JP2004340304A - Piping system for semiconductor manufacturing machine, etc. - Google Patents

Piping system for semiconductor manufacturing machine, etc. Download PDF

Info

Publication number
JP2004340304A
JP2004340304A JP2003139222A JP2003139222A JP2004340304A JP 2004340304 A JP2004340304 A JP 2004340304A JP 2003139222 A JP2003139222 A JP 2003139222A JP 2003139222 A JP2003139222 A JP 2003139222A JP 2004340304 A JP2004340304 A JP 2004340304A
Authority
JP
Japan
Prior art keywords
tube
lid member
piping system
tubes
semiconductor manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003139222A
Other languages
Japanese (ja)
Other versions
JP3984928B2 (en
Inventor
Yutaka Okamoto
裕 岡元
Tatsuya Fujii
達也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003139222A priority Critical patent/JP3984928B2/en
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to EP04011193A priority patent/EP1477717B1/en
Priority to KR1020040032909A priority patent/KR101042843B1/en
Priority to TW093113238A priority patent/TW200427504A/en
Priority to DE602004010950T priority patent/DE602004010950T2/en
Priority to US10/844,881 priority patent/US7314239B2/en
Priority to CN2004100432514A priority patent/CN1550747B/en
Publication of JP2004340304A publication Critical patent/JP2004340304A/en
Application granted granted Critical
Publication of JP3984928B2 publication Critical patent/JP3984928B2/en
Priority to US11/938,804 priority patent/US7695026B2/en
Priority to KR1020110005877A priority patent/KR101097621B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piping system for a semiconductor manufacturing machine, etc., which piping system has a few components, and is inexpensive, and has a tube device having a compact and highly reliable sealing structure. <P>SOLUTION: A casing 1 comprises a fluorocarbon resin tube 4 surrounding the outer periphery of a fluid tube 3, a pair of fluorocarbon resin lid members 5 having a receiving portion 8 for receiving one terminal and the other terminal of the tube 4 respectively and at least one sealing surface 10 provided in the receiving portion and connecting portions 29a, 29b to other piping 28a, 28b, a fluorocarbon resin union nut 6 which is fitted on the terminal of the tube 4 and is screwed into one end of the lid member 5, and at least one seal member 19 formed by bringing the terminal of the tube 4 into close contact with the seal surface 10 of the lid member 5 through pushing the tube 4 from outside through fastening the union nut 6 to one end of the lid member 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造装置や液晶装置、化学薬品製造装置、食品生産ライン等で扱われる流体の配管システムに関する。
【0002】
【従来の技術】
半導体製造装置の配管システムにおいて、半導体デバイスの高集積化に伴い、例えば、半導体ウェットプロセスのソリュ−ションの一つである各種洗浄装置における洗浄工程数は益々増加の一途を辿り、洗浄の清浄度もますます完全性を要求されている。このため、清浄装置に超純水や薬液からなる洗浄液を清浄に供給する技術確立の要求は益々厳しくなっている。現在、薬液は薬液供給システムのうち、調合、希釈、輸送のプロセスで汚染を受けているが、ウェハクリーン度としては、サブクォーターミクロン時代に対応する必要がある。薬液供給システムとしては、大量調整方式が知られている。薬液は受け入れ槽から希釈調合槽にポンプ輸送され、所要の組成や濃度に調整され、供給槽から長距離配管によってポンプ輸送され、ウェットステーションの貯槽にポンプ輸送され、さらにポンプとフィルターを経て洗浄槽に供給される方式である(例えば、特許文献1や特許文献2参照。)
【0003】
この種の半導体製造装置等の配管システムに適用される各種デバイスのうちの一つとして、たとえば、図16、図17に示すような熱交換器がある。この熱交換器は、熱交換チューブ70が通されるケーシング71が充分なシール性を確保して或る程度の内圧に耐えられるようにするために、ケーシング71の本体を構成する円筒状のシェル72の外周に複数本のタイロッドや通しボルト等の金属製締結部材73をその長手方向に沿うよう互いに平行に配するとともに、該金属製締結部材73の両端部をシェル72の両端部に配される蓋部材74に挿通して、該蓋部材74から突出する金属製締結部材73の両端の雄ねじ部にナット75を締め込むことによってシェル72の両端部と蓋部材74との突き合せ面間が密着状にシールされ、これによりケーシング71が密封状に構成されるといったものである(例えば、特許文献3参照。)。また、前記シェル72の両端部と蓋部材74との突き合せ面間にはシール部材であるOリング76が介在されている(前出の特許文献3参照。)。
【0004】
【特許文献1】
特開2000−265945号公報
【特許文献2】
特開平11−70328号公報
【特許文献3】
特開平10−160362号公報
【0005】
【発明が解決しようとする課題】
しかるに、大量調整方式の上記薬液供給システムでは、貯槽・配管・継手・ポンプ・熱交換器・フローメーター・フィルター・脱気モジュール等全てのデバイスの構成部品の各種接液部などからのパーティクルやメタルコンタミネーションの発生が問題視されている。
他方、半導体ウェハ等を洗浄する基板洗浄装置の高速洗浄化に伴う装置全体の大規模化や複雑化が問題視されており、特に、各種デバイスが配備されてなる配管システムはクリーンルームに設置される関係から小型化、コンパクト化が要求される。
【0006】
各種デバイスにはメタル材を使用する場合が多く、メタルコンタミネーションを発生させていると共に、デバイス形状が固定化されていたため、配管システム設計の自由度が小さく、配管のデッドスペースが生じ易く、配管システムが大型になりがちであり、洗浄装置等の機械装置も含めてコンパクト化や低廉化に限度があった。また、既成の配管システムの改造要求に対し、柔軟に対応可能な形状のデバイスが存在せず、配管システム改造にはスペース上の制約が多かった。
【0007】
また、シェル72の両端部と蓋部材74とが複数本のタイロッドや通しボルト等の金属製締結部材73とナット75との締め込みによってシールされる上記熱交換器(デバイス)では、シールするための部品点数が多く、コストアップ、ケーシング構造の大型化を招くばかりか、金属製締結部材73は、硫酸雰囲気などに晒される場所に配置された場合、腐食しやすく、また金属汚染が避けられないため、近年、とくに半導体業界では使用制限の要求が高い。
【0008】
また、金属製締結部材73の締付けの緩みに対して、金属製締結部材73を定期的に増締めする必要があるが、通常金属製締結部材73は複数本、少なくとも4本以上であるため、各金属製締結部材73の増締め度合いにばらつきが生じ易く、このばらつきにより蓋部材74やシェル72の変形を招くおそれがあった。蓋部材74やシェル72の変形が生じると、シェル72の端部と蓋部材74との間にねじれや歪みが生じるため、局部的な応力集中が生じてクリープの進行を助長する問題がある。また、金属製締結部材73の金属製タイロッドと金属製タイロッドシースとの中心軸が一致せず、両者が擦れ合って摺動抵抗が増大し、かつ、金属粉を含む摩耗粉の発生原因となるという問題もあった。さらに、シェル72や蓋部材74の変形が生じた場合、これらの部材交換が必要となるが、これらの部材は通常切削品であり、比較的高価でもあるため、ケーシング構造の交換を行ってデバイス要素(熱交換チューブ70)を継続利用するという再利用が難しい構造でもあった。
【0009】
シェル72の両端部と蓋部材74との突き合せ面間にシール部材としてOリング76を介在させる接続構造の上記熱交換器では、Oリング76を使用するため、耐蝕性や使用温度範囲に制限がある。例えば、Oリング76に接する空間には、高温の薬液を連通させることができない。また、Oリング76の発塵による汚染が問題となることもある。したがって、近年、半導体業界ではこのようなOリング76の使用制限の要求が高い。
【0010】
また、この種熱交換器が、薬液等に使用された場合、そのシェル72や蓋部材74等の構成部材には耐腐食性に優れるPTFEやPFA等のフッ素樹脂が使用されることが多いが、フッ素樹脂は、潤滑性が高いため、シェル72と蓋部材74との間の接続部が配管の震動や熱の影響でクリープし、これによりタイロッドや通しボルト等金属製締結部材73の緩みが発生し、シェル72の両端の接続部から流体漏れが発生する問題があった。
【0011】
シェル72と蓋部材74との間のケーシング接続構造としては、その他に、ネジシールや溶接が採用されることがあるが、あまり効果的ではない。すなわち、単なるネジによる接続シール構造では、高いシール性を得ることができず、耐圧性が充分でなく、かつクリープによる漏れが生じ易い。また溶接は、一般的に熟練技術を必要とし、容易な作業ではないため、生産効率が低いとともに、現場作業性が悪く、現場での保守・点検が困難であるという問題がある。
【0012】
本発明は、このような諸問題点を解決するためになされたものであり、その目的とするところは、金属製締結部材等の金属材を使用しないで、全ての構成部材を合成樹脂製のものにすることを可能にすることによりメタル溶出や金属摩耗粉発生の問題を解消できる半導体製造装置等の配管システムを提供することにある。
また、本発明の目的は、各種デバイスのスリム化、配管システムの小型化、コンパクト化を図れる半導体製造装置等の配管システムを提供することにある。
さらに、本発明の目的は、タイロッドや通しボルト等の金属製締結部材、及びOリングを用いることなく、部品点数の減少、コスト低減を図ることができるとともに、耐圧性の高いケーシング構造及び信頼性の高いシール構造をもつチューブデバイスを備える半導体製造装置等の配管システムを提供することにある。
【0013】
また本発明の他の目的は、その構成部材を全てフッ素樹脂で構成しても高いシール性を確保できるとともに、耐薬品性雰囲気への適用、設置が可能となるチューブデバイスを備える半導体製造装置等の配管システムを提供することにある。
【0014】
【課題を解決するための手段】
本発明は、配管系の途中に、ケーシングにデバイス要素を配備してあるチューブデバイスが介入されている半導体製造装置等の配管システムであって、
前記ケーシングが、合成樹脂製のチューブと、このチューブの一端部及び他端部をそれぞれ受け入れる受口部及びこの受口部内に設けられた少なくとも1つのシール面を備えた1対の合成樹脂製の蓋部材と、前記チューブの一端部及び他端部にそれぞれ外嵌されるとともに前記蓋部材の一端部に螺合される合成樹脂製のユニオンナットと、前記ユニオンナットが前記蓋部材の一端部への螺進による締め付けにより前記チューブをこれの外側から押圧し、この押圧作用により前記チューブの端部と前記蓋部材のシール面とが密着することにより形成された少なくとも1箇所のシール部と、を備えていることに特徴を有するものである。
【0015】
この場合において、前記チューブ、前記蓋部材、および前記ユニオンナットは全て耐熱性、耐薬品性に優れるフッ素樹脂や導電性物質を含有する帯電防止フッ素樹脂で成形することができる。
また、前記デバイス要素としては次のようなものが挙げられる。たとえば、前記デバイス要素は前記ケーシング内に通されたフッ素樹脂製の熱交換チューブ、および前記蓋部材に備えられた、前記ケーシングの内部と前記熱交換チューブの外部との間を通過する流体の導入用及び導出用の配管が接続される接続部とすることで、熱交換器とすることができる。また、前記デバイス要素は前記ケーシング内に収容されたフィルター部材とすることで、フィルターデバイスとすることができる。また、前記デバイス要素は前記チューブの両端の蓋部材に組み込まれた超音波式流量計用の超音波発振器及び超音波受信器とすることで、超音波式流量計とすることができる。また、前記デバイス要素は前記蓋部材に組み込まれたエアー抜き用のバルブとすることで、脱気デバイスとすることができる。そのほかに、前記デバイス要素は前記チューブ内に通されたガス透過性チューブ、および蓋部材に設けられた脱気口とすることで、脱気モジュールとすることができる。さらに、前記デバイス要素は前記チューブ内に通されたガス透過性チューブ、および前記蓋部材に設けられた溶解性ガス供給口とすることでガス溶解デバイスとすることができる。
【0016】
【発明の作用効果】
上記構成の配管システムによれば、配管系の途中に介入されるチューブデバイスがユニオンナットを蓋部材の一端部に締め付けるだけの簡単な操作でチューブの端部と蓋部材のシール面とを密着させるシール部を介して確実に密封することができる。したがって、従来のようにタイロッドや通しボルト等の金属製締結部材及びOリングを用いることなく、部品点数を少なくして、安価に且つコンパクトで耐圧性の高いケーシング構造及び信頼性の高いシール構造のチューブデバイスを得ることができる。
【0017】
チューブデバイスは、従来のケーシング接続構造のようにタイロッドや通しボルトを使用しない耐圧シール構造で、且つスリムなケーシング構造にすることができ、また単一のユニオンナットによる増締めによりシール性を均一に確保することが可能である。すなわち、チューブの両端部の蓋部材との接続部を単一のユニオンナットでシールするだけで、タイロッドや通しボルトに比べて信頼性の高いシール構造が得られ、しかもスリムなケーシングのチューブデバイスでもって配管システムの小型化、コンパクト化を図ることができる。また、ユニオンナットの増締めによりシール性をその都度確保することが可能であって、ネジシールやOリングシールと比較しても長期にわたり信頼性の高いものとなる。さらに、単一のユニオンナットを増締めするという簡単な手段で足りるため、溶着による接続構造と異なり現場施工が容易であり、現場での保守・点検も容易に行える。
【0018】
金属製締結部材等の金属材を一切使用しないので、メタル溶出や金属摩耗粉発生の問題を解消できる。
【0019】
ユニオンナットの締め付けによればチューブの端部の外側全周を均等に押圧することができるため、チューブや蓋部材の不慮の変形を招くようなことが無くなる。したがって、これら部材のクリープや交換の問題を解消できる。
【0020】
ユニオンナットの締付けを緩めることによりチューブの端部から蓋部材を簡単に取り外すことができるため、チューブ内に滞留する滞留物の除去が容易に行える。
【0021】
また、この配管システムの配管系に介入されるチューブデバイスは、ユニオンナットの締付けによるだけでチューブに内圧が加わっても十分気密を保つことができて流体漏れを防止できるので、従来のようにOリングを使用しなくて済み、全ての構成部材をフッ素樹脂で成形することで、高温、腐蝕性の強い薬液にもよく対応でき、耐薬品性雰囲気への適用、設置が可能となる。
【0022】
【発明の実施の形態】
本発明の好適な実施形態を図面に基づき説明する。
【0023】
図1は本発明に係る配管システムの一態様例である薬液供給配管システムを含む半導体ウェハ(基板)洗浄装置の全体構成を示す概略断面図である。Aはウェハ(基板)Wが設置されて洗浄される洗浄チャンバー、Bは所望濃度の洗浄液を生成して洗浄チャンバーAへ供給する薬液供給システムである。薬液供給配管システムBは、薬液が原液の状態で貯蔵される薬液貯蔵タンク100と、薬液貯蔵タンク100と連結され、薬液供給を行う薬液供給装置101と、薬液供給装置101と連結され、薬液と混合する超純水の通路となる供給流路管102と、洗浄チャンバーA内に設置されるウェハWの表面と対向するように供給流路管102の下流側端部に設けられ、ウェハWの表面に洗浄液を供給する1対の吐出ノズル103,104と、吐出ノズル103,104から供給する洗浄液の濃度や流量等の各種状態を調節するための制御系105とを備えて構成されている。
【0024】
薬液供給装置101は、薬液供給ポンプ106と、供給流路管102と薬液供給ポンプ106とを連結して流路を形成する連結管107と、連結管107内に供給流路管102内と直接連結するキャピラリー108とを備えて構成されている。薬液供給ポンプ106の駆動により、キャピラリー108から供給流路管102内の超純水中へ薬液が吐出される。
【0025】
供給流路管102には、この供給流路管102内を通過する超純水の流量を調節する流量調節手段109、供給流路管102内を通過する洗浄液の濃度を調節する濃度調節手段110、及び供給流路管102のキャピラリー108との連結部位に配され、洗浄液に回転流を生ぜしめて攪拌し、洗浄液を均一化させる混合手段111が設けられている。
【0026】
制御系105は、薬液供給ポンプ106の薬液の超純水への供給量を調節するとともに、流量調節手段109を駆動する薬液供給制御手段112と、濃度調節手段110を駆動する濃度制御手段113とを備えている。そして、薬液供給制御手段112と濃度制御手段113とが連結され、濃度制御手段113による濃度制御の結果が薬液供給制御手段112にフィードバックされて薬液供給ポンプ106を制御し、薬液の供給量が調節される。
【0027】
本発明は上記薬液供給配管システムBの配管系の適所に各種チューブデバイスを介入し、このチューブデバイスを以下のように構成することに特徴を有する。
【0028】
図1は、上記薬液供給配管システムBの配管系である供給流路管102の途中にチューブデバイスとして熱交換器114を介入した場合の実施例を示す。図2に示すように、この熱交換器114はケーシング1の内部(熱交換室)2に通された熱交換チューブ3内を通過する流体と、ケーシング1の内部と熱交換チューブ3の外部との間を通過する流体との間で熱交換を行うものである。
【0029】
図2、図3に示すように、ケーシング1は、熱交換チューブ3の外周を包囲するチューブ4と、このチューブ4の一端部及び他端部をそれぞれ密封状に閉塞する1対の蓋部材5、及び各蓋部材5をチューブ4の端部に締め付けるユニオンナット6を備える。
チューブ4は耐熱性、耐薬品性に優れるPFA、PTFE等のフッ素樹脂や導電性物質を含有する帯電防止フッ素樹脂等の合成樹脂によって筒状に成形され、このチューブ4の両端部には、それぞれ、同じくフッ素樹脂等の合成樹脂からなる蓋部材5を挿入してフッ素樹脂等合成樹脂製のユニオンナット6の締め付けを介して接続する。
【0030】
蓋部材5は、胴壁部7と、この胴壁部7の一端に開放する受口部8、及び胴壁部7の他端を閉塞する底壁部9とを有する形に形成される。そして、図3に示すように、蓋部材5の受口部8の内部には第1〜3のシール面10〜12が設けられる。第1のシール面10は、蓋部材5の受口部8の入口より内奥に、蓋部材5の軸線Cに対して交差状、つまり軸線C方向の外方に向けて漸次拡径するテーパ面により構成される。第2のシール面11は、受口部8の入口に、前記軸線Cに対して交差状、つまり軸線C方向の外方に向けて漸次拡径するテーパ面により構成される。第3のシール面12は、蓋部材5の受口部8の内奥において第1のシール面10よりも径方向外方に軸線Cと平行に形成された環状溝部13により構成される。蓋部材5の受口部8の外周には雄ねじ14が形成されている。
【0031】
一方、チューブ4の一端部及び他端部にはそれぞれフッ素樹脂等合成樹脂製のインナーリング15を圧入する。このインナーリング15は、図3に示すように、チューブ4の端部に圧入されて該端部を断面山形状に拡径膨出させる断面算盤玉形状の圧入部16と、この圧入部16に連設されてチューブ4の端部に突出する突出部17とを有するスリーブ形状に形成されている。断面山形状の圧入部16はこれの一斜面部に外向きテーパ面18を、他斜面部に前記第2のシール面11との間でチューブ4の端部を傾斜状態に挟持して第2のシール部21を形成する内向きテーパ面20をそれぞれ形成している。突出部17の先端には前記第1のシール面10に密着状に当接して第1のシール部19を形成するテーパ面からなる突出端面22、および前記環状溝部13に嵌入して第3のシール部23を形成する円筒部24を形成してなる。このインナーリング15の内径はチューブ4の内径と同一か略同一に設定して流体が滞留することなく、円滑に流動するようにしている。
【0032】
図3に示すように、ユニオンナット6はこれの内周に蓋部材5の雄ねじ14に螺合される雌ねじ25を形成し、かつ一端部に環状鍔部26を内向きに張り出すとともに、該環状鍔部26の内周面の軸方向内端に鋭角または直角の押圧エッジ部26aを設けてある。
【0033】
そして、上記インナーリング15の圧入されたチューブ4の端部を蓋部材5の受口部8に挿入し、該チューブ4の端部の外周に予め遊嵌させたユニオンナット6の雌ねじ25を蓋部材5の雄ねじ14に螺合させて締め付ける。この締付けに伴いユニオンナット6の押圧エッジ部26aがチューブ4の拡径部27の拡径付け根部に当接してインナーリング15を軸方向から押圧する。これにより、図3に示すように、インナーリング15の突出端面22が蓋部材5の第1のシール面10に対し押し付けられて第1のシール部19を形成するとともに、インナーリング15の内向きテーパ面20と蓋部材5の第2のシール面11との間でチューブ4の端部を傾斜状態に挟持して第2のシール部21を形成し、さらにインナーリング15の円筒部24が環状溝部13に圧入して第3のシール部23を形成する。これら第1〜3のシール部19,21,23により信頼性の高いシール機能を発揮する。
【0034】
図2に示すように、上記チューブ4の一端部の蓋部材5には、他の配管である熱交換流体の導入用配管28aが接続される接続部29aを、他端部の蓋部材5には他の配管である導出用配管28bが接続される接続部29bをそれぞれ備える。すなわち、他の配管との接続部29a,29bは、一方の蓋部材5の胴壁部7に温調水等の熱交換流体のインレットポート30を、他方の蓋部材5の胴壁部7にアウトレットポート31をそれぞれ形成し、インレットポート30には熱交換流体の導入用配管28aの端部が、アウトレットポート31には熱交換流体の導出用配管28bの端部がそれぞれフッ素樹脂等合成樹脂製のユニオンナット32、フッ素樹脂等合成樹脂製のインナーリング33を介して接続されて、熱交換流体がインレットポート30、チューブ4内の熱交換室2、アウトレットポート31の順に流通すべく構成されている。
【0035】
インレットポート30及びアウトレットポート31の各内部構造は蓋部材5の受口8の内部構造と同一に構成し(但し、径は異なる)、また熱交換流体の導入用配管28a及び導出用配管28bの各端部には、チューブ4の端部のインナーリング15の断面形状と同様のインナーリング33を圧入してあって、インレットポート30及びアウトレットポート31に対する導入用配管28a及び導出用配管28bの各端部の接続構造は、チューブ4の端部の蓋部材5の受口8に対する接続構造と同様であるため、その詳細な説明は省略する。ただし、このインレットポート30及びアウトレットポート31に対する熱交換流体の導入用配管28a及び導出用配管28bの各端部の接続構造としては、そのほかに、インレットポート30及びアウトレットポート31に対し熱交換流体の導入用配管28a及び導出用配管28bの各端部を直接溶着したり、ねじ接続したりするなどの手段を採用することもできる。つまり、他の配管との接続部29a,29bは溶着、ねじ接続などの接続手段であってもよい。
【0036】
一方、チューブ4の内部には薬液が通過するフッ素樹脂等合成樹脂製のコイルチューブよりなる熱交換チューブ3が通され、この熱交換チューブ3の両端部は蓋部材5の底壁部9に開口した導出口34から導出され、上記薬液供給配管システムBの配管系の供給流路管102の途中に接続される。その熱交換チューブ3の導出端部にはフッ素樹脂等合成樹脂製のユニオンナット35を外嵌して、このユニオンナット35を導出口34にフッ素樹脂等合成樹脂製のフェルール36を介して締め付けることにより該導出口34と熱交換チューブ3の端部との間の隙間を密封している。
【0037】
このように構成された熱交換器は、熱交換チューブ3内を通過する、例えば薬液等の流体と、筒状ケーシング本体4内の熱交換チューブ3の外部を通過する温調水等熱交換流体との間で熱交換が行われるが、熱交換チューブ3内に薬液等の流体を、熱交換チューブ3外部に温調水等熱交換流体をそれぞれ通過させるに代えて、それとは反対に、熱交換チューブ3内に温調水等熱交換流体を、熱交換チューブ3外部に薬液等の流体をそれぞれ通過させることもできる。
【0038】
なお、上記熱交換チューブ3の両端部をケーシング1の外部へ導出させるための導出口34は蓋部材5の胴壁部7に開口し、薬液等の流体のインレットポート30およびアウトレットポート31は蓋部材5の底壁部9に設けることもできる。
【0039】
また、薬液等流体又は温調水等熱交換流体を通過させる熱交換チューブ3は、コイルチューブに代えて、フッ素樹脂製の単一のストレートなチューブで構成すること、あるいは図17に示される従来の熱交換器の場合と同様なフッ素樹脂等合成樹脂製の複数のストレートなチューブで構成することもできる。
【0040】
(チューブデバイスの他の実施例)
チューブデバイスとしては、上記熱交換器114以外に、図4、図5に示すフィルターデバイス、図6の超音波式流量計、図7の手動式脱気デバイス、図8の自動式脱気デバイス、図9の脱気モジュールなどを採用することができ、各々が独自に持つ機能に応じて上記薬液供給配管システムBの配管系の適所に介入配置される。
【0041】
図4において、フィルターデバイス115はケーシング1の内部にデバイス要素としてフィルター部材3を収容する。このフィルター部材3としては、たとえば、セラミックスや活性炭、酸化チタン等の機能性粉末を合成繊維等の担体に含有させて、蓋部材5に設けたインレットポート30から流入する例えば純水をこのフィルター部材3内に通過させて超純水にしたり、シリカゲル等のイオン交換樹脂を担体に含有させて、インレットポート30から流入する純水や薬液をこのフィルター部材3内に通過させて純水や薬液中に含まれる金属イオンを除去したりするものである。
【0042】
このフィルターデバイス115のケーシング1は、チューブ4と、このチューブ4の両端部を密封状に閉塞する蓋部材5、及び蓋部材5をチューブ4の端部に締め付けるユニオンナット6を備える。蓋部材5,5に設けたインレットポート30およびアウトレットポート31が上記薬液供給配管システムBの配管系の適所に接続される。これらチューブ4、蓋部材5、及びユニオンナット6の各構成は上記熱交換器114のそれら部材の構成と同様であるため同一部材、同一要素には同一符号を付してその説明は省略する。
【0043】
図5はフィルターデバイス115の他例を示す。このフィルターデバイス116は、ケーシング1の内部に、デバイス要素として中空糸膜よりなるフィルター部材3を収容してなり、例えば純水をこのフィルター部材3内に通過させて超純水にするものとした以外は、上記フィルターデバイス115のものと同様の構成であり、このため同一部材、同一要素には同一符号を付してその説明は省略する。
【0044】
図6において、超音波式流量計117は、上記熱交換器114の場合と同様に、ケーシング1が、チューブ4と、このチューブ4の両端部を密封状に閉塞する蓋部材5、及び蓋部材5をチューブ4の端部に締め付けるユニオンナット6を備える。そしてデバイス要素として、ケーシング1のチューブ4の両端の蓋部材5,5の一方の底壁部9に超音波式流量計用の超音波発振器51を、他方の底壁部9に超音波受信器52をそれぞれ組み込んでいる。
しかるときは、一方の蓋部材5の胴壁部7に設けたインレットポート30から流入してチューブ4内を他方の蓋部材5に設けたアウトレットポート31に向かって流れる、例えば純水や超純水、または薬液の流れにより、超音波がドップラー変位することを利用して流量を計測することができる、というものである。蓋部材5,5に設けたインレットポート30およびアウトレットポート31が上記薬液供給配管システムBの配管系の適所に接続される。その他の、ケーシング1の構造、チューブ4の端部と蓋部材5との接続構造などは上記熱交換器114の場合と同様であるため同一部材、同一要素には同一符号を付してその説明は省略する。
【0045】
図7において、手動式脱気デバイス118は、ケーシング1が、縦向き姿勢に配されるチューブ4と、このチューブ4の上下端部を密封状に閉塞する上下1対の蓋部材5、及び各蓋部材5をチューブ4の上下端部にそれぞれ締め付けるユニオンナット6を備える。そしてデバイス要素として、上方の蓋部材5の胴壁部7にインレットポート30を、底壁部9にエアー抜きチューブ53、及び手動式のエアー抜き用バルブ54を組み込んでいる。下方の蓋部材5の胴壁部7にアウトレットポート31を設けている。しかるときは、エアー抜き用バルブ54を開放することにより、上方の蓋部材5のインレットポート30からチューブ4内に滞留して下方の蓋部材5のアウトレットポート31に流出する、例えば純水や超純水、または薬液中の気泡を除去することができる、というものである。蓋部材5,5に設けたインレットポート30およびアウトレットポート31が上記薬液供給配管システムBの配管系の適所に接続される。その他の、ケーシング1、チューブ4の端部と蓋部材5との接続構造などは上記熱交換器114の場合と同様であるため同一部材、同一要素には同一符号を付してその説明は省略する。
【0046】
図8において、自動式脱気デバイス119は、縦向き姿勢に配されたチューブ4の外側に配置した液面センサー56に連動して作用する自動式のエア抜き用バルブ55をエアー抜きチューブ53に設けて、液面センサー56でチューブ4内の液面を感知すると、エアー抜き用バルブ55を開き、液中に溜まったエアーを排出するようにした以外は、図7の手動式脱気デバイスの場合の構成及び作用と同様である。このため同一部材、同一要素には同一符号を付してその説明は省略する。
【0047】
図9において、脱気モジュール120は、デバイス要素として、チューブ4内に発泡フッ素樹脂からなる複数本のガス透過性チューブ57を集束状態に通すとともに、蓋部材5に脱気口58を設けたものである。ガス透過性チューブ57の両端部はチューブ4の両端の蓋部材5の各底壁9に設けた導入口59及び導出口60にそれぞれ通された流入配管61及び流出配管62に連通接続される。流入配管61及び流出配管62が上記薬液供給配管システムBの配管系の適所に接続される。
【0048】
いま、真空ポンプ等によってチューブ4内を脱気口58から減圧しながら、例えば薬液を流入配管61からガス透過性チューブ57内に通過させると、薬液中に溶存する空気等のガスはガス透過性チューブ57の周壁を透過してガス透過性チューブ57の外側に除去され脱気作用が行われ、脱気処理後の薬液は流出配管62に排出されるといった脱気モジュールである。その他の、ケーシング1、チューブ4の端部と蓋部材5との接続構造などは上記熱交換器114の場合と同様であるため同一部材、同一要素には同一符号を付してその説明は省略する。
【0049】
図9に示す脱気モジュール120は、ガス溶解デバイスとしても用いることができる。ガス溶解デバイスとして用いる場合は、脱気口58を溶解性ガス供給口として使用し、オゾン等の溶解性ガスをチューブ4内に加圧供給しながら、例えば超純水や薬液を流入配管61からガス透過性チューブ57内に通過させると、チューブ4内の溶解性ガスがガス透過性チューブ57の周壁を透過して該ガス透過性チューブ57内の超純水や薬液に溶解させ、溶解処理後の被処理液は流出配管62に排出させるといったガス溶解デバイスにも用いることができる。
【0050】
(チューブデバイスのケーシングの他の実施例)
チューブデバイスのケーシング1の全体的な形状としては、上記の各実施例のように直管状に形成するに代えて、図10に示すごとくL形状、あるいは図11に示すごとくU形状などの応用形態を採用することができる。この場合、図10に示すL形状のケーシング1では2個の第1,2のチューブ4A,4B,2個の第1,2の蓋部材5A,5B、および1個のエルボ形状のフッ素樹脂等合成樹脂製の接合部材39を使用し、図10に示すU形状のケーシング1では3個の第1,2,3のチューブ4A,4B,4C、2個の第1,2の蓋部材5A,5B、および2個のエルボ形状のフッ素樹脂等合成樹脂製の第1,2の接合部材39A,39Bを使用する。
【0051】
図10に示すL形状のケーシング1においては、それぞれの一端部に第1,2蓋部材5A,5Bが第1のユニオンナット6Aで接続された第1,2のチューブ4A,4Bの他端部同士を、1個のエルボ形状の接合部材39及び1対の第2のユニオンナット40Bで接続する。この場合、第1,2のチューブ4A、4Bの各一端部に対して第1,2の蓋部材5A、5Bを接続する接続構造については、上記した各実施例のチューブ4の端部と蓋部材5との接続構造の場合と同様に構成する。
【0052】
接合部材39はこれの両端に受口41を互いに直交状に連通するよう開口してあり、各受口4の内部構造は蓋部材5の受口部8の内部構造と同一に構成し、第1,2のチューブ4A、4Bの各他端部には各一端部のインナーリング15と同様の断面形状のインナーリング15を圧入してあるため、接合部材39の一端の受口41に第1のチューブ4Aの他端部が、また他端の受口41に第2のチューブ4Bの他端部が、それぞれ、上記第1,2のチューブ4A、4Bの各一端部の第1,2の蓋部材5A、5Bの受口部8に対する接続構造の場合と同様の接続構造を介して接続される。流体チューブ3は接合部材39の内部で直角に曲げられる。
【0053】
図11に示すU形状のケーシング1においては、それぞれの一端部に蓋部材5が第1のユニオンナット6で接続された第1,2のチューブ4A、4Bの他端部同士間に、第3のチューブ4Cを2個のエルボ形状の接合部材39及び1対の第2のユニオンナット40Bで接続する。この場合においても、第1,2のチューブ4A、4Bの各一端部に対して第1,2の蓋部材5の受口部8を接続する接続構造は上記した各実施例のチューブ4の端部と蓋部材5との接続構造の場合と同様に構成する。そして、第1,2のチューブ4A、4Bの各他端部に対して各接合部材39の受口41を接続する接続構造、および第3のチューブ4Cの両端部に対して各接合部材39の受口41を接続する接続構造は、それぞれ、上記第1,2のチューブ4A、4Bの各一端部の第1,2の蓋部材5の受口部8に対する接続構造の場合と同様に接続される。流体チューブ3は各接合部材39の内部で直角に曲げられる。
なお、ケーシング1は、図10のL形状のケーシング1と図11のU形状のケーシング1とを組み合わせた形状に構成することもできる。
【0054】
このようにチューブデバイスのケーシング1はL形状あるいはU形状などに形成することにより、配管のデッドスペースを有効に活用してコンパクトな配管システムを組むことができる。また既存配管に新たにチューブデバイスを設置する場合など配管システムの改造要求に対応できる形状にすることができて有利である。
【0055】
(シール部の他の実施例)
上記チューブ4の端部と蓋部材5の受口部8との間に形成されるシール部としては、図3に示す上記実施例のように第1,2のシール部19,21のほかに、インナーリング15の円筒部24と蓋部材5の環状溝部13による第3のシール部23を付加することによりシール性能をより一層確実に向上させることができるが、必ずしもこれに限定されるものではない。そのほかに、たとえば、図12に示すように、第1,2のシール部19,21だけを形成して、第3のシール部23を省略するもの、すなわち蓋部材5の内奥に環状溝部13を設けず、またインナーリング15に円筒部24を設けないものであってもよい。この場合、蓋部材5の内奥に設ける第1のシール面10は、軸線Cに対して第2のシール面11とは逆向きの交差状、つまり軸線C方向の外方に向けて漸次縮径するテーパ面により構成している。
【0056】
また、図13に示すように、蓋部材5の受口部8の先端側における端部外周に、チューブ4の内径より径大のテーパ面からなるシール面42を形成し、このシール面42の後方の外周に該シール面42の外径より径大の雄ねじ14を形成している。一方、チューブ4の端部はフレア加工して拡径部43を形成する。かくして、チューブ4の端部の拡径部43を蓋部材5のシール面42上に圧入する。そして、チューブ4に外嵌されているユニオンナット6の雌ねじ25を蓋部材5の雄ねじ14に螺合して締め付け、ユニオンナット6の環状鍔部26の押圧エッジ部26aをチューブ4の外側に当接させて拡径部43の内周面を受口部8のシール面42に軸方向から押し付けて密着させることにより、シール部44を形成することもできる。
【0057】
図14に示すように、チューブ4の端部にフッ素樹脂等合成樹脂製の断面円弧形状のインナーリング45を圧入して該チューブ4の端部を断面山形状に拡径膨出させ、蓋部材5の雄ねじ14に螺合させたユニオンナット6を螺進させて強く締め付けることによって、チューブ4の端部をインナーリング45とともに、蓋部材5の受口部8の内周に設けたテーパ状のシール面46に対して押し付けて密着させることにより、シール部47を形成するシール構造であってもよい。
【0058】
また、図15に示すように、チューブ4の端部にアウタリング48を嵌め込み、チューブ4の末端部を該アウタリング48の外面上に折り返して、蓋部材5の雄ねじ14に螺合させたユニオンナット6を螺進させて強く締め付けることによって、チューブ4の端部をアウタリング48とともに、蓋部材5の受口部8内のシール面49に対して押し付けて密着させることにより、シール部50を形成する、というシール構造であってもよい。
【0059】
勿論、本発明は上記半導体製造装置の薬液供給配管システム以外の各種配管システムにも同様に適用できることは言うまでもない。
【図面の簡単な説明】
【図1】本発明の配管システムの一例である薬液供給配管システムを含む半導体ウェハ(基板)洗浄装置の全体構成を示す概略断面図である。
【図2】図1中のチューブデバイスの一例である熱交換器の断面図である。
【図3】図2の熱交換器のチューブ端部と蓋部材との接続構造の拡大断面図である。
【図4】チューブデバイスの他例であるフィルターデバイスの断面図である。
【図5】フィルターデバイスの他例を示す断面図である。
【図6】チューブデバイスの他例である超音波式流量計の断面図である。
【図7】チューブデバイスの更に他例である手動式脱気デバイスの断面図である。
【図8】チューブデバイスの更に又、他例である自動式脱気デバイスの断面図である。
【図9】チューブデバイスの更に又、他例である脱気モジュールの断面図である。
【図10】チューブデバイスのケーシングの他例を示す断面図である。
【図11】チューブデバイスのケーシングの更に他例を示す断面図である。
【図12】チューブデバイスのシール部の他例を示す断面図である。
【図13】チューブデバイスのシール部の更に他例を示す断面図である。
【図14】チューブデバイスのシール部の更に又、他例を示す断面図である。
【図15】チューブデバイスのシール部の更に又、他例を示す断面図である。
【図16】従来例のチューブデバイス(熱交換器)の正面図である。
【図17】図16の熱交換器の断面図である。
【符号の説明】
1 ケーシング
3 フィルター部材
4,4A,4B,4C チューブ
5,5A,5B 蓋部材
6 第1のユニオンナット
8 受口部
10,11,12,42,46,49 シール面
13 環状溝部
15 インナーリング
16 圧入部
17 突出部
19,21,23,44,47,50 シール部
20 内向きテーパ面
22 突出端面
24 円筒部
28a,28b 流体導入用及び導出用の配管
29a,29b 接続部
39,39A,39B 接合部材
40 第2のユニオンナット
51 超音波発振器
52 超音波受信器
54 エアー抜き用の手動式のバルブ
55 エアー抜き用の自動式のバルブ
57 ガス透過性チューブ
58 脱気口・溶解性ガス供給口
114 熱交換器
115,116 フィルターデバイス
117 超音波式流量計
118 手動式脱気デバイス
119 自動式脱気デバイス
120 脱気モジュール
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluid piping system used in a semiconductor manufacturing device, a liquid crystal device, a chemical manufacturing device, a food production line, and the like.
[0002]
[Prior art]
2. Description of the Related Art In a piping system of a semiconductor manufacturing apparatus, with the increase in the degree of integration of semiconductor devices, for example, the number of cleaning steps in various cleaning apparatuses, which is one of the solutions of a semiconductor wet process, is increasing steadily, and the cleanliness of the cleaning Increasingly, integrity is required. For this reason, there is an increasing demand for establishing a technology for supplying a cleaning device with a cleaning liquid composed of ultrapure water or a chemical solution to a cleaning device. At present, chemicals are contaminated during the preparation, dilution, and transportation processes of the chemical supply system, but the wafer cleanliness level must be compatible with the sub-quarter micron era. As a chemical liquid supply system, a mass adjustment method is known. The chemical is pumped from the receiving tank to the dilution tank, adjusted to the required composition and concentration, pumped from the supply tank by long-distance piping, pumped to the wet station storage tank, and further passed through the pump and filter to the washing tank. (For example, see Patent Document 1 and Patent Document 2).
[0003]
As one of various devices applied to a piping system such as this type of semiconductor manufacturing apparatus, for example, there is a heat exchanger as shown in FIGS. This heat exchanger has a cylindrical shell constituting a main body of the casing 71 in order to ensure that the casing 71 through which the heat exchange tube 70 is passed has sufficient sealing performance and withstands a certain internal pressure. A plurality of metal fastening members 73 such as tie rods and through bolts are arranged in parallel with each other along the longitudinal direction on the outer circumference of the 72, and both ends of the metal fastening members 73 are arranged at both ends of the shell 72. By inserting nuts 75 into male screw portions at both ends of a metal fastening member 73 protruding from the cover member 74, an abutting surface between both ends of the shell 72 and the cover member 74 is provided. The casing 71 is tightly sealed, whereby the casing 71 is configured to be sealed (for example, see Patent Document 3). Further, an O-ring 76 serving as a seal member is interposed between the butting surfaces of the shell 72 and the lid member 74 (see Patent Document 3 mentioned above).
[0004]
[Patent Document 1]
JP 2000-265945 A
[Patent Document 2]
JP-A-11-70328
[Patent Document 3]
JP-A-10-160362
[0005]
[Problems to be solved by the invention]
However, in the above-mentioned chemical liquid supply system of the mass adjustment type, particles and metal from various liquid contact parts of all device components such as storage tanks, piping, fittings, pumps, heat exchangers, flow meters, filters, degas modules, etc. The occurrence of contamination is regarded as a problem.
On the other hand, large-scale and complicated apparatuses have been regarded as problems due to high-speed cleaning of a substrate cleaning apparatus for cleaning semiconductor wafers and the like. In particular, a piping system in which various devices are arranged is installed in a clean room. Therefore, miniaturization and compactness are required.
[0006]
In many cases, metal materials are used for various devices, which generate metal contamination and have a fixed device shape, so the flexibility of piping system design is small, and dead space in piping is likely to occur. The system tends to be large, and there has been a limit to compactness and cost reduction, including mechanical devices such as cleaning devices. In addition, there was no device having a shape capable of flexibly responding to a request for remodeling an existing piping system, and there were many restrictions on space in remodeling a piping system.
[0007]
Further, in the heat exchanger (device) in which the both ends of the shell 72 and the lid member 74 are sealed by tightening the nut 75 and the metal fastening member 73 such as a plurality of tie rods or through bolts. Not only increases the number of parts, increases the cost and increases the size of the casing structure, but also when the metal fastening member 73 is arranged in a place exposed to a sulfuric acid atmosphere or the like, it is easily corroded, and metal contamination is inevitable. Therefore, in recent years, there is a high demand for use restrictions, especially in the semiconductor industry.
[0008]
In addition, it is necessary to periodically retighten the metal fastening member 73 in response to the loosening of the metal fastening member 73. However, since there are usually a plurality of metal fastening members 73 and at least four or more, Variations in the degree of tightening of the metal fastening members 73 are likely to occur, and this variation may cause deformation of the lid member 74 and the shell 72. If the lid member 74 or the shell 72 is deformed, twisting or distortion occurs between the end of the shell 72 and the lid member 74, causing a local stress concentration to promote creep. In addition, the central axes of the metal tie rod and the metal tie rod sheath of the metal fastening member 73 do not coincide with each other, and the two rub against each other to increase the sliding resistance and to cause wear powder including metal powder. There was also a problem. Further, when the shell 72 or the cover member 74 is deformed, these members need to be replaced. However, since these members are usually cut products and relatively expensive, the casing structure is replaced and the device is replaced. It was also difficult to reuse the element (heat exchange tube 70).
[0009]
In the above heat exchanger having a connection structure in which an O-ring 76 is interposed as a seal member between both end portions of the shell 72 and the abutting surface of the lid member 74, the use of the O-ring 76 limits the corrosion resistance and the operating temperature range. There is. For example, the space in contact with the O-ring 76 cannot communicate a high-temperature chemical. In addition, contamination of the O-ring 76 due to dust generation may be a problem. Therefore, in recent years, there is a high demand in the semiconductor industry to restrict the use of such O-rings 76.
[0010]
When this type of heat exchanger is used for a chemical solution or the like, a fluorine resin such as PTFE or PFA, which has excellent corrosion resistance, is often used for components such as the shell 72 and the cover member 74. Since the fluororesin has high lubricity, the connection between the shell 72 and the lid member 74 creeps due to the vibration or heat of the pipe, thereby loosening the metal fastening members 73 such as tie rods and through bolts. Therefore, there is a problem that the fluid leaks from the connection portions at both ends of the shell 72.
[0011]
As a casing connection structure between the shell 72 and the lid member 74, a screw seal or welding may be adopted, but this is not very effective. That is, with a connection seal structure using only a screw, high sealing properties cannot be obtained, pressure resistance is not sufficient, and leakage due to creep is likely to occur. In addition, welding generally requires skill and is not an easy operation, so that there is a problem that production efficiency is low, workability on site is poor, and maintenance / inspection on site is difficult.
[0012]
The present invention has been made in order to solve such problems, and it is an object of the present invention not to use a metal material such as a metal fastening member, and to make all the constituent members made of synthetic resin. An object of the present invention is to provide a piping system for a semiconductor manufacturing apparatus or the like which can solve the problems of metal elution and generation of metal abrasion powder by making it possible.
Another object of the present invention is to provide a piping system such as a semiconductor manufacturing apparatus that can achieve slimness of various devices and downsizing and downsizing of a piping system.
Further, an object of the present invention is to reduce the number of parts and cost without using metal fastening members such as tie rods and through bolts and O-rings, and to provide a casing structure with high pressure resistance and reliability. It is an object of the present invention to provide a piping system such as a semiconductor manufacturing apparatus provided with a tube device having a high sealing structure.
[0013]
Another object of the present invention is to provide a semiconductor manufacturing apparatus including a tube device that can ensure high sealing performance even when all of its constituent members are made of a fluororesin, and that can be applied to and installed in a chemical resistant atmosphere. To provide a piping system.
[0014]
[Means for Solving the Problems]
The present invention is a piping system such as a semiconductor manufacturing apparatus in which a tube device in which a device element is provided in a casing is interposed in the middle of a piping system,
The casing comprises a pair of synthetic resin tubes each including a synthetic resin tube, a receiving portion for receiving one end and the other end of the tube, and at least one sealing surface provided in the receiving portion. A lid member, a union nut made of synthetic resin that is externally fitted to one end and the other end of the tube and screwed to one end of the lid member, and the union nut is connected to one end of the lid member. By pressing the tube from the outside by screwing, at least one seal portion formed by tightly contacting the end portion of the tube and the sealing surface of the lid member by this pressing action, It is characterized by having.
[0015]
In this case, the tube, the lid member, and the union nut can be all formed of a fluororesin having excellent heat resistance and chemical resistance or an antistatic fluororesin containing a conductive substance.
The following are examples of the device element. For example, the device element is a fluorine resin heat exchange tube passed through the casing, and the introduction of a fluid provided between the inside of the casing and the outside of the heat exchange tube provided on the lid member. A heat exchanger can be obtained by using a connecting portion to which the pipes for use and lead-out are connected. Further, the device element may be a filter device housed in the casing, thereby forming a filter device. The device element may be an ultrasonic oscillator and an ultrasonic receiver for an ultrasonic flow meter incorporated in the lid members at both ends of the tube, thereby forming an ultrasonic flow meter. Further, the device element may be a degassing device by using an air vent valve incorporated in the lid member. In addition, the device element may be a gas permeable tube passed through the tube, and a deaeration port provided in the lid member, thereby forming a deaeration module. Furthermore, the device element can be a gas-dissolving device by using a gas-permeable tube passed through the tube and a dissolvable gas supply port provided in the lid member.
[0016]
Effects of the Invention
According to the piping system having the above configuration, the tube device interposed in the middle of the piping system makes the end portion of the tube and the sealing surface of the lid member adhere to each other by a simple operation of simply tightening the union nut to one end of the lid member. Sealing can be reliably performed via the seal portion. Therefore, the number of parts is reduced, without using a metal fastening member such as a tie rod or a through bolt and an O-ring as in the related art, and an inexpensive, compact, highly pressure-resistant casing structure and a highly reliable seal structure are provided. A tube device can be obtained.
[0017]
The tube device has a pressure-resistant seal structure that does not use tie rods or through bolts as in the conventional casing connection structure, and can be made into a slim casing structure, and uniform sealing performance is achieved by tightening with a single union nut. It is possible to secure. In other words, by simply sealing the joints of the tube with the lid members at both ends with a single union nut, a highly reliable sealing structure can be obtained compared to tie rods and through bolts, and a tube device with a slim casing. Thus, the size and size of the piping system can be reduced. In addition, it is possible to secure the sealing performance each time by increasing the tightening of the union nut, and it is highly reliable for a long time as compared with a screw seal or an O-ring seal. Furthermore, since simple means of tightening a single union nut is sufficient, site construction is easy, unlike the connection structure by welding, and maintenance and inspection at the site can be easily performed.
[0018]
Since no metal material such as a metal fastening member is used, problems of metal elution and generation of metal abrasion powder can be solved.
[0019]
According to the tightening of the union nut, the entire outer periphery of the end of the tube can be evenly pressed, so that accidental deformation of the tube and the lid member does not occur. Therefore, the problem of creep and replacement of these members can be solved.
[0020]
By loosening the tightening of the union nut, the lid member can be easily removed from the end of the tube, so that the stagnation remaining in the tube can be easily removed.
[0021]
In addition, the tube device interposed in the piping system of this piping system can maintain a sufficient airtightness even if internal pressure is applied to the tube only by tightening the union nut and can prevent fluid leakage. By eliminating the need for a ring, and by molding all the components with a fluororesin, it can cope well with high-temperature, highly corrosive chemical solutions, and can be applied and installed in a chemical-resistant atmosphere.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
A preferred embodiment of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 is a schematic cross-sectional view showing the entire configuration of a semiconductor wafer (substrate) cleaning apparatus including a chemical liquid supply piping system which is an example of a piping system according to the present invention. A is a cleaning chamber in which a wafer (substrate) W is installed and cleaned, and B is a chemical liquid supply system that generates a cleaning liquid having a desired concentration and supplies the cleaning liquid to the cleaning chamber A. The chemical solution supply piping system B is connected to the chemical solution storage tank 100 in which the chemical solution is stored in the form of a stock solution, the chemical solution storage tank 100, and is connected to the chemical solution supply device 101 for supplying the chemical solution. The supply flow pipe 102 serving as a passage of the ultrapure water to be mixed is provided at the downstream end of the supply flow pipe 102 so as to face the surface of the wafer W installed in the cleaning chamber A. The apparatus includes a pair of discharge nozzles 103 and 104 for supplying the cleaning liquid to the surface, and a control system 105 for adjusting various states such as the concentration and flow rate of the cleaning liquid supplied from the discharge nozzles 103 and 104.
[0024]
The chemical liquid supply device 101 includes a chemical liquid supply pump 106, a connection pipe 107 that connects the supply flow path pipe 102 and the chemical liquid supply pump 106 to form a flow path, and a direct connection between the connection pipe 107 and the inside of the supply flow path pipe 102. And a capillary 108 to be connected. By driving the chemical supply pump 106, the chemical is discharged from the capillary 108 into ultrapure water in the supply flow pipe 102.
[0025]
The supply flow pipe 102 has a flow rate adjusting means 109 for adjusting the flow rate of the ultrapure water passing through the supply flow pipe 102, and a concentration adjusting means 110 for adjusting the concentration of the cleaning liquid passing through the supply flow pipe 102. And a mixing means 111 which is disposed at a portion of the supply channel tube 102 connected to the capillary 108, generates a rotational flow in the cleaning liquid, agitates the cleaning liquid, and homogenizes the cleaning liquid.
[0026]
The control system 105 adjusts the amount of the chemical solution supplied to the ultrapure water by the chemical solution supply pump 106, and controls the chemical solution supply control device 112 for driving the flow rate adjusting device 109, the concentration control device 113 for driving the concentration adjusting device 110, It has. The chemical liquid supply control means 112 and the concentration control means 113 are connected, and the result of the concentration control by the concentration control means 113 is fed back to the chemical liquid supply control means 112 to control the chemical liquid supply pump 106, and the supply amount of the chemical liquid is adjusted. Is done.
[0027]
The present invention is characterized in that various tube devices are interposed at appropriate places in the piping system of the chemical solution supply piping system B, and the tube devices are configured as follows.
[0028]
FIG. 1 shows an embodiment in which a heat exchanger 114 is interposed as a tube device in the middle of a supply flow pipe 102 which is a piping system of the chemical liquid supply piping system B. As shown in FIG. 2, the heat exchanger 114 includes a fluid passing through the heat exchange tube 3 passed through the inside (heat exchange chamber) 2 of the casing 1, a fluid inside the casing 1, and an outside of the heat exchange tube 3. Heat exchange with a fluid passing between the two.
[0029]
As shown in FIGS. 2 and 3, the casing 1 includes a tube 4 surrounding the outer periphery of the heat exchange tube 3, and a pair of lid members 5 each sealingly closing one end and the other end of the tube 4. And a union nut 6 for fastening each lid member 5 to the end of the tube 4.
The tube 4 is formed into a tubular shape with a synthetic resin such as a fluororesin having excellent heat resistance and chemical resistance, such as PFA and PTFE, and an antistatic fluororesin containing a conductive substance. Similarly, a lid member 5 made of a synthetic resin such as a fluororesin is inserted, and the connection is made by tightening a union nut 6 made of a synthetic resin such as a fluororesin.
[0030]
The lid member 5 is formed to have a body wall portion 7, a receiving portion 8 opened at one end of the body wall portion 7, and a bottom wall portion 9 closing the other end of the body wall portion 7. Then, as shown in FIG. 3, first to third sealing surfaces 10 to 12 are provided inside the receiving portion 8 of the lid member 5. The first sealing surface 10 has a tapered shape that crosses the axis C of the lid member 5, that is, gradually expands outward in the direction of the axis C, at a position inside the entrance of the receiving portion 8 of the lid member 5. It is composed of planes. The second sealing surface 11 is formed at the entrance of the receiving portion 8 by a tapered surface that crosses the axis C, that is, gradually increases in diameter outward in the direction of the axis C. The third seal surface 12 is formed by an annular groove 13 formed in the inner part of the receiving portion 8 of the lid member 5 and radially outward of the first seal surface 10 in parallel with the axis C. A male screw 14 is formed on the outer periphery of the receiving portion 8 of the lid member 5.
[0031]
On the other hand, an inner ring 15 made of a synthetic resin such as a fluororesin is pressed into one end and the other end of the tube 4. As shown in FIG. 3, the inner ring 15 is press-fitted into the end of the tube 4 to expand and expand the end into a mountain-shaped cross-section. It is formed in a sleeve shape having a protruding portion 17 which is continuously provided and protrudes from the end of the tube 4. The press-fitting portion 16 having a mountain-shaped cross section is formed by holding the end of the tube 4 in an inclined state between the outwardly tapered surface 18 on one slope and the second sealing surface 11 on the other slope. The tapered inward surfaces 20 forming the seal portions 21 are formed. At the tip of the projecting portion 17, a projecting end surface 22 formed of a tapered surface which is in close contact with the first seal surface 10 to form a first seal portion 19, and a third end which fits in the annular groove portion 13. A cylindrical portion 24 forming the seal portion 23 is formed. The inner diameter of the inner ring 15 is set to be equal to or substantially equal to the inner diameter of the tube 4 so that the fluid flows smoothly without stagnation.
[0032]
As shown in FIG. 3, the union nut 6 has a female screw 25 formed on the inner periphery thereof, the female screw 25 being screwed to the male screw 14 of the lid member 5, and an annular flange 26 protruding inward at one end. An acute or right angle pressing edge portion 26a is provided at an axial inner end of the inner peripheral surface of the annular flange portion 26.
[0033]
Then, the end of the tube 4 into which the inner ring 15 is press-fitted is inserted into the receiving portion 8 of the lid member 5, and the female screw 25 of the union nut 6 loosely fitted in advance on the outer periphery of the end of the tube 4 is closed. It is screwed into the male screw 14 of the member 5 and tightened. With this tightening, the pressing edge portion 26a of the union nut 6 comes into contact with the enlarged diameter root portion of the enlarged diameter portion 27 of the tube 4 and presses the inner ring 15 from the axial direction. Thereby, as shown in FIG. 3, the protruding end surface 22 of the inner ring 15 is pressed against the first seal surface 10 of the lid member 5 to form the first seal portion 19, and the inner ring 15 faces inward. The end of the tube 4 is sandwiched between the tapered surface 20 and the second seal surface 11 of the lid member 5 in an inclined state to form a second seal portion 21, and the cylindrical portion 24 of the inner ring 15 is annular. The third seal portion 23 is formed by press-fitting into the groove portion 13. The first to third seal portions 19, 21 and 23 exhibit a highly reliable sealing function.
[0034]
As shown in FIG. 2, the lid member 5 at one end of the tube 4 has a connecting portion 29a to which a heat exchange fluid introduction pipe 28a, which is another pipe, is connected, and the lid member 5 at the other end. Is provided with a connecting portion 29b to which a lead-out pipe 28b, which is another pipe, is connected. That is, the connection portions 29a and 29b to the other pipes are provided with the inlet port 30 for heat exchange fluid such as temperature control water in the body wall 7 of one lid member 5 and the body wall 7 of the other lid member 5. An outlet port 31 is formed, and an end of the heat exchange fluid introducing pipe 28a is formed at the inlet port 30, and an end of the heat exchange fluid outlet pipe 28b is formed at the outlet port 31. Is connected via an union nut 32 and an inner ring 33 made of synthetic resin such as fluororesin, so that the heat exchange fluid flows through the inlet port 30, the heat exchange chamber 2 in the tube 4, and the outlet port 31 in this order. I have.
[0035]
The internal structure of each of the inlet port 30 and the outlet port 31 is the same as the internal structure of the receiving port 8 of the cover member 5 (however, the diameter is different), and the inlet pipe 28a and the outlet pipe 28b for the heat exchange fluid are provided. At each end, an inner ring 33 having the same cross-sectional shape as the inner ring 15 at the end of the tube 4 is press-fitted, and each of an inlet pipe 28a and an outlet pipe 28b for the inlet port 30 and the outlet port 31 is inserted. The connection structure at the end is the same as the connection structure of the end of the tube 4 to the receptacle 8 of the lid member 5, and thus a detailed description thereof will be omitted. However, the connection structure of each end of the heat exchange fluid introducing pipe 28a and the discharge pipe 28b to the inlet port 30 and the outlet port 31 is, in addition, the heat exchange fluid is connected to the inlet port 30 and the outlet port 31. Means such as direct welding or screw connection of each end of the introduction pipe 28a and the lead-out pipe 28b may be employed. That is, the connection portions 29a and 29b with other pipes may be connection means such as welding and screw connection.
[0036]
On the other hand, a heat exchange tube 3 made of a coil tube made of a synthetic resin such as a fluororesin through which a chemical solution passes passes through the inside of the tube 4, and both ends of the heat exchange tube 3 are opened to the bottom wall 9 of the lid member 5. The liquid is supplied from the outlet 34 and connected to the supply flow pipe 102 of the piping system of the chemical liquid supply piping system B. A union nut 35 made of a synthetic resin such as a fluororesin is externally fitted to the leading end of the heat exchange tube 3, and the union nut 35 is fastened to the outlet 34 via a ferrule 36 made of a synthetic resin such as a fluororesin. This seals the gap between the outlet 34 and the end of the heat exchange tube 3.
[0037]
The heat exchanger configured in this manner passes through the heat exchange tube 3, for example, a fluid such as a chemical solution, and a heat exchange fluid such as temperature regulating water passing outside the heat exchange tube 3 in the cylindrical casing body 4. The heat exchange is performed between the heat exchange tube 3 and the heat exchange fluid such as a temperature control water and the like. It is also possible to pass a heat exchange fluid such as temperature-regulated water into the exchange tube 3 and a fluid such as a chemical solution outside the heat exchange tube 3.
[0038]
Outlets 34 for leading both ends of the heat exchange tube 3 to the outside of the casing 1 are opened in the body wall 7 of the lid member 5, and an inlet port 30 and an outlet port 31 for a fluid such as a chemical solution are covered with a lid. It can also be provided on the bottom wall 9 of the member 5.
[0039]
In addition, the heat exchange tube 3 through which a fluid such as a chemical solution or a heat exchange fluid such as temperature-regulated water passes may be constituted by a single straight tube made of fluororesin instead of the coil tube, or a conventional one shown in FIG. And a plurality of straight tubes made of a synthetic resin such as a fluorine resin as in the case of the heat exchanger.
[0040]
(Other Examples of Tube Device)
As the tube device, in addition to the heat exchanger 114, the filter device shown in FIGS. 4 and 5, the ultrasonic flow meter of FIG. 6, the manual deaeration device of FIG. 7, the automatic deaeration device of FIG. The degassing module shown in FIG. 9 and the like can be adopted, and they are interposed and arranged at appropriate places in the piping system of the chemical liquid supply piping system B according to the functions that each has independently.
[0041]
In FIG. 4, the filter device 115 accommodates the filter member 3 as a device element inside the casing 1. As the filter member 3, for example, a functional powder such as ceramics, activated carbon, or titanium oxide is contained in a carrier such as a synthetic fiber, and pure water flowing from an inlet port 30 provided in the cover member 5 is filtered. 3 into ultrapure water or an ion-exchange resin such as silica gel contained in a carrier. Pure water or a chemical solution flowing from the inlet port 30 is passed through the filter member 3 so that pure water or a chemical Or to remove metal ions contained in.
[0042]
The casing 1 of the filter device 115 includes a tube 4, a lid member 5 for sealing both ends of the tube 4 in a sealed manner, and a union nut 6 for fastening the lid member 5 to an end of the tube 4. An inlet port 30 and an outlet port 31 provided on the lid members 5 are connected to appropriate positions in a piping system of the chemical liquid supply piping system B. Since the respective configurations of the tube 4, the lid member 5, and the union nut 6 are the same as those of the heat exchanger 114, the same members and the same components are denoted by the same reference numerals, and description thereof will be omitted.
[0043]
FIG. 5 shows another example of the filter device 115. The filter device 116 contains a filter member 3 made of a hollow fiber membrane as a device element inside the casing 1. For example, pure water is passed through the filter member 3 to make ultrapure water. Except for the above, the configuration is the same as that of the filter device 115 described above. Therefore, the same members and the same elements are denoted by the same reference numerals and description thereof will be omitted.
[0044]
In FIG. 6, the ultrasonic flowmeter 117 includes a tube 1, a lid member 5 for sealing both ends of the tube 4 in a sealed manner, and a lid member, similarly to the case of the heat exchanger 114. It has a union nut 6 for tightening 5 to the end of the tube 4. As device elements, an ultrasonic oscillator 51 for an ultrasonic flowmeter is provided on one bottom wall 9 of the lid members 5 at both ends of the tube 4 of the casing 1, and an ultrasonic receiver is provided on the other bottom wall 9. 52 are incorporated.
In such a case, for example, pure water or ultrapure water flows from the inlet port 30 provided in the body wall portion 7 of one lid member 5 and flows through the tube 4 toward the outlet port 31 provided in the other lid member 5. That is, the flow rate can be measured using the Doppler displacement of ultrasonic waves due to the flow of water or a chemical solution. An inlet port 30 and an outlet port 31 provided on the lid members 5 are connected to appropriate positions in a piping system of the chemical liquid supply piping system B. The other structures of the casing 1 and the connection structure between the end of the tube 4 and the lid member 5 are the same as those of the heat exchanger 114, and therefore the same members and the same elements are denoted by the same reference numerals and their description. Is omitted.
[0045]
In FIG. 7, the manual deaeration device 118 includes a tube 4 in which the casing 1 is disposed in a vertical position, a pair of upper and lower lid members 5 that seal the upper and lower ends of the tube 4 in a sealed manner, and A union nut 6 for fastening the lid member 5 to the upper and lower ends of the tube 4 is provided. As the device elements, the inlet port 30 is incorporated in the body wall portion 7 of the upper lid member 5, the air vent tube 53 and the manual air vent valve 54 are incorporated in the bottom wall portion 9. An outlet port 31 is provided in the body wall portion 7 of the lower lid member 5. At this time, by opening the air vent valve 54, the air stays in the tube 4 from the inlet port 30 of the upper lid member 5 and flows out to the outlet port 31 of the lower lid member 5, for example, pure water or ultra-pure water. That is, air bubbles in pure water or a chemical solution can be removed. An inlet port 30 and an outlet port 31 provided on the lid members 5 are connected to appropriate positions in a piping system of the chemical liquid supply piping system B. The other connection structure between the end of the casing 1 and the tube 4 and the lid member 5 is the same as that of the heat exchanger 114, and therefore the same members and the same elements are denoted by the same reference numerals and description thereof will be omitted. I do.
[0046]
In FIG. 8, the automatic deaeration device 119 includes an automatic air bleeding valve 55 that operates in conjunction with a liquid level sensor 56 disposed outside the tube 4 arranged in the vertical position, to the air bleeding tube 53. When the liquid level sensor 56 detects the liquid level in the tube 4 with the liquid level sensor 56, the air vent valve 55 is opened and the air accumulated in the liquid is discharged, except for the manual degassing device shown in FIG. This is the same as the configuration and operation in the case. For this reason, the same members and the same elements are denoted by the same reference numerals and description thereof will be omitted.
[0047]
In FIG. 9, a degassing module 120 is a device in which a plurality of gas-permeable tubes 57 made of a foamed fluororesin are passed through a tube 4 as a device element in a bundled state, and a degassing port 58 is provided in a lid member 5. It is. Both ends of the gas permeable tube 57 are connected to an inflow pipe 61 and an outflow pipe 62 respectively passed through an inlet 59 and an outlet 60 provided in each bottom wall 9 of the lid member 5 at both ends of the tube 4. The inflow pipe 61 and the outflow pipe 62 are connected to appropriate locations in the piping system of the chemical solution supply piping system B.
[0048]
Now, for example, when a chemical solution is passed from the inflow pipe 61 into the gas permeable tube 57 while the inside of the tube 4 is depressurized from the deaeration port 58 by a vacuum pump or the like, gas such as air dissolved in the chemical solution becomes gas permeable. This is a degassing module that passes through the peripheral wall of the tube 57 and is removed to the outside of the gas permeable tube 57 to perform degassing, and the chemical solution after degassing is discharged to the outflow pipe 62. The other connection structure between the end of the casing 1 and the tube 4 and the lid member 5 is the same as that of the heat exchanger 114, and therefore the same members and the same elements are denoted by the same reference numerals and description thereof will be omitted. I do.
[0049]
The degassing module 120 shown in FIG. 9 can also be used as a gas dissolving device. When used as a gas dissolving device, the deaeration port 58 is used as a dissolving gas supply port, and while a dissolving gas such as ozone is supplied under pressure into the tube 4, for example, ultrapure water or a chemical solution is supplied from the inflow pipe 61. When the gas passes through the gas permeable tube 57, the soluble gas in the tube 4 passes through the peripheral wall of the gas permeable tube 57 and is dissolved in ultrapure water or a chemical solution in the gas permeable tube 57. The liquid to be treated can be used for a gas dissolving device that discharges the liquid to the outflow pipe 62.
[0050]
(Other Examples of Casing of Tube Device)
As the overall shape of the casing 1 of the tube device, instead of being formed into a straight tube as in each of the above embodiments, an applied form such as an L shape as shown in FIG. 10 or a U shape as shown in FIG. Can be adopted. In this case, the L-shaped casing 1 shown in FIG. 10 has two first and second tubes 4A and 4B, two first and second lid members 5A and 5B, and one elbow-shaped fluororesin. A joining member 39 made of a synthetic resin is used, and in the U-shaped casing 1 shown in FIG. 10, three first, second, and third tubes 4A, 4B, 4C, two first and second lid members 5A, 5B and two first and second joining members 39A and 39B made of synthetic resin such as an elbow-shaped fluororesin.
[0051]
In the L-shaped casing 1 shown in FIG. 10, the other ends of the first and second tubes 4A, 4B in which the first and second lid members 5A, 5B are connected to the respective one ends by the first union nut 6A. Are connected to each other by one elbow-shaped joining member 39 and a pair of second union nuts 40B. In this case, the connection structure for connecting the first and second lid members 5A and 5B to one end of each of the first and second tubes 4A and 4B is described below. The structure is the same as that of the connection structure with the member 5.
[0052]
The joining member 39 is opened at both ends thereof so as to communicate the receiving ports 41 at right angles to each other. The internal structure of each receiving port 4 is the same as the internal structure of the receiving section 8 of the lid member 5. Since the inner ring 15 having the same cross-sectional shape as the inner ring 15 at each end is press-fitted into the other end of each of the tubes 1A and 4B, the first tube is inserted into the socket 41 at one end of the joining member 39. The other end of the second tube 4B is connected to the other end of the tube 4A, and the other end of the second tube 4B is connected to the other end 41 of the first and second tubes 4A and 4B. The lid members 5A and 5B are connected via the same connection structure as that of the connection structure to the receptacle 8. The fluid tube 3 is bent at a right angle inside the joining member 39.
[0053]
In the U-shaped casing 1 shown in FIG. 11, a lid member 5 is connected to one end of each of the first and second tubes 4 </ b> A and 4 </ b> B by a first union nut 6. The tube 4C is connected by two elbow-shaped joining members 39 and a pair of second union nuts 40B. Also in this case, the connection structure for connecting the receptacle 8 of the first and second lid members 5 to one end of each of the first and second tubes 4A and 4B is the same as that of the end of the tube 4 of each of the above-described embodiments. The configuration is the same as in the case of the connection structure between the unit and the lid member 5. Then, a connection structure for connecting the receptacle 41 of each joining member 39 to the other end of each of the first and second tubes 4A and 4B, and the connecting structure of each joining member 39 to both ends of the third tube 4C. The connection structure for connecting the receptacle 41 is connected in the same manner as the connection structure for the receptacle 8 of the first and second lid members 5 at one end of the first and second tubes 4A and 4B, respectively. You. The fluid tube 3 is bent at a right angle inside each joint member 39.
Note that the casing 1 may be configured in a shape obtained by combining the L-shaped casing 1 in FIG. 10 and the U-shaped casing 1 in FIG.
[0054]
As described above, by forming the casing 1 of the tube device into an L shape or a U shape, a compact piping system can be assembled by effectively utilizing the dead space of the piping. Further, it is advantageous that the shape can be adapted to a modification request of the piping system such as a case where a tube device is newly installed in the existing piping.
[0055]
(Other Examples of Sealing Part)
As the seal portion formed between the end of the tube 4 and the receiving portion 8 of the lid member 5, in addition to the first and second seal portions 19 and 21 as in the embodiment shown in FIG. By adding the third seal portion 23 formed by the cylindrical portion 24 of the inner ring 15 and the annular groove portion 13 of the lid member 5, the sealing performance can be more reliably improved, but is not necessarily limited to this. Absent. In addition, for example, as shown in FIG. 12, only the first and second seal portions 19 and 21 are formed and the third seal portion 23 is omitted, that is, the annular groove portion 13 is provided in the inner part of the lid member 5. May not be provided, and the cylindrical portion 24 may not be provided on the inner ring 15. In this case, the first sealing surface 10 provided inside the lid member 5 has a crossing shape opposite to the axis C with respect to the second sealing surface 11, that is, gradually contracts outward in the direction of the axis C. It is constituted by a tapered surface that has a diameter.
[0056]
As shown in FIG. 13, a sealing surface 42 formed of a tapered surface having a diameter larger than the inner diameter of the tube 4 is formed on the outer periphery of the end of the receiving portion 8 of the lid member 5 on the distal end side. A male screw 14 having a diameter larger than the outer diameter of the sealing surface 42 is formed on the outer periphery at the rear. On the other hand, the end of the tube 4 is flared to form an enlarged diameter portion 43. Thus, the enlarged diameter portion 43 at the end of the tube 4 is pressed into the sealing surface 42 of the lid member 5. Then, the female screw 25 of the union nut 6 externally fitted to the tube 4 is screwed into the male screw 14 of the lid member 5 and tightened, and the pressing edge 26 a of the annular flange 26 of the union nut 6 is applied to the outside of the tube 4. The sealing portion 44 can also be formed by pressing the inner peripheral surface of the enlarged diameter portion 43 against the sealing surface 42 of the receiving portion 8 from the axial direction so as to be in close contact therewith.
[0057]
As shown in FIG. 14, an inner ring 45 made of synthetic resin such as fluororesin and having an arc-shaped cross section is press-fitted into the end of the tube 4 to expand and expand the end of the tube 4 into a mountain-shaped cross section. The union nut 6 screwed into the male screw 14 of FIG. 5 is screwed forward and strongly tightened, so that the end of the tube 4 together with the inner ring 45 is tapered at the inner periphery of the receptacle 8 of the lid member 5. A seal structure in which the seal portion 47 is formed by pressing the seal surface 46 into close contact therewith may be employed.
[0058]
As shown in FIG. 15, a union in which an outer ring 48 is fitted into the end of the tube 4, the end of the tube 4 is folded over the outer surface of the outer ring 48, and screwed to the male screw 14 of the lid member 5. By screwing the nut 6 and tightening it tightly, the end of the tube 4 is pressed together with the outer ring 48 against the sealing surface 49 in the receiving portion 8 of the lid member 5 so that the sealing portion 50 is tightly attached. The seal structure may be formed.
[0059]
Of course, it goes without saying that the present invention can be similarly applied to various piping systems other than the chemical supply piping system of the semiconductor manufacturing apparatus.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an overall configuration of a semiconductor wafer (substrate) cleaning apparatus including a chemical solution supply piping system which is an example of a piping system of the present invention.
FIG. 2 is a cross-sectional view of a heat exchanger which is an example of the tube device in FIG.
FIG. 3 is an enlarged cross-sectional view of a connection structure between a tube end and a lid member of the heat exchanger of FIG. 2;
FIG. 4 is a sectional view of a filter device which is another example of the tube device.
FIG. 5 is a cross-sectional view showing another example of the filter device.
FIG. 6 is a sectional view of an ultrasonic flowmeter which is another example of the tube device.
FIG. 7 is a cross-sectional view of a manual deaeration device as still another example of the tube device.
FIG. 8 is a sectional view of an automatic deaeration device as still another example of the tube device.
FIG. 9 is a sectional view of a degassing module which is still another example of the tube device.
FIG. 10 is a sectional view showing another example of the casing of the tube device.
FIG. 11 is a sectional view showing still another example of the casing of the tube device.
FIG. 12 is a cross-sectional view showing another example of the sealing portion of the tube device.
FIG. 13 is a cross-sectional view showing still another example of the sealing portion of the tube device.
FIG. 14 is a cross-sectional view showing still another example of the sealing portion of the tube device.
FIG. 15 is a cross-sectional view showing still another example of the sealing portion of the tube device.
FIG. 16 is a front view of a conventional tube device (heat exchanger).
FIG. 17 is a cross-sectional view of the heat exchanger of FIG.
[Explanation of symbols]
1 casing
3 Filter member
4,4A, 4B, 4C tube
5,5A, 5B Lid member
6 First union nut
8 Receiving part
10, 11, 12, 42, 46, 49 Sealing surface
13 annular groove
15 Inner ring
16 Press-fit section
17 Projection
19, 21, 23, 44, 47, 50 Seal part
20 Inward tapered surface
22 Projecting end face
24 cylindrical part
28a, 28b Piping for fluid introduction and discharge
29a, 29b connection
39, 39A, 39B Joining member
40 Second union nut
51 Ultrasonic oscillator
52 ultrasonic receiver
54 Manual valve for venting
55 Automatic valve for bleeding air
57 Gas permeable tube
58 Deaeration port / soluble gas supply port
114 heat exchanger
115,116 Filter device
117 Ultrasonic flowmeter
118 Manual degassing device
119 Automatic deaeration device
120 Degassing module

Claims (14)

配管系の途中に、ケーシングにデバイス要素を配備してあるチューブデバイスが介入されている半導体製造装置等の配管システムであって、
前記ケーシングが、
合成樹脂製のチューブと、このチューブの一端部及び他端部をそれぞれ受け入れる受口部、及びこの受口部内に設けられた少なくとも1つのシール面を備えた1対の合成樹脂製の蓋部材と、
前記チューブの一端部及び他端部にそれぞれ外嵌されるとともに前記蓋部材の一端部に螺合される合成樹脂製のユニオンナットと、
前記ユニオンナットが前記蓋部材の一端部への螺進による締め付けにより前記チューブをこれの外側から押圧し、この押圧作用により前記チューブの端部と前記蓋部材のシール面とが密着することにより形成された少なくとも1箇所のシール部と、
を備えていることを特徴とする、半導体製造装置等の配管システム。
A piping system such as a semiconductor manufacturing apparatus in which a tube device having a device element provided in a casing is interposed in the middle of the piping system,
Said casing,
A pair of synthetic resin tubes having a synthetic resin tube, a receiving portion for receiving one end and the other end of the tube, and at least one sealing surface provided in the receiving portion; ,
A union nut made of a synthetic resin screwed to one end and the other end of the tube, and screwed to one end of the lid member,
The union nut presses the tube from the outside thereof by screwing to one end of the lid member, and the pressing action forms the end of the tube and the sealing surface of the lid member in close contact. At least one sealed portion,
A piping system for a semiconductor manufacturing apparatus or the like, comprising:
前記シール部が、前記蓋部材の受口部の入口より内奥に、該蓋部材の軸線方向の外方に向けて漸次拡径するテーパ面により構成されるシール面と、前記チューブの端部に該端部を断面山形状に拡径膨出させるように圧入されたインナーリングの、前記チューブの端部から突出する突出部の先端に形成したテーパ面からなる突出端面との密着により形成されている、請求項1に記載の半導体製造装置等の配管システム。A sealing surface formed by a tapered surface that gradually expands toward the outside in the axial direction of the lid member, wherein the sealing portion has an inner portion deeper than an inlet of a receiving portion of the lid member, and an end portion of the tube. The inner ring is press-fitted so as to expand its end into a mountain-shaped cross-section, and is formed by close contact with a protruding end surface formed of a tapered surface formed at the tip of a protruding portion protruding from the end of the tube. The piping system of the semiconductor manufacturing apparatus or the like according to claim 1, wherein 前記シール部が、前記蓋部材の受口部の入口に、該蓋部材の軸線に対して交差するテーパ面により構成されたシール面と、前記チューブの端部に該端部を断面山形状に拡径膨出させるように圧入されたインナーリングの圧入部の斜面部に形成された内向きテーパ面との間で前記チューブの端部を傾斜状態に挟持してシール部を形成している、請求項1又は2に記載の半導体製造装置等の配管システム。The sealing portion has a sealing surface formed by a tapered surface intersecting with the axis of the lid member at the entrance of the receiving portion of the lid member, and the end portion of the tube has a mountain-shaped cross section at the end portion. A seal portion is formed by sandwiching the end of the tube in an inclined state between the inner ring and the inwardly tapered surface formed on the slope of the press-fit portion of the inner ring press-fit so as to expand and expand. A piping system such as the semiconductor manufacturing apparatus according to claim 1. 前記シール部が、蓋部材の受口部の内奥の前記シール面よりも径方向外方に蓋部材の軸線と平行に形成された環状溝部に、前記チューブの端部に圧入されたインナーリングの突出部の先端に形成した円筒部を嵌入してシール部を形成している、請求項2又は3に記載の半導体製造装置等の配管システム。An inner ring in which the seal portion is press-fitted into an end portion of the tube in an annular groove formed radially outward of the seal surface inside the receiving portion of the lid member and parallel to the axis of the lid member. The piping system for a semiconductor manufacturing apparatus or the like according to claim 2, wherein a cylindrical portion formed at a tip of the protruding portion is fitted to form a seal portion. 配管系の途中に、ケーシングにデバイス要素を配備してあるチューブデバイスが介入されている半導体製造装置等の配管システムであって、
前記ケーシングが、互いに直角に配される合成樹脂製の第1,2のチューブを備えるとともに、第1,2のチューブの各一端部に合成樹脂製の蓋部材を合成樹脂製の第1のユニオンナットで接続し、第1,2のチューブの他端部同士を、1個のエルボ形状の合成樹脂製の接合部材及び1対の合成樹脂製の第2のユニオンナットで接続しており、
前記蓋部材は前記第1,2のチューブの各一端部を受け入れる受口部、及びこの受口部内に設けられた少なくとも1つのシール面を備えており、
前記第1のユニオンナットは、前記第1,2のチューブの各一端部に外嵌されるとともに前記蓋部材の一端部に螺合され、前記蓋部材の一端部への螺進による締め付けにより前記第1,2の各チューブをこれの外側から押圧し、この押圧作用により前記第1,2のチューブの各一端部と前記蓋部材のシール面とを密着させて少なくとも1箇所のシール部を形成しており、
前記接合部材は、両端に受口を互いに直交状に連通するよう形成し、一端の受口に第1のチューブの他端部が、また他端の受口に第2のチューブの他端部が、それぞれ、前記第1,2の各チューブの一端部の蓋部材の受口に対する接続構造の場合と同様の接続構造を介して接続されていることを特徴とする、半導体製造装置等の配管システム。
A piping system such as a semiconductor manufacturing apparatus in which a tube device having a device element provided in a casing is interposed in the middle of the piping system,
The casing includes first and second synthetic resin tubes arranged at right angles to each other, and a synthetic resin lid member is provided at one end of each of the first and second tubes with a first union made of synthetic resin. The other ends of the first and second tubes are connected to each other by one elbow-shaped synthetic resin joining member and a pair of synthetic resin second union nuts.
The lid member has a receiving portion for receiving one end of each of the first and second tubes, and at least one sealing surface provided in the receiving portion,
The first union nut is externally fitted to one end of each of the first and second tubes, and is screwed to one end of the lid member. The first union nut is screwed to one end of the lid member to tighten the screw. Each of the first and second tubes is pressed from the outside thereof, and by this pressing action, one end of each of the first and second tubes is brought into close contact with the sealing surface of the lid member to form at least one seal portion. And
The joining member is formed so that the receiving ports communicate with each other at right angles at both ends, the other end of the first tube is provided at one receiving port, and the other end of the second tube is provided at the other receiving port. Are connected through the same connection structure as in the case of the connection structure of the one end of each of the first and second tubes to the receptacle of the lid member, wherein the piping is a semiconductor manufacturing apparatus or the like. system.
配管系の途中に、ケーシングにデバイス要素を配備してあるチューブデバイスが介入されている半導体製造装置等の配管システムであって、
前記ケーシングが、互いに平行に対向配備される合成樹脂製の第1,2のチューブと、第1,2のチューブの各一端部に合成樹脂製の第1のユニオンナットで接続した合成樹脂製の蓋部材と、第1,2のチューブの他端部同士間に2個のエルボ形状の合成樹脂製の接合部材及び1対の合成樹脂製の第2のユニオンナットで接続した合成樹脂製の第3のチューブとを備えており、
前記蓋部材は前記第1,2のチューブの各一端部を受け入れる受口部、及びこの受口部内に設けられた少なくとも1つのシール面を備えており、
前記第1のユニオンナットは、前記第1,2のチューブの各一端部に外嵌されるとともに前記蓋部材の一端部に螺合され、前記蓋部材の一端部への螺進による締め付けにより前記第1,2の各チューブをこれの外側から押圧し、この押圧作用により前記第1,2のチューブの各一端部と前記蓋部材のシール面とを密着させて少なくとも1箇所のシール部を形成しており、
前記接合部材は、両端に受口を互いに直交状に連通するよう形成し、第1,2のチューブの各他端部に対して各接合部材の受口を接続する接続構造、および第3のチューブの両端部に対して各接合部材の受口を接続する接続構造は、それぞれ、前記第1,2のチューブの各一端部の蓋部材の受口に対する接続構造の場合と同様に接続されていることを特徴とする、半導体製造装置等の配管システム。
A piping system such as a semiconductor manufacturing apparatus in which a tube device having a device element provided in a casing is interposed in the middle of the piping system,
The casing is a synthetic resin first and second tubes arranged in parallel and opposed to each other, and a synthetic resin first union nut connected to one end of each of the first and second tubes. A lid member and a synthetic resin second joint nut connected between the other ends of the first and second tubes by two elbow-shaped synthetic resin joining members and a pair of synthetic resin second union nuts. And three tubes,
The lid member has a receiving portion for receiving one end of each of the first and second tubes, and at least one sealing surface provided in the receiving portion,
The first union nut is externally fitted to one end of each of the first and second tubes, and is screwed to one end of the lid member. The first union nut is screwed to one end of the lid member to tighten the screw. Each of the first and second tubes is pressed from the outside thereof, and by this pressing action, one end of each of the first and second tubes is brought into close contact with the sealing surface of the lid member to form at least one seal portion. And
A third connecting structure for connecting the receiving ports of the respective connecting members to the other ends of the first and second tubes; The connection structures for connecting the receptacles of the respective joining members to both ends of the tube are connected in the same manner as the connection structure for the receptacles of the lid members at one end of the first and second tubes, respectively. A piping system for a semiconductor manufacturing device or the like.
前記チューブ、前記蓋部材、および前記ユニオンナットが全てフッ素樹脂からなる、請求項1ないし6のいずれか1項に記載の半導体製造装置等の配管システム。The piping system of a semiconductor manufacturing device or the like according to any one of claims 1 to 6, wherein the tube, the lid member, and the union nut are all made of a fluororesin. 前記デバイス要素が、前記ケーシング内に通されたフッ素樹脂製の熱交換チューブと、前記蓋部材に備えられた、前記ケーシングの内部と前記熱交換チューブの外部との間を通過する流体の導入用及び導出用の配管が接続される接続部である、請求項1ないし7のいずれか1項に記載の半導体製造装置等の配管システム。The device element is for introducing a fluid that passes between the inside of the casing and the outside of the heat exchange tube, which is provided on the lid member and provided with the heat exchange tube made of fluororesin passed through the casing. The piping system for a semiconductor manufacturing apparatus or the like according to claim 1, wherein the piping system is a connection part to which the piping for connection is connected. 前記デバイス要素が、前記ケーシング内に収容されたフィルター部材である、請求項1ないし7のいずれか1項に記載の半導体製造装置等の配管システム。The piping system of a semiconductor manufacturing apparatus or the like according to any one of claims 1 to 7, wherein the device element is a filter member housed in the casing. 前記デバイス要素が、前記チューブの両端の蓋部材に組み込まれた超音波式流量計用の超音波発振器と超音波受信器である、請求項1ないし7のいずれか1項に記載の半導体製造装置等の配管システム。The semiconductor manufacturing apparatus according to any one of claims 1 to 7, wherein the device elements are an ultrasonic oscillator and an ultrasonic receiver for an ultrasonic flowmeter incorporated in lid members at both ends of the tube. Etc. plumbing system. 前記デバイス要素が、前記蓋部材に組み込まれたエアー抜き用の手動又は自動式のバルブである、請求項1ないし7のいずれか1項に記載の半導体製造装置等の配管システム。The piping system of a semiconductor manufacturing apparatus or the like according to any one of claims 1 to 7, wherein the device element is a manual or automatic valve for air release incorporated in the lid member. 前記デバイス要素が、前記チューブ内に通されたガス透過性チューブと、蓋部材に設けられた脱気口である、請求項1ないし7のいずれか1項に記載の半導体製造装置等の配管システム。The piping system of a semiconductor manufacturing apparatus or the like according to any one of claims 1 to 7, wherein the device elements are a gas permeable tube passed through the tube and a deaeration port provided in a lid member. . 前記デバイス要素が、前記チューブ内に通されたガス透過性チューブと、前記蓋部材に設けられた溶解性ガス供給口である、請求項1ないし7のいずれか1項に記載の半導体製造装置等の配管システム。The semiconductor manufacturing apparatus according to any one of claims 1 to 7, wherein the device elements are a gas permeable tube passed through the tube and a soluble gas supply port provided in the lid member. Plumbing system. 前記ガス透過性チューブが発泡フッ素樹脂からなる、請求項12又は13に記載の半導体製造装置等の配管システム。14. The piping system of a semiconductor manufacturing apparatus or the like according to claim 12, wherein the gas-permeable tube is made of a foamed fluororesin.
JP2003139222A 2003-05-16 2003-05-16 Piping system for semiconductor manufacturing equipment Expired - Lifetime JP3984928B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2003139222A JP3984928B2 (en) 2003-05-16 2003-05-16 Piping system for semiconductor manufacturing equipment
KR1020040032909A KR101042843B1 (en) 2003-05-16 2004-05-11 Tube device and plumbing system having the tube device
TW093113238A TW200427504A (en) 2003-05-16 2004-05-11 Tube device, and piping system including the tube device
DE602004010950T DE602004010950T2 (en) 2003-05-16 2004-05-11 Tubular device and conduit system with such a device
EP04011193A EP1477717B1 (en) 2003-05-16 2004-05-11 Tube device, and piping system including the tube device
US10/844,881 US7314239B2 (en) 2003-05-16 2004-05-13 Tube device, and piping system including the tube device
CN2004100432514A CN1550747B (en) 2003-05-16 2004-05-14 Tube device, and piping system including the tube device
US11/938,804 US7695026B2 (en) 2003-05-16 2007-11-13 Tube device, and piping system including the tube device
KR1020110005877A KR101097621B1 (en) 2003-05-16 2011-01-20 Tube device and plumbing system having the tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139222A JP3984928B2 (en) 2003-05-16 2003-05-16 Piping system for semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2004340304A true JP2004340304A (en) 2004-12-02
JP3984928B2 JP3984928B2 (en) 2007-10-03

Family

ID=33528375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139222A Expired - Lifetime JP3984928B2 (en) 2003-05-16 2003-05-16 Piping system for semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3984928B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194398A (en) * 2005-01-17 2006-07-27 Nippon Pillar Packing Co Ltd Double pipe joint
JP2006200617A (en) * 2005-01-20 2006-08-03 Nippon Pillar Packing Co Ltd Double pipe joint
JP2014052176A (en) * 2012-09-05 2014-03-20 Hwaseung R&A Co Ltd Double pipe for heat exchange
JP2018049872A (en) * 2016-09-20 2018-03-29 栗田工業株式会社 Diluted chemical liquid producing device and diluted chemical liquid producing method
KR101938086B1 (en) 2017-09-06 2019-01-11 소진설 Gasket
EP3791100A4 (en) * 2018-05-07 2022-01-26 Entegris, Inc. Fluid circuit with integrated electrostatic discharge mitigation
CN114314713A (en) * 2022-01-20 2022-04-12 合肥亦威科技有限公司 Lifting device of pure water generation system and use method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194398A (en) * 2005-01-17 2006-07-27 Nippon Pillar Packing Co Ltd Double pipe joint
JP2006200617A (en) * 2005-01-20 2006-08-03 Nippon Pillar Packing Co Ltd Double pipe joint
JP2014052176A (en) * 2012-09-05 2014-03-20 Hwaseung R&A Co Ltd Double pipe for heat exchange
US9513061B2 (en) 2012-09-05 2016-12-06 Hs R & A Co., Ltd. Dual pipe for heat exchange
KR102429860B1 (en) * 2016-09-20 2022-08-04 쿠리타 고교 가부시키가이샤 Diluted chemical solution manufacturing apparatus and diluted chemical solution manufacturing method
JP2018049872A (en) * 2016-09-20 2018-03-29 栗田工業株式会社 Diluted chemical liquid producing device and diluted chemical liquid producing method
WO2018055801A1 (en) * 2016-09-20 2018-03-29 栗田工業株式会社 Dilute chemical solution-producing apparatus and dilute chemical solution-producing method
KR20190053816A (en) * 2016-09-20 2019-05-20 쿠리타 고교 가부시키가이샤 Diluent liquid manufacturing apparatus and diluting liquid manufacturing method
US10759678B2 (en) 2016-09-20 2020-09-01 Kurita Water Industries Ltd. Dilute chemical solution producing apparatus and dilute chemical solution producing method
KR101938086B1 (en) 2017-09-06 2019-01-11 소진설 Gasket
US11339063B2 (en) 2018-05-07 2022-05-24 Entegris, Inc. Fluid circuit with integrated electrostatic discharge mitigation
EP3791100A4 (en) * 2018-05-07 2022-01-26 Entegris, Inc. Fluid circuit with integrated electrostatic discharge mitigation
CN114314713A (en) * 2022-01-20 2022-04-12 合肥亦威科技有限公司 Lifting device of pure water generation system and use method
CN114314713B (en) * 2022-01-20 2023-12-01 合肥亦威科技有限公司 Lifting device of pure water generation system and use method

Also Published As

Publication number Publication date
JP3984928B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
KR101097621B1 (en) Tube device and plumbing system having the tube device
TWI415665B (en) Filtration module
US20010035093A1 (en) Gas permeable membrane apparatus
JP5302002B2 (en) Low-profile mounting parts and mounting part assemblies without O-rings
JP2006153419A (en) Fluid heater and fluid heating apparatus
KR19990024027A (en) Adjustable Leak-proof Fastening System
JP2011503449A (en) Seal connection that does not require O-ring
JP2004340304A (en) Piping system for semiconductor manufacturing machine, etc.
CN100451412C (en) Valve and fluid system having the valve
EP0397522B1 (en) Corrosive chemical filtration unit, assembly and system
JP2004340300A (en) Tube device
JPH08312846A (en) Sealing retaining wall for pipe-shaped member, sealing method, fluid part with the retaining wall, and fluid device with the fluid part
CN111383890B (en) Air inlet pipeline connecting device and air inlet unit comprising same and used for plasma etching
JP3927920B2 (en) Heat exchanger
CN112469148B (en) Clean fluid tubular heater with two-stage sealing structure and sealing method
JP3847909B2 (en) Deaeration device and deaeration method
JP2004154725A (en) All-fluororesin membrane module
US20080048437A1 (en) Method and apparatus for end-to-end coupling of component bores
JPH01189304A (en) Tube-port filter
JPH025279Y2 (en)
US20090090417A1 (en) Sanitary replaceable fluid disbursement device for use in bioreactors
JP2005305442A (en) Deaerator and deaeration method
SU838262A1 (en) Pipeline connection
JP2005305443A (en) Deaerator and deaeration method
JP2010194423A (en) Deaerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3984928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140713

Year of fee payment: 7

EXPY Cancellation because of completion of term