JP3655811B2 - Monocrystalline diamond fine powder - Google Patents

Monocrystalline diamond fine powder Download PDF

Info

Publication number
JP3655811B2
JP3655811B2 JP2000221119A JP2000221119A JP3655811B2 JP 3655811 B2 JP3655811 B2 JP 3655811B2 JP 2000221119 A JP2000221119 A JP 2000221119A JP 2000221119 A JP2000221119 A JP 2000221119A JP 3655811 B2 JP3655811 B2 JP 3655811B2
Authority
JP
Japan
Prior art keywords
particle size
diamond
grinding
less
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000221119A
Other languages
Japanese (ja)
Other versions
JP2002035636A (en
Inventor
博 山中
信之 斉藤
石塚博
Original Assignee
株式会社石塚研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000221119A priority Critical patent/JP3655811B2/en
Application filed by 株式会社石塚研究所 filed Critical 株式会社石塚研究所
Priority to EA200300182A priority patent/EA200300182A1/en
Priority to PCT/JP2001/006337 priority patent/WO2002008122A1/en
Priority to BR0112596-6A priority patent/BR0112596A/en
Priority to IL15403801A priority patent/IL154038A0/en
Priority to CN01814481.0A priority patent/CN1447775A/en
Priority to AU2001272778A priority patent/AU2001272778A1/en
Priority to CA002416522A priority patent/CA2416522A1/en
Priority to KR10-2003-7000926A priority patent/KR20030038673A/en
Publication of JP2002035636A publication Critical patent/JP2002035636A/en
Application granted granted Critical
Publication of JP3655811B2 publication Critical patent/JP3655811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Centrifugal Separators (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は単結晶質ダイヤモンド微粉、特に硬質材料の超精密研磨加工等に適したダイヤモンド微粉、およびその製法に関する。
【0002】
【従来の技術】
精密加工技術の高度化に伴って、研磨材として用いられるダイヤモンド粉末の粒度は次第に細かな方へ移行してきており、粒度が1μm以下、即ちサブミクロン級のダイヤモンド微粉の使用も増加してきている。これと共に、かかる微粉の品質、特に粒度分布に対する要求も年々厳しくなる傾向がある。
【0003】
ダイヤモンド微粉の製造方法としては、静的超高圧力を用いて合成した単結晶質のダイヤモンドを原料として用い、これを粉砕した後分級工程に供して、粒度の揃った製品にする方法が一般的である。この方法で製造されるダイヤモンド微粉は、粉砕工程及び分級工程上の制約から、粒度表示において0〜0.1μm、マイクロトラックUPA による測定値で、D50値として0.12μm付近が、市販品の最小サイズとなっている。
【0004】
一方爆薬を用いた衝撃加圧によって、グラファイトまたは爆薬成分をダイヤモンドに転換する、衝撃乃至動的加圧方法も工業的に確立されている。原料としてグラファイトを用いて合成されたダイヤモンドはデュポンタイプダイヤモンドと呼ばれ、一方、爆薬自体を炭素源に用いて合成したダイヤモンドはクラスターダイヤ、またはウルトラファインダイヤなどと呼ばれており、いずれも精密加工分野における研磨材として広く用いられている。
