JP4925233B2 - Diamond particle abrasive - Google Patents

Diamond particle abrasive Download PDF

Info

Publication number
JP4925233B2
JP4925233B2 JP2001142118A JP2001142118A JP4925233B2 JP 4925233 B2 JP4925233 B2 JP 4925233B2 JP 2001142118 A JP2001142118 A JP 2001142118A JP 2001142118 A JP2001142118 A JP 2001142118A JP 4925233 B2 JP4925233 B2 JP 4925233B2
Authority
JP
Japan
Prior art keywords
diamond
particles
particle
abrasive
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001142118A
Other languages
Japanese (ja)
Other versions
JP2002338952A (en
Inventor
大島龍司
佐藤良一
石塚博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomei Diamond Co Ltd
Original Assignee
Tomei Diamond Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001142118A priority Critical patent/JP4925233B2/en
Application filed by Tomei Diamond Co Ltd filed Critical Tomei Diamond Co Ltd
Priority to CN01814481.0A priority patent/CN1447775A/en
Priority to CA002416522A priority patent/CA2416522A1/en
Priority to BR0112596-6A priority patent/BR0112596A/en
Priority to EA200300182A priority patent/EA200300182A1/en
Priority to KR10-2003-7000926A priority patent/KR20030038673A/en
Priority to PCT/JP2001/006337 priority patent/WO2002008122A1/en
Priority to IL15403801A priority patent/IL154038A0/en
Priority to AU2001272778A priority patent/AU2001272778A1/en
Publication of JP2002338952A publication Critical patent/JP2002338952A/en
Application granted granted Critical
Publication of JP4925233B2 publication Critical patent/JP4925233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はダイヤモンド粒子研磨材、特に薄膜型磁気ヘッド等の超精密研磨加工用に適合させた、単結晶質ダイヤモンド粒子研磨材に関する。
【0002】
【従来技術の説明】
近年、光学部品、電子部品、精密機械部品などの性能や機能に対する要求がますます高度化し、これに伴って、使用される材料も金属材料、セラミックス、ガラス、プラスチックと非常に多岐にわたる。このような部品の製造工程においては、硬度の異なる複数の材料で構成された複合材料を研磨する必要性が増している。
【0003】
コンピューターの記録媒体であるハードディスクドライブシステムは年々その記録密度の向上が図られている。高記録密度を達成する手段の一つとして、ハードディスクと磁気ヘッドとの浮上間隙を狭めてディスクとヘッド間のスペーシングを減少させる、つまりヘッドの低浮上化が試みられている。ハードディスクドライブに搭載されている磁気ヘッドは、薄膜型磁気ヘッドが主流であり、インダクティブ型、記録再生素子にMR(Magnet Resistance:磁気抵抗素子)を用いたMR−インダクティブ複合型、さらにはGMR(Giant MR:巨大磁気抵抗素子)を用いたものなどがある。
【0004】
これら薄膜型磁気ヘッドは、アルチック(Al2O3-TiC)等の基材、アルミナ(Al2O3)等から成る保護/絶縁のためのセラミック質膜、及びパーマロイ(Fe-Ni)やセンダスト(Fe-Al-Si)等の磁性金属膜から成る複合材料で構成されている。
【0005】
これらの磁気ヘッドのABS(Air Bearing Surface:空気浮上面)の研磨加工を行う場合、研磨材としては従来、衝撃圧力下で合成されるいわゆる多結晶ダイヤモンドが多用されている。このタイプの研磨材を用いて薄膜型磁気ヘッドを研磨する場合、ヘッド構成材料間の硬度差により、相対的に軟質材料である金属膜が選択的に加工され、段差や面粗れの発生が避けられない。そのため、金属膜から成る磁極部がセラミック質のABSから後退するポールチップリセッション(Pole Tip Recession:PTR)が生じて記録媒体との磁気間隔が増大し、結局実質的なヘッド浮上量が増すことになるという問題があった。
【0006】
薄膜型磁気ヘッド構成材料間の硬度差による段差を小さくするための解決策の一つとして、研磨材として使用するダイヤモンドの粒径を小さくすることが考えられる。しかし従来の研磨材(多結晶型)には、充分な研磨能力を持つこの有効粒子成分のほかに、有効粒子より細かく充分な研磨能力を持たない非常に微細な粒子が、かなりの割合で含有されている。これらの微細な粒子成分は、アルチック/アルミナ等で構成される相対的に硬質のセラミック部分に対しては有効な研摩材として機能しないが、パーマロイやセンダスト等の相対的に軟質の金属材に対しては研磨作用を示すことも知見した。
【0007】
従って従来のダイヤモンド研磨材において、粒子径の小さな研磨材を使用すると、確かにPTRが減少する傾向は認められるが、反面、軟質材料である金属膜の選択研磨は、大きな粒子径のものを用いる場合よりむしろ顕著になることを、本発明者らは知見した。この現象は次のように解釈される。即ち、薄膜型磁気ヘッドの研磨加工は、研磨材を分散させたスラリーを滴下した定盤(研磨板)上で実施されている。この際、より大きな有効粒子は定盤面に埋め込まれて固定された状態で研磨作用に寄与するのに対し、より小さな微細粒子はヘッドと定盤面の間で転動することから、軟質材料が選択的に研磨されると考えられる。
【0008】
また、従来の単結晶質ダイヤモンド研磨材を用いて薄膜型磁気ヘッドのABSの研磨加工を行った場合には、上記金属膜にダイヤモンド粒子が突き刺さるという問題があった。金属膜に砥粒の突き刺さった状態の磁気ヘッドをハードディスクドライブに実装すると、駆動されてヘッドがディスク上に浮上している間に、突き刺さっている粒子が脱落し、ディスク面に触れてクラッシュの原因となり得る。従ってこのような突き刺さりは可能な限り抑制すべき重要な問題である。
【0009】
上記突き刺さり粒子の個数は、従来の研磨材を使用する場合、研磨材の呼び粒子径が小さくなるにつれて増加する傾向が見られ、前述した低PTR値の達成との両立は困難であった。
【0010】
従って、ハードディスクの記録密度向上のために、低PTR加工を可能とし、同時に金属膜への突き刺さりを生じない研磨材の開発が望まれていた。
【0011】
【発明が解決しようとする課題】
従って本発明の主な目的は、薄膜型磁気ヘッドの研磨加工において、相対的に軟質の構成材料である金属膜の選択的研磨の抑制及びダイヤモンド粒子の突き刺さりの回避により、低PTR及び高品質の研磨金属表面を達成可能な単結晶質ダイヤモンド粒子研磨材を提供することにある。
【0012】
【課題を解決するための手段】
本発明者等は、ダイヤモンド粒子研磨材を調製する際に、従来のダイヤモンド粒子研磨材に比較的大きな割合で含有されている微細粒子成分を大幅に減少させることにより、薄膜型磁気ヘッド材の加工において、上記PTRを減少させ、突き刺さり粒子の発生を大幅に抑制することができるとの知見を得、本発明を達成するに至った。
【0013】
本発明の要旨とするところは、単結晶質ダイヤモンド粒子の集合体で構成されるダイヤモンド粒子研磨材であって、マイクロトラックUPA測定器による測定値において、上記集合体のD50平均粒子径dD50の70%(0.7×dD50)以下の粒子径を示す微小粒子の割合が、測定された粒子全体の15%以下であり、かつ該ダイヤモンド粒子の表面が、加熱処理による熱影響構造を有し、かつ上記ダイヤモンド粒子集合体全体に対する質量比において0.5%以上の非ダイヤモンド炭素で被覆されていることを特徴とする、D50平均粒子径dD50が200nm以下のダイヤモンド粒子研磨材にある。
【0014】
【発明の実施の形態】
本発明にかかるダイヤモンド粒子研磨材は基本的に、プレス等の静的加圧法により合成した単結晶ダイヤモンドを破砕し、分級操作に供して得られた、粒度幅の狭い、微細な精密研磨用のダイヤモンド粒子を原料として用いる。かかるダイヤモンド粒子の集合体乃至粉末を水簸法による分級操作に供し、含有されている微粉成分を除去する。分級工程を反復することによって、特に70nm以下の微細な粒子成分を所望の水準まで低下させることができる。
【0015】
本発明のダイヤモンド粒子研摩材においては、微細な粒子成分を除去するだけでもPTRの減少及び突き刺さり粒子の抑制に一定の効果が得られる。しかし、特に突き刺さり粒子の抑制におけるさらなる効果を目的として、真空下或いは不活性ガス雰囲気下で加熱処理することによって粒子表面を改質し、より良好な研磨面品位を達成することも可能である。
【0016】
即ち、加熱処理を行わない単結晶ダイヤモンド粒子を研磨材として使用した場合、粒子表面が硬質であり、また形状が鋭角的であるうえ、粒子のエッジが鋭いため、上記薄膜型磁気ヘッドの研磨加工においては、軟質材料で構成されている金属膜への負荷が大きいため、研磨傷(スクラッチ)が発生しやすい。
【0017】
これに対して、本発明に従って、ダイヤモンド粒子に加熱処理を施す場合、ダイヤモンド粒子の表面が部分的に、内部のダイヤモンドよりも軟質の非ダイヤモンド炭素に変換され、粒子表面が非ダイヤモンド炭素で被覆されることになる。特にダイヤモンド粒子の尖った先端部やエッジ部では反応性が高いため、加熱処理の際に非ダイヤモンド炭素へ変換されやすい。従って、ダイヤモンド粒子の刃先が丸みを帯びることとなり、この点において研磨傷を回避することができるものと考えられる。
【0018】
上記加熱処理は、分級済みの単結晶質ダイヤモンド粒子を、真空または不活性ガス雰囲気中にて800〜1400℃、より好ましくは1100〜1300℃の温度範囲で加熱することによって達成される。また加熱処理時間は処理する炉の大きさによって異なるが、概ね6〜12時間程度が適切である。
【0019】
上記加熱処理によりダイヤモンドの表層部分が部分的に、グラファイト乃至無定形炭素のような、比較的軟質の非ダイヤモンド炭素に変換される。またこれと同時に、粒子内に微細なクラックも幾分発生する。従って、本発明における熱影響構造は、これら二つの特徴を言う。
【0020】
単結晶質ダイヤモンド粒子表面をダイヤモンドから変換した非ダイヤモンド炭素で覆うことによって、上記突き刺さり粒子の抑制効果と共に、複合材料の研磨加工の際に避けられなかった軟質材料の選択研磨も、さらに抑制される。
【0021】
要するに、微粉成分を大幅に排除し、必要に応じてさらに加熱処理による上記熱影響構造を付与した単結晶ダイヤモンド粒子研磨材を使用する場合、軟質材料の損傷防止による、高品位の研磨面が期待できる。
【0022】
このように、本発明における微粉成分含有割合の大幅な低減、或いはさらに加熱処理による熱影響構造を付与した単結晶ダイヤモンド粒子研磨材を使用することが、ヘッド加工において低PTR加工を達成し、同時に金属膜へのダイヤモンドの突き刺さりを防止するための、有効な解決手段の一つだと考えられる。
【0023】
【実施例】
水簸による分級操作によって製造された、トーメイダイヤ製精密加工向けミクロンサイズダイヤモンド砥粒MD100(商品名)を原料として用いた。この砥粒のマイクロトラックUPAによる粒度分布は、D50値dD50が103.9nmであり、dD50の70%値に対応する27チャンネル(72.3nm)での累積%が19.75、即ち粒子径70nm以下の粒子の含有率は約20%であった。
【0024】
この原料1kgを2段式の水簸分級装置に投入した。これは直円筒部の長さがそれぞれ20cm、断面積が一段目2500cm2、二段目5000cm2の分級管を直列に結合したもので、毎分1.5ccの流量でイオン交換水を供給して水簸作業を行った。
【0025】
再水簸分級後の粒子径は、マイクロトラックUPA測定値において、D50値dD50が107.4nmであって、再水簸分級前と平均粒径と実質的に同じであったが、dD50の70%値(75.2 nm)に対応する27チャンネル(72.3nm)での累積%は11.07であった。即ち粒子径70nm以下の粒子の含有量は約11%に低下していた。
【0026】
再水簸分級前の原料と、再水簸分級によって得られたダイヤモンド粒子のそれぞれについて、窒素ガス中で加熱処理を行った。処理は、磁器製ボートに処理原料のダイヤモンド粒子を入れ、窒素ガスで雰囲気置換を行った後、1200℃に3時間保持して行った。
【0027】
上記において再度水簸分級し、加熱処理を施した本発明のダイヤモンド粒子と、比較用として、再度の水簸分級を施さず加熱処理した従来のダイヤモンドとを用いて、それぞれ油溶性スラリーを作製し、薄膜型磁気ヘッドのABSのラップ研磨を行った。
【0028】
両スラリーの研磨性能をPTR値及び金属膜への突き刺さり現象で評価した。即ちアルチック(Al2O3-TiC)、アルミナ(Al2O3)及びパーマロイ(Fe-Ni)、センダスト(Fe-Al-Si)で構成し、磁気ヘッドを模した複合材料試験片における段差を測定し、また5μm角の金属膜を走査型電子顕微鏡で観察して、突き刺さったダイヤモンド砥粒の個数を計数した。
【0029】
PTR値は、本発明品においては2.355Åが得られたが、これは従来品における4.464Åの52.2%である。
【0030】
一方、突き刺さり粒子の個数は、従来品における15個に対し、本発明のダイヤモンド粒子研磨材の場合は3個であった。
【0031】
このように、本発明によるダイヤモンド粒子研磨材は、ヘッド加工において低PTR加工を可能にすると同時に、突き刺さり粒子の個数も減少される。
【0032】
【発明の効果】
微粉成分を大幅に排除し、必要に応じてさらに加熱処理による上記熱影響構造を付与した本発明の単結晶ダイヤモンド粒子研磨材を薄膜型磁気ヘッドの研磨加工に使用する場合、軟質の金属膜の損傷が回避されると共に、選択的研磨も抑制されることにより、高品位の研磨面が達成可能となる。
【0033】
その結果、本発明のダイヤモンド粒子研磨材で加工した薄膜型磁気ヘッドをハードディスクドライブシステムに実装した場合、PTR値の減少に伴う磁気ヘッドの低浮上化が達成でき、また突き刺さり粒子のヘッド面からの脱落によるディスククラッシュが回避できるので、記録密度のさらなる高度化が期待できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diamond particle abrasive, and more particularly to a single crystalline diamond particle abrasive adapted for ultraprecision polishing such as a thin film magnetic head.
[0002]
[Description of Related Art]
In recent years, demands for performance and functions of optical parts, electronic parts, precision machine parts, etc. have become more and more advanced, and with this, the materials used are very diverse, such as metal materials, ceramics, glass, and plastics. In such a part manufacturing process, there is an increasing need to polish a composite material composed of a plurality of materials having different hardnesses.
[0003]
The recording density of hard disk drive systems, which are computer recording media, is increasing year by year. As one means for achieving a high recording density, attempts have been made to reduce the spacing between the disk and the head by narrowing the flying gap between the hard disk and the magnetic head, that is, to lower the flying height of the head. Thin-film magnetic heads are the mainstream of magnetic heads mounted on hard disk drives, which are inductive, MR-inductive composite type using MR (Magnet Resistance) as a recording / reproducing element, and GMR (Giant). MR: giant magnetoresistive element).
[0004]
These thin-film magnetic heads are made of a base material such as AlTiC (Al 2 O 3 -TiC), a ceramic film for protection / insulation made of alumina (Al 2 O 3 ), and permalloy (Fe-Ni) or Sendust. It is composed of a composite material made of a magnetic metal film such as (Fe-Al-Si).
[0005]
In the case of polishing ABS (Air Bearing Surface) of these magnetic heads, so-called polycrystalline diamond synthesized under impact pressure has been widely used as an abrasive. When a thin film magnetic head is polished using this type of abrasive, the metal film, which is a relatively soft material, is selectively processed due to the difference in hardness between the head constituent materials, resulting in the occurrence of steps and surface roughness. Inevitable. For this reason, pole tip recession (PTR) in which the magnetic pole portion made of the metal film recedes from the ceramic ABS occurs, increasing the magnetic spacing with the recording medium, and eventually increasing the substantial head flying height. There was a problem of becoming.
[0006]
As one of the solutions for reducing the level difference due to the difference in hardness between the thin film type magnetic head constituent materials, it is conceivable to reduce the particle size of diamond used as an abrasive. However, conventional abrasives (polycrystalline type) contain a significant proportion of very fine particles that are finer than effective particles and have no sufficient polishing ability, in addition to this effective particle component with sufficient polishing ability. Has been. These fine particle components do not function as effective abrasives for relatively hard ceramic parts composed of Altic / Alumina, but do not work against relatively soft metal materials such as Permalloy and Sendust. It was also found that it shows a polishing action.
[0007]
Accordingly, in the conventional diamond abrasive, when an abrasive having a small particle diameter is used, a tendency to decrease the PTR is certainly observed, but on the other hand, a selective polishing of a metal film which is a soft material uses one having a large particle diameter. The present inventors have found that it becomes more prominent than the case. This phenomenon is interpreted as follows. That is, the thin film type magnetic head is polished on a surface plate (polishing plate) onto which a slurry in which an abrasive is dispersed is dropped. At this time, the larger effective particles are embedded in the surface plate and fixed, contributing to the polishing action, while the smaller fine particles roll between the head and the surface plate, so a soft material is selected. It is thought that it is polished.
[0008]
Further, when the ABS of the thin film type magnetic head is polished using a conventional single crystalline diamond abrasive, there is a problem that diamond particles pierce the metal film. When a magnetic head with metal particles stuck into a hard disk drive is mounted on a hard disk drive, while the head is driven and floats on the disk, the pierced particles fall off and touch the disk surface, causing a crash. Can be. Therefore, such piercing is an important problem to be suppressed as much as possible.
[0009]
When the conventional abrasive is used, the number of the pierced particles tends to increase as the nominal particle diameter of the abrasive becomes smaller, and it is difficult to achieve the low PTR value described above.
[0010]
Therefore, in order to improve the recording density of the hard disk, it has been desired to develop an abrasive that enables low PTR processing and at the same time does not pierce the metal film.
[0011]
[Problems to be solved by the invention]
Therefore, the main object of the present invention is to reduce the low PTR and the high quality by suppressing the selective polishing of the metal film, which is a relatively soft material, and avoiding the piercing of the diamond particles in the polishing process of the thin film type magnetic head. An object of the present invention is to provide a single crystalline diamond particle abrasive capable of achieving a polished metal surface.
[0012]
[Means for Solving the Problems]
When preparing the diamond particle abrasive, the present inventors greatly reduced the fine particle component contained in a relatively large proportion of the conventional diamond particle abrasive, thereby processing the thin film magnetic head material. In the above, the inventors have obtained the knowledge that the PTR can be reduced and generation of piercing particles can be significantly suppressed, and the present invention has been achieved.
[0013]
The gist of the present invention is a diamond particle abrasive material composed of an aggregate of single crystalline diamond particles, which has a D50 average particle diameter d D50 of the aggregate measured by a microtrack UPA measuring instrument. The proportion of fine particles having a particle size of 70% (0.7 × d D50 ) or less is 15% or less of the total measured particles, and the surface of the diamond particles has a heat-affected structure by heat treatment, and it characterized that you have been coated with 0.5% or more of the non-diamond carbon in a mass ratio to the total the diamond particle assembly, D50 average particle size d D50 is below a diamond particle abrasive 200 nm.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The diamond particle abrasive according to the present invention is basically used for fine precision polishing with a narrow particle size width obtained by crushing single crystal diamond synthesized by a static pressing method such as a press and subjecting it to a classification operation. Diamond particles are used as a raw material. Such an aggregate or powder of diamond particles is subjected to a classification operation by a water tank method to remove contained fine powder components. By repeating the classification step, it is possible to reduce the fine particle component of particularly 70 nm or less to a desired level.
[0015]
In the diamond particle polishing material of the present invention, it is possible to obtain a certain effect in reducing PTR and suppressing piercing particles only by removing fine particle components. However, it is also possible to modify the particle surface by heat treatment in a vacuum or an inert gas atmosphere to achieve a better polished surface quality, particularly for the purpose of further effect in suppressing piercing particles.
[0016]
That is, when single crystal diamond particles that are not heat-treated are used as an abrasive, the surface of the particles is hard, the shape is acute, and the edges of the particles are sharp. In this case, since the load on the metal film made of a soft material is large, polishing scratches (scratches) are likely to occur.
[0017]
In contrast, when the diamond particles are heat-treated according to the present invention, the surface of the diamond particles is partially converted to non-diamond carbon, which is softer than the internal diamond, and the particle surface is coated with non-diamond carbon. Will be. In particular, since the reactivity is high at the tip portion and the edge portion where the diamond particles are sharp, it is easily converted into non-diamond carbon during the heat treatment. Therefore, the cutting edge of the diamond particles is rounded, and it is considered that polishing scratches can be avoided in this respect.
[0018]
The heat treatment is achieved by heating the classified single crystal diamond particles in a temperature range of 800 to 1400 ° C., more preferably 1100 to 1300 ° C. in a vacuum or an inert gas atmosphere. The heat treatment time varies depending on the size of the furnace to be treated, but about 6 to 12 hours is appropriate.
[0019]
By the above heat treatment, the surface layer portion of diamond is partially converted into relatively soft non-diamond carbon such as graphite or amorphous carbon. At the same time, some fine cracks are generated in the particles. Therefore, the heat-affected structure in the present invention refers to these two characteristics.
[0020]
By covering the surface of the single crystal diamond particles with non-diamond carbon converted from diamond, the selective polishing of the soft material, which was unavoidable during polishing of the composite material, is further suppressed together with the effect of suppressing the piercing particles. .
[0021]
In short, when using single-crystal diamond particle abrasives with the above-mentioned heat-affected structure by heat treatment, which eliminates fine powder components significantly, if necessary, high-quality polished surfaces are expected by preventing damage to soft materials. it can.
[0022]
As described above, the use of the single crystal diamond particle abrasive material to which the fine powder component content ratio in the present invention is significantly reduced or further provided with a heat-affected structure by heat treatment achieves low PTR processing at the same time as the head processing. This is considered to be one of the effective solutions for preventing the diamond from sticking into the metal film.
[0023]
【Example】
A micron-sized diamond abrasive MD100 (trade name) manufactured by Tomei Dia. The particle size distribution by microtrack UPA of this abrasive grain is D50 value d D50 of 103.9 nm, and the cumulative percentage in 27 channels (72.3 nm) corresponding to 70% value of d D50 is 19.75, that is, the particle diameter is 70 nm or less. The content of particles was about 20%.
[0024]
1 kg of this raw material was put into a two-stage water tank classifier. This 20cm length of straight cylindrical section, respectively, cross-sectional area first stage 2500 cm 2, in which the classification tube of the two-stage 5000 cm 2 coupled in series, by supplying the ion-exchanged water at a flow rate per minute 1.5cc Minamata work was done.
[0025]
Particle size after re elutriation classification, in Microtrac UPA measurements, a D50 value d D50 is 107.4Nm, although an average particle size substantially the same as the re elutriation classification before, the d D50 The cumulative% for 27 channels (72.3 nm) corresponding to the 70% value (75.2 nm) was 11.07. That is, the content of particles having a particle diameter of 70 nm or less was reduced to about 11%.
[0026]
Each of the raw material before re-water classification and the diamond particles obtained by re-water classification were heat-treated in nitrogen gas. The treatment was performed by placing diamond particles as a treatment raw material in a porcelain boat, substituting the atmosphere with nitrogen gas, and holding at 1200 ° C. for 3 hours.
[0027]
Using the diamond particles of the present invention that have been subjected to elutriation classification and subjected to heat treatment in the above, and conventional diamond that has been subjected to heat treatment without being subjected to elutriation classification again for comparison, oil-soluble slurries are respectively produced. Then, lapping of ABS of the thin film type magnetic head was performed.
[0028]
The polishing performance of both slurries was evaluated by the PTR value and the piercing phenomenon to the metal film. In other words, it is composed of AlTiC (Al 2 O 3 -TiC), Alumina (Al 2 O 3 ), Permalloy (Fe-Ni), Sendust (Fe-Al-Si), and the level difference in the composite material specimen simulating a magnetic head The number of diamond abrasive grains stuck was counted by observing a 5 μm square metal film with a scanning electron microscope.
[0029]
A PTR value of 2.355 mm was obtained in the product of the present invention, which is 52.2% of 4.464 mm in the conventional product.
[0030]
On the other hand, the number of piercing particles was 3 in the case of the diamond particle abrasive of the present invention, compared to 15 in the conventional product.
[0031]
As described above, the diamond particle abrasive according to the present invention enables low PTR processing in head processing, and at the same time, the number of piercing particles is reduced.
[0032]
【Effect of the invention】
When the single-crystal diamond particle abrasive material of the present invention, which has been subjected to the above heat-affected structure by heat treatment as necessary, is eliminated in the thin film type magnetic head, the fine metal component is largely eliminated. By avoiding damage and suppressing selective polishing, a high-quality polished surface can be achieved.
[0033]
As a result, when the thin film type magnetic head processed with the diamond particle abrasive material of the present invention is mounted on a hard disk drive system, the magnetic head can be lowered with a decrease in the PTR value, and the piercing particle from the head surface can be achieved. Disc crashes due to dropout can be avoided, so further enhancement of recording density can be expected.

Claims (2)

単結晶質ダイヤモンド粒子の集合体で構成されるダイヤモンド粒子研磨材であって、マイクロトラックUPA測定器による測定値において、上記集合体のD50平均粒子径dD50の70%(0.7×dD50)以下の粒子径を示す微小粒子の割合が、測定された粒子全体の15%以下であり、かつ該ダイヤモンド粒子の表面が、加熱処理による熱影響構造を有し、かつ上記ダイヤモンド粒子集合体全体に対する質量比において0.5%以上の非ダイヤモンド炭素で被覆されていることを特徴とする、D50平均粒子径dD50が200nm以下のダイヤモンド粒子研磨材。A diamond particle abrasive composed of an aggregate of single crystalline diamond particles, which is 70% (0.7 × d D50 ) or less of the D50 average particle diameter d D50 of the aggregate as measured by a Microtrac UPA measuring instrument The ratio of the fine particles having a particle diameter of 15% or less of the whole measured particle, and the surface of the diamond particle has a heat-affected structure by heat treatment, and the mass relative to the whole diamond particle aggregate A diamond particle abrasive having a D50 average particle diameter dD50 of 200 nm or less, which is coated with 0.5% or more of non-diamond carbon in a ratio . 上記熱影響構造を有するダイヤモンド粒子が、800〜1400℃の範囲の加熱処理温度における加熱処理を経た粒子である、請求項1に記載のダイヤモンド粒子研磨材。  The diamond particle abrasive according to claim 1, wherein the diamond particles having the heat-affected structure are particles that have undergone a heat treatment at a heat treatment temperature in the range of 800 to 1400 ° C.
JP2001142118A 2000-07-21 2001-05-11 Diamond particle abrasive Expired - Fee Related JP4925233B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001142118A JP4925233B2 (en) 2001-05-11 2001-05-11 Diamond particle abrasive
CA002416522A CA2416522A1 (en) 2000-07-21 2001-07-23 Single crystal fine diamond powder having narrow particle size distribution and method for production thereof
BR0112596-6A BR0112596A (en) 2000-07-21 2001-07-23 Minimal single crystalline diamond particles and method for their production
EA200300182A EA200300182A1 (en) 2000-07-21 2001-07-23 MONOCRYSTAL THIN DIAMOND POWDER, HAVING A NARROW DISTRIBUTION OF PARTICLES IN SIZE, AND METHOD OF ITS OBTAINING
CN01814481.0A CN1447775A (en) 2000-07-21 2001-07-23 Single crystal fine diamond powder having narrow particle size distribution and its prodn. method
KR10-2003-7000926A KR20030038673A (en) 2000-07-21 2001-07-23 Narrow size-ranged single crystalline minute diamond particles and method for the production thereof
PCT/JP2001/006337 WO2002008122A1 (en) 2000-07-21 2001-07-23 Single crystal fine diamond powder having narrow particle size distribution and method for production thereof
IL15403801A IL154038A0 (en) 2000-07-21 2001-07-23 Single crystal fine diamond powder having narrow particle size distribution and method for production thereof
AU2001272778A AU2001272778A1 (en) 2000-07-21 2001-07-23 Single crystal fine diamond powder having narrow particle size distribution and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001142118A JP4925233B2 (en) 2001-05-11 2001-05-11 Diamond particle abrasive

Publications (2)

Publication Number Publication Date
JP2002338952A JP2002338952A (en) 2002-11-27
JP4925233B2 true JP4925233B2 (en) 2012-04-25

Family

ID=18988476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001142118A Expired - Fee Related JP4925233B2 (en) 2000-07-21 2001-05-11 Diamond particle abrasive

Country Status (1)

Country Link
JP (1) JP4925233B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339412A (en) * 2003-05-16 2004-12-02 Ishizuka Kenkyusho:Kk Submicron diamond powder for abrasive material and method for producing the same powder
EP2123603A4 (en) 2007-02-09 2014-01-29 Ishizuka Hiroshi Diamond micropowder, method of trapping the same, and diamond slurry having diamond micropowder dispersed therein
JP6604313B2 (en) * 2016-11-10 2019-11-13 株式会社Sumco Abrasive Grain Evaluation Method and Wafer Manufacturing Method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250448A (en) * 1998-03-03 1999-09-17 Fuji Photo Film Co Ltd Magnetic recording medium
JP2000030242A (en) * 1998-07-14 2000-01-28 Fuji Photo Film Co Ltd Magnetic recording medium
JP3411239B2 (en) * 1998-08-28 2003-05-26 石塚 博 Diamond abrasive particles and method for producing the same
EA200300182A1 (en) * 2000-07-21 2003-06-26 Дзе Исизука Рисерч Инститьют, Лтд. MONOCRYSTAL THIN DIAMOND POWDER, HAVING A NARROW DISTRIBUTION OF PARTICLES IN SIZE, AND METHOD OF ITS OBTAINING
JP3655811B2 (en) * 2000-07-21 2005-06-02 株式会社石塚研究所 Monocrystalline diamond fine powder

Also Published As

Publication number Publication date
JP2002338952A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
WO2002008122A1 (en) Single crystal fine diamond powder having narrow particle size distribution and method for production thereof
JPH05294719A (en) Non-conductive aluminium oxide-titanium carbide, production thereof and slider element incorporating the same
JP2008084520A (en) Substrate for magnetic head, magnetic head, and recording medium-drive
JP4925233B2 (en) Diamond particle abrasive
JP2009110571A (en) Substrate for magnetic head, magnetic head using the same and recording medium drive unit
JPH1110492A (en) Magnetic disc substrate and manufacture thereof
JP4384591B2 (en) Surface polishing method
JPH11203667A (en) Production of magnetic recording medium
JP2008243354A (en) Magnetic head substrate, its manufacturing method, magnetic head using this, and recording medium driving apparatus
JP2523908B2 (en) Magnetic disk device, thin film magnetic head, and wafer for manufacturing thin film magnetic head
JPH06150304A (en) Magnetic recording medium and its production
JP5020210B2 (en) Substrate for magnetic head, magnetic head, and magnetic recording apparatus
JP2008310897A (en) Method for manufacturing substrate for magnetic recording medium
JP2007176786A (en) Ceramic sintered compact, magnetic head substrate and magnetic head using the same, and recording medium drive device
JP5295109B2 (en) SUBSTRATE FOR MAGNETIC HEAD, MAGNETIC HEAD, AND RECORDING MEDIUM DRIVE DEVICE
JP6359897B2 (en) Thin film magnetic head substrate, magnetic head slider, and hard disk drive device
JP4270066B2 (en) Thin film magnetic head substrate and thin film magnetic head using the same
JP5698691B2 (en) Ceramic substrate for magnetic head slider, magnetic head slider, hard disk drive, and method for manufacturing ceramic substrate for magnetic head slider
JP6563709B2 (en) Thin film magnetic head substrate, magnetic head slider, and hard disk drive device
JP2001006162A (en) Manufacture for magnetic disk substrate
JP6563710B2 (en) Thin film magnetic head substrate, magnetic head slider, and hard disk drive device
JP2001079763A (en) Pellet for grinding wheel dresser
JP2008108411A (en) Substrate for magnetic head, magnetic head and recording medium driving device
JP2003242632A (en) Method for manufacturing glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium
WO2014104376A1 (en) Method for producing glass substrate for magnetic disk and method for producing magnetic disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees