JP2004339566A - 基板処理装置 - Google Patents
基板処理装置 Download PDFInfo
- Publication number
- JP2004339566A JP2004339566A JP2003137462A JP2003137462A JP2004339566A JP 2004339566 A JP2004339566 A JP 2004339566A JP 2003137462 A JP2003137462 A JP 2003137462A JP 2003137462 A JP2003137462 A JP 2003137462A JP 2004339566 A JP2004339566 A JP 2004339566A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- substrate
- chamber
- processing
- processing gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
Abstract
【課題】反応室内における基板表面以外の接ガス面を少なくし、意図しない反応室表面への成膜を低減する。
【解決手段】ウェハ200を載せる基板載置台30が反応室1内に設けられる。反応室を構成するチャンバ2はチャンバ側壁60とチャンバ底板76とチャンバ蓋71とから構成される。チャンバ蓋71は、処理ガス供給口68としての多数の小孔69を形成したシャワープレート70を有するチャンバ下蓋72を有する。処理ガス排気口67としての処理ガス導出管67は、ウェハ200の中心部に対向するシャワープレート70の中心部に設けて反応室1と連通させる。処理ガス排気口67としての処理ガス導出管67をシャワープレート70の中心部に設けることにより、処理ガス排気口67は、多数の小孔69で構成される処理ガス供給口68よりもウェハの中心側に配置される。
【選択図】 図1
【解決手段】ウェハ200を載せる基板載置台30が反応室1内に設けられる。反応室を構成するチャンバ2はチャンバ側壁60とチャンバ底板76とチャンバ蓋71とから構成される。チャンバ蓋71は、処理ガス供給口68としての多数の小孔69を形成したシャワープレート70を有するチャンバ下蓋72を有する。処理ガス排気口67としての処理ガス導出管67は、ウェハ200の中心部に対向するシャワープレート70の中心部に設けて反応室1と連通させる。処理ガス排気口67としての処理ガス導出管67をシャワープレート70の中心部に設けることにより、処理ガス排気口67は、多数の小孔69で構成される処理ガス供給口68よりもウェハの中心側に配置される。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は基板処理装置に係り、特に処理ガスの排気を改善したものに関する。
【0002】
【従来の技術】
半導体製造装置やLCD製造装置等といった基板処理装置は、基板にガスを供給することにより基板への薄膜形成、不純物ドーピング、表面処理などを行う。このような処理を行う基板処理装置として、枚葉式CVD装置が知られている。
【0003】
図3は、そのような従来の枚葉式熱CVD装置の構成要素となる処理炉の概略図を示す。この装置は、内部に反応室1を形成するチャンバ2と、反応室1に設けた基板載置台30と、ウェハ200と対向する反応室1の上部に設けられ、処理ガス供給口となる多数の貫通孔(小孔)69を有するシャワープレート70と、チャンバ2の側壁60に設けた処理ガス排気口75及び基板搬入搬出口66とを備える。上述したシャワープレート70の多数の小孔69は、チャンバ2の頂部に設けた処理ガス導入管75と連通されて、処理ガス導入管75から導入された処理ガスを反応室1内に供給するようになっている。
【0004】
この枚葉式熱CVD装置の処理炉を用いてウェハの成膜処理工程を行うには、原料を含有するガス(以下、処理ガス)を処理ガス導入管75よりチャンバ2の頂部から導入して、シャワープレート70の多数の小孔69を介して反応室1にシャワー状に供給する。これにより基板載置台30上に載置したウェハ200の表面においてCVD反応により成膜が行われる。成膜に寄与しなかったガスは、基板載置台30とチャンバ側壁60とに形成される隙間13から処理ガス排気口75を通って、処理炉へ排気される。
【0005】
【発明が解決しようとする課題】
上述した従来技術では、反応室内における意図しない箇所への成膜が問題になる。すなわち、基板表面への成膜が行われる際、処理ガスが成膜対象である基板表面ばかりでなく、基板表面以外の接ガス面(処理ガスと接触する物体表面)への成膜、例えば基板外周側面(エッジ)への成膜、あるいは基板裏面へのガス回り込みが原因と思われる基板裏面への成膜が生じることである。また、基板載置台の表面、チャンバ側壁など反応室内表面へも成膜する。これらの意図しない箇所への成膜は、パーティクル発生の原因となり、歩留まり低下を招く。したがって、これらの意図しない箇所への成膜は極力抑制する必要がある。
【0006】
本発明の課題は、上述した従来技術の問題点を解消して、反応室内における基板表面以外の接ガス面を少なくし、意図しない反応室表面への成膜を低減することを可能とする基板処理装置を提供することにある。
【0007】
【問題を解決するための手段】
反応室内における意図しない箇所への成膜が生じる原因は、処理ガス排気口が処理ガス供給口よりも基板の外周側、例えば反応室の側部に配置されているために、処理ガスが処理ガス供給口より反応室内に供給されて処理ガス排気口に至るまでに、基板表面以外に処理ガスに曝される表面が大きいためである。反応室内における意図しない箇所への成膜を抑制するために、基板表面以外の接ガス面が少ない反応室構造が望ましい。本発明者は、処理ガス排気口の配置場所を変更することによって、基板表面以外の接ガス面が少ない反応室構造を実現できるとの知見を得て本発明を創案するに至ったものである。
【0008】
第1の発明は、基板を処理する反応室と、前記反応室内に設けられ前記基板を載置する基板載置手段と、前記反応室内に処理ガスを供給する処理ガス供給口と、前記反応室内を排気する処理ガス排気口と、を備え、前記処理ガス供給口および前記処理ガス排気口を、前記基板載置手段に載置される基板の表面と対向する位置に設け、前記処理ガス排気口が、前記処理ガス供給口よりも前記基板の中心側に配置されていることを特徴する基板処理装置である。
【0009】
処理ガス排気口が、処理ガス供給口よりも基板の中心側に配置されていると、処理ガス供給口より供給された処理ガスは、基板表面に供給された後、基板中心に向かって流れ、基板の中心側に配置されている処理ガス排気口より排気される。つまり、処理ガス排気口が処理ガス供給口よりも基板の外周側に配置されている場合に基板の中心側から基板の外周へ向かっていたガス流れが、基板の外周から基板の中心側へ向かうよう変化する。したがって、反応室内における基板表面以外の接ガス面が低減され、反応室内における意図しない箇所への成膜が低減される。
なお、基板の中心側としては基板の中心部と対向する中心位置が好ましい。処理ガス排気口は基板の中心側に1箇所だけ設けることが好ましいが、処理ガス供給口は処理ガス排気口の周りに複数箇所均一に設けることが好ましい。また、処理ガスには、処理原料ガスを含むガスも含まれ、通常、処理ガスは処理原料ガスが希釈ガスで希釈されてたものである。
【0010】
第2の発明は、第1の発明において、前記処理ガス供給口が、基板の表面と対向する位置に基板を投影した基板投影領域の外側に設けられることを特徴とする。処理ガス供給口が基板投影領域の外側に設けられていると、処理ガス供給口が処理ガス排気口の周りに複数箇所均一に設けられているような場合、基板上を処理ガス供給口から処理ガス排気口へ向かう全処理ガス中に占める処理原料ガスの割合が基板面内で一定となり、基板面内の原料濃度分布が均一化する。
【0011】
第3の発明は、第1又は第2の発明において、前記基板載置手段に前記基板が載置されたときの基板の表面に対向しない位置に、不活性ガスを供給するパージガス供給口を設けたことを特徴とする。パージガス供給口から不活性ガスが供給されると、処理ガス供給口から供給される処理ガスの基板表面以外への拡散による処理ガスの広がりを抑制できる。
【0012】
第4の発明は、基板を処理する反応室と、前記反応室内に設けられ前記基板を載置する基板載置手段と、前記反応室内に処理ガスを供給する処理ガス供給口と、前記反応室内を排気する処理ガス排気口と、を備え、前記処理ガス供給口および前記処理ガス排気口を、前記基板載置手段に載置される基板の表面と対向する位置に設けた基板処理装置を用いて基板を処理する半導体装置の製造方法であって、前記処理ガス排気口が、前記処理ガス供給口よりも前記基板の中心側に配置されて、前記処理ガス供給口から前記基板上に前記処理ガスを供給し前記基板上を流れたガスを前記処理ガス排気口より排気して前記基板を処理することを特徴する半導体装置の製造方法である。処理ガス供給口から供給された処理ガスは基板表面に供給された後、基板中心に向かって流れ、基板中心側に対向した処理ガス排気口より排気される。したがって、基板表面以外の反応室内の表面が処理ガスに曝されることなく、反応室内における基板表面以外の接ガス面が低減され、反応室内における意図しない箇所への成膜が低減される。
【0013】
【発明の実施の形態】
以下に本発明の実施の形態を図面を用いて説明する。
【0014】
図6において、本発明が適用される基板処理装置の概要を説明する。
なお、本発明が適用される基板処理装置においてはウェハなどの基板を搬送するキャリアとしては、FOUP(Front opening unified pod、以下、ポッドという)が使用されている。また、以下の説明において、前後左右は図6を基準とする。すなわち、図6が示されている紙面に対して、前は紙面の下、後ろは紙面の上、左右は紙面の左右とする。
【0015】
図6に示されているように、基板処理装置は真空状態などの大気圧未満の圧力(負圧)に耐えるロードロックチャンバ構造に構成された第1の搬送室103を備えており、第1の搬送室103の筐体101は平面視が六角形で上下両端が閉塞した箱形状に形成されている。第1の搬送室103には負圧下でウェハ200を移載する第1のウェハ移載機112が設置されている。前記第1のウェハ移載機112は、エレベータ115によって、第1の搬送室103の気密性を維持しつつ昇降できるように構成されている。
【0016】
筐体101の六枚の側壁のうち前側に位置する二枚の側壁には、搬入用の予備室122と搬出用の予備室123とがそれぞれゲートバルブ244,127を介して連結されており、それぞれ負圧に耐え得るロードロックチャンバ構造に構成されている。さらに、予備室122には搬入室用の基板置き台140が設置され、予備室123には搬出室用の基板置き台141が設置されている。
【0017】
予備室122および予備室123の前側には、略大気圧下で用いられる第2の搬送室121がゲートバルブ128,129を介して連結されている。第2の搬送室121にはウェハ200を移載する第2のウェハ移載機124が設置されている。第2のウェハ移載機124は第2の搬送室121に設置されたエレベータ126によって昇降されるように構成されているとともに、リニアアクチュエータ132によって左右方向に往復移動されるように構成されている。
【0018】
図6に示されているように、第2の搬送室121の左側にはオリフラ合わせ装置106が設置されている。また第2の搬送室121の上部にはクリーンエアを供給するクリーンユニット(図示せず)が設置されている。
【0019】
図6に示されているように、第2の搬送室121の筐体125には、ウェハ200を第2の搬送室121に対して搬入搬出するためのウェハ搬入搬出口134と、前記ウェハ搬入搬出口を閉塞する蓋(図示せず)と、ポッドオープナ108がそれぞれ設置されている。ポッドオープナ108は、IOステージ105に載置されたポッド100のキャップ及びウェハ搬入搬出口134を閉塞する蓋(図示せず)を開閉するキャップ開閉機構(図示せず)とを備えており、IOステージ105に載置されたポッド100のキャップ及びウェハ搬入搬出口134を閉塞する蓋(図示せず)をキャップ開閉機構(図示せず)によって開閉することにより、ポッド100のウェハ出し入れを可能にする。また、ポッド100は図示しない工程内搬送装置(RGV)によって、前記IOステージ105に、供給および排出されるようになっている。
【0020】
図6に示されているように、筐体101の六枚の側壁のうち背面側に位置する二枚の側壁には、ウェハに所望の処理を行う第1の処理炉202と、第2の処理炉137とがそれぞれ隣接して連結されている。第1の処理炉202および第2の処理炉137はいずれもコールドウォール式の処理炉によってそれぞれ構成されている。また、筐体101における六枚の側壁のうちの残りの互いに対向する二枚の側壁には、第3の処理炉としての第1のクーリングユニット138と、第4の処理炉としての第2のクーリングユニット139とがそれぞれ連結されており、第1のクーリングユニット138および第2のクーリングユニット139はいずれも処理済みのウェハ200を冷却するように構成されている。
【0021】
以下、前記構成をもつ基板処理装置を使用した処理工程を説明する。
未処理のウェハ200は例えば25枚がポッド100に収納された状態で、処理工程を実施する基板処理装置へ工程内搬送装置によって搬送されて来る。図6に示されているように、搬送されて来たポッド100はIOステージ105の上に工程内搬送装置から受け渡されて載置される。
【0022】
ポッド100のキャップ及びウェハ搬入搬出口134を開閉する蓋(図示せず)がキャップ開閉機構(図示せず)によって取り外され、ポッド100のウェハ出し入れ口が開放される。
【0023】
ポッド100がポッドオープナ108により開放されると、第2の搬送室121に設置された第2のウェハ移載機124はポッド100からウェハ200をピックアップし、予備室122に搬入し、ウェハ200を基板置き台140に移載する。この移載作業中には、第1の搬送室103側のゲートバルブ244は閉じられており、第1の搬送室103の負圧は維持されている。ウェハ200の基板置き台140への移載が完了すると、ゲートバルブ128が閉じられ、予備室122が排気装置(図示せず)によって負圧に排気される。
【0024】
予備室122が予め設定された圧力値に減圧されると、ゲートバルブ244,130が開かれ、予備室122、第1の搬送室103、第1の処理炉202が連通される。続いて、第1の搬送室103の第1のウェハ移載機112は基板置き台140からウェハ200をピックアップして第1の処理炉202に搬入する。そして、第1の処理炉202内に処理ガスが供給され、所望の処理がウェハ200に行われる。
【0025】
第1の処理炉202で前記処理が完了すると、処理済みのウェハ200は第1の搬送室103の第1のウェハ移載機112によって第1の搬送室103に搬出される。
そして、第1のウェハ移載機112は第1の処理炉202から搬出したウェハ200を第1のクーリングユニット138へ搬入し、処理済みのウェハを冷却する。
【0026】
第1のクーリングユニット138にウェハ200を移載すると、第1のウェハ移載機112は予備室122の基板置き台140に予め準備されたウェハ200を第1の処理炉202に前述した作動によって移載し、第1の処理炉202内に処理ガスが供給され、所望の処理がウェハ200に行われる。
【0027】
第1のクーリングユニット138において予め設定された冷却時間が経過すると、冷却済みのウェハ200は第1のウェハ移載機112によって第1のクーリングユニット138から第1の搬送室103に搬出される。
【0028】
冷却済みのウェハ200が第1のクーリングユニット138から第1の搬送室103に搬出されたのち、ゲートバルブ127が開かれる。そして、第1のウェハ移載機112は第1のクーリングユニット138から搬出したウェハ200を予備室123へ搬送し、基板置き台141に移載した後、予備室123はゲートバルブ127によって閉じられる。
【0029】
予備室123がゲートバルブ127によって閉じられると、前記排出用予備室123内が不活性ガスにより略大気圧に戻される。前記予備室123内が略大気圧に戻されると、ゲートバルブ129が開かれ、第2の搬送室121の予備室123に対応したウェハ搬入搬出口134を閉塞する蓋(図示せず)と、IOステージ105に載置された空のポッド100のキャップがポッドオープナ108によって開かれる。続いて、第2の搬送室121の第2のウェハ移載機124は基板置き台141からウェハ200をピックアップして第2の搬送室121に搬出し、第2の搬送室121のウェハ搬入搬出口134を通してポッド100に収納して行く。処理済みの25枚のウェハ200のポッド100への収納が完了すると、ポッド100のキャップとウェハ搬入搬出口134を閉塞する蓋(図示せず)がポッドオープナ108によって閉じられる。閉じられたポッド100はIOステージ105の上から次の工程へ工程内搬送装置によって搬送されて行く。
【0030】
以上の作動が繰り返されることにより、ウェハが、順次、処理されて行く。以上の作動は第1の処理炉202および第1のクーリングユニット138が使用される場合を例にして説明したが、第2の処理炉137および第2のクーリングユニット139が使用される場合についても同様の作動が実施される。
【0031】
なお、上述の基板処理装置では、予備室122を搬入用、予備室123を搬出用としたが、予備室123を搬入用、予備室122を搬出用としてもよい。また、第1の処理炉202と第2の処理炉137は、それぞれ同じ処理を行ってもよいし、別の処理を行ってもよい。第1の処理炉202と第2の処理炉137で別の処理を行う場合、例えば第1の処理炉202でウェハ200にある処理を行った後、続けて第2の処理炉137で別の処理を行わせてもよい。また、第1の処理炉202でウェハ200にある処理を行った後、第2の処理炉137で別の処理を行わせる場合、第1のクーリングユニット138(又は第2のクーリングユニット139)を経由するようにしてもよい。
【0032】
ところで、上述した処理炉137、202の構成要素となる枚葉式熱CVD装置の反応室内において、上記所望の処理が成膜の場合、基板表面以外の表面に多くの成膜が生じることは前述した通りである。反応室内において基板表面以外の表面へ多くの成膜が生じるのは、処理ガスが導入されて基板表面へ供給された後も、排気口へ至るまでに接ガス面が多く存在するためである。
【0033】
そこで、次に、熱CVD装置の処理炉の構造を変えることなく、この接ガス面を低減することが可能な処理炉を説明する。
【0034】
図1は、そのような枚葉式熱CVD装置の処理炉にかかる第1の実施の形態の概略構成図である。枚葉式熱CVD装置の処理炉は、チャンバ2と、基板載置手段3とを備えている。
【0035】
チャンバ2は、その内部に形成した反応室1内でウェハ200を処理できるように構成されている。チャンバ2は、チャンバ側壁60と、チャンバ底板76と、チャンバ蓋71とを備える。反応室1はこれらチャンバ側壁60、チャンバ底板76及びチャンバ蓋71で囲まれて形成されている。なお、反応室1は平面図的にみた場合には略円形となっている。
【0036】
基板載置手段3は、反応室1内でウェハ200を処理する基板処理位置(図1に示す位置)と基板搬入搬出位置(図1に示す位置よりも下方位置)との間でウェハ200を移動できるようになっている。基板載置手段3はチャンバ2の反応室1内に設けられ、ウェハ200を載置する基板載置台30と、基板載置台30を昇降自在に支持するシャフト55とを備え、シャフト55は、チャンバ2のチャンバ底板76の貫通孔77およびベローズ(図示せず)内に設けられている。また、シャフト55を昇降して、基板載置台30を反応室1内の基板処理位置と基板搬入搬出位置との間で移動させる昇降機構(図示せず)が設けられている。基板載置台30の内部にはヒータ(図示せず)が設けられており、基板載置台30を介してウェハ200を加熱できるようになっている。なお、基板載置手段3は回転しないが、シャフト55に回転機構を設けて回転自在としてもよい。
【0037】
基板載置台30で上下に仕切られる反応室1内の空間のうち、基板載置台30の上側の空間が基板処理に寄与する処理空間11となり、基板載置台30の下側の空間が基板処理に寄与しない非処理空間12となる。基板載置台30とチャンバ側壁60との間には、基板載置台30の移動を許容する環状の隙間13が形成されている。処理ガス(原料ガスを含むガス)の一部は、拡散により基板載置台30の上側の処理空間11からウェハ200上を流れた後、この隙間13を経由して基板載置台30の下側の非処理空間12に流れることがあるが、このガス流量は、隙間13の間隔と隙間の長さとで決まるコンダクタンスにより規制される。
【0038】
チャンバ2のチャンバ側壁60の一側には基板搬入搬出口66が設けられ、この基板搬入搬出口66を介してウェハ200を反応室1内に搬入、またはウェハ200を反応室1から搬出できるようになっている。なお、基板搬入搬出口66には図示しないゲートバルブが設けられ、基板搬入搬出口66を開閉できるようになっている。チャンバ底板76には、パージガス導入管79が反応室1と連通するように設けられており、パージガス例えば窒素ガス(N2)を反応室1内に供給できるようになっている。
【0039】
上述したチャンバ蓋71は、チャンバ下蓋72とチャンバ上蓋73とを備える。チャンバ下蓋72のウェハ200の表面と対向する内周部には、多数の小孔69が形成されたシャワープレート70が設けられ、この多数の小孔69から処理ガスを反応室1内に分散して供給できるようになっている。チャンバ上蓋73は、シャワープレート70を覆ってシャワープレート70との間にガス導入空間74を形成するように設けられている。ガス導入空間74内には多数の小孔62が形成された分散板61がガス導入空間74を上下に仕切るように設けられて、上方のガス導入空間74に導入された処理ガスを下方のガス導入空間74に分散して導入できるようになっている。したがって、処理ガスは分散板61とシャワープレート70とで段階的に分散されて反応室1内にシャワー状に供給されるようになる。
【0040】
基板載置台30に載置されるウェハの表面に対向するチャンバ上蓋71の対向位置に処理ガス排気口67と処理ガス供給口68とが設けられている。ここで、処理ガス供給口68は、シャワープレート70に設けた多数の小孔69で構成されて、反応室1内に処理ガスを供給するようになっている。また、処理ガス排気口67は、シャワープレート70に設けた処理ガス導出管65で構成されて、反応室1内を排気するようになっている。
【0041】
処理ガス排気口67を構成する処理ガス導出管65は、基板載置台30に載置されるウェハ200の中心部と対向するシャワープレート70の中心部に設けられ、反応室1と連通して、ウェハ200上に供給された処理ガスをシャワープレート70の中心部から反応室1外へ排気できるようになっている。具体的には、処理ガス導出管65は、シャワー蓋71の中心部、すなわちシャワープレート70、分散板61、及びチャンバ上蓋73の中心部を貫通するように取り付けられる。チャンバ上蓋73の外側に面する処理ガス導出管65の出口に排気口フランジ66が設けられ、この排気口フランジ66に図示しない真空ポンプに連通する排気配管が接続される。
【0042】
処理ガス供給口68を構成するシャワープレート70の多数の小孔69は、ガス導入空間74及び分散板61の多数の小孔62を介してチャンバ上蓋73に設けた処理ガス導入管75と連通している。処理ガス導入管75は、処理ガス導出管65と干渉しないように、処理ガス導出管65の取り付けられているチャンバ上蓋73の中心位置から外れた周辺部に取り付けられており、処理ガスをガス導入空間74に導入できるようになっている。シャワープレート70の中心部に処理ガス排気口67としての処理ガス導出管65を配置して、処理ガス供給口68としての多数の小孔69をシャワープレート70の周辺部に設けることにより、処理ガス排気口67は、処理ガス供給口68よりもウェハ200の中心側に配置されることになる。
【0043】
次に、上述した処理炉を用いてウェハ200を処理する方法について説明する。
【0044】
まず、反応室1内を所定圧力にするため、処理ガス導入管75及びパージガス導入管79よりN2ガスを反応室1内に流し、処理ガス導出管65を通して真空ポンプ(図示せず)により真空排気を行う。
基板載置台30にはヒータ(図示せず)が備えられており、基板載置台30を所定の温度で安定させる。昇降機構(図示せず)により基板載置台30を基板載置を行うことができる基板載置位置まで下降させておく。
チャンバ2のチャンバ側壁60の一側に開口した基板搬入搬出口66を介して基板移載機構(図示せず。)により、ウェハ200を反応室1内に搬入して、基板載置台30上に載置する。ウェハ載置後、基板搬入搬出口66は図示しないゲートバルブにより閉じる。
【0045】
その後、昇降機構(図示せず)により、成膜プロセスを行う基板処理位置まで基板載置台30を上昇させる(図3に示す状態)。基板載置台30に備えたヒータ(図示せず)により、ウェハ200の温度を成膜プロセスを行うことができる温度にいたるまで安定させる。
【0046】
温度安定後、成膜反応に寄与する処理ガスは、処理ガス導入管75よりガス導入空間74に供給され、多数の小孔62を設けた分散板61により均等に分散され、同じくシャワープレート70に設けた多数の小孔69を通じて基板載置台30上に載置されたウェハ200上にシャワー状に供給される。これによりウェハ200は処理ガスと反応し、ウェハ200表面においてCVD反応により成膜が行われる。
ウェハ200上を流れた処理ガスのうち成膜に寄与しなかったガスや反応生成物(以下、処理済みガスという)は、その大半がシャワープレート70の中心部に設けた処理ガス導出管67から排気口フランジ66を介してチャンバ2外へ排気される。一部の処理済みガスは拡散によりウェハ外周に向かって環状隙間13側に回り込もうとする。これを阻止するために、成膜時に又は常時、チャンバ底板76に設けたパージガス導入管79から不活性ガス(例えばN2)を反応室1内に導入して、被処理空間12から環状隙間13を介して処理空間11へ供給し、ウェハ外周から環状隙間13に回り込もうとす処理済みガスを、ウェハ200の外周よりウェハの内側へ押し込める。
【0047】
ウェハ200上への成膜処理が終了した後、処理ガス導入管75からの処理ガスの供給を止め、処理ガスに代えて反応室1にパージガスの供給を行う。成膜を終了したウェハ200を取り出すため、昇降機構(図示せず)により基板載置台30を基板搬入搬出位置まで降下させる。
ゲートバルブ(図示せず)を開いて基板搬入搬出口66より基板移載機構(図示せず)によりウェハ200を迎えに行き、装置外へ搬出する。
熱CVD装置の処理炉の休止を行うため、反応室1の十分なパージを行った後、基板載置台30に備えたヒータの温度を降下させ、ヒータ電源を落とす。反応室1を大気に戻した後、パージを止め真空ポンプ電源を落とす。
【0048】
上述した本実施の形態において、処理ガス導出管67を、ウェハ中心部の鉛直上に位置するシャワープレート70の中心部に設けているので、シャワープレート70の周辺部に設けた多数の小孔69より導入された処理ガスは、ウェハ表面に供給された後、ウェハ以外の反応室1内の表面に曝される間もなく、直ちにウェハ中心に向かって流れを生じ、ウェハ中心上の処理ガス導出管67より排気される。つまり処理ガスの流れは、ウェハ中心からウェハ外周へ向かうのでなく、ウェハ外周からウェハ中心へ向かうことになる。したがって、処理ガスに曝されるのはウェハ表面のみとなり、ウェハ表面以外の接ガス面を低減することができる。
【0049】
また、原理的にはウェハ外周より外側には処理ガスは流れないはずであるが、実際には拡散により処理ガスがウェハ外周より外側に流れる。このためチャンバ底板76よりパージガス(N2)を流すパージガス導入管79を設けて、このパージガス導入管79からパージガス(N2)を反応室1内に導入し、基板中心側からの強制排気にもかかわらず、拡散によってウェハ中心側からウェハ外周に流れ出そうとする処理済みガスを、ウェハ外周からウェハ中心側に押し込むようにしている。これにより拡散によって意図しない箇所への処理済みガスの回り込みを抑制することができる。特に、パージガス導入管79をチャンバ底板76に設けて、反応室1内に導入されるパージガス(N2)が、基板載置台30とチャンバ側壁60とに形成される隙間13を経由する際に、十分な通気抵抗を受けてコンダクタンス調整が行われるようにしたので、ウェハ外周のどの方向からもパージガスを均等に流すことができる。したがって、基板表面以外の接ガス面を一層低減することができる。
【0050】
このように実施の形態では、処理ガス排気口をウェハ中心に対向するシャワーヘッドの中心に設け、さらにパージガスを反応室底部から供給するようにして、反応室をウェハ表面以外の接ガス面が少ない構造としたので、反応室内における意図しない箇所への成膜が大幅に低減する。すなわち、基板載置台の表面、チャンバー内壁など反応室内表面への成膜が低減する。また、ウェハ外周側面(エッジ)への成膜、あるいはウェハ裏面へのガス回り込みが原因と思われるウェハ裏面への成膜も低減する。したがって、パーティクル発生が低減し、歩留まりが向上する。
【0051】
次に、従来例と実施例とで効果の違いを検討するため、原料含有ガスを反応室内に流すことを想定したガス流れのシミュレーションを行ったので、これを説明する。
ここで留意する点は、ウェハ表面以外の反応室表面付近の原料濃度は低下しつつも、ウェハ表面上の原料濃度の均一性は損なわれてはならない点である。ウェハ表面上の原料濃度均一性が損なわれれば、成腹膜厚分布が損なわれてしまう可能性が大きいからである。
【0052】
図4にシミュレーション結果による反応室内の原料濃度分布を示す。(a)は排気口が反応室の側部に設けられている従来例、(b)は排気口が反応室の上部中心に設けられている第1の実施の形態、(c)は後述する処理ガス供給口を改善した第2の実施の形態の分布である。計算条件は、金属膜を形成するガス(原料含有ガス)種としてN2+原料(例えば、有機金属化合物)、供給ガス流量1.5slm(内原料の重量比率0.066)、反応室内圧力100Pa、ウェハ温度450℃、ウェハ200の外周より外側の基板載置台30の表面温度300℃、それ以外の表面温度を150℃とした。これらは実際の成膜プロセス条件に準拠した値である。また、ウェハの直径D=300mm、基板載置台の直径d=410mmとした。なお、反応室内のガス流れおよび原料濃度分布は反応室1の中心軸に関し対称であるものと考えられるので、反応室断面の中心軸より片側半分のみ表示している。
また図5には、ウェハ上1mmの水平面内における従来例と第1、第2の実施の形態との原料濃度分布の特性図を示す(通常、ウェハはシャワープレートから10mm〜30mm程度離す。)。図5(a)、(b)及び(c)は、図4の(a)、(b)、及び(c)にそれぞれ対応する。図4において、左側に示す原料濃度スケールの単位はkg/m3である。また図5において、横軸は中心からの距離(mm)、縦軸は原料濃度(kg/m3)をそれぞれ示す。
【0053】
図4(a)、図5(a)に示す従来例によると、ウェハ上の原料濃度分布の均一性が保たれていること、ウェハ外周より外側の領域で濃度が上昇していることが分かる。温度が低い領域ほど原料濃度分布が高いのは、温度勾配によって移動を律される熱拡散現象によって分子量が大きい分子が低温側に分布したためである。図4(b)、図5(b)に示す第1の実施の形態によると、ウェハ外周より外側の領域の原料濃度分布が著しく低下していることが分かる。原料は概ねウェハ外周からウェハ中心に向かって流れているものの、ウェハ外周より外の領域にも存在している。これはパージガスを供給することでチャンバ側方よりパージガスを流しても、なおその流れに逆らって、濃度勾配に律された分子拡散によって分布したためである。とはいえウェハ以外の表面付近の原料濃度分布を十分に低下できる効果は確認できた。
【0054】
しかし、ウェハ上の原料濃度の均一性は、従来例に比して損なわれており、ウェハ中心から外周に向かって低下する分布となっている。これは、ウェハ上を外から内へ向かって流れる過程で、シャワープレート70の小孔69から順繰りに原料が追加導入される(重畳される)形態になっているため、ウェハ中心へ向かうほど全ガスに占める原料の割合が増加することによる結果といえる。このため第1の実施の形態は改善の余地がある。
【0055】
そこで、第2の実施の形態では、この改善方法の一つとして処理ガス供給口の設置箇所を限定した。この第2の実施の形態の構成を図2に示す。第2の実施の形態は、シャワープレート70を除いて第1の実施の形態と同じである。図1と対応する部分には同一符号を付して示す。処理ガス供給口が、ウェハ200の表面と対向するシャワーヘッド70にウェハ200を投影して得るウェハ投影領域より外側の領域に設けられるようにしている。具体的には、シャワープレート70に設けた多数の小孔69の内、ウェハ直径以上の径をもつ周上にリング状に配列された複数の小孔69だけを残し、ウェハ直径未満の領域に存在する多数の小孔69は全て塞いである。ここで、処理ガス供給口をウェハ投影領域より外側の領域に設けるというのは、シャワープレート70の小孔69をウェハ直径(12”ウェハであればD=300mm、8”ウェハであればD=200mm)以上の径をもつ周上に設けることである。
【0056】
これにより、シャワープレート70の径方向外方に任意に引いた直線上には、それぞれ1つの小孔69しか存在しないようになる。このようにしてウェハ上を外から内へ向かって原料が流れる過程で、途中で他の小孔69からの原料が合流することなく、常に同一の小孔69のみから供給された原料だけが、当該小孔69と処理ガス導出管65とを結ぶウェハ上の経路を流れるようにして、シャワープレート70の径方向に引いた直線上に複数の小孔69が存在する場合のように、複数の小孔69から順繰りに原料が追加導入されないようにしてある。したがって、ウェハ上を処理ガス供給口から処理ガス排気口へ向かう全処理ガス中に占める処理原料ガスの割合がウェハ面内で一定となり、ウェハ面内の原料濃度分布が均一化する。
【0057】
図4(c)、図5(c)に処理ガス供給口の設置箇所を限定した第2の実施の形態のシミュレーション結果を示す。この第2の実施の形態によれば、ウェハ上の原料濃度分布の均一性は従来例どおりほぼ保持される結果が得られている。したがって、ウェハ上の濃度分布を保ちつつ、ウェハ以外の表面付近の原料濃度分布を低下させることが可能となり、実機に適用した場合もパーティクル発生の原因となる意図しない箇所への成膜を大幅に抑制できるものと考える。
第1及び第2の実施の形態による基板表面以外の接ガス面の面積は、従来例と比べて、およそ半分に低減される。
【0058】
なお、上述した第1及び第2の実施の形態では、処理ガスを基板外周より内側へ押し込めるために、チャンバ底板にパージガス導入管を設けるようにしたが、設置場所はチャンバ底板に限定されない。例えば、チャンバ側壁に設けるようにしてもよい。この場合、チャンバ側壁の内周にわたって均一にパージガスが上昇するようにする。
また、パージガス導入管を設けずに、処理ガス排気口をウェハの中心側に配置するだけでもよい。処理ガス排気口をウェハの中心側に配置することのみの構成でも、処理ガス排気口を反応室の一側に設けた従来例と比べて、ウェハ以外の表面付近の原料濃度分布を低下することができるからである。
【0059】
また、上述した第1及び第2の実施の形態では、処理ガス導出管65と処理ガス導入管75とをチャンバ蓋71に別個に設けているが、本発明はこれに限定されない。例えば、処理ガス導出管と処理ガス導入管とを同軸的に構成し、処理ガス導出管を内管とし処理ガス導入管を外管とした二重管としてチャンバ蓋に一体的に設けることも可能である。処理ガス導出管と処理ガス導入管とを別個に設ける方がチャンバ蓋への取り付けは容易であるが、処理ガス導出管と処理ガス導入管とを二重管構造としてチャンバ蓋に一体的に設けると、配管を集約できるという利点が得られる。
【0060】
また、上述した実施の形態では基板処理装置の一例として枚葉式熱CVD装置を挙げて説明したが、これに限定されることなく、枚葉式のエッチング装置、イオン注入装置、アッシング装置、スパッタリング装置、塗布/現像装置など他の半導製造装置にも適用できる。また、熱処理装置に限定されず、プラズマ処理装置に対しても適用できる。
【0061】
【発明の効果】
本発明によれば、処理ガス排気口が処理ガス供給口よりも基板の中心側に配置されているので、反応室内における基板表面以外の接ガス面を少なくでき、意図しない反応室表面への成膜を低減することができる。
【図面の簡単な説明】
【図1】第1の実施の形態による枚葉式熱CVD装置の処理炉の概略構成図である。
【図2】第2の実施の形態による枚葉式熱CVD装置の処理炉の概略構成図である。
【図3】従来例の枚葉式熱CVD装置の処理炉の概略構成図である。
【図4】反応室内の原料濃度分布図を示し、(a)は従来例、(b)は第1の実施の形態、(c)は第2の実施の形態の図である。
【図5】反応室内原料濃度分布特性図(基板上1mmの水平面内)を示し、(a)は従来例、(b)は第1の実施の形態、(c)は第2の実施の形態の図である。
【図6】本発明が適用される基板処理装置の概要図である。
【符号の説明】
1 反応室
3 基板載置手段
30 基板載置台
65 処理ガス導出管(処理ガス排気口)
67 処理ガス排気口
68 処理ガス供給口
69 小孔(処理ガス供給口)
70 シャワーヘッド
200 ウェハ(基板)
【発明の属する技術分野】
本発明は基板処理装置に係り、特に処理ガスの排気を改善したものに関する。
【0002】
【従来の技術】
半導体製造装置やLCD製造装置等といった基板処理装置は、基板にガスを供給することにより基板への薄膜形成、不純物ドーピング、表面処理などを行う。このような処理を行う基板処理装置として、枚葉式CVD装置が知られている。
【0003】
図3は、そのような従来の枚葉式熱CVD装置の構成要素となる処理炉の概略図を示す。この装置は、内部に反応室1を形成するチャンバ2と、反応室1に設けた基板載置台30と、ウェハ200と対向する反応室1の上部に設けられ、処理ガス供給口となる多数の貫通孔(小孔)69を有するシャワープレート70と、チャンバ2の側壁60に設けた処理ガス排気口75及び基板搬入搬出口66とを備える。上述したシャワープレート70の多数の小孔69は、チャンバ2の頂部に設けた処理ガス導入管75と連通されて、処理ガス導入管75から導入された処理ガスを反応室1内に供給するようになっている。
【0004】
この枚葉式熱CVD装置の処理炉を用いてウェハの成膜処理工程を行うには、原料を含有するガス(以下、処理ガス)を処理ガス導入管75よりチャンバ2の頂部から導入して、シャワープレート70の多数の小孔69を介して反応室1にシャワー状に供給する。これにより基板載置台30上に載置したウェハ200の表面においてCVD反応により成膜が行われる。成膜に寄与しなかったガスは、基板載置台30とチャンバ側壁60とに形成される隙間13から処理ガス排気口75を通って、処理炉へ排気される。
【0005】
【発明が解決しようとする課題】
上述した従来技術では、反応室内における意図しない箇所への成膜が問題になる。すなわち、基板表面への成膜が行われる際、処理ガスが成膜対象である基板表面ばかりでなく、基板表面以外の接ガス面(処理ガスと接触する物体表面)への成膜、例えば基板外周側面(エッジ)への成膜、あるいは基板裏面へのガス回り込みが原因と思われる基板裏面への成膜が生じることである。また、基板載置台の表面、チャンバ側壁など反応室内表面へも成膜する。これらの意図しない箇所への成膜は、パーティクル発生の原因となり、歩留まり低下を招く。したがって、これらの意図しない箇所への成膜は極力抑制する必要がある。
【0006】
本発明の課題は、上述した従来技術の問題点を解消して、反応室内における基板表面以外の接ガス面を少なくし、意図しない反応室表面への成膜を低減することを可能とする基板処理装置を提供することにある。
【0007】
【問題を解決するための手段】
反応室内における意図しない箇所への成膜が生じる原因は、処理ガス排気口が処理ガス供給口よりも基板の外周側、例えば反応室の側部に配置されているために、処理ガスが処理ガス供給口より反応室内に供給されて処理ガス排気口に至るまでに、基板表面以外に処理ガスに曝される表面が大きいためである。反応室内における意図しない箇所への成膜を抑制するために、基板表面以外の接ガス面が少ない反応室構造が望ましい。本発明者は、処理ガス排気口の配置場所を変更することによって、基板表面以外の接ガス面が少ない反応室構造を実現できるとの知見を得て本発明を創案するに至ったものである。
【0008】
第1の発明は、基板を処理する反応室と、前記反応室内に設けられ前記基板を載置する基板載置手段と、前記反応室内に処理ガスを供給する処理ガス供給口と、前記反応室内を排気する処理ガス排気口と、を備え、前記処理ガス供給口および前記処理ガス排気口を、前記基板載置手段に載置される基板の表面と対向する位置に設け、前記処理ガス排気口が、前記処理ガス供給口よりも前記基板の中心側に配置されていることを特徴する基板処理装置である。
【0009】
処理ガス排気口が、処理ガス供給口よりも基板の中心側に配置されていると、処理ガス供給口より供給された処理ガスは、基板表面に供給された後、基板中心に向かって流れ、基板の中心側に配置されている処理ガス排気口より排気される。つまり、処理ガス排気口が処理ガス供給口よりも基板の外周側に配置されている場合に基板の中心側から基板の外周へ向かっていたガス流れが、基板の外周から基板の中心側へ向かうよう変化する。したがって、反応室内における基板表面以外の接ガス面が低減され、反応室内における意図しない箇所への成膜が低減される。
なお、基板の中心側としては基板の中心部と対向する中心位置が好ましい。処理ガス排気口は基板の中心側に1箇所だけ設けることが好ましいが、処理ガス供給口は処理ガス排気口の周りに複数箇所均一に設けることが好ましい。また、処理ガスには、処理原料ガスを含むガスも含まれ、通常、処理ガスは処理原料ガスが希釈ガスで希釈されてたものである。
【0010】
第2の発明は、第1の発明において、前記処理ガス供給口が、基板の表面と対向する位置に基板を投影した基板投影領域の外側に設けられることを特徴とする。処理ガス供給口が基板投影領域の外側に設けられていると、処理ガス供給口が処理ガス排気口の周りに複数箇所均一に設けられているような場合、基板上を処理ガス供給口から処理ガス排気口へ向かう全処理ガス中に占める処理原料ガスの割合が基板面内で一定となり、基板面内の原料濃度分布が均一化する。
【0011】
第3の発明は、第1又は第2の発明において、前記基板載置手段に前記基板が載置されたときの基板の表面に対向しない位置に、不活性ガスを供給するパージガス供給口を設けたことを特徴とする。パージガス供給口から不活性ガスが供給されると、処理ガス供給口から供給される処理ガスの基板表面以外への拡散による処理ガスの広がりを抑制できる。
【0012】
第4の発明は、基板を処理する反応室と、前記反応室内に設けられ前記基板を載置する基板載置手段と、前記反応室内に処理ガスを供給する処理ガス供給口と、前記反応室内を排気する処理ガス排気口と、を備え、前記処理ガス供給口および前記処理ガス排気口を、前記基板載置手段に載置される基板の表面と対向する位置に設けた基板処理装置を用いて基板を処理する半導体装置の製造方法であって、前記処理ガス排気口が、前記処理ガス供給口よりも前記基板の中心側に配置されて、前記処理ガス供給口から前記基板上に前記処理ガスを供給し前記基板上を流れたガスを前記処理ガス排気口より排気して前記基板を処理することを特徴する半導体装置の製造方法である。処理ガス供給口から供給された処理ガスは基板表面に供給された後、基板中心に向かって流れ、基板中心側に対向した処理ガス排気口より排気される。したがって、基板表面以外の反応室内の表面が処理ガスに曝されることなく、反応室内における基板表面以外の接ガス面が低減され、反応室内における意図しない箇所への成膜が低減される。
【0013】
【発明の実施の形態】
以下に本発明の実施の形態を図面を用いて説明する。
【0014】
図6において、本発明が適用される基板処理装置の概要を説明する。
なお、本発明が適用される基板処理装置においてはウェハなどの基板を搬送するキャリアとしては、FOUP(Front opening unified pod、以下、ポッドという)が使用されている。また、以下の説明において、前後左右は図6を基準とする。すなわち、図6が示されている紙面に対して、前は紙面の下、後ろは紙面の上、左右は紙面の左右とする。
【0015】
図6に示されているように、基板処理装置は真空状態などの大気圧未満の圧力(負圧)に耐えるロードロックチャンバ構造に構成された第1の搬送室103を備えており、第1の搬送室103の筐体101は平面視が六角形で上下両端が閉塞した箱形状に形成されている。第1の搬送室103には負圧下でウェハ200を移載する第1のウェハ移載機112が設置されている。前記第1のウェハ移載機112は、エレベータ115によって、第1の搬送室103の気密性を維持しつつ昇降できるように構成されている。
【0016】
筐体101の六枚の側壁のうち前側に位置する二枚の側壁には、搬入用の予備室122と搬出用の予備室123とがそれぞれゲートバルブ244,127を介して連結されており、それぞれ負圧に耐え得るロードロックチャンバ構造に構成されている。さらに、予備室122には搬入室用の基板置き台140が設置され、予備室123には搬出室用の基板置き台141が設置されている。
【0017】
予備室122および予備室123の前側には、略大気圧下で用いられる第2の搬送室121がゲートバルブ128,129を介して連結されている。第2の搬送室121にはウェハ200を移載する第2のウェハ移載機124が設置されている。第2のウェハ移載機124は第2の搬送室121に設置されたエレベータ126によって昇降されるように構成されているとともに、リニアアクチュエータ132によって左右方向に往復移動されるように構成されている。
【0018】
図6に示されているように、第2の搬送室121の左側にはオリフラ合わせ装置106が設置されている。また第2の搬送室121の上部にはクリーンエアを供給するクリーンユニット(図示せず)が設置されている。
【0019】
図6に示されているように、第2の搬送室121の筐体125には、ウェハ200を第2の搬送室121に対して搬入搬出するためのウェハ搬入搬出口134と、前記ウェハ搬入搬出口を閉塞する蓋(図示せず)と、ポッドオープナ108がそれぞれ設置されている。ポッドオープナ108は、IOステージ105に載置されたポッド100のキャップ及びウェハ搬入搬出口134を閉塞する蓋(図示せず)を開閉するキャップ開閉機構(図示せず)とを備えており、IOステージ105に載置されたポッド100のキャップ及びウェハ搬入搬出口134を閉塞する蓋(図示せず)をキャップ開閉機構(図示せず)によって開閉することにより、ポッド100のウェハ出し入れを可能にする。また、ポッド100は図示しない工程内搬送装置(RGV)によって、前記IOステージ105に、供給および排出されるようになっている。
【0020】
図6に示されているように、筐体101の六枚の側壁のうち背面側に位置する二枚の側壁には、ウェハに所望の処理を行う第1の処理炉202と、第2の処理炉137とがそれぞれ隣接して連結されている。第1の処理炉202および第2の処理炉137はいずれもコールドウォール式の処理炉によってそれぞれ構成されている。また、筐体101における六枚の側壁のうちの残りの互いに対向する二枚の側壁には、第3の処理炉としての第1のクーリングユニット138と、第4の処理炉としての第2のクーリングユニット139とがそれぞれ連結されており、第1のクーリングユニット138および第2のクーリングユニット139はいずれも処理済みのウェハ200を冷却するように構成されている。
【0021】
以下、前記構成をもつ基板処理装置を使用した処理工程を説明する。
未処理のウェハ200は例えば25枚がポッド100に収納された状態で、処理工程を実施する基板処理装置へ工程内搬送装置によって搬送されて来る。図6に示されているように、搬送されて来たポッド100はIOステージ105の上に工程内搬送装置から受け渡されて載置される。
【0022】
ポッド100のキャップ及びウェハ搬入搬出口134を開閉する蓋(図示せず)がキャップ開閉機構(図示せず)によって取り外され、ポッド100のウェハ出し入れ口が開放される。
【0023】
ポッド100がポッドオープナ108により開放されると、第2の搬送室121に設置された第2のウェハ移載機124はポッド100からウェハ200をピックアップし、予備室122に搬入し、ウェハ200を基板置き台140に移載する。この移載作業中には、第1の搬送室103側のゲートバルブ244は閉じられており、第1の搬送室103の負圧は維持されている。ウェハ200の基板置き台140への移載が完了すると、ゲートバルブ128が閉じられ、予備室122が排気装置(図示せず)によって負圧に排気される。
【0024】
予備室122が予め設定された圧力値に減圧されると、ゲートバルブ244,130が開かれ、予備室122、第1の搬送室103、第1の処理炉202が連通される。続いて、第1の搬送室103の第1のウェハ移載機112は基板置き台140からウェハ200をピックアップして第1の処理炉202に搬入する。そして、第1の処理炉202内に処理ガスが供給され、所望の処理がウェハ200に行われる。
【0025】
第1の処理炉202で前記処理が完了すると、処理済みのウェハ200は第1の搬送室103の第1のウェハ移載機112によって第1の搬送室103に搬出される。
そして、第1のウェハ移載機112は第1の処理炉202から搬出したウェハ200を第1のクーリングユニット138へ搬入し、処理済みのウェハを冷却する。
【0026】
第1のクーリングユニット138にウェハ200を移載すると、第1のウェハ移載機112は予備室122の基板置き台140に予め準備されたウェハ200を第1の処理炉202に前述した作動によって移載し、第1の処理炉202内に処理ガスが供給され、所望の処理がウェハ200に行われる。
【0027】
第1のクーリングユニット138において予め設定された冷却時間が経過すると、冷却済みのウェハ200は第1のウェハ移載機112によって第1のクーリングユニット138から第1の搬送室103に搬出される。
【0028】
冷却済みのウェハ200が第1のクーリングユニット138から第1の搬送室103に搬出されたのち、ゲートバルブ127が開かれる。そして、第1のウェハ移載機112は第1のクーリングユニット138から搬出したウェハ200を予備室123へ搬送し、基板置き台141に移載した後、予備室123はゲートバルブ127によって閉じられる。
【0029】
予備室123がゲートバルブ127によって閉じられると、前記排出用予備室123内が不活性ガスにより略大気圧に戻される。前記予備室123内が略大気圧に戻されると、ゲートバルブ129が開かれ、第2の搬送室121の予備室123に対応したウェハ搬入搬出口134を閉塞する蓋(図示せず)と、IOステージ105に載置された空のポッド100のキャップがポッドオープナ108によって開かれる。続いて、第2の搬送室121の第2のウェハ移載機124は基板置き台141からウェハ200をピックアップして第2の搬送室121に搬出し、第2の搬送室121のウェハ搬入搬出口134を通してポッド100に収納して行く。処理済みの25枚のウェハ200のポッド100への収納が完了すると、ポッド100のキャップとウェハ搬入搬出口134を閉塞する蓋(図示せず)がポッドオープナ108によって閉じられる。閉じられたポッド100はIOステージ105の上から次の工程へ工程内搬送装置によって搬送されて行く。
【0030】
以上の作動が繰り返されることにより、ウェハが、順次、処理されて行く。以上の作動は第1の処理炉202および第1のクーリングユニット138が使用される場合を例にして説明したが、第2の処理炉137および第2のクーリングユニット139が使用される場合についても同様の作動が実施される。
【0031】
なお、上述の基板処理装置では、予備室122を搬入用、予備室123を搬出用としたが、予備室123を搬入用、予備室122を搬出用としてもよい。また、第1の処理炉202と第2の処理炉137は、それぞれ同じ処理を行ってもよいし、別の処理を行ってもよい。第1の処理炉202と第2の処理炉137で別の処理を行う場合、例えば第1の処理炉202でウェハ200にある処理を行った後、続けて第2の処理炉137で別の処理を行わせてもよい。また、第1の処理炉202でウェハ200にある処理を行った後、第2の処理炉137で別の処理を行わせる場合、第1のクーリングユニット138(又は第2のクーリングユニット139)を経由するようにしてもよい。
【0032】
ところで、上述した処理炉137、202の構成要素となる枚葉式熱CVD装置の反応室内において、上記所望の処理が成膜の場合、基板表面以外の表面に多くの成膜が生じることは前述した通りである。反応室内において基板表面以外の表面へ多くの成膜が生じるのは、処理ガスが導入されて基板表面へ供給された後も、排気口へ至るまでに接ガス面が多く存在するためである。
【0033】
そこで、次に、熱CVD装置の処理炉の構造を変えることなく、この接ガス面を低減することが可能な処理炉を説明する。
【0034】
図1は、そのような枚葉式熱CVD装置の処理炉にかかる第1の実施の形態の概略構成図である。枚葉式熱CVD装置の処理炉は、チャンバ2と、基板載置手段3とを備えている。
【0035】
チャンバ2は、その内部に形成した反応室1内でウェハ200を処理できるように構成されている。チャンバ2は、チャンバ側壁60と、チャンバ底板76と、チャンバ蓋71とを備える。反応室1はこれらチャンバ側壁60、チャンバ底板76及びチャンバ蓋71で囲まれて形成されている。なお、反応室1は平面図的にみた場合には略円形となっている。
【0036】
基板載置手段3は、反応室1内でウェハ200を処理する基板処理位置(図1に示す位置)と基板搬入搬出位置(図1に示す位置よりも下方位置)との間でウェハ200を移動できるようになっている。基板載置手段3はチャンバ2の反応室1内に設けられ、ウェハ200を載置する基板載置台30と、基板載置台30を昇降自在に支持するシャフト55とを備え、シャフト55は、チャンバ2のチャンバ底板76の貫通孔77およびベローズ(図示せず)内に設けられている。また、シャフト55を昇降して、基板載置台30を反応室1内の基板処理位置と基板搬入搬出位置との間で移動させる昇降機構(図示せず)が設けられている。基板載置台30の内部にはヒータ(図示せず)が設けられており、基板載置台30を介してウェハ200を加熱できるようになっている。なお、基板載置手段3は回転しないが、シャフト55に回転機構を設けて回転自在としてもよい。
【0037】
基板載置台30で上下に仕切られる反応室1内の空間のうち、基板載置台30の上側の空間が基板処理に寄与する処理空間11となり、基板載置台30の下側の空間が基板処理に寄与しない非処理空間12となる。基板載置台30とチャンバ側壁60との間には、基板載置台30の移動を許容する環状の隙間13が形成されている。処理ガス(原料ガスを含むガス)の一部は、拡散により基板載置台30の上側の処理空間11からウェハ200上を流れた後、この隙間13を経由して基板載置台30の下側の非処理空間12に流れることがあるが、このガス流量は、隙間13の間隔と隙間の長さとで決まるコンダクタンスにより規制される。
【0038】
チャンバ2のチャンバ側壁60の一側には基板搬入搬出口66が設けられ、この基板搬入搬出口66を介してウェハ200を反応室1内に搬入、またはウェハ200を反応室1から搬出できるようになっている。なお、基板搬入搬出口66には図示しないゲートバルブが設けられ、基板搬入搬出口66を開閉できるようになっている。チャンバ底板76には、パージガス導入管79が反応室1と連通するように設けられており、パージガス例えば窒素ガス(N2)を反応室1内に供給できるようになっている。
【0039】
上述したチャンバ蓋71は、チャンバ下蓋72とチャンバ上蓋73とを備える。チャンバ下蓋72のウェハ200の表面と対向する内周部には、多数の小孔69が形成されたシャワープレート70が設けられ、この多数の小孔69から処理ガスを反応室1内に分散して供給できるようになっている。チャンバ上蓋73は、シャワープレート70を覆ってシャワープレート70との間にガス導入空間74を形成するように設けられている。ガス導入空間74内には多数の小孔62が形成された分散板61がガス導入空間74を上下に仕切るように設けられて、上方のガス導入空間74に導入された処理ガスを下方のガス導入空間74に分散して導入できるようになっている。したがって、処理ガスは分散板61とシャワープレート70とで段階的に分散されて反応室1内にシャワー状に供給されるようになる。
【0040】
基板載置台30に載置されるウェハの表面に対向するチャンバ上蓋71の対向位置に処理ガス排気口67と処理ガス供給口68とが設けられている。ここで、処理ガス供給口68は、シャワープレート70に設けた多数の小孔69で構成されて、反応室1内に処理ガスを供給するようになっている。また、処理ガス排気口67は、シャワープレート70に設けた処理ガス導出管65で構成されて、反応室1内を排気するようになっている。
【0041】
処理ガス排気口67を構成する処理ガス導出管65は、基板載置台30に載置されるウェハ200の中心部と対向するシャワープレート70の中心部に設けられ、反応室1と連通して、ウェハ200上に供給された処理ガスをシャワープレート70の中心部から反応室1外へ排気できるようになっている。具体的には、処理ガス導出管65は、シャワー蓋71の中心部、すなわちシャワープレート70、分散板61、及びチャンバ上蓋73の中心部を貫通するように取り付けられる。チャンバ上蓋73の外側に面する処理ガス導出管65の出口に排気口フランジ66が設けられ、この排気口フランジ66に図示しない真空ポンプに連通する排気配管が接続される。
【0042】
処理ガス供給口68を構成するシャワープレート70の多数の小孔69は、ガス導入空間74及び分散板61の多数の小孔62を介してチャンバ上蓋73に設けた処理ガス導入管75と連通している。処理ガス導入管75は、処理ガス導出管65と干渉しないように、処理ガス導出管65の取り付けられているチャンバ上蓋73の中心位置から外れた周辺部に取り付けられており、処理ガスをガス導入空間74に導入できるようになっている。シャワープレート70の中心部に処理ガス排気口67としての処理ガス導出管65を配置して、処理ガス供給口68としての多数の小孔69をシャワープレート70の周辺部に設けることにより、処理ガス排気口67は、処理ガス供給口68よりもウェハ200の中心側に配置されることになる。
【0043】
次に、上述した処理炉を用いてウェハ200を処理する方法について説明する。
【0044】
まず、反応室1内を所定圧力にするため、処理ガス導入管75及びパージガス導入管79よりN2ガスを反応室1内に流し、処理ガス導出管65を通して真空ポンプ(図示せず)により真空排気を行う。
基板載置台30にはヒータ(図示せず)が備えられており、基板載置台30を所定の温度で安定させる。昇降機構(図示せず)により基板載置台30を基板載置を行うことができる基板載置位置まで下降させておく。
チャンバ2のチャンバ側壁60の一側に開口した基板搬入搬出口66を介して基板移載機構(図示せず。)により、ウェハ200を反応室1内に搬入して、基板載置台30上に載置する。ウェハ載置後、基板搬入搬出口66は図示しないゲートバルブにより閉じる。
【0045】
その後、昇降機構(図示せず)により、成膜プロセスを行う基板処理位置まで基板載置台30を上昇させる(図3に示す状態)。基板載置台30に備えたヒータ(図示せず)により、ウェハ200の温度を成膜プロセスを行うことができる温度にいたるまで安定させる。
【0046】
温度安定後、成膜反応に寄与する処理ガスは、処理ガス導入管75よりガス導入空間74に供給され、多数の小孔62を設けた分散板61により均等に分散され、同じくシャワープレート70に設けた多数の小孔69を通じて基板載置台30上に載置されたウェハ200上にシャワー状に供給される。これによりウェハ200は処理ガスと反応し、ウェハ200表面においてCVD反応により成膜が行われる。
ウェハ200上を流れた処理ガスのうち成膜に寄与しなかったガスや反応生成物(以下、処理済みガスという)は、その大半がシャワープレート70の中心部に設けた処理ガス導出管67から排気口フランジ66を介してチャンバ2外へ排気される。一部の処理済みガスは拡散によりウェハ外周に向かって環状隙間13側に回り込もうとする。これを阻止するために、成膜時に又は常時、チャンバ底板76に設けたパージガス導入管79から不活性ガス(例えばN2)を反応室1内に導入して、被処理空間12から環状隙間13を介して処理空間11へ供給し、ウェハ外周から環状隙間13に回り込もうとす処理済みガスを、ウェハ200の外周よりウェハの内側へ押し込める。
【0047】
ウェハ200上への成膜処理が終了した後、処理ガス導入管75からの処理ガスの供給を止め、処理ガスに代えて反応室1にパージガスの供給を行う。成膜を終了したウェハ200を取り出すため、昇降機構(図示せず)により基板載置台30を基板搬入搬出位置まで降下させる。
ゲートバルブ(図示せず)を開いて基板搬入搬出口66より基板移載機構(図示せず)によりウェハ200を迎えに行き、装置外へ搬出する。
熱CVD装置の処理炉の休止を行うため、反応室1の十分なパージを行った後、基板載置台30に備えたヒータの温度を降下させ、ヒータ電源を落とす。反応室1を大気に戻した後、パージを止め真空ポンプ電源を落とす。
【0048】
上述した本実施の形態において、処理ガス導出管67を、ウェハ中心部の鉛直上に位置するシャワープレート70の中心部に設けているので、シャワープレート70の周辺部に設けた多数の小孔69より導入された処理ガスは、ウェハ表面に供給された後、ウェハ以外の反応室1内の表面に曝される間もなく、直ちにウェハ中心に向かって流れを生じ、ウェハ中心上の処理ガス導出管67より排気される。つまり処理ガスの流れは、ウェハ中心からウェハ外周へ向かうのでなく、ウェハ外周からウェハ中心へ向かうことになる。したがって、処理ガスに曝されるのはウェハ表面のみとなり、ウェハ表面以外の接ガス面を低減することができる。
【0049】
また、原理的にはウェハ外周より外側には処理ガスは流れないはずであるが、実際には拡散により処理ガスがウェハ外周より外側に流れる。このためチャンバ底板76よりパージガス(N2)を流すパージガス導入管79を設けて、このパージガス導入管79からパージガス(N2)を反応室1内に導入し、基板中心側からの強制排気にもかかわらず、拡散によってウェハ中心側からウェハ外周に流れ出そうとする処理済みガスを、ウェハ外周からウェハ中心側に押し込むようにしている。これにより拡散によって意図しない箇所への処理済みガスの回り込みを抑制することができる。特に、パージガス導入管79をチャンバ底板76に設けて、反応室1内に導入されるパージガス(N2)が、基板載置台30とチャンバ側壁60とに形成される隙間13を経由する際に、十分な通気抵抗を受けてコンダクタンス調整が行われるようにしたので、ウェハ外周のどの方向からもパージガスを均等に流すことができる。したがって、基板表面以外の接ガス面を一層低減することができる。
【0050】
このように実施の形態では、処理ガス排気口をウェハ中心に対向するシャワーヘッドの中心に設け、さらにパージガスを反応室底部から供給するようにして、反応室をウェハ表面以外の接ガス面が少ない構造としたので、反応室内における意図しない箇所への成膜が大幅に低減する。すなわち、基板載置台の表面、チャンバー内壁など反応室内表面への成膜が低減する。また、ウェハ外周側面(エッジ)への成膜、あるいはウェハ裏面へのガス回り込みが原因と思われるウェハ裏面への成膜も低減する。したがって、パーティクル発生が低減し、歩留まりが向上する。
【0051】
次に、従来例と実施例とで効果の違いを検討するため、原料含有ガスを反応室内に流すことを想定したガス流れのシミュレーションを行ったので、これを説明する。
ここで留意する点は、ウェハ表面以外の反応室表面付近の原料濃度は低下しつつも、ウェハ表面上の原料濃度の均一性は損なわれてはならない点である。ウェハ表面上の原料濃度均一性が損なわれれば、成腹膜厚分布が損なわれてしまう可能性が大きいからである。
【0052】
図4にシミュレーション結果による反応室内の原料濃度分布を示す。(a)は排気口が反応室の側部に設けられている従来例、(b)は排気口が反応室の上部中心に設けられている第1の実施の形態、(c)は後述する処理ガス供給口を改善した第2の実施の形態の分布である。計算条件は、金属膜を形成するガス(原料含有ガス)種としてN2+原料(例えば、有機金属化合物)、供給ガス流量1.5slm(内原料の重量比率0.066)、反応室内圧力100Pa、ウェハ温度450℃、ウェハ200の外周より外側の基板載置台30の表面温度300℃、それ以外の表面温度を150℃とした。これらは実際の成膜プロセス条件に準拠した値である。また、ウェハの直径D=300mm、基板載置台の直径d=410mmとした。なお、反応室内のガス流れおよび原料濃度分布は反応室1の中心軸に関し対称であるものと考えられるので、反応室断面の中心軸より片側半分のみ表示している。
また図5には、ウェハ上1mmの水平面内における従来例と第1、第2の実施の形態との原料濃度分布の特性図を示す(通常、ウェハはシャワープレートから10mm〜30mm程度離す。)。図5(a)、(b)及び(c)は、図4の(a)、(b)、及び(c)にそれぞれ対応する。図4において、左側に示す原料濃度スケールの単位はkg/m3である。また図5において、横軸は中心からの距離(mm)、縦軸は原料濃度(kg/m3)をそれぞれ示す。
【0053】
図4(a)、図5(a)に示す従来例によると、ウェハ上の原料濃度分布の均一性が保たれていること、ウェハ外周より外側の領域で濃度が上昇していることが分かる。温度が低い領域ほど原料濃度分布が高いのは、温度勾配によって移動を律される熱拡散現象によって分子量が大きい分子が低温側に分布したためである。図4(b)、図5(b)に示す第1の実施の形態によると、ウェハ外周より外側の領域の原料濃度分布が著しく低下していることが分かる。原料は概ねウェハ外周からウェハ中心に向かって流れているものの、ウェハ外周より外の領域にも存在している。これはパージガスを供給することでチャンバ側方よりパージガスを流しても、なおその流れに逆らって、濃度勾配に律された分子拡散によって分布したためである。とはいえウェハ以外の表面付近の原料濃度分布を十分に低下できる効果は確認できた。
【0054】
しかし、ウェハ上の原料濃度の均一性は、従来例に比して損なわれており、ウェハ中心から外周に向かって低下する分布となっている。これは、ウェハ上を外から内へ向かって流れる過程で、シャワープレート70の小孔69から順繰りに原料が追加導入される(重畳される)形態になっているため、ウェハ中心へ向かうほど全ガスに占める原料の割合が増加することによる結果といえる。このため第1の実施の形態は改善の余地がある。
【0055】
そこで、第2の実施の形態では、この改善方法の一つとして処理ガス供給口の設置箇所を限定した。この第2の実施の形態の構成を図2に示す。第2の実施の形態は、シャワープレート70を除いて第1の実施の形態と同じである。図1と対応する部分には同一符号を付して示す。処理ガス供給口が、ウェハ200の表面と対向するシャワーヘッド70にウェハ200を投影して得るウェハ投影領域より外側の領域に設けられるようにしている。具体的には、シャワープレート70に設けた多数の小孔69の内、ウェハ直径以上の径をもつ周上にリング状に配列された複数の小孔69だけを残し、ウェハ直径未満の領域に存在する多数の小孔69は全て塞いである。ここで、処理ガス供給口をウェハ投影領域より外側の領域に設けるというのは、シャワープレート70の小孔69をウェハ直径(12”ウェハであればD=300mm、8”ウェハであればD=200mm)以上の径をもつ周上に設けることである。
【0056】
これにより、シャワープレート70の径方向外方に任意に引いた直線上には、それぞれ1つの小孔69しか存在しないようになる。このようにしてウェハ上を外から内へ向かって原料が流れる過程で、途中で他の小孔69からの原料が合流することなく、常に同一の小孔69のみから供給された原料だけが、当該小孔69と処理ガス導出管65とを結ぶウェハ上の経路を流れるようにして、シャワープレート70の径方向に引いた直線上に複数の小孔69が存在する場合のように、複数の小孔69から順繰りに原料が追加導入されないようにしてある。したがって、ウェハ上を処理ガス供給口から処理ガス排気口へ向かう全処理ガス中に占める処理原料ガスの割合がウェハ面内で一定となり、ウェハ面内の原料濃度分布が均一化する。
【0057】
図4(c)、図5(c)に処理ガス供給口の設置箇所を限定した第2の実施の形態のシミュレーション結果を示す。この第2の実施の形態によれば、ウェハ上の原料濃度分布の均一性は従来例どおりほぼ保持される結果が得られている。したがって、ウェハ上の濃度分布を保ちつつ、ウェハ以外の表面付近の原料濃度分布を低下させることが可能となり、実機に適用した場合もパーティクル発生の原因となる意図しない箇所への成膜を大幅に抑制できるものと考える。
第1及び第2の実施の形態による基板表面以外の接ガス面の面積は、従来例と比べて、およそ半分に低減される。
【0058】
なお、上述した第1及び第2の実施の形態では、処理ガスを基板外周より内側へ押し込めるために、チャンバ底板にパージガス導入管を設けるようにしたが、設置場所はチャンバ底板に限定されない。例えば、チャンバ側壁に設けるようにしてもよい。この場合、チャンバ側壁の内周にわたって均一にパージガスが上昇するようにする。
また、パージガス導入管を設けずに、処理ガス排気口をウェハの中心側に配置するだけでもよい。処理ガス排気口をウェハの中心側に配置することのみの構成でも、処理ガス排気口を反応室の一側に設けた従来例と比べて、ウェハ以外の表面付近の原料濃度分布を低下することができるからである。
【0059】
また、上述した第1及び第2の実施の形態では、処理ガス導出管65と処理ガス導入管75とをチャンバ蓋71に別個に設けているが、本発明はこれに限定されない。例えば、処理ガス導出管と処理ガス導入管とを同軸的に構成し、処理ガス導出管を内管とし処理ガス導入管を外管とした二重管としてチャンバ蓋に一体的に設けることも可能である。処理ガス導出管と処理ガス導入管とを別個に設ける方がチャンバ蓋への取り付けは容易であるが、処理ガス導出管と処理ガス導入管とを二重管構造としてチャンバ蓋に一体的に設けると、配管を集約できるという利点が得られる。
【0060】
また、上述した実施の形態では基板処理装置の一例として枚葉式熱CVD装置を挙げて説明したが、これに限定されることなく、枚葉式のエッチング装置、イオン注入装置、アッシング装置、スパッタリング装置、塗布/現像装置など他の半導製造装置にも適用できる。また、熱処理装置に限定されず、プラズマ処理装置に対しても適用できる。
【0061】
【発明の効果】
本発明によれば、処理ガス排気口が処理ガス供給口よりも基板の中心側に配置されているので、反応室内における基板表面以外の接ガス面を少なくでき、意図しない反応室表面への成膜を低減することができる。
【図面の簡単な説明】
【図1】第1の実施の形態による枚葉式熱CVD装置の処理炉の概略構成図である。
【図2】第2の実施の形態による枚葉式熱CVD装置の処理炉の概略構成図である。
【図3】従来例の枚葉式熱CVD装置の処理炉の概略構成図である。
【図4】反応室内の原料濃度分布図を示し、(a)は従来例、(b)は第1の実施の形態、(c)は第2の実施の形態の図である。
【図5】反応室内原料濃度分布特性図(基板上1mmの水平面内)を示し、(a)は従来例、(b)は第1の実施の形態、(c)は第2の実施の形態の図である。
【図6】本発明が適用される基板処理装置の概要図である。
【符号の説明】
1 反応室
3 基板載置手段
30 基板載置台
65 処理ガス導出管(処理ガス排気口)
67 処理ガス排気口
68 処理ガス供給口
69 小孔(処理ガス供給口)
70 シャワーヘッド
200 ウェハ(基板)
Claims (1)
- 基板を処理する反応室と、
前記反応室内に設けられ前記基板を載置する基板載置手段と、
前記反応室内に処理ガスを供給する処理ガス供給口と、
前記反応室内を排気する処理ガス排気口と、
を備え、
前記処理ガス供給口および前記処理ガス排気口を、前記基板載置手段に載置される基板の表面と対向する位置に設け、
前記処理ガス排気口が、前記処理ガス供給口よりも前記基板の中心側に配置されていることを特徴する基板処理装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003137462A JP2004339566A (ja) | 2003-05-15 | 2003-05-15 | 基板処理装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003137462A JP2004339566A (ja) | 2003-05-15 | 2003-05-15 | 基板処理装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004339566A true JP2004339566A (ja) | 2004-12-02 |
Family
ID=33527118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003137462A Withdrawn JP2004339566A (ja) | 2003-05-15 | 2003-05-15 | 基板処理装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004339566A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009012878A1 (de) | 2008-03-14 | 2009-09-17 | Tokyo Electron Limited | Schauerkopf und Substratbearbeitungsvorrichtung |
CN102230167A (zh) * | 2007-12-26 | 2011-11-02 | 三星Led株式会社 | 化学气相沉积设备 |
US8366828B2 (en) | 2008-03-19 | 2013-02-05 | Tokyo Electron Limited | Shower head and substrate processing apparatus |
JP2013541182A (ja) * | 2010-08-16 | 2013-11-07 | アプライド マテリアルズ インコーポレイテッド | ガス注入分散デバイスを備えるシャワーヘッドアセンブリ |
WO2014129246A1 (ja) * | 2013-02-21 | 2014-08-28 | 株式会社 イアス | 基板のエッチング装置及び基板の分析方法 |
WO2021055990A1 (en) * | 2019-09-22 | 2021-03-25 | Applied Materials, Inc. | Ald cycle time reduction using process chamber lid with tunable pumping |
US12054826B2 (en) | 2019-09-22 | 2024-08-06 | Applied Materials, Inc. | ALD cycle time reduction using process chamber lid with tunable pumping |
-
2003
- 2003-05-15 JP JP2003137462A patent/JP2004339566A/ja not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102230167A (zh) * | 2007-12-26 | 2011-11-02 | 三星Led株式会社 | 化学气相沉积设备 |
DE102009012878A1 (de) | 2008-03-14 | 2009-09-17 | Tokyo Electron Limited | Schauerkopf und Substratbearbeitungsvorrichtung |
US8236106B2 (en) | 2008-03-14 | 2012-08-07 | Tokyo Electron Limited | Shower head and substrate processing apparatus |
US8366828B2 (en) | 2008-03-19 | 2013-02-05 | Tokyo Electron Limited | Shower head and substrate processing apparatus |
JP2013541182A (ja) * | 2010-08-16 | 2013-11-07 | アプライド マテリアルズ インコーポレイテッド | ガス注入分散デバイスを備えるシャワーヘッドアセンブリ |
WO2014129246A1 (ja) * | 2013-02-21 | 2014-08-28 | 株式会社 イアス | 基板のエッチング装置及び基板の分析方法 |
CN104995721A (zh) * | 2013-02-21 | 2015-10-21 | 埃耶士株式会社 | 基板的蚀刻装置及基板的分析方法 |
US9741627B2 (en) | 2013-02-21 | 2017-08-22 | Ias, Inc | Substrate etching apparatus and substrate analysis method |
WO2021055990A1 (en) * | 2019-09-22 | 2021-03-25 | Applied Materials, Inc. | Ald cycle time reduction using process chamber lid with tunable pumping |
US11767590B2 (en) | 2019-09-22 | 2023-09-26 | Applied Materials, Inc. | ALD cycle time reduction using process chamber lid with tunable pumping |
US12054826B2 (en) | 2019-09-22 | 2024-08-06 | Applied Materials, Inc. | ALD cycle time reduction using process chamber lid with tunable pumping |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10546761B2 (en) | Substrate processing apparatus | |
US9589819B1 (en) | Substrate processing apparatus | |
US6911112B2 (en) | Method of and apparatus for performing sequential processes requiring different amounts of time in the manufacturing of semiconductor devices | |
KR101354571B1 (ko) | 플라즈마 강화 화학적 기상 증착 및 경사형 에지 에칭을 위한 시스템 | |
US10867819B2 (en) | Vacuum processing apparatus, vacuum processing system and vacuum processing method | |
TWI549214B (zh) | A substrate processing apparatus, and a method of manufacturing the semiconductor device | |
JP2009062604A (ja) | 真空処理システムおよび基板搬送方法 | |
US20170198391A1 (en) | Substrate processing apparatus | |
JP2012069723A (ja) | 基板処理装置およびガスノズルならびに基板の処理方法 | |
JPWO2007018139A1 (ja) | 半導体装置の製造方法および基板処理装置 | |
JP2013136839A (ja) | 真空処理システム | |
US11981992B2 (en) | Method for forming RuSi film and substrate processing system | |
US10535513B2 (en) | Apparatus and methods for backside passivation | |
JP2012023073A (ja) | 基板処理装置および基板の製造方法 | |
TW202221824A (zh) | 批次熱製程腔室 | |
JP2004339566A (ja) | 基板処理装置 | |
US20160237568A1 (en) | Substrate processing apparatus and non-transitory computer readable recording medium | |
TW202224061A (zh) | 處理腔室沉積限制 | |
JP2004119627A (ja) | 半導体製造装置 | |
JP2010016033A (ja) | 半導体装置の製造方法及び基板処理装置 | |
JP2006049489A (ja) | 基板処理装置 | |
JP2007194481A (ja) | 基板処理装置 | |
JP2009224457A (ja) | 基板処理装置 | |
JP2011204735A (ja) | 基板処理装置および半導体装置の製造方法 | |
WO2024029126A1 (ja) | 基板処理装置、半導体装置の製造方法、及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050930 |
|
A761 | Written withdrawal of application |
Effective date: 20080325 Free format text: JAPANESE INTERMEDIATE CODE: A761 |