【0005】
これらの衝撃加圧によって合成されたダイヤモンドは、一般に数nm〜数十nmの粒径の一次粒子が凝集ないし結合して、見掛け粒径が数百nm〜数μmの多結晶質の二次粒子を形成していることが知られている。
【0006】
上記デュポンタイプダイヤモンドは、合成された反応生成物を粉砕し、薬品処理によって不純物を除去した後、分級工程を経て製品化されている。しかしこのタイプのダイヤモンドは、合成反応時の高温によって部分的に溶融し結合した箇所もあるので、一次粒子への解砕は困難であると言われている。この結果、市販品の二次粒子サイズは、単結晶質の粉砕粉と同じく、粒度表示において0〜0.1μm、マイクロトラックUPA測定によるD50値において0.12μmあたりが、入手可能な市販の最小サイズとなっている。またこの多結晶質ダイヤモンドは、凝集粒子間に非ダイヤモンド炭素を取り込んでいるため、通常は黒色を呈している。
【0007】
一方クラスターダイヤなどと呼ばれている、爆薬からの転化によって得られたダイヤモンドは、見掛けサイズ数μmの凝集粒子として市販されているが、強力な酸化処理を施すことによって、5〜10nmと言われている一次粒子に解砕することが可能である。このダイヤモンドの一次粒子で構成されたスラリーは、ダイヤモンドCVD工程のためのシーディング液として用いられている(牧田寛:ニューダイヤモンドVol.12、No.3、p.8)。
【0008】
【発明が解決しようとする課題】
以上のような状況において、現在使用可能な研磨用のダイヤモンド微粉は、公称0〜0.1μm、マイクロトラックUPA測定によるD50値で0.12μmを下限としており、0.01μm(10nm)のオーダーから0.12μm(120nm)までの範囲の研磨材、特に単結晶質の微粉は市場で得ることができず、より多様化する超微細加工の要求に応えられなかった。
【0009】
そのうえ0.25μm以下のダイヤモンド微粉は、0〜0.25や、0〜1/8等の表示に示されるように、アンダーサイズを全て含めて捕集し製品化されている。従って粒度幅が比較的広く、小粒径側に、研磨工程に寄与しないだけでなく、時には悪影響を及ぼすことさえある微粉を含有している。さらには微細なフラクションのために、D50値が実質より小さく表示される傾向にある。
【0010】
【発明が解決しようとする課題】
本発明は上記のように有害なアンダーサイズ微粉を殆ど含まず、各種の用途に対応可能な、特に精密研磨加工に適する精密分級された単結晶質ダイヤモンド微粉を提供することを目的としている。
【0011】
【課題を解決するための手段】
上掲せる課題は、本発明によれば、静的超高圧下にて合成された単結晶質ダイヤモンドの粉砕によって得られる、単結晶質サブミクロン級ダイヤモンドを、マイクロトラックUPA粒度測定器 による測定値において、D50値粒径が100nm以下であり、かつD50値粒度に対するD10値粒度および D90値粒度の比がそれぞれ50%以上および200%以下となるように仕上げることによって達成される。
【0012】
上記ダイヤモンド微粉は、典型的には、上記単結晶質ダイヤモンド粒子を超微粉砕工程および精密分級工程に供することによって作製される。
【0013】
【発明の実施形態】
本発明においては、超高圧プレスを用いて静的高圧下で合成された、単結晶質ダイヤモンドを出発材料として用いる。これは先ず、機械的な粉砕手段を用いて超微粉砕し、次いで条件の調整された水簸工程、或いは遠心分離機を用いた精密分級工程に供することによって、平均粒径100nm以下の微粉を狭い粒度幅で得ることができる。
【0014】
上記単結晶質ダイヤモンドをサブミクロンの粒度まで微粉砕するには、粉砕メディアを用いた機械的な衝撃破砕ないしは磨砕方法が利用可能である。
【0015】
粉砕メディアとして鋼球を用いれば、混入不純物の鉄粉は、以後の酸溶解処理で容易に除くことができる。また各種サイズの鋼球が入手可能であり、粉砕の段階に応じて段階的に鋼球のサイズを変えることも容易である。
【0016】
粗粒のダイヤモンドを粉砕メディアに用いることも可能である。この場合、粉砕作業における質量効果は低下するものの、不純物の混入を回避することができる。
【0017】
粉砕装置としては、市販の各種タイプの装置が使用可能である。例としてボールミル、振動ミル、遊星ミルを挙げることができる。
【0018】
鋼球を用いた粉砕工程に供された粉末は、塩酸-硝酸混液中で煮沸して、混入した鉄粉を除去した後、十分に水洗して精密分級の原料とする。
【0019】
本発明において、微粉砕されたダイヤモンドは、上記のように精密分級工程に供される。
【0020】
水簸による精密分級工程には、線速度1mm/h以下の、緩やかな上昇水流が用いられる。水簸により分級可能な最小サイズは、本発明者の知見によると、分級装置内の上昇速度0.05〜0.1mm/h(20℃) において、平均粒径約70nmであった。
【0021】
水簸操作は周知のように、媒体中における粒子の沈降速度に対抗する速度の上昇水流を用い、分級装置内において、沈降、滞留、溢流するそれぞれの粒子を区分して捕集する方法で実施される。媒体中における粒子の沈降速度はストークスの法則に従って決定される。例えばダイヤモンド粒子の場合、20℃の水中における沈降速度として、粒子径1μmのものについて4.9mm/h、0.1μmのものについては0.049mm/hの値が得られる。
【0022】
ところで本発明者らは、上昇水速度として上記ストークスの法則から得られる理論速度の2〜4倍の値を用いることにより、最高の効率にて各粒度区分のダイヤモンド粒子が捕集されることを知見した。この場合、例えば、平均粒径0.1μmのダイヤモンドを浮遊状態で滞留させる上昇水速度は0.1〜0.2mm/h(水温20℃)となる。
【0023】
本発明が対象とする100nm以下のダイヤモンド微粉において、捕集に用いられる上昇水速度は、理論速度の2乃至4倍の値を用いるとしても水温20℃において0.1mm/h以下であり、装置の生産性は極めて低い。したがって分級装置の断面積は、生産性の向上の観点から、可能な限り大きくとることが望ましい。
【0024】
一方、水簸分級装置の壁面付近では、摩擦のために水流の上昇速度が減少して、分級精度が低下することが避けられない。このような壁面の影響は、分級装置において、断面積に対する垂直部の長さの比を小さくすることにより、相対的に減少できる。例えば断面が円の場合には、直径/垂直部長さ≧4とすることにより、実質上無視できる。
【0025】
水簸工程においては、断面積を段階的に増した複数個の水簸装置を直列に結合することによって、段ごとに異なった粒度の微粉を捕集することができる。この方法を用いることにより、1パスの操作において、最小粒径(D50値) 70nmまでの複数の粒度の微粉を、粒度別に捕集することが可能である。
【0026】
異なる粒度のダイヤモンドを粒度別に一連の工程で得る別の方法として、複数台の遠心分離機を直列に結合し、回転数即ち加速度を段階的に変えた構成を用いることも可能である。このようなカスケード型の分離方式を用いることによって、好ましくないアンダーサイズのフラクションを実質的に含まない、粒度幅の狭い研磨用ダイヤモンド微粉を得ることができる。
【0027】
例えば遠心分離機を3台直列に接続してそれぞれの回転数を約700G、4000G、18000Gとした構成において、各遠心分離機から、マイクロトラックUPA測定によるD50値がそれぞれ202、96、71nmのダイヤモンド粒子が回収されている。
【0028】
上記の分級方法において、最終段の水簸装置または遠心分離機でも捕集できないダイヤモンドは、懸濁液中に酸を添加してpH 2以下の酸性溶液とし、凝集沈降させて捕集するのが実用的である。
【0029】
微粉ダイヤモンドの粒度表示方法としては、規格化された測定方式が存在しないことから、本発明における粒度表示は前記した通り、レーザー回折法に基づくマイクロトラックUPA による測定値を用いた。
【0030】
本発明における平均粒径としては、粒度分布測定データの累積カーブにおけるD50値を用いた。粒度分けされた粉体においても、ある程度の粒度の幅を持つことが避けられないことから、粒度分布幅を表す指標として、累積カーブにおけるD10値ならびにD90値を併せて用いた。
【0031】
本発明方法によって精密分級されたダイヤモンド微粉は、粒度分布幅が狭いことが特徴として挙げられる。この際、本発明で得られるダイヤモンド微粉において、D10値およびD90値は、それぞれ、D50値の50%以上および200%以下の範囲内にある。即ちD50値が100nmの場合、D10値が50nm以上で、同時にD90値が200nm以下の値である。
【0032】
【実施例】
公称粒度2-6μmのトーメイダイヤ製IRM級単結晶質ダイヤモンド粉末を、微粉砕及び精密分級に供した。
【0033】
粉砕には、内径及び長さが共に250mmの鋼製のボールミルポットを用い、この中へ6mmの鋼球20kgと共に、原料のダイヤモンド粉末300gを入れ、回転数80rpmで120時間粉砕を行った。ポットから取り出した粉砕粉末は、10 HCl- 1 HNO3混合溶液を用いて、鉄粉を溶解除去し、十分に水洗した。
【0034】
水簸装置として、直円筒部の長さがそれぞれ20cm、断面積は第1段目として2500cm2、第2段目として5000cm2の分級管を直列に結合した構成を用いた。この装置内へ上記の超微粉砕ダイヤモンド粉末を1kg仕込み、25ml/hの流量で120リットルのイオン交換水を供給して水簸操作を行った。第2段目から流出した懸濁液は貯槽へ集め、塩酸を加えてpH2に保った。
【0035】
分離後の各段における粒度のマイクロトラックUPAによる測定値は下表のとおりであった。第1段、第2段及び流出捕集分について、比D90/D50の値はそれぞれ156%、132%、177%、またD10/D50の値は60%、75%、及び58%となっており、粒度幅の狭いダイヤモンド微粉が得られている。
【0036】
【表1】

