito Shimada
雅仁 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2017093557A priority Critical patent/JP2018189046A/en
Publication of JP2018189046A publication Critical patent/JP2018189046A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulation exhaust pipe high in heat insulation, capable of reducing its weight, and high in strength reliability against heat strain, compared to conventional arts.SOLUTION: In a heat insulation exhaust pipe 4 with a double pipe structure where a hollow heat insulation layer 3 is interposed between an outer pipe 1 and an inner pipe 2, an end part on an upstream side of the inner pipe 2 is internally fitted and connected to an end part on an upstream side of the outer pipe 1 in a state where an upstream side of the hollow heat insulation layer 3 is sealed; and an end part of a downstream side of the inner pipe 2 is internally fitted to an end part of a downstream side of the outer pipe 1 in a slidable manner, and thermal expansion difference between the outer pipe 1 and the inner pipe 2 can be absorbed in a state where a downstream side of the hollow heat insulation layer 3 is sealed.SELECTED DRAWING: Figure 1

Description

本発明は、断熱排気管に関するものである。   The present invention relates to a heat insulating exhaust pipe.

ディーゼルエンジンから排出されるパティキュレート(Particulate Matter:粒子状物質)は、炭素質から成る煤と、高沸点炭化水素成分から成るSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とし、更に微量のサルフェート(ミスト状硫酸成分)を含んだ組成を成すものであるが、この種のパティキュレートの低減対策としては、排気ガスが流通する排気流路の途中に、パティキュレートフィルタを装備することが従来より行われている。   Particulate matter (particulate matter) discharged from a diesel engine is mainly composed of soot composed of carbonaceous matter and SOF content (Soluble Organic Fraction) composed of high-boiling hydrocarbon components. Although it has a composition containing a small amount of sulfate (mist-like sulfuric acid component), as a measure to reduce this kind of particulates, a particulate filter is installed in the middle of the exhaust passage through which exhaust gas flows. Has been performed conventionally.

この種のパティキュレートフィルタは、コージェライト等のセラミックから成る多孔質のハニカム構造となっており、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガスのみが下流側へ排出されるようにしてある。   This type of particulate filter has a porous honeycomb structure made of a ceramic such as cordierite, and the inlets of the flow paths partitioned in a lattice pattern are alternately sealed, and the inlets are not sealed. About the flow path, the exit is sealed, and only the exhaust gas which permeate | transmitted the porous thin wall which divides each flow path is discharged | emitted downstream.

そして、排気ガス中のパティキュレートは、前記多孔質薄壁の内側表面に捕集されて堆積するので、目詰まりにより排気抵抗が増加しないうちにパティキュレートを適宜に燃焼除去してパティキュレートフィルタの再生を図る必要があるが、通常のディーゼルエンジンの運転状態においては、パティキュレートが自己燃焼するほどの高い排気温度が得られる機会が少ないため、例えばアルミナに白金等を担持させて成る酸化触媒をパティキュレートフィルタに一体的に担持させたり、パティキュレートフィルタの前段に酸化触媒を別体で配置するようにした触媒再生型のパティキュレートフィルタを採用することが検討されている。   Then, the particulates in the exhaust gas are collected and deposited on the inner surface of the porous thin wall, so that the particulates are appropriately burned and removed before the exhaust resistance increases due to clogging. It is necessary to regenerate, but in normal diesel engine operating conditions, there are few opportunities to obtain exhaust temperatures that are high enough for the particulates to self-combust. It has been studied to adopt a catalyst regeneration type particulate filter that is integrally supported on a particulate filter or that an oxidation catalyst is arranged separately in a stage preceding the particulate filter.

即ち、このような触媒再生型のパティキュレートフィルタを採用すれば、捕集されたパティキュレートの酸化反応が促進されて着火温度が低下し、従来より低い排気温度でもパティキュレートを燃焼除去することが可能となるのである。   That is, if such a catalyst regeneration type particulate filter is employed, the oxidation reaction of the collected particulates is promoted to lower the ignition temperature, and the particulates can be burned and removed even at an exhaust temperature lower than the conventional one. It becomes possible.

また、前述したパティキュレートフィルタ以外にも、排気ガス中のNOxの除去を目的としたNOx選択還元触媒やNOx吸蔵還元触媒等を後処理装置として排気流路途中に装備することも提案されており、特に近年においては、パティキュレートフィルタにNOx吸蔵還元触媒を組み合わせた後処理装置も開発されてきている。   In addition to the particulate filter described above, it has also been proposed to equip the exhaust passage with a NOx selective reduction catalyst or NOx occlusion reduction catalyst for the purpose of removing NOx in the exhaust gas as a post-treatment device. Particularly in recent years, an aftertreatment device in which a particulate filter is combined with a NOx storage reduction catalyst has been developed.

ただし、これらの何れの後処理装置を採用した場合であっても、パティキュレートの確実な燃焼除去や十分な触媒活性を得るために所定温度以上の比較的高い排気温度が必要となるので、ディーゼルエンジンから排出された排気ガスの温度ができるだけ下がらないうちに後処理装置に排気ガスを導入することが重要となる。   However, even if any of these after-treatment devices is adopted, a relatively high exhaust temperature higher than a predetermined temperature is required in order to obtain reliable combustion removal of particulates and sufficient catalytic activity. It is important to introduce the exhaust gas into the aftertreatment device before the temperature of the exhaust gas discharged from the engine is lowered as much as possible.

この種の後処理装置を車両に装備するにあたり、車型によっては、ディーゼルエンジンから離れた位置にしか後処理装置の搭載スペースを確保できないケースがあり、このようなケースでは、特に雨天や冬期等の外気温度が低い場合に、ディーゼルエンジンから排気管を通して後処理装置まで排気ガスを導く間に排気温度が低下し易くなり、後処理装置が活性を有する運転領域が通常より狭まることが懸念された。   When installing this type of aftertreatment device on a vehicle, depending on the vehicle model, there are cases in which the space for installing the aftertreatment device can be secured only at a position away from the diesel engine. When the outside air temperature is low, the exhaust temperature tends to decrease while the exhaust gas is led from the diesel engine to the aftertreatment device through the exhaust pipe, and there is a concern that the operating region in which the aftertreatment device is active becomes narrower than usual.

そこで、従来においては、このような排気温度低下の防止策として、図3に示す如く、外管aと内管bとから成る二重管構造の断熱排気管cとし、これら外管aと内管bとの間に、耐熱性線材を筒状にブレード編みして編成したインナーブレードdを介装し、このような空隙率の高いインナーブレードdを介装することで外管aと内管bとの間の断熱を図るようにしている。   Therefore, in the prior art, as a measure for preventing such a decrease in exhaust temperature, as shown in FIG. 3, a heat insulating exhaust pipe c having a double pipe structure consisting of an outer pipe a and an inner pipe b is used. Between the tube b, an inner blade d formed by braiding a heat-resistant wire rod into a cylindrical shape is interposed. By interposing such an inner blade d having a high porosity, the outer tube a and the inner tube are disposed. Insulation with b is intended.

また、外管aと内管bとインナーブレードdの夫々の端部を全周溶接して外管aと内管bとの間を封じると共に、外管aの端部にはフランジe,fを外嵌して全周溶接するようにしており、二重管構造の断熱排気管cの端部(特に上流側の端部)を同じ二重管構造を持つ別の断熱排気管cの端部に接続するに際しても、外管aと内管bとの間に排気ガスgが進入しないようにしている。   Further, the outer pipe a, the inner pipe b, and the inner blade d are welded all around to seal between the outer pipe a and the inner pipe b, and the end of the outer pipe a has flanges e and f. The end of the double-pipe heat insulation exhaust pipe c (especially the upstream end) is the end of another heat insulation exhaust pipe c having the same double pipe structure. Also when connecting to the part, the exhaust gas g is prevented from entering between the outer tube a and the inner tube b.

尚、この種の断熱排気管に関連する先行技術文献情報としては下記の特許文献1等がある。   As prior art document information related to this type of heat insulating exhaust pipe, there is the following Patent Document 1 and the like.

特開2007−9866号公報Japanese Patent Laid-Open No. 2007-9866

しかしながら、いくらインナーブレードdの空隙率が高いとは言え、該インナーブレードdを外管aと内管bとの間に介装することは、外管aと内管bとの間をインナーブレードdを介し各所で金属同士の接触として繋いでしまう結果となり、これにより内管b側から外管a側への熱伝導率が上がって期待通りの保温性を得ることが難しくなったり、インナーブレードdの分だけ質量増加を招いてしまったりする虞れがあった。   However, although the void ratio of the inner blade d is high, the inner blade d is interposed between the outer tube a and the inner tube b. As a result, it is difficult to obtain the heat retention as expected by increasing the thermal conductivity from the inner tube b side to the outer tube a side. There is a possibility that the mass may be increased by d.

また、高温の排気ガスgにより内管bが熱せられて軸心方向に熱膨張した場合に、インナーブレードdにより断熱されている外管a側との熱膨張差が生じるが、該外管aに対し内管bが両端部を拘束されていることから前記熱膨張差が吸収されず、外管aに対する内管bの接合箇所に熱歪みが生じて溶接部分に亀裂等の損傷を招く虞れもあった。   Further, when the inner tube b is heated by the high-temperature exhaust gas g and thermally expands in the axial direction, a difference in thermal expansion from the outer tube a side that is thermally insulated by the inner blade d occurs. On the other hand, since the inner tube b is constrained at both ends, the difference in thermal expansion is not absorbed, and thermal distortion occurs in the joint portion of the inner tube b with the outer tube a, which may cause damage such as cracks in the welded portion. There was also.

本発明は上述の実情に鑑みてなしたもので、従来よりも保温性が高く且つ軽量で熱歪みに対する強度信頼性も高い断熱排気管を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat insulating exhaust pipe that has higher heat retention, is lighter, and has higher strength reliability against thermal distortion.

本発明は、外管と内管との間に中空断熱層を介在させた二重管構造の断熱排気管であって、外管の上流側の端部に対し内管の上流側の端部を内嵌させて前記中空断熱層の上流側を封じた状態で接合する一方、外管の下流側の端部に対し内管の下流側の端部を摺動自在に内嵌させて前記中空断熱層の下流側を封じた状態で外管と内管との熱膨張差を吸収し得るように構成したことを特徴とするものである。   The present invention is a heat insulating exhaust pipe having a double pipe structure in which a hollow heat insulating layer is interposed between an outer pipe and an inner pipe, and an upstream end portion of the inner pipe with respect to an upstream end portion of the outer pipe Are joined in a state in which the upstream side of the hollow heat insulation layer is sealed, and the downstream end of the inner tube is slidably fitted into the downstream end of the outer tube, and the hollow The present invention is characterized in that it can absorb the difference in thermal expansion between the outer tube and the inner tube while the downstream side of the heat insulating layer is sealed.

而して、このようにすれば、外管と内管との間に従来の如きインナーブレードが介在しなくなり、外管と内管とが夫々の両端部を除いた大半の部分で中空断熱層のみを介し非接触状態に保持されるので、内管側から外管側への熱伝導率が下がって従来よりも保温性が向上され、しかも、インナーブレードを無くした分だけ質量低減が図られる。   Thus, with this arrangement, the conventional inner blade is not interposed between the outer tube and the inner tube, and the outer tube and the inner tube have a hollow heat insulating layer in most of the portions excluding both ends. Since the heat conductivity from the inner tube side to the outer tube side is lowered, the heat retaining property is improved as compared with the prior art, and the mass is reduced by the amount of eliminating the inner blade. .

また、高温の排気ガスにより内管が熱せられて軸心方向に熱膨張し、中空断熱層により断熱されている外管側との熱膨張差が生じても、外管の下流側の端部に対し内管の下流側の端部が摺動して熱膨張差が吸収され、外管と内管の上流側の端部同士の接合箇所における熱歪みが起こらなくなる。   Even if the inner pipe is heated by the high-temperature exhaust gas and thermally expands in the axial direction, resulting in a difference in thermal expansion from the outer pipe side that is insulated by the hollow heat insulating layer, the downstream end of the outer pipe On the other hand, the downstream end of the inner tube slides to absorb the difference in thermal expansion, and thermal distortion does not occur at the joint between the outer tube and the upstream end of the inner tube.

更に、本発明を具体的に実施するにあたっては、外管の両端部を所定範囲だけ縮径し且つ内管の両端部を所定範囲だけ拡径して相互を嵌合状態とすることで中空断熱層を画成し、外管と内管の上流側の端部同士のみを接合することが好ましい。   Furthermore, in concrete implementation of the present invention, hollow insulation is achieved by reducing the diameter of both ends of the outer tube by a predetermined range and expanding the diameter of both ends of the inner tube by a predetermined range to bring them into a fitted state. It is preferable to define a layer and join only the upstream ends of the outer tube and the inner tube.

上記した本発明の断熱排気管によれば、外管と内管とを夫々の両端部を除いた大半の部分で中空断熱層のみを介し非接触状態に保持することができ、これにより内管側から外管側への熱伝導率を下げて従来よりも保温性を著しく向上することができると共に、インナーブレードを不要として大幅な軽量化を実現することができ、しかも、外管に対し内管の下流側へ向かう熱膨張を拘束しないようにして外管と内管との熱膨張差を吸収することができるので、外管と内管の上流側の端部同士の接合箇所における熱歪みを未然に回避して強度信頼性を大幅に向上することができるという優れた効果を奏し得る。   According to the above-described heat-insulated exhaust pipe of the present invention, the outer pipe and the inner pipe can be held in a non-contact state only through the hollow heat-insulating layer in most parts except for both ends. The thermal conductivity from the side to the outer tube side can be lowered to significantly improve the heat retention compared to the conventional one, and the inner blade is not required, and a significant weight reduction can be realized. Since the thermal expansion difference between the outer tube and the inner tube can be absorbed without restricting the thermal expansion toward the downstream side of the tube, the thermal strain at the joint between the ends of the outer tube and the upstream side of the inner tube It is possible to obtain an excellent effect that the strength reliability can be greatly improved by avoiding the above-described problem.

本発明を実施する形態の一例を示す断面図である。It is sectional drawing which shows an example of the form which implements this invention. 本発明の別の形態例を示す断面図である。It is sectional drawing which shows another example of a form of this invention. 従来例を示す断面図である。It is sectional drawing which shows a prior art example.

以下、本発明の実施の形態を図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、ここに図示している例においては、外管1と内管2との間に中空断熱層3を介在させた二重管構造の断熱排気管4に関し、外管1の上流側(図1中における排気ガス5の流れ方向の上流側)の端部に対し内管2の上流側の端部を内嵌させて前記中空断熱層3の上流側を封じた状態で接合する一方、外管1の下流側の端部に対し内管2の下流側の端部を摺動自在に内嵌させて前記中空断熱層3の下流側を封じた状態で外管1と内管2との熱膨張差を吸収し得るように構成したところが特徴となっている。   FIG. 1 shows an example of an embodiment for carrying out the present invention. In the example shown here, a double tube structure in which a hollow heat insulating layer 3 is interposed between an outer tube 1 and an inner tube 2 is shown. With respect to the heat insulating exhaust pipe 4, the hollow heat insulating layer is formed by fitting the upstream end of the inner pipe 2 into the upstream end of the outer pipe 1 (upstream in the flow direction of the exhaust gas 5 in FIG. 1). 3 is joined in a sealed state, while the downstream end of the inner tube 2 is slidably fitted to the downstream end of the outer tube 1 so that the downstream side of the hollow heat insulating layer 3 It is characterized in that it is constructed so as to be able to absorb the difference in thermal expansion between the outer tube 1 and the inner tube 2 in a sealed state.

より具体的には、外管1の両端部を所定範囲だけ縮径して縮径部1aを形成すると共に、内管2の両端部を所定範囲だけ拡径して拡径部2aを形成し、上流側と下流側の縮径部1aと拡径部2aの相互を嵌合状態とすることで中空断熱層3を画成するようにしており、上流側の外管1の縮径部1aと内管2の拡径部2aのみを周方向の90°毎に四箇所スポット溶接して接合し、下流側の外管1の縮径部1aと内管2の拡径部2aについては溶接しないまま単に当接させた状態としている。   More specifically, both ends of the outer tube 1 are reduced in diameter by a predetermined range to form a reduced diameter portion 1a, and both ends of the inner tube 2 are enlarged by a predetermined range to form an enlarged diameter portion 2a. The hollow heat insulating layer 3 is defined by fitting the upstream and downstream reduced-diameter portions 1a and the enlarged-diameter portions 2a to each other, and the reduced-diameter portion 1a of the outer pipe 1 on the upstream side. Only the enlarged diameter portion 2a of the inner pipe 2 is joined by spot welding at four positions every 90 ° in the circumferential direction, and the reduced diameter portion 1a of the outer pipe 1 on the downstream side and the enlarged diameter portion 2a of the inner pipe 2 are welded. It is in a state where it is simply abutted without being used.

また、外管1の両端部にはフランジ6,7を夫々外嵌して全周溶接することにより接合しており、同様にして製作した別の断熱排気管4を互いのフランジ6,7を介しボルト締結等により接続できるようにしてある。   Further, flanges 6 and 7 are respectively fitted to both ends of the outer pipe 1 and welded to the entire circumference, and another heat insulating exhaust pipe 4 manufactured in the same manner is connected to the flanges 6 and 7. It can be connected by bolt fastening or the like.

而して、このようにすれば、外管1と内管2との間に従来の如きインナーブレードが介在しなくなり、外管1と内管2とが夫々の両端部を除いた大半の部分で中空断熱層3のみを介し非接触状態に保持されるので、内管2側から外管1側への熱伝導率が下がって従来よりも保温性が向上され、しかも、インナーブレードを無くした分だけ質量低減が図られる。   Thus, in this way, the conventional inner blade is not interposed between the outer tube 1 and the inner tube 2, and most of the outer tube 1 and the inner tube 2 except for both ends. In this case, the heat conductivity from the inner tube 2 side to the outer tube 1 side is lowered and the heat retaining property is improved as compared with the prior art, and the inner blade is eliminated. The mass can be reduced by that amount.

また、高温の排気ガス5により内管2が熱せられて軸心方向に熱膨張し、中空断熱層3により断熱されている外管1側との熱膨張差が生じても、外管1の下流側の端部に対し内管2の下流側の端部が摺動して熱膨張差が吸収され、外管1と内管2の上流側の端部同士の接合箇所における熱歪みが起こらなくなる。   Further, even if the inner pipe 2 is heated by the high-temperature exhaust gas 5 and thermally expands in the axial direction, and a thermal expansion difference from the outer pipe 1 side insulated by the hollow heat insulating layer 3 occurs, The downstream end of the inner tube 2 slides with respect to the downstream end to absorb the thermal expansion difference, and thermal distortion occurs at the joint between the outer tube 1 and the upstream end of the inner tube 2. Disappear.

従って、上記形態例によれば、外管1と内管2とを夫々の両端部を除いた大半の部分で中空断熱層3のみを介し非接触状態に保持することができ、これにより内管2側から外管1側への熱伝導率を下げて従来よりも保温性を著しく向上することができると共に、インナーブレードを不要として大幅な軽量化を実現することができ、しかも、外管1に対し内管2の下流側へ向かう熱膨張を拘束しないようにして外管1と内管2との熱膨張差を吸収することができるので、外管1と内管2の上流側の端部同士の接合箇所における熱歪みを未然に回避して強度信頼性を大幅に向上することができる。   Therefore, according to the above-described embodiment, the outer tube 1 and the inner tube 2 can be held in a non-contact state only through the hollow heat insulating layer 3 in most parts except for the both ends. The thermal conductivity from the 2 side to the outer tube 1 side can be lowered to significantly improve the heat retention compared to the prior art, and the inner blade is not required, and a significant weight reduction can be realized. On the other hand, the thermal expansion difference between the outer tube 1 and the inner tube 2 can be absorbed without restricting the thermal expansion toward the downstream side of the inner tube 2, so that the upstream end of the outer tube 1 and the inner tube 2 can be absorbed. Strength reliability can be greatly improved by avoiding thermal distortion at the joint between the parts.

また、図2は本発明の別の形態例を示すもので、先に説明した図1の形態例では、直伸形状とした断熱排気管4の例について示しているが、本形態例にあっては、排気系のコーナ部等を構成するための屈曲形状の断熱排気管4の例を示しており、このような形状とした場合にも、図1で説明した直伸形状の断熱排気管4の場合と同様の作用効果を奏し得ることは勿論である。   FIG. 2 shows another embodiment of the present invention. In the embodiment shown in FIG. 1 described above, an example of the heat insulating exhaust pipe 4 having a straight extension shape is shown. Shows an example of a bent heat insulating exhaust pipe 4 for constituting a corner portion or the like of an exhaust system. Even in such a shape, the straight extending heat insulating exhaust pipe 4 described in FIG. Needless to say, the same operational effects as the case can be obtained.

ただし、このような屈曲形状の断熱排気管4を従来と同じように外管1に対し内管2の両端部を拘束して製作した場合、単に外管1と内管2との熱膨張差が生じるだけでなく、その曲がり方向の外側と内側との間にも熱による延び差が生じて熱歪みが大きく現れることになるので、本発明の断熱排気管4を適用することの意義は大きく、非常に有用性の高い屈曲形状の断熱排気管4が得られる。   However, when such a heat insulating exhaust pipe 4 having a bent shape is manufactured by restricting both ends of the inner pipe 2 with respect to the outer pipe 1 as in the prior art, a difference in thermal expansion between the outer pipe 1 and the inner pipe 2 is simply achieved. Not only occurs, but also a difference in thermal extension occurs between the outer side and the inner side in the bending direction, and a large thermal distortion appears. Therefore, it is significant to apply the heat insulating exhaust pipe 4 of the present invention. The heat insulating exhaust pipe 4 having a bent shape that is very useful can be obtained.

尚、本発明の断熱排気管は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the heat insulation exhaust pipe of this invention is not limited only to the above-mentioned example, Of course, a various change can be added in the range which does not deviate from the summary of this invention.

1 外管
2 内管
3 中空断熱層
4 断熱排気管
1 Outer pipe 2 Inner pipe 3 Hollow heat insulation layer 4 Heat insulation exhaust pipe

Claims (2)

外管と内管との間に中空断熱層を介在させた二重管構造の断熱排気管であって、外管の上流側の端部に対し内管の上流側の端部を内嵌させて前記中空断熱層の上流側を封じた状態で接合する一方、外管の下流側の端部に対し内管の下流側の端部を摺動自在に内嵌させて前記中空断熱層の下流側を封じた状態で外管と内管との熱膨張差を吸収し得るように構成したことを特徴とする断熱排気管。   A heat insulation exhaust pipe having a double-pipe structure in which a hollow heat insulation layer is interposed between the outer pipe and the inner pipe, and the end on the upstream side of the inner pipe is fitted into the end on the upstream side of the outer pipe. And the downstream end of the inner tube is slidably fitted into the downstream end of the outer tube to slidably fit the downstream end of the hollow heat insulating layer. A heat-insulated exhaust pipe characterized by being configured to absorb a difference in thermal expansion between the outer pipe and the inner pipe in a state where the side is sealed. 外管の両端部を所定範囲だけ縮径し且つ内管の両端部を所定範囲だけ拡径して相互を嵌合状態とすることで中空断熱層を画成し、外管と内管の上流側の端部同士のみを接合したことを特徴とする請求項1に記載の断熱排気管。   A hollow heat insulating layer is formed by reducing both ends of the outer tube by a predetermined range and expanding both ends of the inner tube by a predetermined range so as to be fitted to each other, and upstream of the outer tube and the inner tube. The heat-insulated exhaust pipe according to claim 1, wherein only end portions on the side are joined.
JP2017093557A 2017-05-10 2017-05-10 Heat insulation exhaust pipe Pending JP2018189046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017093557A JP2018189046A (en) 2017-05-10 2017-05-10 Heat insulation exhaust pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017093557A JP2018189046A (en) 2017-05-10 2017-05-10 Heat insulation exhaust pipe

Publications (1)

Publication Number Publication Date
JP2018189046A true JP2018189046A (en) 2018-11-29

Family

ID=64479779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017093557A Pending JP2018189046A (en) 2017-05-10 2017-05-10 Heat insulation exhaust pipe

Country Status (1)

Country Link
JP (1) JP2018189046A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11927123B2 (en) * 2022-03-14 2024-03-12 Toyota Jidosha Kabushiki Kaisha Vehicle exhaust system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296723A (en) * 1996-05-01 1997-11-18 Toyota Motor Corp Double tube
JPH09296722A (en) * 1996-05-01 1997-11-18 Toyota Motor Corp Exhaust manifold for internal combustion engine
JPH11303630A (en) * 1998-04-20 1999-11-02 Honda Motor Co Ltd Heat reservation type exhaust manifold of engine
WO2006097608A1 (en) * 2005-03-17 2006-09-21 Faurecia Systemes D'echappement Method of producing a double-wall insulated pipe, such as for a motor vehicle exhaust line, and pipe thus obtained
CN103291432A (en) * 2012-12-24 2013-09-11 湖南吉利汽车部件有限公司 Exhaust pipe structure capable of eliminating welding stress

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296723A (en) * 1996-05-01 1997-11-18 Toyota Motor Corp Double tube
JPH09296722A (en) * 1996-05-01 1997-11-18 Toyota Motor Corp Exhaust manifold for internal combustion engine
JPH11303630A (en) * 1998-04-20 1999-11-02 Honda Motor Co Ltd Heat reservation type exhaust manifold of engine
WO2006097608A1 (en) * 2005-03-17 2006-09-21 Faurecia Systemes D'echappement Method of producing a double-wall insulated pipe, such as for a motor vehicle exhaust line, and pipe thus obtained
CN103291432A (en) * 2012-12-24 2013-09-11 湖南吉利汽车部件有限公司 Exhaust pipe structure capable of eliminating welding stress

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11927123B2 (en) * 2022-03-14 2024-03-12 Toyota Jidosha Kabushiki Kaisha Vehicle exhaust system

Similar Documents

Publication Publication Date Title
CA3016328C (en) Susceptor for use in a fluid flow system
US20130045148A1 (en) Flow Modulating Substrates For Early Light-Off
US7332137B2 (en) End cone assembly, exhaust emission control device and method of making thereof
JP2010048111A (en) Exhaust emission control system and exhaust emission control method
JP4689647B2 (en) Insulated exhaust pipe
JP2018189046A (en) Heat insulation exhaust pipe
CN103228335B (en) Method of installing a multi-ayer batt, blanket or mat in an exhaust gas aftertreatment or acoustic device
US20090235623A1 (en) Device for depolluting exhaust gases of a thermal engine
JP2008043850A (en) Honeycomb structure
JP4767236B2 (en) Exhaust gas purification device for internal combustion engine
JP5227755B2 (en) EGR cooler
JP4709682B2 (en) Engine exhaust system
JP6071279B2 (en) Insulated exhaust pipe
KR20140094596A (en) Pitot tube connection
JP2010144710A (en) Connection structure for hollow double-pipe
US9976467B2 (en) Exhaust system
JP2005083304A (en) Exhaust emission control device of internal combustion engine
JP2009024498A (en) Flexible joint structure of exhaust system
KR101150325B1 (en) An exhaust gas reducing assembly for a vehicles which is possessed of duplex catalyst portion
JP2018062882A (en) Exhaust emission control system
RU2259490C2 (en) Tubular casing for cellular element used for neutralization of exhaust gases, and catalyst converter
KR200447315Y1 (en) An exhaust gas reducing assembly for a vehicles
KR20090052190A (en) Catalytic converter apparatus for exhaust gas
JP2006125207A (en) Heat insulating structure for exhaust pipe
JP4225015B2 (en) Catalytic converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210907