JP2004339412A - Submicron diamond powder for abrasive material and method for producing the same powder - Google Patents

Submicron diamond powder for abrasive material and method for producing the same powder Download PDF

Info

Publication number
JP2004339412A
JP2004339412A JP2003139153A JP2003139153A JP2004339412A JP 2004339412 A JP2004339412 A JP 2004339412A JP 2003139153 A JP2003139153 A JP 2003139153A JP 2003139153 A JP2003139153 A JP 2003139153A JP 2004339412 A JP2004339412 A JP 2004339412A
Authority
JP
Japan
Prior art keywords
diamond
particle size
slurry
particles
powder according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003139153A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamanaka
山中博
Nobuyuki Saito
斎藤信之
Hiroshi Ishizuka
石塚博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIZUKA KENKYUSHO
Ishizuka Research Institute Ltd
Original Assignee
ISHIZUKA KENKYUSHO
Ishizuka Research Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIZUKA KENKYUSHO, Ishizuka Research Institute Ltd filed Critical ISHIZUKA KENKYUSHO
Priority to JP2003139153A priority Critical patent/JP2004339412A/en
Publication of JP2004339412A publication Critical patent/JP2004339412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain single crystal-based submicron diamond abrasive material particles having extremely narrow particle size distribution by using single crystal-based synthetic diamond abrasive material particles enabling control of these physical properties as a starting material and carrying out superfine pulverization and precise classification of these particles to particle size of submicron (>1 μm). <P>SOLUTION: The method for producing submicron diamond fine powder for abrasive materials comprises isolating a diamond converted/prepared from non-diamond carbon under ultra-high pressure by static pressurizing method and further carrying out particle size control by combination of (1) ball mill grinding operation using a steel ball with (2) crude classification by hydraulic elutriation or centrifugal treatment and (3) precise classification by repeated centrifugal treatment. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は単結晶質ダイヤモンド研磨材粒子、特にハードディスクのテクスチュアリング加工や薄膜型磁気ヘッドの研磨など、電子材料の精密研磨加工に適したサブミクロンダイヤモンド研磨材粒子及びその製造方法に関する。
【0002】
【従来技術の説明】近年、光学部品、電子部品や精密機械部品などに対して、益々高性能化、高機能化が要求されてきており、使用される材料も金属系材料、セラミックス、ガラス、プラスチックと多岐にわたり、加工仕上げ面の粗さ表示はナノメータからオングストローム領域に移行しつつある。
【0003】
この様な部品の精密研磨加工には、多結晶ダイヤモンドが広く使用されている。多結晶ダイヤモンドは、グラファイトを原料とし爆薬を用いた衝撃加圧によって合成され、合成反応時間が短いことから、直径数十nmの一次粒子が溶着してサブミクロンないしミクロンオーダーの二次粒子を構成している。そして二次粒子サイズに依存する研磨速度を確保しつつ、一次粒子が微細であることを反映して、細かな仕上げ面粗さが得られるという優れた特性を有している。
【0004】
しかし多結晶ダイヤモンドの場合は、合成反応がマイクロ秒オーダーのごく短時間の加圧・加熱反応であることから、一次粒子のサイズ並びに粒子間の溶着強度の厳密な制御に困難があり、研磨材としての物性値を狭い領域に収めることが難しいといわれている。
【0005】
一方、油圧プレスを用いた静的超高圧力下で合成される合成ダイヤモンドは、加圧・加熱の保持時間が分のオーダーであることから、研磨材としての物性値の制御は多結晶ダイヤモンドの場合に比して容易であるが、反面、この粒子は一般に直径が数十ないし数百μmの単結晶質粒子として得られるので、微細加工用の研磨材として使用するためには、この粒子をサブミクロンサイズにまで粉砕し、分級・捕集する技術の確立が必要とされている。
【0006】
【発明が解決しようとする課題】従って本発明はの主な目的の一つは、物性の制御が可能な上記の単結晶質合成ダイヤモンド研磨材粒子を出発材料として用い、サブミクロン(1μm未満)の粒度への超微粉砕及び精密分級に供することにより、粒度分布が極めて狭い単結晶質サブミクロンダイヤモンド研磨材粒子を得ることである。
【0007】
本発明の別の目的は、かかるダイヤモンド粒子の表面を、基体ダイヤモンドから転化した非ダイヤモンド炭素で覆い、以って研磨工程においてより微細な研磨仕上げ面の達成を可能とする研磨材粒子を提供することである。
【0008】
【課題を解決するための手段】本発明においては、単結晶質ダイヤモンド粒子を粉砕・分級工程に供して、D50平均粒度(中央値)が 500nm以下であり、かつ最多頻度を示す粒度区分内の粒子が全体の15%以上を占めることを特徴とする、サブミクロンダイヤモンド研磨材粒子が調製される。ただし上記粒度値は、マイクロトラックUPA、乃至第2チャンネルの値を5.500μm、チャンネル間の粒径比率を2の4乗根の逆数とする、チャンネル数44の動的光散乱粒度分布測定機による、サイズ別検出頻度の粒度分布ヒストグラムによる。
【0009】