Figure 0003655811
【0037】
上記実施例において第1段及び流出液から回収したダイヤモンド微粉の、マイクロトラックUPAによる粒度測定結果を、図1および図2に示す。棒グラフは各粒度範囲のフラクションの頻度を、曲線は累積量を表す。
【0038】
【発明の効果】
本発明のダイヤモンド微粉は、静圧法で合成されたダイヤモンドの特徴である単結晶質を保持しながら、100nm以下の粒度域において狭い粒度範囲を呈することから、精密研磨その他各種の精密用途に適する。
【図面の簡単な説明】
【図1】 本発明実施例で得られた単結晶質ダイヤモンド微粉の、粒度測定結果を示すグラフ。
【図2】 本発明実施例で得られた別の単結晶質ダイヤモンド微粉の、粒度測定結果を示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single crystalline diamond fine powder, particularly a diamond fine powder suitable for ultra-precision polishing of a hard material, and a method for producing the same.
[0002]
[Prior art]
Along with the advancement of precision processing technology, the particle size of diamond powder used as an abrasive is gradually shifting to a finer one, and the use of diamond fine particles having a particle size of 1 μm or less, that is, submicron grade, is increasing. At the same time, the demand for the quality of such fine powders, particularly the particle size distribution, tends to become stricter year by year.
[0003]
A common method for producing diamond fine powder is to use single crystalline diamond synthesized using static ultra-high pressure as a raw material, and then pulverize it and then subject it to a classification process to obtain a product with uniform particle size. It is. The diamond fine powder produced by this method has a particle size display of 0 to 0.1 μm, measured by Microtrac UPA, and a D50 value of around 0.12 μm is the minimum size of the commercial product due to restrictions on the grinding and classification processes. It has become.
[0004]
On the other hand, an impact or dynamic pressurization method in which graphite or explosive components are converted to diamond by impact pressurization using an explosive has been established industrially. Diamonds synthesized using graphite as a raw material are called DuPont type diamonds, while diamonds synthesized using explosives themselves as a carbon source are called cluster diamonds or ultra fine diamonds, both of which are precision processed. Widely used as an abrasive in the field.
[0005]
Diamonds synthesized by these impact pressurizations are generally polycrystalline secondary particles with an apparent particle size of several hundreds of nanometers to several μm, where primary particles of several nanometers to several tens of nanometers aggregate or bond. Is known to form.
[0006]
The DuPont-type diamond is commercialized through a classification process after pulverizing the synthesized reaction product and removing impurities by chemical treatment. However, this type of diamond is said to be difficult to disintegrate into primary particles because some of the diamond is partially melted and bonded at high temperatures during the synthesis reaction. As a result, the secondary particle size of the commercial product is 0 to 0.1 μm in the particle size display, and 0.12 μm in the D50 value by Microtrac UPA measurement, as in the case of the single crystalline pulverized powder. It has become. The polycrystalline diamond usually has a black color because non-diamond carbon is incorporated between the agglomerated particles.
[0007]
On the other hand, diamonds obtained by conversion from explosives, which are called cluster diamonds, are marketed as aggregated particles with an apparent size of several μm, but they are said to be 5-10 nm due to a powerful oxidation treatment. It is possible to break up into primary particles. The slurry composed of the primary particles of diamond is used as a seeding solution for the diamond CVD process (Hiroshi Makita: New Diamond Vol. 12, No. 3, p. 8).
[0008]
[Problems to be solved by the invention]
Under the circumstances as described above, currently usable diamond fine powder for polishing has a nominal value of 0 to 0.1 μm, the lower limit of the D50 value by Microtrack UPA measurement is 0.12 μm, from the order of 0.01 μm (10 nm) to 0.12 μm ( Abrasive materials up to 120 nm), especially single crystalline fine powders, could not be obtained on the market and could not meet the demand for more diversified ultrafine processing.
[0009]
In addition, diamond fine powder of 0.25 μm or less is collected and commercialized including all undersizes, as indicated by the indications of 0 to 0.25, 0 to 1/8, and the like. Therefore, the particle size width is relatively wide and contains fine powder on the small particle size side that not only contributes to the polishing process but also sometimes has an adverse effect. Furthermore, because of the fine fraction, the D50 value tends to be displayed smaller than the actual value.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a finely classified single crystal diamond fine powder that contains almost no harmful undersize fine powder as described above and can be used for various applications, and is particularly suitable for precision polishing.
[0011]
[Means for Solving the Problems]
According to the present invention, the above-mentioned problem is that, according to the present invention, a single crystalline submicron grade diamond obtained by pulverization of a single crystalline diamond synthesized under a static ultrahigh pressure is measured by a Microtrac UPA particle size measuring instrument. In this case, the D50 value particle size is 100 nm or less and the ratio of the D10 value particle size and the D90 value particle size to the D50 value particle size is 50% or more and 200% or less, respectively.
[0012]
The diamond fine powder is typically produced by subjecting the single crystalline diamond particles to an ultrafine pulverization step and a precision classification step.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, single crystalline diamond synthesized under a static high pressure using an ultrahigh pressure press is used as a starting material. First of all, fine powder having an average particle size of 100 nm or less is obtained by subjecting it to ultrafine pulverization using a mechanical pulverization means and then subjecting it to a water tank process in which conditions are adjusted, or a precision classification process using a centrifuge. It can be obtained with a narrow particle size range.
[0014]
The monocrystalline diamond micronised to a particle size of submicron mechanical impact crushing or grinding process using a grinding media is available.
[0015]
If steel balls are used as the grinding media, the mixed impurities of iron powder can be easily removed by the subsequent acid dissolution treatment. Various sizes of steel balls are available, and it is easy to change the size of the steel balls step by step according to the stage of grinding.
[0016]
It is also possible to use coarse diamond for the grinding media. In this case, the mass effect in the pulverization operation is reduced, but mixing of impurities can be avoided.
[0017]
Various types of commercially available devices can be used as the grinding device. Examples include a ball mill, a vibration mill, and a planetary mill.
[0018]
The powder subjected to the grinding process using a steel ball is boiled in a hydrochloric acid-nitric acid mixed solution to remove the mixed iron powder, and then washed thoroughly with water to obtain a raw material for precision classification.
[0019]
In the present invention, micronised diamond is subjected to precise classification step as described above.
[0020]
A gentle ascending water flow with a linear velocity of 1 mm / h or less is used for the precision classification process using water tanks. According to the knowledge of the present inventor, the minimum size that can be classified by elutriation was an average particle size of about 70 nm at a rising speed of 0.05 to 0.1 mm / h (20 ° C.) in the classifier.
[0021]
As is well known, the elutriation operation uses a rising water flow at a speed that opposes the sedimentation speed of particles in the medium, and separates and collects the particles that settle, stay, and overflow in the classifier. To be implemented. The sedimentation rate of the particles in the medium is determined according to Stokes' law. For example, in the case of diamond particles, the sedimentation rate in water at 20 ° C. is 4.9 mm / h for a particle size of 1 μm and 0.049 mm / h for a particle size of 0.1 μm.
[0022]
By the way, the present inventors confirmed that diamond particles of each particle size category are collected with the highest efficiency by using a value 2 to 4 times the theoretical speed obtained from the Stokes' law as the rising water speed. I found out. In this case, for example, the rising water speed at which diamond having an average particle diameter of 0.1 μm is retained in a floating state is 0.1 to 0.2 mm / h (water temperature 20 ° C.).
[0023]
In the diamond fine powder of 100 nm or less targeted by the present invention, the rising water speed used for collection is 0.1 mm / h or less at a water temperature of 20 ° C. even if a value 2 to 4 times the theoretical speed is used. Productivity is extremely low. Therefore, it is desirable that the classifier has a cross-sectional area as large as possible from the viewpoint of improving productivity.
[0024]
On the other hand, in the vicinity of the wall surface of the elutriator, it is inevitable that the ascending speed of the water flow decreases due to friction and the classification accuracy decreases. Such influence of the wall surface can be relatively reduced by reducing the ratio of the length of the vertical portion to the cross-sectional area in the classifier. For example, when the cross section is a circle, the diameter / vertical portion length ≧ 4 can be substantially ignored.
[0025]
In the elutriation step, a plurality of elutriation devices whose cross-sectional areas are increased stepwise can be connected in series to collect fine powder having different particle sizes for each stage. By using this method, it is possible to collect fine particles having a plurality of particle sizes up to a minimum particle size (D50 value) of 70 nm for each particle size in one pass operation.
[0026]
As another method for obtaining diamonds of different particle sizes in a series of steps according to particle sizes, it is possible to use a configuration in which a plurality of centrifuges are connected in series and the rotational speed, that is, the acceleration is changed stepwise. By using such a cascade type separation method, it is possible to obtain a fine diamond powder for polishing having a narrow particle size width substantially free of an unfavorable undersize fraction.
[0027]
For example, in a configuration in which three centrifuges are connected in series and the respective rotation speeds are about 700G, 4000G, and 18000G, diamonds with D50 values of 202, 96, and 71 nm from Microcentrifuge UPA measurement are obtained from each centrifuge. Particles are recovered.
[0028]
In the above classification method, diamond that cannot be collected by the final stage elutriation apparatus or centrifuge is collected by adding acid to the suspension to form an acidic solution having a pH of 2 or less, and coagulating and sedimenting. It is practical.
[0029]
Since there is no standardized measurement method for the particle size display method of fine diamond, the particle size display in the present invention uses the measurement value by Microtrac UPA based on the laser diffraction method as described above.
[0030]
As the average particle size in the present invention, the D50 value in the cumulative curve of the particle size distribution measurement data was used. Since it is unavoidable that the particle size-divided powder has a certain particle size width, the D10 value and the D90 value in the cumulative curve were used together as an index representing the particle size distribution width.
[0031]
The diamond fine powder finely classified by the method of the present invention is characterized by a narrow particle size distribution width. At this time, in the diamond fine powder obtained by the present invention, the D10 value and the D90 value are in the range of 50% or more and 200% or less of the D50 value, respectively. That is, when the D50 value is 100 nm, the D10 value is 50 nm or more and at the same time the D90 value is 200 nm or less.
[0032]
【Example】
Tomei Dia's IRM grade single crystal diamond powder with a nominal particle size of 2-6 μm was subjected to ultrafine grinding and precision classification.
[0033]
For pulverization, a steel ball mill pot having an inner diameter and a length of 250 mm was used, and 20 g of a 6 mm steel ball and 300 g of diamond powder as a raw material were placed therein, and pulverized at 80 rpm for 120 hours. The pulverized powder taken out from the pot was dissolved and removed using a 10 HCl-1 HNO 3 mixed solution and thoroughly washed with water.
[0034]
As elutriation device, each length 20 cm, cross-sectional area of the straight cylindrical portion with a 2500 cm 2, arrangement coupled in series classification tubes 5000 cm 2 as the second stage as the first stage. Into this apparatus, 1 kg of the above ultrafine pulverized diamond powder was charged, and 120 liters of ion exchange water was supplied at a flow rate of 25 ml / h to perform a water tank operation. The suspension flowing out from the second stage was collected in a storage tank, and hydrochloric acid was added to maintain the pH at 2.
[0035]
The values measured by Microtrac UPA for the particle size at each stage after separation were as shown in the table below. For the first, second, and effluent collections, the ratio D90 / D50 values are 156%, 132%, 177%, and D10 / D50 values are 60%, 75%, and 58%, respectively. Thus, a fine diamond powder having a narrow particle size width is obtained.
[0036]
[Table 1]
Figure 0003655811
[0037]
FIG. 1 and FIG. 2 show the particle size measurement results of the diamond fine powder recovered from the first stage and the effluent in the above-described example by Microtrac UPA. The bar graph represents the frequency of fractions in each particle size range, and the curve represents the cumulative amount.
[0038]
【The invention's effect】
The diamond fine powder of the present invention exhibits a narrow particle size range in a particle size range of 100 nm or less while maintaining the single crystal characteristic of diamond synthesized by a static pressure method, and is therefore suitable for precision polishing and other various precision applications.
[Brief description of the drawings]
FIG. 1 is a graph showing the particle size measurement results of single-crystal diamond fine powder obtained in an example of the present invention.
FIG. 2 is a graph showing the particle size measurement results of another single crystalline diamond fine powder obtained in the example of the present invention.

Claims (4)

静的超高圧下にて合成された単結晶質ダイヤモンド粒子を粉砕メディアを用いた衝撃破砕ないしは磨砕に基づく超微粉砕工程および水簸に基づく精密分級工程に供し、この際、上昇水流速度をストークスの法則から計算される粒子の沈降速度の2乃至4倍の水上昇速度を用いて水簸を行い、平均粒径100nm以下の整粒された微細粒子の集合体を得ることを特徴とする、単結晶質ダイヤモンド微粉の製造法。Single crystalline diamond particles synthesized under static ultra-high pressure are used for ultrafine grinding process based on impact crushing or grinding using grinding media and precision classification process based on water tank. It is characterized in that an aggregate of finely sized particles having an average particle size of 100 nm or less is obtained by performing a water tank using a water rising speed 2 to 4 times the sedimentation speed calculated from Stokes' law. , A method for producing single crystalline diamond fine powder. 上記分級工程において円形の断面をもつ分級装置を使用し、この際断面積に対する垂直部の長さの比を4以下とする、請求項1に記載の単結晶質ダイヤモンド微粉の製造法。  The method for producing fine single-crystal diamond powder according to claim 1, wherein a classifier having a circular cross section is used in the classifying step, and the ratio of the length of the vertical portion to the cross-sectional area is 4 or less. 上記超微粉砕工程において粉砕メディアとして鋼球を用いる、請求項1に記載の単結晶質ダイヤモンド微粉の製造法。  The method for producing fine single-crystal diamond powder according to claim 1, wherein a steel ball is used as a grinding medium in the ultrafine grinding step. 静的超高圧下にて合成された単結晶質ダイヤモンドの超微粉砕及び精密分級によって得られる、単結晶質サブミクロン級ダイヤモンドであって、マイクロトラックUPA粒度測定器による測定値において、D50値粒径が100nm以下であり、かつD50値粒度に対するD10値粒度およびD90値粒度の比がそれぞれ50%以上および200%以下であることを特徴とする、請求項1に記載の方法で作製された単結晶質ダイヤモンド微粉。A single crystalline submicron grade diamond obtained by ultra-fine grinding and precision classification of single crystalline diamond synthesized under static ultra-high pressure, and measured with a Microtrac UPA particle size analyzer. The diameter of 100 nm or less, and the ratio of D10 value particle size and D90 value particle size to D50 value particle size is 50% or more and 200% or less, respectively. Crystalline diamond fine powder.
JP2000221119A 2000-07-21 2000-07-21 Monocrystalline diamond fine powder Expired - Fee Related JP3655811B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000221119A JP3655811B2 (en) 2000-07-21 2000-07-21 Monocrystalline diamond fine powder
PCT/JP2001/006337 WO2002008122A1 (en) 2000-07-21 2001-07-23 Single crystal fine diamond powder having narrow particle size distribution and method for production thereof
BR0112596-6A BR0112596A (en) 2000-07-21 2001-07-23 Minimal single crystalline diamond particles and method for their production
IL15403801A IL154038A0 (en) 2000-07-21 2001-07-23 Single crystal fine diamond powder having narrow particle size distribution and method for production thereof
EA200300182A EA200300182A1 (en) 2000-07-21 2001-07-23 MONOCRYSTAL THIN DIAMOND POWDER, HAVING A NARROW DISTRIBUTION OF PARTICLES IN SIZE, AND METHOD OF ITS OBTAINING
CN01814481.0A CN1447775A (en) 2000-07-21 2001-07-23 Single crystal fine diamond powder having narrow particle size distribution and its prodn. method
AU2001272778A AU2001272778A1 (en) 2000-07-21 2001-07-23 Single crystal fine diamond powder having narrow particle size distribution and method for production thereof
CA002416522A CA2416522A1 (en) 2000-07-21 2001-07-23 Single crystal fine diamond powder having narrow particle size distribution and method for production thereof
KR10-2003-7000926A KR20030038673A (en) 2000-07-21 2001-07-23 Narrow size-ranged single crystalline minute diamond particles and method for the production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000221119A JP3655811B2 (en) 2000-07-21 2000-07-21 Monocrystalline diamond fine powder

Publications (2)

Publication Number Publication Date
JP2002035636A JP2002035636A (en) 2002-02-05
JP3655811B2 true JP3655811B2 (en) 2005-06-02

Family

ID=18715599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000221119A Expired - Fee Related JP3655811B2 (en) 2000-07-21 2000-07-21 Monocrystalline diamond fine powder

Country Status (1)

Country Link
JP (1) JP3655811B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008183640A (en) * 2007-01-26 2008-08-14 Hiroshi Ishizuka Diamond dispersed synthetic resin molding material and its manufacturing method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925233B2 (en) * 2001-05-11 2012-04-25 トーメイダイヤ株式会社 Diamond particle abrasive
JP3940693B2 (en) * 2003-02-24 2007-07-04 日本ミクロコーティング株式会社 Magnetic hard disk substrate and manufacturing method thereof
JP2004339412A (en) * 2003-05-16 2004-12-02 Ishizuka Kenkyusho:Kk Submicron diamond powder for abrasive material and method for producing the same powder
US8506919B2 (en) 2005-01-11 2013-08-13 Hiroshi Ishizuka Fine powder of single crystalline diamond particles and a method for the production thereof
JP2007001790A (en) * 2005-06-21 2007-01-11 Ishizuka Kenkyusho:Kk Chlorine terminated diamond fine powder, and method for producing the same
EP1920674B1 (en) * 2006-10-09 2011-04-20 The Procter & Gamble Company Hair treatment applicator and method
EP1990313A1 (en) 2007-05-10 2008-11-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Method to produce light-emitting nano-particles of diamond
JP2011105585A (en) * 2009-10-21 2011-06-02 Tomei Diamond Co Ltd Substrate for depositing cvd diamond and method for forming deposition surface
RU2468869C2 (en) * 2011-03-02 2012-12-10 АКЦИОНЕРНАЯ КОМПАНИЯ "АЛРОСА" (открытое акционерное общество) Method of making diamond powders from fine diamond-bearing concentrates
CN102247929B (en) * 2011-07-01 2013-01-02 上海江信超硬材料有限公司 Method for water circulation of finished materials of diamond micropowder grader
JP6604313B2 (en) * 2016-11-10 2019-11-13 株式会社Sumco Abrasive Grain Evaluation Method and Wafer Manufacturing Method
JP6894795B2 (en) * 2017-08-01 2021-06-30 株式会社ダイセル Nanodiamond particle classification method and nanodiamond particle production method
CN115106178B (en) * 2022-06-24 2024-01-16 河南省豫星碳材有限公司 Crystal form control method of diamond micro powder
CN116273431A (en) * 2022-12-07 2023-06-23 南京金瑞立丰硬质材料科技有限公司 Continuous grading device and grading method for diamond micro powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008183640A (en) * 2007-01-26 2008-08-14 Hiroshi Ishizuka Diamond dispersed synthetic resin molding material and its manufacturing method

Also Published As

Publication number Publication date
JP2002035636A (en) 2002-02-05

Similar Documents

Publication Publication Date Title
JP3655811B2 (en) Monocrystalline diamond fine powder
JP5325387B2 (en) Monocrystalline diamond fine powder and method for producing the same
JP5276995B2 (en) Diamond fine powder collection method
CN105793002B (en) Method for recycling powder formed carbon SiClx waste
JP5198121B2 (en) Tungsten carbide powder, method for producing tungsten carbide powder
KR101553291B1 (en) An abrasive grain powder
JP2010126669A (en) Method for producing diamond microparticle dispersion, and diamond microparticle dispersion
JP2004339412A (en) Submicron diamond powder for abrasive material and method for producing the same powder
EP0247895A2 (en) Autogenous attrition grinding
CN111995401A (en) Preparation method of superfine boron carbide powder
KR20030038673A (en) Narrow size-ranged single crystalline minute diamond particles and method for the production thereof
CN109485046A (en) A kind of tungsten carbide powder and preparation method thereof
CN110697722A (en) Silica sand preparation process
WO2022209768A1 (en) Silica powder and production method therefor
CN101955177B (en) Diamond super micro powder and preparation method thereof
CN101885959A (en) Cerium-based abrasive
CN108862273A (en) The preparation method and Nano diamond twice dispersing method of Nano diamond colloid
EP1615746B1 (en) Multi-carbide material manufacture and use
US5407140A (en) Differential grinding
JP2020029472A (en) Slurry composition for polishing polycrystalline YAG
JPWO2004061040A1 (en) Cubic boron nitride abrasive, method for producing the same, grindstone using the same, and abrasive cloth
JP2010051887A (en) Method of manufacturing ultrafine particle powder
JP2507571B2 (en) Abrasive manufacturing method
JP3687898B2 (en) Method for producing cerium-based abrasive and cerium-based abrasive produced using the method
JP2009292656A (en) Method for manufacturing silicon ingot

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3655811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees