JP2007038140A - Catalytic carrier for cleaning exhaust gas - Google Patents

Catalytic carrier for cleaning exhaust gas Download PDF

Info

Publication number
JP2007038140A
JP2007038140A JP2005225460A JP2005225460A JP2007038140A JP 2007038140 A JP2007038140 A JP 2007038140A JP 2005225460 A JP2005225460 A JP 2005225460A JP 2005225460 A JP2005225460 A JP 2005225460A JP 2007038140 A JP2007038140 A JP 2007038140A
Authority
JP
Japan
Prior art keywords
exhaust gas
honeycomb structure
catalyst carrier
catalyst
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005225460A
Other languages
Japanese (ja)
Inventor
Keiichi Matsugami
恵一 松上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aircraft Industry Co Ltd
Original Assignee
Showa Aircraft Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aircraft Industry Co Ltd filed Critical Showa Aircraft Industry Co Ltd
Priority to JP2005225460A priority Critical patent/JP2007038140A/en
Publication of JP2007038140A publication Critical patent/JP2007038140A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalytic carrier for cleaning exhaust gas, by which efficiency of a catalyst is improved to make the cost performance of the catalyst excellent, in which ablation and abnormal oxidation are prevented to improve durability and reliability of the catalytic carrier and the pressure loss of which is decreased to enhance the power of an engine. <P>SOLUTION: The catalytic carrier 9 is constituted so that a roll-shaped honeycomb structure 12 formed by winding a corrugated sheet 10 and a flat sheet 11 is fit to the inside of an outer cylinder 5 and a catalytic substance C is stuck to both of the corrugated sheet 10 and the flat sheet 11. Since the flow velocity of exhaust gas A before flowing in the honeycomb structure 12 is apt to become higher as it goes to the center part D of the honeycomb structure in the radial direction F, the pressure loss in the center part D of the honeycomb structure 12 is controlled to be larger than that in the outer peripheral part E thereof, so that the flow velocity of the flowing-in exhaust gas A is made uniform. For example, the center part of the end face 15 on the exhaust gas A inflow side of the honeycomb structure 12 and that of the end face 16 on the outflow side are projected. In other words, the length of the corrugated sheet 10 or the flat sheet 11 in the outer peripheral part E is set shorter than that of the corrugated sheet 10 or the flat sheet 11 in the center part D in the axial direction G of the honeycomb structure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排気ガス浄化用の触媒担体に関する。すなわち、ハニカム構造をなし触媒物質が付着される、排気ガス浄化用の触媒担体に関するものである。   The present invention relates to a catalyst carrier for exhaust gas purification. That is, the present invention relates to an exhaust gas purification catalyst carrier having a honeycomb structure to which a catalyst substance is attached.

《技術的背景》
例えば自動車のディーゼルエンジン、その他のエンジンの排気ガス中には、粒子状物質PM,窒素酸化物NO,その他の有害物質が含有されており、そのまま外気へ排出すると有害である。
そこで、エンジンの排気管には、その排気ガス中に含有された有害物質を除去する排気ガス浄化装置が、介装されている。
そして、この種の排気ガス浄化装置としては、ハニカム構造をなし触媒物質が付着された触媒担体が、多用されている。
《Technical background》
For example, exhaust gas from automobile diesel engines and other engines contains particulate matter PM, nitrogen oxides NO x , and other harmful substances, which are harmful if discharged directly into the outside air.
Therefore, an exhaust gas purification device that removes harmful substances contained in the exhaust gas is interposed in the exhaust pipe of the engine.
As this type of exhaust gas purifying apparatus, a catalyst carrier having a honeycomb structure and having a catalytic substance attached thereto is frequently used.

《従来技術》
図6の(2)図は、この種従来例の正断面図である。同図にも示したように、従来の排気ガスA浄化用の触媒担体1は、同幅平行の帯状をなす金属箔製の波板2と平板3とが、多層にロール状に巻き付けられ、もって両端面がフラットな略円柱状をなすハニカム構造体4が、外筒5内に挿着された構造よりなる。
そして、エンジンからの排気ガスAは、排気管17に介装された触媒担体1、つまりそのハニカム構造体4の各セル空間6を通過する。そして、排気ガスA中に含有されていた有害物質Bが、ハニカム構造体4の各セル空間6を形成する波板2や平板3に付着された触媒物質Cと接触して、反応,除去され、もって排気ガスAが浄化されて外気へと排出されていた。
<Conventional technology>
FIG. 6B is a front sectional view of this type of conventional example. As shown in the figure, a conventional catalyst carrier 1 for purifying exhaust gas A has a corrugated sheet 2 made of metal foil and a flat plate 3 in the form of strips parallel to the same width, wound in multiple layers in a roll shape, Thus, the honeycomb structure 4 having a substantially columnar shape with both end faces being flat has a structure inserted into the outer cylinder 5.
The exhaust gas A from the engine passes through the catalyst carrier 1 interposed in the exhaust pipe 17, that is, each cell space 6 of the honeycomb structure 4. Then, the harmful substance B contained in the exhaust gas A comes into contact with the catalytic substance C attached to the corrugated plate 2 and the flat plate 3 forming each cell space 6 of the honeycomb structure 4, and is reacted and removed. Therefore, the exhaust gas A was purified and discharged to the outside air.

《先行技術文献情報》
このような触媒担体1の従来例としては、例えば、次の特許文献1中に示されたものが挙げられる。
特開2001−321678号公報
《Information on prior art documents》
As a conventional example of such a catalyst carrier 1, for example, the one shown in the following Patent Document 1 can be cited.
JP 2001-321678 A

ところで、このような従来例の排気ガスA浄化用の触媒担体1については、次の問題が指摘されていた。
《第1の問題点》
第1に、触媒効率が悪い、という問題が指摘されていた。すなわち、エンジンから排気管を経由して触媒担体1に供給される排気ガスAは、排気管との摩擦損失等により、速度分布が一様ではなく、径方向Fの中央側Dほど速く外周側Eほど遅い傾向にある。
そこで、従来の触媒担体1のハニカム構造体4では、中央側Dほど、流速の速い排気ガスAが短時間で通過し、触媒物質Cとの触媒時間が短くなる。従って従来は、排気ガスAについて所定の浄化率を得るために、ハニカム構造体4について、全体的にこのような中央側Dに適した量の触媒物質Cが付着せしめられており、よって外周側Eでは触媒物質Cが過多となり、無駄が多いという問題があった。
すなわち、触媒物質Cの付着は、ハニカム構造体4を触媒槽に浸漬,塗布することにより、全体的に均一に実施されている。そして、このようにハニカム構造体4に全体的に均一に付着せしめられる触媒物質Cに関し、触媒物質Cの付着量・使用量が適切な中央側Dに比し、外周側Eの付着量・使用量が過多で無駄が多く、もって触媒効率が悪くコスト高となる、という指摘があった。
By the way, the following problems have been pointed out with respect to the catalyst carrier 1 for purifying the exhaust gas A of the conventional example.
<First problem>
First, the problem of poor catalyst efficiency has been pointed out. That is, the exhaust gas A supplied from the engine to the catalyst carrier 1 via the exhaust pipe has a non-uniform speed distribution due to friction loss with the exhaust pipe, etc. E tends to be slower.
Therefore, in the honeycomb structure 4 of the conventional catalyst carrier 1, the exhaust gas A having a higher flow velocity passes through the central side D in a shorter time, and the catalyst time with the catalyst material C becomes shorter. Therefore, conventionally, in order to obtain a predetermined purification rate for the exhaust gas A, an amount of the catalyst material C suitable for the central side D is generally adhered to the honeycomb structure 4, so that the outer peripheral side In E, there is a problem that the catalyst material C is excessive and wasteful.
That is, the catalyst material C is uniformly adhered by immersing and applying the honeycomb structure 4 in the catalyst tank. Then, regarding the catalyst material C that is uniformly adhered to the honeycomb structure 4 in this way, the adhesion amount / use amount of the catalyst material C is appropriate compared to the center side D, and the adhesion amount / use amount on the outer peripheral side E. It was pointed out that the amount was excessive and wasted, leading to poor catalyst efficiency and high cost.

《第2の問題点》
第2に、溶損,異常酸化等のトラブルが発生し易い、という問題が指摘されていた。すなわち、エンジンから触媒担体1に供給される排気ガスAは、径方向Fの中央側Dほど高温であると共に、前述したように中央側Dほど流速も速い。
そこで、従来の触媒担体1のハニカム構造体4では、中央側Dほど、高温,高速,多量の排気ガスAが通過すると共に、触媒物質Cとの反応熱も加わって、過加熱によるトラブルが発生し易く、耐久性,信頼性の問題が指摘されていた。
例えば、中央側Dのハニカム構造体4を構成する波板2や平板3について、金属箔の溶損や、相互間接合用のロウ材の異常酸化等が、発生し易かった。
<< Second problem >>
Secondly, it has been pointed out that problems such as melting and abnormal oxidation are likely to occur. That is, the exhaust gas A supplied from the engine to the catalyst carrier 1 is hotter toward the center side D in the radial direction F, and has a higher flow velocity toward the center side D as described above.
Therefore, in the honeycomb structure 4 of the conventional catalyst carrier 1, a higher temperature, higher speed, and a large amount of exhaust gas A pass through the center side D, and the reaction heat with the catalyst substance C is added to cause trouble due to overheating. The problem of durability and reliability was pointed out.
For example, with respect to the corrugated sheet 2 and the flat plate 3 constituting the honeycomb structure 4 on the center side D, metal foil melting, abnormal oxidation of the brazing material for mutual bonding, and the like were likely to occur.

《第3の問題点》
第3に、圧力損失が過大となり、エンジンへの悪影響も問題となっていた。すなわち、従来の触媒担体1では、同幅平行帯状の波板2と平板3がロール状に巻き付けられたハニカム構造体4が使用されており、その両端面が、軸方向Gに対し直角なフラット面(径方向Fに平行なフラット面)をなすと共に、形成されたセル空間6の軸方向Gの長さやセルの形状,サイズが、一定となっていた。
そのため、流路の全体断面積がハニカム構造体4の前後で急激に変化することと、ハニカム構造体4への流入速度差が大きいことに起因して、ハニカム構造体4による排気ガスAの圧力損失が過大に発生して、上流のエンジンに対し負荷,悪影響を及ぼし、エンジンのパワーダウンの原因となる、という問題も指摘されていた。
《Third problem》
Thirdly, the pressure loss was excessive, and the adverse effect on the engine was also a problem. In other words, the conventional catalyst carrier 1 uses a honeycomb structure 4 in which corrugated plates 2 and flat plates 3 having the same width parallel strips are wound in a roll shape, and both end surfaces thereof are flat at right angles to the axial direction G. In addition to forming a surface (a flat surface parallel to the radial direction F), the length of the formed cell space 6 in the axial direction G, the cell shape, and the size are constant.
Therefore, the pressure of the exhaust gas A by the honeycomb structure 4 due to the fact that the overall cross-sectional area of the flow path changes abruptly before and after the honeycomb structure 4 and the difference in the flow rate into the honeycomb structure 4 is large. It has also been pointed out that excessive losses cause a load and adverse effect on the upstream engine, causing the engine to power down.

《本発明について》
本発明の排気ガス浄化用の触媒担体は、このような実情に鑑み、上記従来例の課題を解決すべく、開発されたものである。
そして本発明は、第1に、触媒効率が向上し、第2に、溶損,異常酸化等のトラブルが防止され、第3に、排気ガスの圧力損失も低減される、排気ガス浄化用の触媒担体を提案することを、目的とする。
<< About the present invention >>
The catalyst carrier for purifying exhaust gas of the present invention has been developed in order to solve the above-described problems of the conventional examples in view of such circumstances.
And, the present invention firstly improves the catalyst efficiency, secondly prevents troubles such as erosion and abnormal oxidation, and thirdly reduces the pressure loss of the exhaust gas, and for exhaust gas purification. The object is to propose a catalyst support.

《請求項について》
このような課題を解決する本発明の技術的手段は、次のとおりである。
まず、請求項1については次のとおり。請求項1の排気ガス浄化用の触媒担体は、帯状をなす金属箔製の波板と平板とを多層に巻き付けてロール状をなすハニカム構造体が、外筒内に挿着されると共に、該波板と平板に触媒物質が付着せしめられている。
そして、該ハニカム構造体に流入前の排気ガスは、径方向中央側ほど流速が速い傾向にあるが、該ハニカム構造体は、そのような該排気ガスの流速状況に対応して、径方向中央側が径方向外周側より圧力損失が大にコントロールされ、もって流入する該排気ガスの流速の均一化が図られていること、を特徴とする、排気ガス浄化用の触媒担体。
次に、請求項2については次のとおり。請求項2の排気ガス浄化用の触媒担体は、請求項1において、該ハニカム構造体の該排気ガスの流入側端面又は流出側端面のいずれか一方又は双方が、中央凸形状よりなること、を特徴とする。
請求項3については次のとおり。請求項3の排気ガス浄化用の触媒担体は、請求項1において、該ハニカム構造体は、該波板又は平板のいずれか一方について、その軸方向長さが、径方向中央側より径方向外周側の方が短く設定されていること、を特徴とする。
<About Claim>
The technical means of the present invention for solving such a problem is as follows.
First, claim 1 is as follows. The exhaust gas purifying catalyst carrier according to claim 1 has a honeycomb structure formed in a roll shape by winding corrugated sheets and flat plates made of metal foil having a strip shape in a multilayer manner, A catalytic material is adhered to the corrugated plate and the flat plate.
The exhaust gas before flowing into the honeycomb structure tends to have a higher flow rate toward the radial center side. The honeycomb structure corresponds to the flow rate situation of the exhaust gas in the radial center. A catalyst carrier for purifying exhaust gas, characterized in that the pressure loss is controlled to be greater on the side than on the outer peripheral side in the radial direction and the flow rate of the exhaust gas flowing in is made uniform.
Next, claim 2 is as follows. The catalyst carrier for purifying exhaust gas according to claim 2 is the catalyst carrier according to claim 1, wherein either one or both of the exhaust gas inflow end surface and the outflow side end surface of the honeycomb structure have a central convex shape. Features.
Claim 3 is as follows. The catalyst carrier for purifying exhaust gas according to claim 3 is the catalyst carrier according to claim 1, wherein the honeycomb structure has an axial length of either the corrugated plate or the flat plate that is radially outer than the radially central side. It is characterized in that the side is set shorter.

《作用等》
本発明は、このような手段よりなるので、次のようになる。
(1)エンジンからの排気ガスは、排気ガス浄化用の触媒担体に供給される。
(2)触媒担体は、ハニカム構造体が外筒に挿着されてなり、ハニカム構造体は、波板と平板がロール状に多層に巻き付けられ、触媒物質が付着されている。
(3)そこで排気ガスは、ハニカム構造体を通過する際、含有されていた有害物質が触媒物質と接触して、反応することにより除去され、もって浄化される。
(4)ところで排気ガスは、ハニカム構造体への流入前は速度分布が一様でなく、径方向中央側ほど流速が速い。そこで、このハニカム構造体は、例えば、排気ガスの流入側端面や流出側端面を、中央凸形状としたり、波板又は平板の軸方向長さを、中央側より外周側が短くしてなる。
(5)このハニカム構造体は、例えばこのようにして、流入前の速度分布に対応した圧力損失分布に設定され、径方向中央側が外周側より圧力損失が大にコントロールされている。そこで、ハニカム構造体へ流入,通過する径方向中央側の排気ガスは、圧力損失大により減速され、もって速度が全体的に略一様化される。
《Action etc.》
Since the present invention comprises such means, the following is achieved.
(1) Exhaust gas from the engine is supplied to a catalyst carrier for exhaust gas purification.
(2) The catalyst carrier is formed by inserting a honeycomb structure into an outer cylinder, and the honeycomb structure has a corrugated plate and a flat plate wound in multiple layers in a roll shape, and a catalyst substance is attached.
(3) Therefore, when the exhaust gas passes through the honeycomb structure, the contained harmful substance comes into contact with the catalytic substance and reacts to be removed and purified.
(4) By the way, the exhaust gas has a non-uniform velocity distribution before flowing into the honeycomb structure, and the flow velocity is faster toward the center in the radial direction. Therefore, in this honeycomb structure, for example, the exhaust gas inflow end surface and the outflow side end surface have a central convex shape, or the axial length of the corrugated plate or the flat plate is shorter on the outer peripheral side than the central side.
(5) In this honeycomb structure, for example, in this way, the pressure loss distribution corresponding to the velocity distribution before inflow is set, and the pressure loss is controlled to be greater at the radial center than at the outer periphery. Therefore, the exhaust gas on the radial center side flowing into and passing through the honeycomb structure is decelerated due to a large pressure loss, so that the speed becomes substantially uniform as a whole.

(6)さてそこで、本発明の触媒担体によると、排気ガスは、ハニカム構造体の径方向中央側と外周側で略一様な流速で流入,通過するため、中央側の流速が速い事態は解消される。そこで第1に、排気ガス側の有害物質とハニカム構造体側の触媒物質との接触時間も、径方向中央側と外周側で一様となり、中央側の接触時間が短い事態は解消される。
従って、ハニカム構造体に均一に付着される触媒物質は、一様な接触時間に見合った適切な量で済み、速度分布が一様でない場合のように、最も早い速度に合わせた触媒量とすることで流速が遅い径方向外周側においては、過多で無駄な量とする必要はなくなる。なお触媒物質の付着は、ハニカム構造体を触媒槽に浸漬,塗布することにより、軸方向にも径方向にも均一に実施される。
第2に、ハニカム構造体の中央側については、高温,高速,多量の排気ガスが通過する上、触媒物質との反応熱上昇も加わって、過加熱されてしまうことは防止され、過加熱に起因したトラブル発生も回避される。
又、このハニカム構造体は、径方向中央側と外周側で一様な流速を得るために圧力損失をコントロールしているが、その方法は、端面を中央凸形状としたり、波板又は平板の軸方向長さについて、径方向外周側を短くしている。
そこで第3として、排気ガスの流路の全体断面積が、急激ではなく緩やかに変化するので、一様になった流速と相まって、ハニカム構造体による排気ガスの圧力損失が過大に発生しないため、上流のエンジンに対する負荷,悪影響が減少し、パワーアップが図られる。
(7)さてそこで、本発明の排気ガス浄化用の触媒担体は、次の効果を発揮する。
(6) Now, according to the catalyst carrier of the present invention, the exhaust gas flows in and passes at a substantially uniform flow rate on the radial center side and the outer peripheral side of the honeycomb structure. It will be resolved. First, the contact time between the harmful substance on the exhaust gas side and the catalyst material on the honeycomb structure side is also uniform on the central side and the outer peripheral side in the radial direction, and the situation where the contact time on the central side is short is eliminated.
Therefore, the catalyst material uniformly adhered to the honeycomb structure may be an appropriate amount corresponding to the uniform contact time, and the catalyst amount corresponding to the fastest speed as in the case where the speed distribution is not uniform. This eliminates the need for excessive and wasteful amounts on the radially outer peripheral side where the flow velocity is slow. The adhesion of the catalyst substance is carried out uniformly both in the axial direction and in the radial direction by immersing and applying the honeycomb structure in the catalyst tank.
Second, on the central side of the honeycomb structure, high temperature, high speed, a large amount of exhaust gas passes, and the reaction heat with the catalyst substance is increased, so that it is prevented from being overheated. Troubles caused by it can be avoided.
Moreover, this honeycomb structure controls the pressure loss in order to obtain a uniform flow velocity at the radial center side and the outer peripheral side. However, the method is such that the end face has a central convex shape, a corrugated plate or a flat plate. About the axial direction length, the radial direction outer peripheral side is shortened.
Therefore, thirdly, since the entire cross-sectional area of the exhaust gas flow path changes gently rather than suddenly, coupled with the uniform flow velocity, exhaust gas pressure loss due to the honeycomb structure does not occur excessively. The load and adverse effects on the upstream engine are reduced and the power is increased.
(7) Now, the exhaust gas purifying catalyst carrier of the present invention exhibits the following effects.

《第1の効果》
第1に、触媒効率が向上する。すなわち、本発明の排気ガス浄化用の触媒担体では、ハニカム構造体の径方向中央側と外周側に流入,通過する排気ガスの速度が一様となり、排気ガス側の有害物質とハニカム構造体側の触媒物質との接触時間も、均一化される。従って、前述したこの種従来例のように、流速が速く接触時間が短い中央側に合わせた量の触媒物質を付着させる必要がなくなり、無駄が解消される。外周側では、流速が速まるものの必要十分な触媒量が塗布されるので、不足は生じない。
このように、本発明の触媒担体では、均一な塗布量でも、どのセル空間でも適切な触媒効果が得られるようになり、従来例のようにハニカム構造体の径方向外周側に過多で無駄な触媒物質を付着させる必要がなくなり、その分触媒効率が向上し、触媒使用量が低減される等、コスト面に優れている。
<< First effect >>
First, the catalyst efficiency is improved. In other words, in the exhaust gas purifying catalyst carrier of the present invention, the exhaust gas velocity flowing into and passing through the radial center and the outer peripheral side of the honeycomb structure becomes uniform, and the harmful substances on the exhaust gas side and the honeycomb structure side The contact time with the catalyst material is also made uniform. Therefore, unlike the above-described conventional example, it is not necessary to deposit an amount of the catalyst material in the center side with a high flow rate and a short contact time, and waste is eliminated. On the outer peripheral side, although a flow rate is increased, a necessary and sufficient amount of catalyst is applied, so that there is no shortage.
As described above, with the catalyst carrier of the present invention, an appropriate catalytic effect can be obtained in any cell space even with a uniform coating amount, and excessive and wasted on the radially outer peripheral side of the honeycomb structure as in the conventional example. There is no need to attach a catalyst substance, the catalyst efficiency is improved correspondingly, and the amount of catalyst used is reduced.

《第2の効果》
第2に、溶損,異常酸化等のトラブルが、防止される。すなわち、本発明の排気ガス浄化用の触媒担体では、径方向中央側と外周側のハニカム構造体に流入,通過する排気ガスの速度が略一様化される。外周側は増速となるものの、中央側は外周側と同程度に減速され、中央側の流速が早い事態は解消される。
そこで、前述したこの種従来例のように、中央側に高温,高速,多量の排気ガスが流入,通過し、触媒物質との反応熱も加わって、中央側が過加熱されてしまうことは防止される。
もって本発明の触媒担体は、例えば、ハニカム構造体の中央側の波板や平板が溶損したり、相互間接合用のロウ材が異常酸化する等、過加熱に起因したトラブル発生が防止され、耐久性,信頼性が向上する。
<< Second effect >>
Secondly, troubles such as melting and abnormal oxidation are prevented. That is, in the exhaust gas purifying catalyst carrier of the present invention, the speed of the exhaust gas flowing into and passing through the honeycomb structures on the radially central side and the outer peripheral side is made substantially uniform. Although the outer peripheral side is increased in speed, the central side is decelerated to the same extent as the outer peripheral side, and the situation where the flow speed on the central side is high is eliminated.
Therefore, as in the conventional example of this type described above, high temperature, high speed, a large amount of exhaust gas flows into and passes through the center side, and heat from the reaction with the catalyst material is also added, preventing the center side from being overheated. The
Therefore, the catalyst carrier of the present invention is capable of preventing troubles caused by overheating, such as erosion of the corrugated plate or flat plate on the center side of the honeycomb structure, abnormal oxidation of the brazing material for mutual bonding, and the like. And reliability are improved.

《第3の効果》
第3に、排気ガスの圧力損失も低減される。すなわち、本発明の排気ガス浄化用の触媒担体では、排気ガスの圧力損失をコントロールすべく、例えばハニカム構造体の端面を中央凸形状としたり、波板又は平板の軸方向長さを、径方向外周側について短くしてなる。
そこで、本発明の触媒担体では、排気ガスの流路の全体断面積が、前述したこの種従来例のように急激に変化することなく、緩やかに変化するので、一様になった流速と相まって、ハニカム構造体による排気ガスの圧力損失が、前述したこの種従来例のように、過大に発生することが防止される。従って、上流のエンジンに対する負荷,悪影響が減少し、エンジンのパワーアップが図られる。
このように、この種従来例に存した課題がすべて解決される等、本発明の発揮する効果は、顕著にして大なるものがある。
《Third effect》
Third, exhaust gas pressure loss is also reduced. That is, in the exhaust gas purifying catalyst carrier of the present invention, in order to control the pressure loss of the exhaust gas, for example, the end face of the honeycomb structure has a central convex shape, or the axial length of the corrugated plate or flat plate is set to the radial direction. The outer circumference side is shortened.
Therefore, in the catalyst carrier of the present invention, the entire cross-sectional area of the exhaust gas flow path changes gently without changing rapidly as in the above-described conventional example, and therefore combined with a uniform flow rate. The exhaust gas pressure loss due to the honeycomb structure is prevented from being excessively generated as in the above-described conventional example. Therefore, the load and adverse effects on the upstream engine are reduced, and the engine power can be increased.
As described above, the effects exerted by the present invention are remarkably large, such as all the problems existing in this type of conventional example are solved.

《図面について》
以下、本発明の排気ガス浄化用の触媒担体を、図面に示した発明を実施するための最良の形態に基づいて、詳細に説明する。図1,図2,図3,図4は、本発明を実施するための最良の形態の説明に供する。
そして、図1は全体の正断面図であり、(1)図は第1例、(2)図は第2例、(3)図は第3例を示す。図2は、ハニカム構造体の要部の正断面図であり、(1)図,(2)図,(3)図,(4)図,(5)図,(6)図は、その要部の各例を示す。
図3は、全体の正断面図であり、(1)図は第4例、(2)図は第5例、(3)図は第6例を示す。図4は、用いられる波板や平板の平面説明図であり、同幅平行タイプの波板と、各種の幅寸法変化タイプの平板とを示す。
図5は、排気ガス浄化用の触媒担体の説明に供し、斜視図であり、(1)図は、用いられる波板や平板を示し、(2)図は、巻き付けられる波板や平板を示し、(3)図は、触媒担体を示す。図6の(1)図は、要部を拡大した側断面図である。
《About drawing》
Hereinafter, the catalyst carrier for purifying exhaust gas of the present invention will be described in detail based on the best mode for carrying out the invention shown in the drawings. 1, FIG. 2, FIG. 3 and FIG. 4 are used to explain the best mode for carrying out the present invention.
1 is a front sectional view of the whole, (1) FIG. 1 shows a first example, (2) FIG. 2 shows a second example, and (3) FIG. 3 shows a third example. Fig. 2 is a front cross-sectional view of the main part of the honeycomb structure. (1) Fig. (2) Fig. (3) Fig. (4) Fig. (5) Fig. (6) Fig. Each example of a part is shown.
FIG. 3 is a front sectional view of the whole, (1) FIG. 4 shows a fourth example, (2) FIG. 5 shows a fifth example, and (3) FIG. 6 shows a sixth example. FIG. 4 is an explanatory plan view of a corrugated sheet or a flat plate used, and shows a corrugated sheet of the same width parallel type and various width dimension change type flat sheets.
FIG. 5 is a perspective view for explaining the catalyst carrier for purifying exhaust gas, (1) FIG. 5 shows corrugated plates and flat plates used, and (2) FIG. 5 shows corrugated plates and flat plates to be wound. (3) The figure shows a catalyst carrier. FIG. 6A is a side sectional view showing an enlarged main part.

《触媒担体9について》
まず、図5の(1)図,(2)図,(3)図や図6の(1)図等を参照して、排気ガスAの浄化用の触媒担体について、一般的に説明する。
自動車のエンジンや、発電機,機関車,各種機械設備等の内燃機関のエンジンから排出される排気ガスA中には、粒子状物質PM,窒素酸化物NO,その他の有害物質Bが含有されており、そのまま外気に排出されると人体や環境に有害である。
そこで、エンジンの排気管には、排気ガスA中に含有された有害物質Bを除去する、排気ガス浄化装置の一環として、排気ガスA浄化用の触媒担体9が介装されている。
そして、この触媒担体9は、帯状をなす金属箔製の波板10と平板11とが多層に巻き付けられてロール状をなすハニカム構造体12が、外筒5内に挿着されると共に、波板10と平板11に触媒物質Cが付着せしめられてなる。
<< About catalyst carrier 9 >>
First, the catalyst carrier for purifying the exhaust gas A will be generally described with reference to FIG. 5 (1), FIG. 2, (2), (3), FIG. 6 (1), and the like.
Particulate matter PM, nitrogen oxides NO x , and other harmful substances B are contained in the exhaust gas A discharged from the engines of automobiles, internal combustion engines such as generators, locomotives, and various mechanical equipment. It is harmful to the human body and the environment if it is discharged into the open air as it is.
Therefore, a catalyst carrier 9 for purifying the exhaust gas A is interposed in the exhaust pipe of the engine as part of the exhaust gas purifying device that removes the harmful substance B contained in the exhaust gas A.
The catalyst carrier 9 includes a corrugated sheet 10 made of a metal foil having a strip shape and a flat plate 11 wound in multiple layers, and a honeycomb structure 12 having a roll shape is inserted into the outer cylinder 5 while being corrugated. The catalyst material C is adhered to the plate 10 and the plate 11.

このような触媒担体9について、更に詳述する。まず、図5の(1)図に示したように、波板10や平板11は、例えばステンレス箔その他の金属箔製よりなり、略同一長さの帯状をなし、波板10は、波形の凹凸が帯の長辺に対して直角な短手方向に直線的に平行で、長手方向に繰り返し連続的に、所定ピッチと高さで折曲形成されている。
そして、図5の(2)図に示したように、このような波板10と平板11とが、軸を中心に、順次交互に重ね合わせられつつ多層に巻き付けられ、相互間の当接箇所の必要部においてロウ材13(図6の(1)図を参照)で接合されている。
もって、図5の(3)図,図6の(1)図に示したように、このような波板10と平板11にて、ハニカム構造体12が構成されている。ハニカム構造体12は、全体がロール状をなすと共に、波板10と平板11をセル壁とし、軸方向Gに沿い各々独立空間に区画形成された中空柱状のセル空間14の平面的集合体よりなり、その両端面15,16が開口されている。
触媒担体9は、このようなハニカム構造体12が、ケースである外筒5内に挿着されている。
又、図6の(1)図に示したように、セル壁である波板10や平板11の外表面には、触媒物質Cが付着されている。すなわち、単位容積当たりの表面積が大であるという特徴を備えたハニカム構造体12のセル壁、つまり波板10と平板11の外表面を利用して、触媒物質Cが被膜状に付着せしめられ、もって排気ガスAとの接触面積が広く確保されている。触媒物質Cとしては、例えば、酸化反応用の白金,その他の貴金属や還元反応用の物質が使用される。
触媒担体9は、概略このようになっている。
Such a catalyst carrier 9 will be further described in detail. First, as shown in FIG. 5 (1), the corrugated plate 10 and the flat plate 11 are made of, for example, stainless steel foil or other metal foil, and have a strip shape having substantially the same length. The unevenness is linearly parallel to the short direction perpendicular to the long side of the band, and is repeatedly bent at a predetermined pitch and height continuously in the longitudinal direction.
Then, as shown in FIG. 5 (2), the corrugated plate 10 and the flat plate 11 are wound around in multiple layers while being alternately stacked around the axis, and contact points between them. Are joined by a brazing material 13 (see FIG. 6A).
Accordingly, as shown in FIG. 5 (3) and FIG. 6 (1), the corrugated sheet 10 and the flat plate 11 constitute a honeycomb structure 12. The honeycomb structure 12 has a roll shape as a whole, and includes a planar assembly of hollow columnar cell spaces 14 each having a corrugated plate 10 and a flat plate 11 as cell walls and partitioned into independent spaces along the axial direction G. The both end surfaces 15 and 16 are opened.
In the catalyst carrier 9, such a honeycomb structure 12 is inserted into the outer cylinder 5 as a case.
Further, as shown in FIG. 6 (1), the catalyst substance C is attached to the outer surfaces of the corrugated plate 10 and the flat plate 11 which are cell walls. That is, using the cell walls of the honeycomb structure 12 having the feature that the surface area per unit volume is large, that is, the outer surfaces of the corrugated plate 10 and the flat plate 11, the catalyst substance C is attached in the form of a film, Therefore, a wide contact area with the exhaust gas A is secured. As the catalyst substance C, for example, platinum for oxidation reaction, other noble metals and substances for reduction reaction are used.
The catalyst carrier 9 is roughly as described above.

《本発明の触媒担体9について》
以下、図1,図2,図3,図4を参照して、本発明の排気ガスA浄化用の触媒担体9について、説明する。
触媒担体9のハニカム構造体12に流入前の排気ガスAは、中央側Dほど流速が速い傾向にあるが、このハニカム構造体12は、このような排気ガスAの流速状況に対応して、径方向Fの中央側Dが外周側Eより圧力損失が大にコントロールされ、もって流入する排気ガスAの流速の均一化が図られている。
そして、このような圧力損失コントロールのため、図1の第1例,第2例,第3例に示した触媒担体9のハニカム構造体12は、排気ガスAの流入側端面15又は流出側端面16のいずれか一方又は双方の形状を、中央凸形状としたタイプよりなる。
これに対し、図3の第4例,第5例,第6例に示した触媒担体9のハニカム構造体12は、波板10又は平板11のいずれか一方について、その軸方向G長さが、径方向F中央側Dより径方向F外周側Eの方が短く設定されたタイプよりなる。
なお図示しないが、このような図1の各例のタイプと図3の各例のタイプとを、組み合わせたハニカム構造体12、つまり所定中央凸形状と所定軸方向G長さとを共に備えたタイプのハニカム構造体12も、勿論可能である。なお図1,図3中17は、排気ガスAの排気管である。
本発明の触媒担体9は、このようになっている。
<< About the catalyst carrier 9 of the present invention >>
Hereinafter, the catalyst carrier 9 for purifying the exhaust gas A according to the present invention will be described with reference to FIG. 1, FIG. 2, FIG. 3, and FIG.
The exhaust gas A before flowing into the honeycomb structure 12 of the catalyst carrier 9 tends to have a higher flow rate toward the central side D. The honeycomb structure 12 corresponds to the flow rate situation of the exhaust gas A, The pressure loss of the central side D in the radial direction F is controlled to be greater than that of the outer peripheral side E, so that the flow velocity of the exhaust gas A flowing in is made uniform.
For such pressure loss control, the honeycomb structure 12 of the catalyst carrier 9 shown in the first example, the second example, and the third example of FIG. 1 has the inflow side end surface 15 or the outflow side end surface of the exhaust gas A. It consists of the type which made the shape of any one or both of 16 into the center convex shape.
In contrast, the honeycomb structure 12 of the catalyst carrier 9 shown in the fourth example, the fifth example, and the sixth example of FIG. 3 has an axial G length of either the corrugated plate 10 or the flat plate 11. The radial direction F outer peripheral side E is set to be shorter than the radial direction F center side D.
Although not shown, the honeycomb structure 12 obtained by combining the types of the examples of FIG. 1 and the types of the examples of FIG. 3, that is, a type having both a predetermined central convex shape and a predetermined axial direction G length. Of course, this honeycomb structure 12 is also possible. In FIG. 1 and FIG. 3, reference numeral 17 denotes an exhaust pipe for exhaust gas A.
The catalyst carrier 9 of the present invention is as described above.

《第1,2,3例について》
次に、図1,図2を参照して、第1例,第2例,第3例の触媒担体9について、詳述する。
まず、図1の(1)図の第1例において、そのハニカム構造体12は、排気ガスA入口の流入側端面15が上流側に向け中央凸形状とされ、排気ガスA出口の流出側端面16は、径方向Fに平行フラット面となっている。
又、図1の(2)図の第2例において、そのハニカム構造体12は、流入側端面15が、径方向Fに平行フラット面とされ、流出側端面16が、下流側に向け中央凸形状とされている。
更に、図1の(3)図の第3例において、そのハニカム構造体12は、流入側端面15および流出側端面16共に、中央凸形状となっている。
<< About the 1st, 2nd, 3rd examples >>
Next, the catalyst carrier 9 of the first example, the second example, and the third example will be described in detail with reference to FIGS.
First, in the first example of FIG. 1 (1), the honeycomb structure 12 has an exhaust gas A inlet inflow end surface 15 having a central convex shape toward the upstream side, and an exhaust gas A outlet outflow side end surface. 16 is a flat surface parallel to the radial direction F.
Further, in the second example of FIG. 1 (2), the honeycomb structure 12 has an inflow side end surface 15 which is a flat surface parallel to the radial direction F, and an outflow side end surface 16 which is centrally convex toward the downstream side. It is made into a shape.
Further, in the third example of FIG. 1C, the honeycomb structure 12 has a central convex shape on both the inflow side end surface 15 and the outflow side end surface 16.

このようなハニカム構造体12の流入側端面15や流出側端面16の中央凸形状については、例えば図2に示したように、各種可能である。
すなわち、図2の(1)図に示したように、流入側端面15や流出側端面16が、全体的に略半球状に突出形成されたタイプや、図2の(2)図に示したように、外周側Eが、径方向Fに平行フラット面よりなり、中央側Dのみが、略半球状に突出形成されたタイプが考えられる。
又、図2の(3)図,(5)図に示したように、流入側端面15や流出側端面16が、全体的に略コーン状・円錐状や円錐台状に突出形成されたタイプや、図2の(4)図,(6)図に示したように、外周側Eが平行フラット面よりなり、中央側Dのみが、略コーン状・円錐状や円錐台状に突出形成されたタイプも考えられる。
なお、図2に示した例は代表例であり、その他各種の形状,位置の中央凸形状が可能である。
第1,第2,第3例は、このようになっている。
For example, as shown in FIG. 2, various types of the convex shape of the center of the inflow side end surface 15 and the outflow side end surface 16 of the honeycomb structure 12 are possible.
That is, as shown in FIG. 2 (1), the inflow side end face 15 and the outflow side end face 16 are formed so as to protrude generally in a semi-spherical shape, or as shown in FIG. 2 (2). Thus, a type in which the outer peripheral side E is formed of a flat surface parallel to the radial direction F and only the central side D protrudes in a substantially hemispherical shape is conceivable.
Further, as shown in FIGS. 2 (3) and 2 (5), the inflow side end face 15 and the outflow side end face 16 are formed so as to protrude in a generally cone shape, conical shape or truncated cone shape as a whole. As shown in FIGS. 2 (4) and 2 (6), the outer peripheral side E is formed of a parallel flat surface, and only the central side D is formed so as to protrude in a substantially cone shape / conical shape or truncated cone shape. Other types are also conceivable.
Note that the example shown in FIG. 2 is a representative example, and various other shapes and central convex shapes are possible.
The first, second, and third examples are as described above.

《第4,5,6例について》
次に、図3,図4を参照して、第4例,第5例,第6例の触媒担体9について、詳述する。
これらの例において、ハニカム構造体12を構成する波板10又は平板11のいずれか一方は、その軸方向Gの長さ寸法が、径方向Fの中央側Dより外周側Eの方が、短く寸法変化したタイプよりなる。
つまり、使用された波板10又は平板11のいずれか一方は、巻き付け使用前の展開状態では、短手方向の横幅寸法が、長手方向の一端(巻き取り中心側)から他端(巻き取り外側)にむけて、狭く寸法変化したタイプよりなる(図4を参照)。
これに対し、対をなして使用される波板10又は平板11の他方は、その軸方向Gの長さ寸法が、径方向Fの中央側Dから外周側Eまで変化のない同一寸法タイプよりなる。
つまり、対をなして使用された波板10又は平板11の他方は、巻き付け使用前の展開状態において、短手方向の横幅寸法が変化せず、同幅平行の通常の帯状タイプのもの(図5の(1)図に図示されたもの)が使用されている。
<< About the 4th, 5th and 6th examples >>
Next, the catalyst carrier 9 of the fourth example, the fifth example, and the sixth example will be described in detail with reference to FIGS.
In these examples, one of the corrugated sheet 10 and the flat plate 11 constituting the honeycomb structure 12 has a length dimension in the axial direction G that is shorter on the outer peripheral side E than on the central side D in the radial direction F. It consists of a type whose dimensions have changed.
In other words, either the corrugated plate 10 or the flat plate 11 used has a lateral width dimension in the short direction from the one end (winding center side) to the other end (winding outside) in the unfolded state before use. ), It is of a type that is narrowly dimensionally changed (see FIG. 4).
On the other hand, the other of the corrugated plate 10 or the flat plate 11 used in a pair is the same size type in which the length dimension in the axial direction G does not change from the central side D to the outer peripheral side E in the radial direction F Become.
That is, the other one of the corrugated plate 10 or the flat plate 11 used in a pair is a normal belt-shaped type in which the lateral width dimension in the short direction does not change in the unfolded state before the winding use (FIG. 5 (1) is used).

そして、図3の(1)図に示した第4例のハニカム構造体12では、流出側端面16側で波板10と平板11の端部が揃えられ、流入側端面15側では不揃いとなっている。
逆に、図3の(2)図に示した第5例のハニカム構造体12では、流入側端面15側で揃えられ、流出側端面16側では不揃いとなっている。図3の(3)図に示した第6例のハニカム構造体12では、流入側端面15,流出側端面16共に、不揃いとなっている。
又、図4に示したハニカム構造体12(展開状態)の例では、平板11に幅寸法変化タイプのものが使用され、波板10に同幅平行タイプのものが使用されている。なお、図4の例とは逆に、波板10に幅寸法変化タイプのものを使用し、平板11に同幅平行タイプのものを使用することも、可能である。
In the honeycomb structure 12 of the fourth example shown in FIG. 3 (1), the end portions of the corrugated plate 10 and the flat plate 11 are aligned on the outflow side end surface 16 side, and are not aligned on the inflow side end surface 15 side. ing.
On the contrary, in the honeycomb structure 12 of the fifth example shown in FIG. 3B, the honeycomb structure 12 is aligned on the inflow side end face 15 side and is not aligned on the outflow side end face 16 side. In the honeycomb structure 12 of the sixth example shown in FIG. 3 (3), both the inflow side end surface 15 and the outflow side end surface 16 are uneven.
In the example of the honeycomb structure 12 (expanded state) shown in FIG. 4, the flat plate 11 is of the width dimension change type, and the corrugated plate 10 is of the same width parallel type. In contrast to the example of FIG. 4, it is also possible to use a corrugated plate 10 of a width dimension change type and a flat plate 11 of the same width parallel type.

このようなハニカム構造体12の波板10又は平板11の幅寸法変化タイプについては、例えば図4の展開状態にて示したように、各種可能である(なお図4では、平板11について、各種の例が示されている)。
すなわち図4中では、上から順に、幅寸法変化が片テーパ(こう配)傾斜にて実現されるタイプの外、途中段付きタイプ,軸側のみ部分傾斜タイプ,軸側のみ部分平行タイプ,途中のみ部分傾斜タイプ、等が示されている。
なお、これらはいずれも一側端側の形状変化にて幅寸法変化が実現され、他側端側は、傾斜なしの直線となっているが、他側端側も一側端側と対称的な幅寸法変化とすることも可能である(図3の(3)図の例も参照)。なお、図4に示した例は代表例であり、その他各種の幅寸法変化タイプが可能である。
第4,5,6例は、このようになっている。
Various types of the width dimension change type of the corrugated sheet 10 or the flat plate 11 of the honeycomb structure 12 are possible, for example, as shown in the developed state of FIG. Example is shown).
That is, in FIG. 4, in order from the top, the width dimension change is realized with a single taper (gradient) slope, the middle stepped type, the shaft side only partially tilted type, the shaft side only partially parallel type, the middle only A partial tilt type, etc. are shown.
In both cases, the width dimension change is realized by the shape change on one side end side, and the other side end side is a straight line without inclination, but the other side end side is also symmetrical with the one side end side. It is also possible to change the width dimension (see also the example of FIG. 3 (3)). In addition, the example shown in FIG. 4 is a representative example, and various other width dimension change types are possible.
The fourth, fifth, and sixth examples are as described above.

《作用等について》
本発明の排気ガスA浄化用の触媒担体9は、以上説明したように構成されている。そこで、以下のようになる。
(1)エンジンからの排気ガスAは、有害物質Bを含有しており、排気ガスA浄化用の触媒担体9に供給される。
<About the action>
The catalyst carrier 9 for purifying the exhaust gas A of the present invention is configured as described above. Therefore, it becomes as follows.
(1) The exhaust gas A from the engine contains the harmful substance B and is supplied to the catalyst carrier 9 for purifying the exhaust gas A.

(2)触媒担体9は、ハニカム構造体12が外筒5内に挿着された構造よりなる。そしてハニカム構造体12は、帯状をなす金属箔製の波板10と平板11とが、多層にロール状に巻き付けられ、もって波板10と平板11にて、軸方向Gのセル空間14が多数、形成されると共に、波板10と平板11に、触媒物質Cが付着せしめられている(図5,図6の(1)図を参照)。   (2) The catalyst carrier 9 has a structure in which the honeycomb structure 12 is inserted into the outer cylinder 5. In the honeycomb structure 12, a corrugated sheet 10 made of a metal foil and a flat plate 11 are wound in multiple layers in a roll shape, and the corrugated sheet 10 and the flat plate 11 have many cell spaces 14 in the axial direction G. The catalyst material C is adhered to the corrugated plate 10 and the flat plate 11 (see FIGS. 5 and 6 (1)).

(3)そこで排気ガスAは、このようなハニカム構造体12のセル空間14を通過し、その際、含有されていた有害物質Bが、触媒物質Cと接触して、例えば、酸化反応や還元反応することにより、除去,無害化され、もって排気ガスAは、浄化されて外気へと排出される(図1,図3を参照)。   (3) Therefore, the exhaust gas A passes through the cell space 14 of the honeycomb structure 12 and the contained harmful substance B comes into contact with the catalyst substance C, for example, oxidation reaction or reduction. By the reaction, it is removed and detoxified, and the exhaust gas A is purified and discharged to the outside air (see FIGS. 1 and 3).

(4)ところで排気ガスAは、ハニカム構造体12のセル空間14への流入前は、速度分布が一様ではなく、径方向Fの中央側Dほど流速が速く、外周側Eほど流速が遅い傾向にある。
そこで、排気ガスAのこのような流速状況に対応すべく、このハニカム構造体12は、例えば、排気ガスAの流入側端面15又は流出側端面16の一方又は双方が、中央凸形状よりなる(図1,図2を参照)。
つまりこの例では、流入前の排気ガスAの流速が速い中央側Dほど、セル空間14の軸方向G寸法が長く、流入前の排気ガスAの流速が遅い外周側Eほど、セル空間14の軸方向G寸法が短く設定されている。
又例えば、ハニカム構造体12を構成する波板10又は平板11の軸方向G長さが、径方向F中央側Dより外周側Eが短く設定されている(図3,図4を参照)。
つまりこの例では、流入前の排気ガスAの流速が速い中央側Dほど、平板11と波板10で形成された本来のセル空間14が長く、流入前の排気ガスAの流速が遅い外周側Eほど、本来のセル空間14が短く(これにより大きなセル空間14’が、外周側Eほど長く形成されるように)、設定されている。
(4) By the way, before the exhaust gas A flows into the cell space 14 of the honeycomb structure 12, the velocity distribution is not uniform, the flow rate is faster toward the central side D in the radial direction F, and the flow rate is slower toward the outer peripheral side E. There is a tendency.
Therefore, in order to cope with such a flow rate situation of the exhaust gas A, the honeycomb structure 12 has, for example, one or both of the inflow side end surface 15 and the outflow side end surface 16 of the exhaust gas A having a central convex shape ( (See FIGS. 1 and 2).
In other words, in this example, the central side D where the flow velocity of the exhaust gas A before inflow is higher, the axial G dimension of the cell space 14 is longer, and the outer periphery side E where the flow velocity of the exhaust gas A before inflow is slower is greater in the cell space 14. The axial direction G dimension is set short.
Further, for example, the axial direction G length of the corrugated plate 10 or the flat plate 11 constituting the honeycomb structure 12 is set to be shorter on the outer peripheral side E than the central side D in the radial direction F (see FIGS. 3 and 4).
In other words, in this example, the center side D where the flow velocity of the exhaust gas A before inflow is higher is longer, and the original cell space 14 formed by the flat plate 11 and the corrugated plate 10 is longer, and the flow velocity of the exhaust gas A before inflow is slower. The original cell space 14 is shorter as E is set (so that a larger cell space 14 ′ is formed longer as the outer peripheral side E is longer).

(5)この触媒担体9のハニカム構造体12は、例えばこのようにして、各セル空間14の長さによって圧力損失がコントロールされ、径方向F中央側Dが外周側Eより、排気ガスAのエネルギー損失つまり圧力損失が大に設定されている。
すなわち、流入前の排気ガスAの流速が速い中央側Dほど、排気ガスAの圧力損失が大となるように、流入前の排気ガスAの流速が遅い外周側Eほど、排気ガスAの圧力損失が小となるように、ハニカム構造体12の各セル空間14の長さがコントロールされる。
そこで、ハニカム構造体12に流入する排気ガスAは、その流速が全体的に均一化される。すなわち、流入前の速度分布に応じた圧力損失分布により、各セル空間14への排気ガスAの流入,通過速度が均一化される。流入前は流速大であった径方向F中央側Dは、圧力損失大なるセル空間14のため流入量が少なく、もって減速され、逆に、流入前は流速小であった径方向F外周側Eは、圧力損失小なるセル空間14のため流入量が増して増速し、その結果、ハニカム構造体12に流入する流速が一様となる。
(5) In the honeycomb structure 12 of the catalyst carrier 9, for example, the pressure loss is controlled by the length of each cell space 14 in this way, and the exhaust gas A of the radial direction F center side D is greater than the outer periphery side E. Energy loss, that is, pressure loss is set to be large.
That is, the pressure on the exhaust gas A becomes higher at the outer peripheral side E where the flow velocity of the exhaust gas A before inflow is slower, so that the pressure loss of the exhaust gas A becomes larger at the center side D where the flow velocity of the exhaust gas A before inflow is higher. The length of each cell space 14 of the honeycomb structure 12 is controlled so that the loss is small.
Therefore, the exhaust gas A flowing into the honeycomb structure 12 has a uniform flow velocity as a whole. That is, the flow rate and flow rate of the exhaust gas A into the cell spaces 14 are made uniform by the pressure loss distribution corresponding to the velocity distribution before the inflow. The radial direction F center side D, which had a large flow velocity before inflow, has a small amount of inflow due to the cell space 14 with a large pressure loss, and is decelerated. E increases the inflow rate because of the cell space 14 with a small pressure loss, and as a result, the flow velocity flowing into the honeycomb structure 12 becomes uniform.

(6)そこで、本発明の排気ガスA浄化用の触媒担体9によると、次の第1,第2,第3のようになる。
第1に、この触媒担体9では、ハニカム構造体12の各セル空間14について、流入,通過する排気ガスAの速度が均一化され、速度分布が一様化される。排気ガスAは、ハニカム構造体12の径方向F中央側Dと外周側Eで、同一流速で流入,通過し、中央側Dの流速が速い事態は解消される。
そこで、排気ガスA側に含有された有害物質Bとハニカム構造体12側の触媒物質Cとの接触時間も、中央側Dと外周側Eとで均一化される。中央側Dの接触時間が短い事態は、解消される。
従って、ハニカム構造体12側に付着される触媒物質Cは、均一量にても中央側Dも外周側Eも双方共に、所定の浄化率実現が可能になる。速度分布が一様でない場合のように、流速が遅い外周側Eについて、過多で無駄な付着量・使用量とする必要はなくなり、触媒効率が向上する。つまり、どのセル空間14でも、適切な触媒効率が得られるようになる。
なお、触媒物質Cの付着は、ハニカム構造体12を触媒槽に浸漬,塗布することにより、径方向Fも軸方向Gも共に、均一量にて実施される。
(6) Therefore, according to the exhaust gas A purifying catalyst carrier 9 of the present invention, the following first, second and third are obtained.
First, in this catalyst carrier 9, the velocity of the exhaust gas A flowing in and passing through each cell space 14 of the honeycomb structure 12 is made uniform, and the velocity distribution is made uniform. The exhaust gas A flows in and passes at the same flow rate on the radial side F center side D and the outer peripheral side E of the honeycomb structure 12, and the situation where the flow rate on the center side D is high is eliminated.
Therefore, the contact time between the harmful substance B contained on the exhaust gas A side and the catalytic substance C on the honeycomb structure 12 side is also made uniform between the central side D and the outer peripheral side E. The situation where the contact time on the center side D is short is eliminated.
Therefore, even if the catalyst substance C adhering to the honeycomb structure 12 side is a uniform amount, both the center side D and the outer peripheral side E can achieve a predetermined purification rate. As in the case where the velocity distribution is not uniform, there is no need to make an excessive and wasteful adhesion amount / use amount for the outer peripheral side E where the flow velocity is slow, and the catalyst efficiency is improved. That is, an appropriate catalyst efficiency can be obtained in any cell space 14.
The adhesion of the catalyst substance C is performed in a uniform amount in both the radial direction F and the axial direction G by immersing and applying the honeycomb structure 12 in the catalyst tank.

第2に、上述したように、この触媒担体9では、ハニカム構造体12に流入,通過する排気ガスAの速度が均一化され、速度分布が一様化される。排気ガスAは、径方向F中央側Dと外周側Eで、同一流速で流入,通過し、中央側Dの流速が速い事態は解消される。
そこで、ハニカム構造体12の中央側Dについて、高温,高速,多量の排気ガスAが通過し、触媒物質Cとの反応熱も加わって、過加熱されてしまうことは防止される。
よって、中央側Dのハニカム構造体12を構成する波板10や平板11について、金属箔の溶損が発生したり、相互間接合用のロウ材13が異常酸化する等、過加熱に起因したトラブル発生も回避される。
Second, as described above, in the catalyst carrier 9, the speed of the exhaust gas A flowing into and passing through the honeycomb structure 12 is made uniform, and the speed distribution is made uniform. Exhaust gas A flows in and passes at the same flow rate on the radial direction F center side D and the outer peripheral side E, and the situation where the flow rate on the center side D is high is eliminated.
Therefore, high temperature, high speed, a large amount of exhaust gas A passes through the center side D of the honeycomb structure 12 and reaction heat with the catalyst substance C is added to prevent overheating.
Therefore, for the corrugated sheet 10 and the flat plate 11 constituting the honeycomb structure 12 on the center side D, troubles caused by overheating, such as melting of the metal foil or abnormal oxidation of the brazing material 13 for mutual bonding, are caused. Occurrence is also avoided.

第3に、この触媒担体9のハニカム構造体12は、各セル空間14について圧力損失がコントロールされ、径方向F中央側Dが、外周側Eより圧力損失が大に設定されている。例えば、排気ガスAの流入側端面15又は流出側端面16の一方又は双方が、中央凸形状よりなり、又例えば、波板10又は平板11の軸方向G長さが、径方向F中央側Dより外周側Eの方が短く設定されている。
そこで、ハニカム構造体12への流入前,あるいは流出後,もしくはその双方について、排気ガスAの流路の全体断面積が、急激な拡大変化や縮小変化をせず、少しずつ徐々に緩やかに変化すると共に、セル空間14中の速度が中央側Dと外周側Eで一様なため、ハニカム構造体12による排気ガスAの圧力損失が、過大に発生することが回避され、上流のエンジンに対して負荷,悪影響を及ぼす懸念も解消される。
Thirdly, in the honeycomb structure 12 of the catalyst carrier 9, the pressure loss is controlled for each cell space 14, and the pressure loss is set larger in the radial direction F center side D than in the outer peripheral side E. For example, one or both of the inflow side end surface 15 or the outflow side end surface 16 of the exhaust gas A has a central convex shape, and, for example, the axial G length of the corrugated plate 10 or the flat plate 11 is the radial direction F central side D. The outer peripheral side E is set shorter.
Therefore, the entire cross-sectional area of the exhaust gas A flow path gradually and gradually changes without abrupt expansion or reduction before or after the inflow into the honeycomb structure 12 or both. In addition, since the speed in the cell space 14 is uniform between the central side D and the outer peripheral side E, it is avoided that the pressure loss of the exhaust gas A due to the honeycomb structure 12 is excessively generated. This eliminates the concern about load and adverse effects.

本発明に係る排気ガス浄化用の触媒担体について、発明を実施するための最良の形態の説明に供し、全体の正断面図である。そして(1)図は第1例、(2)図は第2例、(3)図は第3例を示す。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall front sectional view of an exhaust gas purifying catalyst carrier according to the present invention for explaining the best mode for carrying out the invention. (1) shows a first example, (2) shows a second example, and (3) shows a third example. 同発明を実施するための最良の形態の説明に供し、ハニカム構造体の要部の正断面図である。そして(1)図,(2)図,(3)図,(4)図,(5)図,(6)図は、その要部の各例を示す。FIG. 2 is a front sectional view of a main part of a honeycomb structure for explaining the best mode for carrying out the invention. And (1) figure, (2) figure, (3) figure, (4) figure, (5) figure, (6) figure shows each example of the principal part. 同発明を実施するための最良の形態の説明に供し、全体の正断面図である。そして、(1)図は第4例、(2)図は第5例、(3)図は第6例を示す。FIG. 2 is an overall front sectional view for explaining the best mode for carrying out the invention. (1) shows a fourth example, (2) shows a fifth example, and (3) shows a sixth example. 同発明を実施するための最良の形態の説明に供し、用いられる波板や平板の平面説明図である。そして、同幅平行タイプの波板と、各種の幅寸法変化タイプの平板とを示す。It is a plane explanatory drawing of the corrugated sheet used for description of the best form for implementing this invention, and a used flat plate. And the same width parallel type corrugated sheet and various width dimension change type flat plates are shown. 排気ガス浄化用の触媒担体の説明に供し、斜視図である。そして(1)図は、用いられる波板や平板を示し、(2)図は、巻き付けられる波板や平板を示し、(3)図は、触媒担体を示す。FIG. 5 is a perspective view for explaining an exhaust gas purifying catalyst carrier. And (1) figure shows the corrugated sheet and flat plate to be used, (2) figure shows the corrugated sheet and flat plate to be wound, and (3) figure shows the catalyst carrier. 排気ガス浄化用の触媒担体の説明に供し、(1)図は、要部を拡大した側断面図、(2)図は、この種従来例の全体の正断面図である。For explanation of a catalyst carrier for purifying exhaust gas, (1) FIG. 2 is an enlarged side sectional view of the main part, and (2) FIG.

符号の説明Explanation of symbols

1 触媒担体(従来例)
2 波板(従来例)
3 平板(従来例)
4 ハニカム構造体(従来例)
5 外筒
6 セル空間(従来例)
7 流入側端面(従来例)
8 流出側端面(従来例)
9 触媒担体(本発明)
10 波板(本発明)
11 平板(本発明)
12 ハニカム構造体(本発明)
13 ロウ材
14 セル空間(本発明)
14’大きなセル空間(本発明)
15 流入側端面(本発明)
16 流出側端面(本発明)
17 排気管
A 排気ガス
B 有害物質
C 触媒物質
D 中央側
E 外周側
F 径方向
G 軸方向
1 Catalyst carrier (conventional example)
2 Corrugated sheet (conventional example)
3 Flat plate (conventional example)
4 Honeycomb structure (conventional example)
5 Outer cylinder 6 Cell space (conventional example)
7 Inlet side end face (conventional example)
8 Outflow side end face (conventional example)
9 Catalyst support (present invention)
10 Corrugated sheet (present invention)
11 Flat plate (present invention)
12 Honeycomb structure (present invention)
13 Brazing material 14 Cell space (present invention)
14 'large cell space (present invention)
15 Inflow side end face (present invention)
16 Outflow side end face (present invention)
17 Exhaust pipe A Exhaust gas B Hazardous substance C Catalytic substance D Center side E Outer periphery side F Radial direction G-axis direction

Claims (3)

帯状をなす金属箔製の波板と平板とが多層に巻き付けられてロール状をなすハニカム構造体が、外筒内に挿着されると共に、該波板と平板に触媒物質が付着せしめられた、排気ガス浄化用の触媒担体であって、
該ハニカム構造体に流入前の排気ガスは、径方向中央側ほど流速が速い傾向にあるが、該ハニカム構造体は、そのような該排気ガスの流速状況に対応して、径方向中央側が径方向外周側より圧力損失が大にコントロールされ、もって流入する該排気ガスの流速の均一化が図られていること、を特徴とする、排気ガス浄化用の触媒担体。
A ribbon-shaped corrugated sheet made of metal foil and a flat plate are wound in multiple layers to form a rolled honeycomb structure, which is inserted into the outer cylinder, and a catalytic substance is adhered to the corrugated sheet and the flat plate. A catalyst carrier for exhaust gas purification,
The exhaust gas before flowing into the honeycomb structure tends to have a higher flow rate toward the radially central side, but the honeycomb structure has a diameter at the radial center side corresponding to the flow rate situation of the exhaust gas. A catalyst carrier for purifying exhaust gas, characterized in that the pressure loss is largely controlled from the outer peripheral side in the direction and the flow velocity of the exhaust gas flowing in is made uniform.
請求項1に記載した排気ガス浄化用の触媒担体において、該ハニカム構造体は、該排気ガスの流入側端面又は流出側端面のいずれか一方又は双方が、中央凸形状よりなること、を特徴とする、排気ガス浄化用の触媒担体。   The exhaust gas purifying catalyst carrier according to claim 1, wherein the honeycomb structure has one or both of an inflow side end surface and an outflow side end surface of the exhaust gas having a central convex shape. A catalyst carrier for exhaust gas purification. 請求項1に記載した排気ガス浄化用の触媒担体において、該ハニカム構造体は、該波板又は平板のいずれか一方について、その軸方向長さが、径方向中央側より径方向外周側の方が短く設定されていること、を特徴とする、排気ガス浄化用の触媒担体。   2. The exhaust gas purifying catalyst carrier according to claim 1, wherein the honeycomb structure has an axial length of either the corrugated plate or the flat plate that is closer to a radially outer side than a radially central side. A catalyst carrier for purifying exhaust gas, characterized in that is set to be short.
JP2005225460A 2005-08-03 2005-08-03 Catalytic carrier for cleaning exhaust gas Pending JP2007038140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225460A JP2007038140A (en) 2005-08-03 2005-08-03 Catalytic carrier for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225460A JP2007038140A (en) 2005-08-03 2005-08-03 Catalytic carrier for cleaning exhaust gas

Publications (1)

Publication Number Publication Date
JP2007038140A true JP2007038140A (en) 2007-02-15

Family

ID=37796614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225460A Pending JP2007038140A (en) 2005-08-03 2005-08-03 Catalytic carrier for cleaning exhaust gas

Country Status (1)

Country Link
JP (1) JP2007038140A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114495A1 (en) * 2006-03-29 2007-10-11 Toyota Jidosha Kabushiki Kaisha Exhaust emission control catalyst and exhaust emission control system
KR101360747B1 (en) * 2007-07-05 2014-02-07 현대자동차주식회사 Manufacturing method of catalyst for purifying automotive exhaust gas
JP5704548B1 (en) * 2014-04-24 2015-04-22 株式会社深井製作所 Catalyzer element and catalyzer
JP2015090139A (en) * 2013-11-07 2015-05-11 トヨタ自動車株式会社 Catalytic converter
EP2568138A3 (en) * 2011-08-24 2015-06-10 Bayerische Motoren Werke Aktiengesellschaft Flexible, flat raw matrix for a catalyst, and corresponding catalyst
JP2019527620A (en) * 2016-08-16 2019-10-03 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH Honeycomb body for exhaust gas aftertreatment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139831U (en) * 1988-03-18 1989-09-25
JPH10118500A (en) * 1996-07-08 1998-05-12 Corning Inc Apparatus for purifying exhaust gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139831U (en) * 1988-03-18 1989-09-25
JPH10118500A (en) * 1996-07-08 1998-05-12 Corning Inc Apparatus for purifying exhaust gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114495A1 (en) * 2006-03-29 2007-10-11 Toyota Jidosha Kabushiki Kaisha Exhaust emission control catalyst and exhaust emission control system
KR101360747B1 (en) * 2007-07-05 2014-02-07 현대자동차주식회사 Manufacturing method of catalyst for purifying automotive exhaust gas
EP2568138A3 (en) * 2011-08-24 2015-06-10 Bayerische Motoren Werke Aktiengesellschaft Flexible, flat raw matrix for a catalyst, and corresponding catalyst
JP2015090139A (en) * 2013-11-07 2015-05-11 トヨタ自動車株式会社 Catalytic converter
JP5704548B1 (en) * 2014-04-24 2015-04-22 株式会社深井製作所 Catalyzer element and catalyzer
JP2019527620A (en) * 2016-08-16 2019-10-03 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツングContinental Automotive GmbH Honeycomb body for exhaust gas aftertreatment

Similar Documents

Publication Publication Date Title
JP2007038140A (en) Catalytic carrier for cleaning exhaust gas
JPH06320014A (en) Metallic carrier
JP4500456B2 (en) Combustion engine with small volume catalytic converter
JPH0235940A (en) Carrier body for catalytic reactor
JP5015017B2 (en) Support structure for exhaust gas purification catalyst
JP4719180B2 (en) Catalyst carrier for exhaust gas purification
JP2007092524A (en) Exhaust emission control device
JP2010284599A (en) Honeycomb support for exhaust gas purification catalyst
JP3782596B2 (en) Insulated metal carrier for exhaust gas purification
JP4920341B2 (en) Catalyst carrier for exhaust gas purification
JP2005177736A (en) Metal carrier
JPH1076165A (en) Metallic carrier
JP4564737B2 (en) Exhaust gas purification device
JP2005313082A (en) Catalyst carrier made of metal
JP3118139B2 (en) Metal carrier for catalyst
JP2002191939A (en) Rolled metal carrier
TW200408448A (en) Exhaust-gas purifying apparatus
JP2009011983A (en) Catalyst support for use in cleaning exhaust
JP2005226599A (en) Oxidation catalyst type exhaust emission control device
JP4387171B2 (en) Exhaust gas purification device
JP2006159151A (en) Metal carrier
JP2008173555A (en) Metal catalyst carrier
JP2009011984A (en) Catalyst support for use in cleaning exhaust
JPH0737698Y2 (en) Catalytic converter
JPH10309474A (en) Metallic honeycomb body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208