本発明においては本質的に、ボールミル等による衝撃破砕技術と、遠心分離機を用いた反復分級技術との組み合わせによって、粒度分布幅の狭い単結晶質サブミクロンダイヤモンド研磨材粒子を得る。特に、中心粒度から大きく離れた粗粒成分ならびに微粒成分を効果的に除くことのできる反復分級技術が、本技術の主要部を構成する。
【0010】
ダイヤモンドの微細化はへき開割れが支配的であることが、粉砕粒子のSEM観察によって認められている。従って粉砕には鋼球を用いた従来技術の衝撃破砕が、粉砕効率、運転コストの両面から好ましい方法といえる。
【0011】
粉砕工程において、ダイヤモンド結晶は、へき開割れと共に、結晶内に欠陥のある箇所や異物を含む箇所が優先的に破壊され、破面に露出した異物は後処理の薬品処理による精製工程で除かれることから、微粉化乃至粒度の低下に伴って欠陥および含有不純物量が減少し、ダイヤモンド本来の特性が得られることとなる。
【0012】
本発明において、微粉ダイヤモンドを所定のサイズ領域別に分類する工程即ち分級工程には、水中における粒子の沈降速度が粒子サイズに依存する現象を利用した一般的な水簸技術が用いられる。しかし他の物質と同様にダイヤモンドも微粉化に伴って表面が活性になって凝集しやすくなることから、水簸工程に先立ってダイヤモンド粒子表面を親水性とし、分散媒の水中における分散性を高める前処理を実施することが好ましい。この前処理方法としては特許第2691884号の表面酸化処理技術を挙げることができる。
【0013】
水簸は、狭い粒度分布幅でサイズ分けするのに適した技術としてダイヤモンド粉末の分級に一般に利用されているが、分級される粒子が細かくなるに伴って、水中での沈降速度が緩くなることから生産性が低下する。即ち水簸分級の基礎となっているストークス則から、室温でのダイヤモンド粒子の沈降速度は、粒度0.2μmの粒子の場合0.2mm/h、0.15μmのものでは0.11mm/hと計算され、これはもう水簸分級技術の限界に近い。
【0014】
生産性の高い分級方法として、遠心分離機を用い、大きな重力加速度によって粒子を移動させ、スラリー状態またはローターの壁面に付着したケーキとして回収する技術が広く用いられている。
【0015】
ところで精密研磨材としての用途においては、平均粒子径(中央値)として、0.1μm以下の差、特に0.02μm以下の狭い粒度差で分離することが要求されている。本発明者らは、このような狭い粒度差を達成する方法として、遠心分離機へ供給するスラリーを、ダイヤモンド含有量の少ない希薄スラリーとすることと併せて、遠心分離によって捕集した濃厚スラリー乃至ケーキを、再度、多量の水中に分散させて希薄スラリーとし、遠心分離機へ供給して繰返し分級することが非常に有効であることを知見した。本発明はかかる知見に基づく。
【0016】
分級操作においては、分散媒質中、特に水中に含有されている微粉のダイヤモンド粒子のうち、できるだけ多くの部分を確実に単粒子の形で分散させることが、重要であると理解される。従ってスラリー中におけるダイヤモンドの濃度は低いほど好ましいが、生産性との兼ね合いがあることから、平均粒子径(中央値)0.1μmの捕集には、ダイヤモンド濃度0.5%以下、特に0.2%以下が好ましい。
【0017】
なお必須ではないが、2度目以降の繰返し遠心分離においては、最初の遠心分離に比してスラリー濃度を低くすることが好ましい。一方、遠心分離機の運転条件については、2度目以降も最初の操作と同一条件を用いることができる。
【0018】
本発明方法において、遠心分離操作は基本的に、本質的に粗粒を除く前段の水簸装置または遠心分離機と、目的とする粒子径サイズを含む個別範囲の粒子(フラクション)を捕集する主体の遠心分離機、そして主体の遠心分離機で捕集されずに遠心分離機から出る微粒子を含むスラリーの捕集処理装置との、3種類の設備にて実施される。
【0019】
1回目の遠心分離操作(以下「粗分級」と称する)において、本体の遠心分離機で捕集した濃縮スラリーまたはケーキでは、粗粒および微粉の大部分が除かれてはいるものの、粗粒に微粉が付着したり微粉同士の凝集が認められるので、一般に粒度分布幅は広くなっている。
【0020】
そこで捕集品を多量の水中に投じて十分に撹拌して、本質的に一次粒子に、即ち個々の粒子乃至ごく少数個の粒子の凝集状態に分散し、1回目の粗分級と同様の遠心分離操作(以下「精製分級」と称する)を行なうことにより、さらに粗粒および微粉成分が除かれた粒度分布幅の狭い製品とすることが可能である。同様の操作をさらに追加すれば粒度分布幅はより狭くすることができるが、操作を繰返すことによって、目的とするサイズの製品の捕集量は順次減少し効率が低下することから、2回ないし3回が工業的に実用的な繰返し回数である。
【0021】
繰返し分級の効果は、粒度分布データを用いて評価することができる。粒度分布データは、区分されたサイズ領域(範囲)に存在する粒子数を、測定した粒子全数に対する割合で示した(相対)頻度として、サイズ領域別に集計したヒストグラムと、かかる頻度を積分して得られる累積粒度分布曲線とで表示する方式が広く用いられている。
【0022】
粒度分布状態の評価手段としては、粒度分布を表わす図形について、ピークの高さ、ならびに半値幅で表示する方法や、累積粒度分布曲線におけるD25値とD75値との比を用いる方法などがある。
【0023】
本発明の方法に拠れば、従来に比して格段に粒度範囲の狭い、即ち中央値乃至平均粒子径D50の近くのサイズ頻度値が高く、これから隔たると急激に頻度が低下し、全体として鋭い山状を呈する粒度構成のサブミクロンダイヤモンド粉が得られる。このような特性はD50平均粒度100nm以下のダイヤモンド粉においても確保される。
【0024】
本発明によるダイヤモンド粉の粒子構成乃至粒度分布特性は、第2チャンネルの値を5.500μm、チャンネル間の粒径比率を2の4乗根の逆数とする、チャンネル数44の粒度分布図におけるいくつかのサイズ値及びこれらの比率によって表示規定される。而して検出頻度が最多である粒度区分内の粒子が全体の15%以上を占める場合において、累積粒度分布曲線から読み取ったD90/D10の比が3.0以下、特に2.5以下であり、かつD10/D50の比率が0.6よりも大であり、またD90/D50の比率が1.8以下という、粒度分布幅の狭い粒子構成が得られる。
【0025】
本発明の上記粒度測定はレーザー回折散乱法に基づき、測定はマイクロトラック社の粒度分布測定装置UPAに拠ったが、他社の測定器を用いてもヒストグラム及び累積粒度分布曲線の形状に本質的な差違はない。
【0026】
本発明方法においては、サブミクロンダイヤモンド粉は、油圧プレス等での静的加圧法による超高圧下において非ダイヤモンド炭素から転換・調製・単離されたダイヤモンドの超微粉への粉砕と、特殊な分級操作との組合せによって粒度調整を行う。粉砕には、鋼球を用いてボールミル粉砕操作が利用でき、一方精密分級は、先ず水簸又は遠心分離処理によって粗分級を行い、次いで1回乃至数回の繰返し遠心分離処理に供することからなる精密分級を行う。
【0027】
上記粗分級及び精密分級における遠心分離操作は、次の各段階で構成することができる。即ち、(1)ダイヤモンドを含む第一の水性スラリーを調製すること、(2)該第一スラリーを遠心分離機に供給して遠心分離処理を行うこと、(3)ダイヤモンド含有率の上昇した第二のスラリー乃至ケーキとして取り出すこと、(4)該第二のスラリー乃至ケーキを、第一のスラリーと同様に上記(2)及び(3)の段階を1回以上繰り返し供すること、及び(5)ダイヤモンド含有率が更に上昇した最終スラリー乃至ケーキとして回収すること、である。
【0028】
上記において、取り出した第二のスラリー乃至ケーキではダイヤモンド含有率が上昇しているので、これを次の遠心分離操作に供する際に、このスラリー乃至ケーキをで希釈することにより、より粒度範囲の狭い粒子構成をもつスラリー乃至ケーキを得ることができる。
【0029】
上記において、第一スラリーのダイヤモンド含有率は0.5%以下0.05%以上とするのが好ましい。これより低いと生産性が低下し、逆に高過ぎると凝集粒子の割合が大きくなる。
【0030】
また上記第一スラリーを形成する前に、予めダイヤモンドを親水化処理に供し、ダイヤモンド粒子表面に、酸素等の親水性原子や、水酸基、カルボキシル基、カルボニル基、その他の親水性原子団乃至親水基を形成させると、水中での分散状態が向上するので、効率的な処理を行うことができる。
【0031】
上記の親水性処理は、例えば濃硫酸、濃硝酸、過塩素酸のような強酸乃至湿式酸化剤中で加熱することによって達成できる。このような処理は例えば特開2001−329252号公報に記載されている。
【0032】
一方、単乃至繰り返し分級操作後に、ダイヤモンドを800℃以上の温度で加熱処理することにより、ダイヤモンド粒子の表面を一部、黒鉛乃至乱層構造または不定形炭素等の非ダイヤモンド炭素に転換してダイヤモンド結晶本体を被覆することも効果的である。
【0033】
即ち、ダイヤモンド粒子表面に非ダイヤモンド炭素が介在することによって、研磨面に深い傷を生じたり、突き刺さりを生じる原因となる鋭い刃先の形成が抑えられ、高品位の研磨面が期待できる。
【0034】
この効果は次のように説明可能である。即ち本発明のダイヤモンド微粉は衝撃荷重で粉砕されたものであるから劈開割れによる破片が主体であって、研磨材粒子のエッジが鋭くまた形状が鋭角であり、研磨材粒子表面が硬質である。従って特に被加工材が軟質材料の場合、そのままでは研磨加工の際に研磨傷(スクラッチ)が発生しやすく、その結果、良好な研磨面品位が得られにくくなっている。
【0035】
この際、分級処理後にダイヤモンド粉を上記温度で加熱処理すると、ダイヤモンド粒子の表面に、本体と一体化されたより軟質の非ダイヤモンド炭素(NDC:特に黒鉛乃至乱層構造または不定形炭素)相が形成される。しかもこのNDC相は、ダイヤモンド粒子の特に、高反応性の尖った先端部やエッジ部において優先的に生成することから、加熱処理されたダイヤモンド粒子は、刃先が丸みを帯びた、また粒子表面に非ダイヤモンド炭素のクッション層が形成された構成となって、研磨傷の回避が期待できる。
【0036】
上記加熱処理は800〜1400℃の温度で行うのが好ましい。800℃以下では加熱処理による効果、即ちダイヤモンド粒子表面に形成される非ダイヤモンド炭素量が殆ど認められないのと併せて、ダイヤモンド粒子自体の強度にも変化が認められない。一方1400℃を超えるとダイヤモンドの黒鉛化が急激に進行するので反応の制御が困難になる。より好ましい加熱処理温度は1100〜1300℃である。
【0037】
この熱処理は800℃以上1400℃以下の処理温度で行う。被覆(析出)量は処理時間に拠って制御できるが、ダイヤモンド粒子全体に対する重量%で0.5%以上30%以下(酸化剤溶出法による質量減少率)が適切である。これより少ないと効果が顕著でなく、多すぎると切れ刃が鈍くなって切れ味が落ちる。
【0038】
加熱処理時間は処理する炉の大きさによって異なるが概ね6〜12時間程度が好適である。
【0039】
上記熱処理によってダイヤモンド結晶は、包含している金属不純物との熱膨張率の差に起因して、細かなクラック(ひび割れ)を生じて破砕性の向上に寄与する。この破砕性の向上は、粗いダイヤモンド砥粒については定量的な評価が行われている。なお、本出願においては、このクラック発生とダイヤモンドの非ダイヤモンド炭素への転換とを、ダイヤモンド結晶構造への熱影響と称する。
【0040】
【実施例1】水簸操作によってD50平均粒径(中央値)150nm以上の粗粒フラクションを除いたスラリーを用いた。脱イオン水を加えてスラリー中のダイヤモンド濃度を0.2質量%に調整し、12000Gの第1段遠心分離機を通過させ、粒径100nmのフラクションを、粗分級ケーキとして一旦捕集した。第1段遠心分離機を出た流出液は、直列に接続した21000Gの第2段遠心分離機に送入して、80nm粒子採集用の粗分級ケーキと流出液とに分離した。
【0041】
第1段および第2段の遠心分離機で捕集した粗分級ケーキは、それぞれ100nmおよび80nm粒子採集のために、精密分級用の原料スラリータンクへ投入し、脱イオン水を加えてダイヤモンド濃度を調整し、十分撹拌して0.1%のスラリーとした。
【0042】
公称粒径値100nm品の精密分級においては、上記のスラリーを5000Gの前段遠心分離機を通過させて、混入している粗粉成分を除去し、流出液を12000Gの後段遠心分離機に導いて、ケーキと微粉成分を含む流出液とに分離した。
【0043】
公称粒径値80nm品についても同様の操作を行った。ただし前段遠心分離操作では12000Gの遠心分離機を通過させて粗粒を除去し、次いで21000Gの後段遠心分離機で、ケーキと微粉成分を含む流出液との分離を実施した。
【0044】
以上の操作で得られた粗分級品および精密分級品について、特性値をまとめて次表に掲げた。測定はマイクロトラックUPAの粒度分布測定器に拠った。
【0045】
【表1】

Figure 2004339412
【0046】
上記結果に見られるように両サイズとも、D50値については粗分級品と精密分級品との間に実質的な差がないものの、精密分級を行なうことによってD90/D10については3.59及び3.16からそれぞれ3.0以下まで低下し、またピーク値フラクションの頻度は15%以上となっており、粒度分布幅が狭くなっていることが認められる。なお粗分級から精製品への歩留りは65%であった。
【0047】
上記で得られた80nm精密分級品のダイヤモンド粉末を、窒素雰囲気中で1000℃に12時間保持する加熱処理を施した。得られた加熱処理ダイヤモンドは、黒色を呈しており、硫酸−硝酸混液中で煮沸する湿式酸化処理による減量から、ダイヤモンドの表面に形成された非ダイヤモンドカーボン量は、4.5質量%と見積もられた。
【0048】
このダイヤモンドを用いた3.5インチのアルミハードディスクのテクスチュアリング加工において、加工面の面粗さとして2.7Åの値が得られ、80GBの記録密度を目指した加工砥粒として用いうることが、確かめられた。
【0049】
【発明の効果】本発明のダイヤモンド微粉は、静圧法で合成されたダイヤモンドの特徴である単結晶質を保持しながら、100nm以下の粒度域において狭い粒度範囲を呈することから、精密研磨その他各種の精密用途に適する。[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to single-crystal diamond abrasive particles, particularly submicron diamond abrasive particles suitable for precision polishing of electronic materials such as texturing of hard disks and polishing of thin-film magnetic heads. It relates to a manufacturing method.
[0002]
2. Description of the Related Art In recent years, optical parts, electronic parts, precision mechanical parts, and the like have been required to have higher performance and higher functions, and the materials used are metallic materials, ceramics, glass, and the like. For plastics and a wide variety of other applications, the roughness indication on the finished surface is shifting from nanometers to Angstroms.
[0003]
For precision polishing of such parts, polycrystalline diamond is widely used. Polycrystalline diamond is synthesized by shock pressure using explosives from graphite as raw material.Since the synthesis reaction time is short, primary particles of several tens of nm in diameter are welded to form sub-micron or micron-order secondary particles. are doing. In addition, it has an excellent characteristic that a fine finished surface roughness can be obtained by reflecting the fineness of the primary particles while securing a polishing rate depending on the secondary particle size.
[0004]
However, in the case of polycrystalline diamond, since the synthesis reaction is a very short time pressurization and heating reaction on the order of microseconds, it is difficult to strictly control the size of the primary particles and the welding strength between the particles, and it is difficult to use abrasives. It is said that it is difficult to keep the physical property values in a narrow area.
[0005]
On the other hand, synthetic diamonds synthesized under static ultra-high pressure using a hydraulic press have a pressure and heating holding time on the order of minutes. Although it is easier than in the case, on the other hand, since these particles are generally obtained as single crystalline particles having a diameter of several tens to several hundreds of μm, in order to use them as abrasives for fine processing, these particles are used. There is a need to establish a technology for crushing, classifying and collecting to submicron size.
[0006]
SUMMARY OF THE INVENTION Accordingly, one of the main objects of the present invention is to use the above-mentioned monocrystalline synthetic diamond abrasive particles whose physical properties can be controlled as a starting material, and to use submicron (less than 1 μm) particles. The object of the present invention is to obtain single-crystal submicron diamond abrasive particles having an extremely narrow particle size distribution by subjecting them to ultrafine pulverization to a particle size and precision classification.
[0007]
Another object of the present invention is to provide abrasive particles which cover the surface of such diamond particles with non-diamond carbon converted from base diamond, thereby enabling a finer polished surface to be achieved in the polishing process. That is.
[0008]
In the present invention, in order to solve the problems], subjecting the single crystalline diamond particles to pulverization and classification steps, D 50 average particle size (median) is at 500nm or less, and a particle size classification in showing the most frequently Submicron diamond abrasive particles are prepared, characterized in that the particles comprise more than 15% of the total. However, the particle size value is a dynamic light scattering particle size distribution analyzer having 44 channels, in which Microtrack UPA, the value of the second channel is 5.500 μm, and the particle size ratio between channels is the reciprocal of the square root of 2 Of the detection frequency for each size.
[0009]
In the present invention, essentially, a single crystal submicron diamond abrasive particle having a narrow particle size distribution is obtained by a combination of an impact crushing technique using a ball mill or the like and a repetitive classification technique using a centrifuge. In particular, a repetitive classification technique capable of effectively removing coarse components and fine components far away from the central particle size constitutes a main part of the present technology.
[0010]
It is recognized by SEM observation of the pulverized particles that the cleavage of cracks is dominant in the refinement of diamond. Therefore, it can be said that impact crushing of the prior art using steel balls is a preferable method for crushing in terms of both crushing efficiency and operation cost.
[0011]
In the pulverization process, the diamond crystal is cleaved and the parts with defects and foreign matter in the crystal are destroyed preferentially, and the foreign matter exposed on the fracture surface is removed in the purification process by chemical treatment in post-processing. As a result, the amount of defects and the content of impurities are reduced as the powder becomes finer or the particle size is reduced, so that the original characteristics of diamond can be obtained.
[0012]
In the present invention, a general elutriation technique utilizing a phenomenon in which the sedimentation speed of particles in water depends on the particle size is used in the step of classifying the fine diamond particles according to a predetermined size region, that is, the classification step. However, like other substances, the surface of diamond becomes active and becomes easily aggregated with the pulverization, so that the surface of the diamond particles is made hydrophilic prior to the elutriation step, and the dispersibility of the dispersion medium in water is increased. It is preferable to perform a pretreatment. As this pretreatment method, a surface oxidation treatment technique of Japanese Patent No. 2691884 can be exemplified.
[0013]
Elutriation is generally used in the classification of diamond powder as a technique suitable for sizing with a narrow particle size distribution width, but the sedimentation speed in water slows down as the particles to be classified become finer. The productivity decreases. That is, from the Stokes' rule, which is the basis of elutriation classification, the sedimentation rate of diamond particles at room temperature is 0.2 mm / h for particles having a particle size of 0.2 μm, and 0.11 mm / h for particles having a particle size of 0.15 μm. Calculated, which is already close to the limits of elutriation classification techniques.
[0014]
As a classifying method with high productivity, a technique of using a centrifugal separator to move particles by a large gravitational acceleration and recovering the particles in a slurry state or as a cake attached to the wall surface of a rotor is widely used.
[0015]
By the way, for use as a precision abrasive, it is required that the particles are separated with a difference of 0.1 μm or less, particularly a narrow particle size difference of 0.02 μm or less, as an average particle diameter (median value). The present inventors, as a method of achieving such a narrow particle size difference, in addition to making the slurry supplied to the centrifuge a dilute slurry having a small diamond content, the concentrated slurry collected by centrifugation or It has been found that it is very effective to disperse the cake again in a large amount of water to make a dilute slurry, supply it to a centrifugal separator, and repeatedly classify it. The present invention is based on such findings.
[0016]
In the classification operation, it is understood that it is important to ensure that as much of the fine diamond particles contained in the dispersion medium, especially water, as possible are dispersed in the form of single particles. Accordingly, the lower the concentration of diamond in the slurry, the better, but because of the balance with productivity, the trapping of an average particle diameter (median value) of 0.1 μm has a diamond concentration of 0.5% or less, especially 0.1 μm. It is preferably at most 2%.
[0017]
Although not essential, it is preferable to reduce the slurry concentration in the second and subsequent repeated centrifugations as compared to the first centrifugation. On the other hand, as for the operating conditions of the centrifuge, the same conditions as in the first operation can be used for the second time and thereafter.
[0018]
In the method of the present invention, the centrifugation operation basically collects particles (fraction) in a specific range including a target elutriation device or centrifugal separator and a target particle size, which essentially removes coarse particles. It is carried out in three types of equipment: a main centrifuge, and a device for collecting and processing a slurry containing fine particles coming out of the centrifuge without being collected by the main centrifuge.
[0019]
In the first centrifugation operation (hereinafter referred to as “coarse classification”), the concentrated slurry or cake collected by the centrifugal separator of the main body has a large amount of coarse particles and fine powder removed, but the coarse particles are removed. Generally, the particle size distribution width is wide because fine powder adheres or aggregation of fine powder is observed.
[0020]
Therefore, the collected product is poured into a large amount of water and sufficiently stirred to be essentially dispersed in primary particles, that is, in an aggregated state of individual particles or a very small number of particles, and centrifuged in the same manner as in the first coarse classification. By performing the separation operation (hereinafter referred to as "refining and classification"), it is possible to obtain a product having a narrower particle size distribution width from which coarse particles and fine powder components have been further removed. If the same operation is further added, the particle size distribution width can be narrowed. However, by repeating the operation, the collection amount of the product of the target size is sequentially reduced and the efficiency is reduced. Three times is the industrially practical number of repetitions.
[0021]
The effect of the repeated classification can be evaluated using the particle size distribution data. The particle size distribution data is obtained by integrating the number of particles present in the divided size region (range) as a (relative) frequency indicated as a ratio to the total number of measured particles, and a histogram aggregated for each size region and the frequency. A method of displaying a cumulative particle size distribution curve is widely used.
[0022]
The evaluation means of the particle size distribution, the figure representing the particle size distribution, the peak height, and a method of displaying a half-value width, and a method of using the ratio of the 25 value and the D 75 value D in a cumulative particle size distribution curve is there.
[0023]
According to the method of the present invention, narrow significantly the size range as compared with the prior art, i.e. near the size frequency value of the median or average particle diameter D 50 is high, rapid frequency decreases the now spaced, as a whole A submicron diamond powder having a particle size configuration exhibiting a sharp mountain shape is obtained. Such properties are ensured even in D 50 average particle size 100nm or less diamond powder.
[0024]
The particle configuration and the particle size distribution characteristics of the diamond powder according to the present invention are as follows: the value of the second channel is 5.500 μm, and the particle size ratio between the channels is the reciprocal of the square root of 2; The display is defined by the size values and their ratios. Thus, in the case where the particles in the particle size division having the highest detection frequency account for 15% or more of the whole, the ratio of D 90 / D 10 read from the cumulative particle size distribution curve is 3.0 or less, particularly 2.5 or less. And a particle configuration with a narrow particle size distribution width is obtained, in which the ratio of D 10 / D 50 is larger than 0.6 and the ratio of D 90 / D 50 is 1.8 or less.
[0025]
The particle size measurement of the present invention is based on a laser diffraction scattering method, and the measurement is based on a particle size distribution measuring device UPA of Microtrac Co., Ltd. There is no difference.
[0026]
In the method of the present invention, submicron diamond powder is converted from non-diamond carbon under ultra-high pressure by a static pressurization method such as a hydraulic press or the like, and crushed into ultrafine powder of diamond converted, prepared and isolated, and special classification. The particle size is adjusted in combination with the operation. For the pulverization, a ball mill pulverization operation using a steel ball can be used, while precision classification involves first performing coarse classification by elutriation or centrifugation, and then subjecting to one or several repeated centrifugation processes. Perform precision classification.
[0027]
The centrifugal separation operation in the coarse classification and the fine classification can be configured in the following steps. That is, (1) preparing a first aqueous slurry containing diamond, (2) supplying the first slurry to a centrifugal separator and performing a centrifugation treatment, and (3) preparing a first aqueous slurry having an increased diamond content. (4) taking out the second slurry or cake in the same manner as the first slurry by repeating the steps (2) and (3) one or more times; and (5) And recovering the final slurry or cake having a further increased diamond content.
[0028]
In the above, since the diamond content is increased in the second slurry or cake taken out, when the slurry or cake is subjected to the next centrifugation operation, by diluting the slurry or cake, the particle size range is narrower. A slurry or cake having a particle configuration can be obtained.
[0029]
In the above, the diamond content of the first slurry is preferably 0.5% or less and 0.05% or more. If it is lower than this, the productivity decreases, and if it is too high, the proportion of aggregated particles increases.
[0030]
Before forming the first slurry, the diamond is subjected to a hydrophilic treatment in advance, and a hydrophilic atom such as oxygen, a hydroxyl group, a carboxyl group, a carbonyl group, or another hydrophilic atomic group or a hydrophilic group is formed on the diamond particle surface. Is formed, the state of dispersion in water is improved, so that efficient treatment can be performed.
[0031]
The above hydrophilic treatment can be achieved by heating in a strong acid or a wet oxidizing agent such as concentrated sulfuric acid, concentrated nitric acid, and perchloric acid. Such a process is described in, for example, JP-A-2001-329252.
[0032]
On the other hand, the diamond is subjected to a heat treatment at a temperature of 800 ° C. or more after the simple or repeated classification operation, whereby a part of the surface of the diamond particles is converted into non-diamond carbon such as graphite or a turbostratic structure or amorphous carbon to thereby form diamond. Coating the crystal body is also effective.
[0033]
That is, the presence of non-diamond carbon on the surface of the diamond particles suppresses the formation of a sharp cutting edge that causes deep scratches or piercing on the polished surface, and a high-quality polished surface can be expected.
[0034]
This effect can be explained as follows. That is, since the diamond fine powder of the present invention is crushed by an impact load, it mainly consists of fragments due to cleavage cracks, and the abrasive particles have sharp edges and sharp angles, and the surface of the abrasive particles is hard. Therefore, particularly when the work material is a soft material, polishing scratches (scratch) are liable to occur during the polishing process as it is, and as a result, it is difficult to obtain a good polished surface quality.
[0035]
At this time, if the diamond powder is heated at the above temperature after the classification process, a softer non-diamond carbon (NDC: especially graphite or turbostratic or amorphous carbon) phase integrated with the main body is formed on the surface of the diamond particles. Is done. In addition, since the NDC phase is preferentially generated at the highly reactive sharp tip or edge of the diamond particles, the heat-treated diamond particles have a rounded cutting edge and a large particle surface. The configuration in which the non-diamond carbon cushion layer is formed can be expected to avoid polishing scratches.
[0036]
The heat treatment is preferably performed at a temperature of 800 to 1400 ° C. At 800 ° C. or lower, the effect of the heat treatment, that is, the amount of non-diamond carbon formed on the surface of the diamond particle is hardly recognized, and the strength of the diamond particle itself is not changed. On the other hand, when the temperature exceeds 1400 ° C., the graphitization of diamond proceeds rapidly, so that it becomes difficult to control the reaction. A more preferred heat treatment temperature is 1100 to 1300 ° C.
[0037]
This heat treatment is performed at a processing temperature of 800 ° C. or more and 1400 ° C. or less. The amount of coating (precipitation) can be controlled depending on the processing time, but it is appropriate that the amount is 0.5% or more and 30% or less (mass reduction rate by an oxidizing agent elution method) in terms of% by weight based on the entire diamond particles. If it is less than this, the effect is not remarkable, and if it is too large, the cutting edge becomes dull and the sharpness decreases.
[0038]
The heat treatment time varies depending on the size of the furnace to be treated, but is preferably about 6 to 12 hours.
[0039]
Due to the above heat treatment, the diamond crystal generates fine cracks (cracks) due to the difference in the coefficient of thermal expansion with the contained metal impurities, thereby contributing to the improvement of the friability. This improvement in friability has been quantitatively evaluated for coarse diamond abrasive grains. In the present application, the generation of cracks and the conversion of diamond to non-diamond carbon are referred to as thermal effects on the diamond crystal structure.
[0040]
EXAMPLE 1 using the slurry excluding D 50 average particle size (median) 150 nm or more coarse fractions by elutriation operation. Deionized water was added to adjust the diamond concentration in the slurry to 0.2% by mass, and the mixture was passed through a 12000 G first-stage centrifugal separator, and a fraction having a particle size of 100 nm was once collected as a coarse classified cake. The effluent exiting the first-stage centrifuge was sent to a 21000 G second-stage centrifuge connected in series, and separated into a coarsely classified cake for collecting 80 nm particles and an effluent.
[0041]
The coarsely classified cake collected by the first and second stage centrifuges is put into a raw material slurry tank for precision classification for collecting 100 nm and 80 nm particles, respectively, and deionized water is added to reduce the diamond concentration. The slurry was adjusted and sufficiently stirred to obtain a 0.1% slurry.
[0042]
In the precision classification of a product having a nominal particle size of 100 nm, the above slurry is passed through a 5000 G pre-stage centrifuge to remove mixed coarse powder components, and the effluent is led to a 12000 G post-centrifuge. , And separated into a cake and an effluent containing fine components.
[0043]
The same operation was performed for a product having a nominal particle size of 80 nm. However, in the pre-stage centrifugation operation, coarse particles were removed by passing through a 12000 G centrifuge, and then the cake and the effluent containing the fine powder component were separated by the 21000 G post-centrifuge.
[0044]
The characteristic values of the coarsely classified product and the finely classified product obtained by the above operations are summarized in the following table. The measurement was based on a particle size distribution analyzer of Microtrac UPA.
[0045]
[Table 1]
Figure 2004339412
[0046]
Both the size as seen in the above results, although there is no substantial difference between the coarse fraction grade and precision classification items for D 50 value, for D 90 / D 10 by performing a precise classification 3. From 59 and 3.16, each decreased to 3.0 or less, and the frequency of the peak value fraction was 15% or more, indicating that the particle size distribution width was narrowed. The yield from coarse classification to refined product was 65%.
[0047]
The 80-nm precision-classified diamond powder obtained above was subjected to a heat treatment at 1000 ° C. for 12 hours in a nitrogen atmosphere. The obtained heat-treated diamond has a black color, and the amount of non-diamond carbon formed on the diamond surface is estimated to be 4.5% by mass from the weight loss due to the wet oxidation treatment in which the mixture is boiled in a mixed solution of sulfuric acid and nitric acid. Was done.
[0048]
In the texturing of a 3.5-inch aluminum hard disk using this diamond, a value of 2.7 ° was obtained as the surface roughness of the processed surface, and it can be used as a processing abrasive aiming at a recording density of 80 GB. I was assured.
[0049]
The fine diamond powder of the present invention exhibits a narrow particle size range in a particle size range of 100 nm or less while retaining the single crystal characteristic of diamond synthesized by the static pressure method, so that it can be used for precision polishing and other various processes. Suitable for precision applications.

Claims (17)

粉砕・分級工程を経て調製された、単結晶質ダイヤモンド粒子において、マイクロトラックUPAによるサイズ別検出頻度の粒度分布ヒストグラム(第2チャンネルの値を5.500μm、チャンネル間の粒径比率を2の4乗根の逆数とする、チャンネル数44の動的光散乱遠心粒度分布測定機)において、D50平均粒度(中央値)が 500nm以下であり、かつ最多頻度を示す粒度区分内の粒子が全体の15%以上を占めることを特徴とする、研磨材用サブミクロンダイヤモンド微細粉。In the monocrystalline diamond particles prepared through the pulverization / classification process, the particle size distribution histogram of the detection frequency by size by Microtrac UPA (the value of the second channel is 5.500 μm, and the particle size ratio between channels is 2-4) the reciprocal of the root, in the channel number 44 dynamic light scattering centrifugal particle size distribution measuring machine), D 50 average particle size (median) is at 500nm or less, and a particle size within the segment that shows the most frequent particle total of Submicron diamond fine powder for abrasives, characterized in that it accounts for 15% or more. 上記D50平均粒度が100nm以下である、請求項2に記載のダイヤモンド粉。The D 50 average particle size is 100nm or less, the diamond powder according to claim 2. 上記ヒストグラムにおいて最大の検出頻度を呈する粒度フラクションが全体の15%以上である、請求項1に記載の単結晶質サブミクロンダイヤモンド微細粉。The single-crystal submicron diamond fine powder according to claim 1, wherein a particle size fraction exhibiting a maximum detection frequency in the histogram is 15% or more of the whole. 上記粒度ヒストグラムにおいて、さらに、D90/D10の比率が3.0以下である、請求項1に記載のダイヤモンド微細粉。In the particle size histogram, further, the ratio of D 90 / D 10 of 3.0 or less, minute diamond powder of claim 1. 上記D90/D10の比率が2.5以下である、請求項4に記載のダイヤモンド微細粉。The ratio of the D 90 / D 10 is 2.5 or less, minute diamond powder of claim 4. 上記ヒストグラムにおいて、さらに、D10/D50の比率が0.6よりも大である、請求項1に記載のダイヤモンド微細粉。In the histogram, further, the ratio of D 10 / D 50 is greater than 0.6, minute diamond powder of claim 1. 上記粒度分布ヒストグラムにおいて、さらに、D90/D50の比率が1.8以下である、請求項1に記載のダイヤモンド微細粉。In the particle size distribution histogram, further, the ratio of D 90 / D 50 is 1.8 or less, minute diamond powder of claim 1. 単結晶質ダイヤモンド粒子の表面が、加熱処理による熱影響構造を有し、かつダイヤモンド粒子全体に対する質量比において0.5%以上の非ダイヤモンド炭素で被覆されている請求項1に記載のダイヤモンド微細粉。2. The diamond fine powder according to claim 1, wherein the surface of the single-crystal diamond particles has a heat-affected structure by a heat treatment and is coated with non-diamond carbon in a mass ratio of 0.5% or more to the entire diamond particles. . 上記非ダイヤモンド炭素が黒鉛乃至乱層構造または不定形炭素である、請求項8に記載のダイヤモンド微細粉。9. The fine diamond powder according to claim 8, wherein the non-diamond carbon is graphite, a turbostratic structure or amorphous carbon. 上記非ダイヤモンド炭素のダイヤモンド粒子全体に対する割合が、酸化剤溶出法による質量減少率において30%以下である、請求項1に記載のダイヤモンド微細粉。2. The fine diamond powder according to claim 1, wherein a ratio of the non-diamond carbon to the whole diamond particles is 30% or less in a mass reduction rate by an oxidizing agent elution method. 上記ダイヤモンド粒子が上記加熱処理の影響としてクラックを含む、請求項8に記載のダイヤモンド微細粉。The diamond fine powder according to claim 8, wherein the diamond particles include cracks as an effect of the heat treatment. 静的加圧法による超高圧下において非ダイヤモンド炭素から転換・調製されたダイヤモンドを単離し、更に(1)鋼球を用いたボールミル粉砕操作、(2)水簸又は遠心分離処理による粗分級、及び(3)繰返し遠心分離処理による精密分級の組合せによって粒度調整を行うことを特徴とする、請求項1に記載のダイヤモンド微細粉の製造方法。The diamond converted and prepared from non-diamond carbon under ultra-high pressure by the static pressurization method is isolated, and further (1) ball mill pulverizing operation using steel balls, (2) coarse classification by elutriation or centrifugation, and (3) The method for producing fine diamond powder according to claim 1, wherein the particle size is adjusted by a combination of precise classification by repeated centrifugation. 上記遠心分離操作が次の各段階で構成される、請求項12に記載のダイヤモンド微細粉の製造方法:
(1) ダイヤモンドを含む第一の水性スラリーを調製すること、
(2) 該第一スラリーを遠心分離機に供給して遠心分離処理を行うこと、
(3) ダイヤモンド含有率の上昇した第二のスラリー乃至ケーキとして取り出すこと、
(4) 該第二のスラリー乃至ケーキを、第一のスラリーと同様に上記(2)及び(3)の段階を1回以上繰り返し供すること、及び
(5) ダイヤモンド含有率が更に上昇した最終スラリー乃至ケーキとして回収すること。
The method for producing a diamond fine powder according to claim 12, wherein the centrifugation operation is constituted by the following steps:
(1) preparing a first aqueous slurry containing diamond;
(2) supplying the first slurry to a centrifuge to perform a centrifugation process;
(3) removing as a second slurry or cake having an increased diamond content;
(4) The second slurry or cake is subjected to the steps (2) and (3) one or more times in the same manner as the first slurry, and (5) the final slurry having a further increased diamond content. Or to collect as cake.
上記遠心分離操作が次の各段階で構成される、請求項12に記載のダイヤモンド微細粉の製造方法:
(1) ダイヤモンドを含む第一の水性スラリーを調製すること、
(2) 該第一スラリーを遠心分離機に供給して遠心分離処理を行うこと、
(3) ダイヤモンド含有率の上昇した第二のスラリー乃至ケーキとして取り出すこと、
(4) 該第二スラリー乃至ケーキを水で希釈して第三のスラリーを調製すること、
(5) 該第三スラリーを、第一のスラリーと同様に、上記(2)及び(3)の段階を1回以上繰り返すこと、及び
(6) ダイヤモンド含有率が更に上昇した最終スラリー乃至ケーキとして回収すること。
The method for producing a diamond fine powder according to claim 12, wherein the centrifugation operation is constituted by the following steps:
(1) preparing a first aqueous slurry containing diamond;
(2) supplying the first slurry to a centrifuge to perform a centrifugation process;
(3) removing as a second slurry or cake having an increased diamond content;
(4) diluting the second slurry or cake with water to prepare a third slurry;
(5) Repeating the steps (2) and (3) one or more times in the same manner as the first slurry, and (6) as the final slurry or cake having a further increased diamond content. To collect.
上記第一スラリーのダイヤモンド含有率が0.5%以下である、請求項13及び14の各項に記載されたダイヤモンド微細粉の製造方法。The method for producing fine diamond powder according to any one of claims 13 and 14, wherein the diamond content of the first slurry is 0.5% or less. 上記第一スラリーを形成する前に、予めダイヤモンドを親水化処理に供し、ダイヤモンド粒子表面に親水基を形成させる、請求項13及び14の各項に記載されたダイヤモンド微細粉の製造方法。15. The method for producing fine diamond powder according to claim 13, wherein before forming the first slurry, diamond is subjected to a hydrophilic treatment in advance to form a hydrophilic group on the surface of diamond particles. 上記ダイヤモンドを、繰り返し分級操作の後に800℃以上1400℃以下の加熱処理温度に供する、請求項12に記載されたダイヤモンド微細粉の製造方法。The method for producing fine diamond powder according to claim 12, wherein the diamond is subjected to a heat treatment temperature of 800C to 1400C after repeated classification.
JP2003139153A 2003-05-16 2003-05-16 Submicron diamond powder for abrasive material and method for producing the same powder Pending JP2004339412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003139153A JP2004339412A (en) 2003-05-16 2003-05-16 Submicron diamond powder for abrasive material and method for producing the same powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139153A JP2004339412A (en) 2003-05-16 2003-05-16 Submicron diamond powder for abrasive material and method for producing the same powder

Publications (1)

Publication Number Publication Date
JP2004339412A true JP2004339412A (en) 2004-12-02

Family

ID=33528326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139153A Pending JP2004339412A (en) 2003-05-16 2003-05-16 Submicron diamond powder for abrasive material and method for producing the same powder

Country Status (1)

Country Link
JP (1) JP2004339412A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075763A1 (en) * 2005-01-11 2006-07-20 Hiroshi Ishizuka Fine powder of single-crystalline diamond and method for production thereof
JP2007001790A (en) * 2005-06-21 2007-01-11 Ishizuka Kenkyusho:Kk Chlorine terminated diamond fine powder, and method for producing the same
JP2007238411A (en) * 2006-03-10 2007-09-20 Naoki Komatsu Nanodiamond
WO2007142213A1 (en) * 2006-06-05 2007-12-13 Central Glass Co., Ltd. Method for preparing fluorinated nanodiamond liquid dispersion
JP2008183640A (en) * 2007-01-26 2008-08-14 Hiroshi Ishizuka Diamond dispersed synthetic resin molding material and its manufacturing method
JP2009190902A (en) * 2006-06-05 2009-08-27 Central Glass Co Ltd Method for preparing fluorinated nanodiamond liquid dispersion and its dispersion
JP2009291884A (en) * 2008-06-05 2009-12-17 Sumitomo Electric Ind Ltd Polycrystalline diamond dresser
JP2010149139A (en) * 2008-12-25 2010-07-08 Sumitomo Electric Ind Ltd Wire-drawing die
US20110232199A1 (en) * 2007-10-15 2011-09-29 Central Glass Company, Limited Process for Production of Dispersion of Fluorinated Nano Diamond
CN102319613A (en) * 2011-07-01 2012-01-18 上海江信超硬材料有限公司 Full-automatic diamond powder grader and grading method
RU2468869C2 (en) * 2011-03-02 2012-12-10 АКЦИОНЕРНАЯ КОМПАНИЯ "АЛРОСА" (открытое акционерное общество) Method of making diamond powders from fine diamond-bearing concentrates
EP2123603A4 (en) * 2007-02-09 2014-01-29 Ishizuka Hiroshi Diamond micropowder, method of trapping the same, and diamond slurry having diamond micropowder dispersed therein
JP2015030817A (en) * 2013-08-05 2015-02-16 住友電気工業株式会社 Abrasive grains, polishing slurry, wire saw, bound body, tool, and method for producing abrasive grains
CN104629683A (en) * 2015-01-13 2015-05-20 江苏金石研磨有限公司 Preparation method of high-strength parent nucleus for centrifugal shaping of ceramic grinding ball
CN104689925A (en) * 2015-03-09 2015-06-10 彭建国 Multistage classifier and classification method of superfine diamond micro-powder particles
CN107108229A (en) * 2015-10-30 2017-08-29 住友电气工业株式会社 Polycrystalline body
CN117655343A (en) * 2024-01-31 2024-03-08 中铝科学技术研究院有限公司 Flaky zinc powder, preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329252A (en) * 2000-05-22 2001-11-27 Hiroshi Ishizuka Fine diamond abrasive particle and it production method
JP2002035636A (en) * 2000-07-21 2002-02-05 Ishizuka Kenkyusho:Kk Single crystal diamond fine powder
JP2002338952A (en) * 2001-05-11 2002-11-27 Ishizuka Kenkyusho:Kk Diamond particulate polishing material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001329252A (en) * 2000-05-22 2001-11-27 Hiroshi Ishizuka Fine diamond abrasive particle and it production method
JP2002035636A (en) * 2000-07-21 2002-02-05 Ishizuka Kenkyusho:Kk Single crystal diamond fine powder
JP2002338952A (en) * 2001-05-11 2002-11-27 Ishizuka Kenkyusho:Kk Diamond particulate polishing material

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006075763A1 (en) * 2005-01-11 2008-06-12 博 石塚 Single crystalline diamond fine powder and method for producing the same
WO2006075763A1 (en) * 2005-01-11 2006-07-20 Hiroshi Ishizuka Fine powder of single-crystalline diamond and method for production thereof
TWI405720B (en) * 2005-01-11 2013-08-21 Hiroshi Ishizuka Single crystal diamond powder and its manufacturing method
US8506919B2 (en) 2005-01-11 2013-08-13 Hiroshi Ishizuka Fine powder of single crystalline diamond particles and a method for the production thereof
KR101107916B1 (en) * 2005-01-11 2012-01-25 이시즈카히로시 Fine powder of single-crystalline diamond and method for production thereof
JP2007001790A (en) * 2005-06-21 2007-01-11 Ishizuka Kenkyusho:Kk Chlorine terminated diamond fine powder, and method for producing the same
JP2007238411A (en) * 2006-03-10 2007-09-20 Naoki Komatsu Nanodiamond
EP2033935A4 (en) * 2006-06-05 2013-05-29 Central Glass Co Ltd Method for preparing fluorinated nanodiamond liquid dispersion
WO2007142213A1 (en) * 2006-06-05 2007-12-13 Central Glass Co., Ltd. Method for preparing fluorinated nanodiamond liquid dispersion
JP2009190902A (en) * 2006-06-05 2009-08-27 Central Glass Co Ltd Method for preparing fluorinated nanodiamond liquid dispersion and its dispersion
US8790541B2 (en) 2006-06-05 2014-07-29 Central Glass Co., Ltd. Method for preparing fluorinated nanodiamond liquid dispersion
JP2008183640A (en) * 2007-01-26 2008-08-14 Hiroshi Ishizuka Diamond dispersed synthetic resin molding material and its manufacturing method
KR101484339B1 (en) 2007-02-09 2015-01-19 이시즈카히로시 method for collecting the minute diamond powder
EP2123603A4 (en) * 2007-02-09 2014-01-29 Ishizuka Hiroshi Diamond micropowder, method of trapping the same, and diamond slurry having diamond micropowder dispersed therein
US8961631B2 (en) * 2007-10-15 2015-02-24 Central Glass Company, Limited Process for production of dispersion of fluorinated nano diamond
US20110232199A1 (en) * 2007-10-15 2011-09-29 Central Glass Company, Limited Process for Production of Dispersion of Fluorinated Nano Diamond
JP2009291884A (en) * 2008-06-05 2009-12-17 Sumitomo Electric Ind Ltd Polycrystalline diamond dresser
JP2010149139A (en) * 2008-12-25 2010-07-08 Sumitomo Electric Ind Ltd Wire-drawing die
RU2468869C2 (en) * 2011-03-02 2012-12-10 АКЦИОНЕРНАЯ КОМПАНИЯ "АЛРОСА" (открытое акционерное общество) Method of making diamond powders from fine diamond-bearing concentrates
CN102319613A (en) * 2011-07-01 2012-01-18 上海江信超硬材料有限公司 Full-automatic diamond powder grader and grading method
JP2015030817A (en) * 2013-08-05 2015-02-16 住友電気工業株式会社 Abrasive grains, polishing slurry, wire saw, bound body, tool, and method for producing abrasive grains
CN104629683A (en) * 2015-01-13 2015-05-20 江苏金石研磨有限公司 Preparation method of high-strength parent nucleus for centrifugal shaping of ceramic grinding ball
CN104689925A (en) * 2015-03-09 2015-06-10 彭建国 Multistage classifier and classification method of superfine diamond micro-powder particles
CN107108229A (en) * 2015-10-30 2017-08-29 住友电气工业株式会社 Polycrystalline body
CN117655343A (en) * 2024-01-31 2024-03-08 中铝科学技术研究院有限公司 Flaky zinc powder, preparation method and application thereof
CN117655343B (en) * 2024-01-31 2024-05-14 中铝科学技术研究院有限公司 Flaky zinc powder, preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2004339412A (en) Submicron diamond powder for abrasive material and method for producing the same powder
JP5325387B2 (en) Monocrystalline diamond fine powder and method for producing the same
JP3411239B2 (en) Diamond abrasive particles and method for producing the same
JP5276995B2 (en) Diamond fine powder collection method
JP3960914B2 (en) Cerium-based abrasive and method for producing cerium-based abrasive
JP3655811B2 (en) Monocrystalline diamond fine powder
WO2001088056A1 (en) Cerium based abrasive material, raw material thereof and method for their preparation
KR100509267B1 (en) Method for producing cerium-based polishing agent
US20040033188A1 (en) Diamond abrasive material particles and production method therefor
CN109485046B (en) Tungsten carbide powder and preparation method thereof
WO2002008122A1 (en) Single crystal fine diamond powder having narrow particle size distribution and method for production thereof
JP4131870B2 (en) Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass
JP5237542B2 (en) Cerium oxide abrasive
CN111051463B (en) Method for producing raw material for cerium-based abrasive and method for producing cerium-based abrasive
JP3685481B2 (en) Cerium-based abrasive particle powder excellent in particle size distribution, abrasive slurry containing the particle powder, and method for producing the particle powder
JP2004175964A (en) Manufacturing process of high purity cerium oxide abrasive, and high purity cerium oxide abrasive obtained by the process
JP3687898B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive produced using the method
JP4290465B2 (en) Method for producing cerium-based abrasive mainly composed of cerium oxide
WO2021066172A1 (en) Easily crushable diamond abrasive grains and method for manufacturing same
JP2004043657A (en) Cerium abrasive and method for producing the same
GB2526176A (en) Diamond grains, tools comprising same and methods of using same
JP3986410B2 (en) Method for producing cerium-based abrasive slurry and cerium-based abrasive slurry obtained thereby
JP3986424B2 (en) Cerium-based abrasive, method for producing cerium-based abrasive, and quality evaluation method for cerium-based abrasive

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530