JP2004339262A - Ultraviolet-curing epoxy resin composition and preparation method therefor - Google Patents

Ultraviolet-curing epoxy resin composition and preparation method therefor Download PDF

Info

Publication number
JP2004339262A
JP2004339262A JP2003133984A JP2003133984A JP2004339262A JP 2004339262 A JP2004339262 A JP 2004339262A JP 2003133984 A JP2003133984 A JP 2003133984A JP 2003133984 A JP2003133984 A JP 2003133984A JP 2004339262 A JP2004339262 A JP 2004339262A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
ultraviolet
silica powder
spherical silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003133984A
Other languages
Japanese (ja)
Other versions
JP4142980B2 (en
Inventor
Hideyuki Usui
英之 薄井
Takashi Fukushima
喬 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003133984A priority Critical patent/JP4142980B2/en
Publication of JP2004339262A publication Critical patent/JP2004339262A/en
Application granted granted Critical
Publication of JP4142980B2 publication Critical patent/JP4142980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an ultraviolet-curing epoxy resin composition which is used for fixing an optical element or an optical component and comprises a resin composition which exerts a stable adhesive strength under a high-temperature high-humidity condition, a low coefficient of linear expansion, a high dimensional stability and a high viscosity. <P>SOLUTION: The ultraviolet-curing epoxy resin composition contains (A) an epoxy resin comprising (a1) an epoxy resin having a naphthalene skeleton of formula (1) and (a2) an alicyclic epoxy resin, (B) a photopolymerization initiator and (C) a spherical silica powder which has an average particle size of 0.3-0.5 μm and substantially contains no particle with a particle size of ≥5 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、優れた接着力を有し、アウトガス(高温条件下で揮発するガス)の発生が低く、低吸湿性で寸法安定性の高い紫外線硬化型の透明液状エポキシ樹脂組成物およびその製法に関するものであり、光部品やボールレンズ等のレンズの固定、光デバイスパッケージのシールやV溝基板への光ファイバーの固定等に好適な接着剤、すなわち、過酷な温湿度条件下であっても劣化しない接着性を有する光素子や光部品固定用に有用な接着剤である紫外線硬化型エポキシ樹脂組成物およびその製法に関するものである。
【0002】
【従来の技術】
近年、精密な光ファイバーコネクタ部品の組立においては、接着剤を使用する方法が用いられるようになってきた。この組立の際には、ミクロンオーダーの固定精度が必要とされることから、低線膨張係数を有し成形収縮の小さい寸法安定性に優れた接着剤材料が要望されていた。また、石英ガラスや光ファイバーに対する優れた接着性、さらに長期信頼性の観点から高温高湿環境下に置かれても優れた接着性を保持していることが要望されていた。そして、光学部品が熱応力を嫌うため、紫外線硬化等の光硬化型接着剤が多く用いられている。特に、ファイバーアレイの組み立てにおけるファイバーやカバーガラスの固定やレンズの固定では光軸ずれが発生するため、特に寸法安定性の高い樹脂が要望されていた。
【0003】
例えば、従来のエポキシ系樹脂を用いたカチオン重合型光硬化接着剤は、比較的接着性に優れているが、石英ガラスや光ファイバーに対する接着性において、特に高温高湿下での使用においては吸水率が高く、そのことにより接着力の低下が大きく、満足できるものではなかった。さらに、アクリル系樹脂を用いたラジカル重合型光硬化接着剤は、一般的には、接着力の安定性は高いが硬化収縮が大きいことやガラス転移温度が低いこと等から寸法安定性、耐熱性において満足できるものではなかった。また、従来の液状エポキシ樹脂系接着剤やアクリル系樹脂の液状接着剤では、粘度が低く、樹脂の回り込み等の制御が困難なため、高粘度の接着剤が求められていた。
【0004】
一方、無機質充填剤を添加することにより得られる樹脂硬化体の線膨張係数を下げるという手法が広く用いられている。上記無機質充填剤を含有した紫外線硬化型樹脂組成物の一例として、エポキシ化合物とともに、板状無機質充填剤や鱗片状無機質充填剤からなる無機質充填剤を必須成分として含有する樹脂組成物が提案されている(特許文献1参照)。
【0005】
【特許文献1】
特開2000−191745号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記添加される無機質充填剤の粒径が細かくなりサブミクロン単位となってくると表面積が著しく増大して相互作用が強まるため、凝集して均一に分散できなかったり、増粘したりして液状樹脂として取り扱えなくなるため多量の無機質充填剤を添加することが困難となることが知られている。また、無機質充填剤を多量に添加すれば当然ながら光を通し難くなり紫外線硬化も困難となることが知られている。このように、無機質充填剤を含む従来の紫外線硬化型エポキシ樹脂組成物は、各種光学用接着剤としては充分な特性が得られず、未だ満足のいくものが得られていないのが実情である。
【0007】
本発明は、このような事情に鑑みなされたもので、高温高湿条件下でも安定した接着力を有するとともに低線膨張係数で寸法安定性の高い高粘度の樹脂組成物からなる光学素子および光部品固定用接着剤等に用いられる紫外線硬化型エポキシ樹脂組成物およびその製法の提供をその目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、下記の(A)〜(C)を含有する紫外線硬化型エポキシ樹脂組成物を第1の要旨とする。
(A)下記の(a1)および(a2)を含有するエポキシ樹脂。
(a1)下記の式(1)で表されるナフタレン骨格を有するエポキシ樹脂。
【化3】

Figure 2004339262
(a2)脂環式エポキシ樹脂。
(B)光重合開始剤。
(C)平均粒径が0.3〜0.5μmの範囲で、かつ粒径5μm以上のものを実質的に含有しない球状シリカ粉末。
【0009】
また、本発明は、上記(A)〜(C)を含有する紫外線硬化型エポキシ樹脂組成物の製法であって、予め上記球状シリカ粉末(C)を上記脂環式エポキシ樹脂(a2)に分散させた後、この分散物と上記式(1)で表されるナフタレン骨格を有するエポキシ樹脂(a1)および光重合開始剤(B)を含む残りの成分を配合し混合する紫外線硬化型エポキシ樹脂組成物の製法を第2の要旨とする。
【0010】
すなわち、本発明者らは、高温高湿条件下でも優れた接着性を有し、しかも線膨張係数が低く寸法安定性に優れた紫外線硬化型のエポキシ樹脂組成物を得るために鋭意検討を重ねた。その結果、エポキシ樹脂(A)として、上記式(1)で表されるナフタレン骨格を有するエポキシ樹脂(a1)および脂環式エポキシ樹脂(a2)の2つのエポキシ樹脂を併用するとともに、上記特定の平均粒径を有し、かつ特定の粒径以上の粒子を含有しない球状シリカ粉末(C)を用いると、上記球状シリカ粉末(C)が均一分散され、光も通し易く紫外線硬化性も良好となり、上記のような所期の目的が達成されることを見出し本発明に到達した。そして、このようなエポキシ樹脂組成物は、予め上記特定の球状シリカ粉末(C)を脂環式エポキシ樹脂(a2)に分散させた後、これに残りの成分を配合し混合することにより、上記特定の球状シリカ粉末(C)が樹脂組成物中に均一に分散されることを突き止めた。
【0011】
【発明の実施の形態】
つぎに、本発明の実施の形態について詳しく説明する。
【0012】
本発明の紫外線硬化型エポキシ樹脂組成物は、ナフタレン骨格を有する特定のエポキシ樹脂(a1)と、脂環式エポキシ樹脂(a2)を含有するエポキシ樹脂(A)と、光重合開始剤(B)と、特定の球状シリカ粉末(C)とを用いることにより得られる。
【0013】
上記ナフタレン骨格を有するエポキシ樹脂(a1)は、下記の式(1)で表されるナフタレン骨格を有するエポキシ樹脂(a1)であり、例えば、大日本インキ社製のHP−4032D(結晶性,室温での粘度23000mPa・s)があげられる。
【0014】
【化4】
Figure 2004339262
【0015】
そして、上記式(1)で表されるナフタレン骨格を有するエポキシ樹脂(a1)の含有量は、エポキシ樹脂(A)全体中20〜70重量%を占めるように設定することが好ましい。特に好ましくは25〜50重量%である。すなわち、20重量%未満では、耐湿接着性が低下して所望の効果を得ることが困難となり、逆に70重量%を超えると、非常に粘度が高くなって流動性が極端に悪くなり、作業性が著しく低下する傾向がみられるからである。
【0016】
さらに、上記a1とともに用いられる脂環式エポキシ樹脂(a2)としては、特に限定するものではないが、反応性が高く透明なものを用いることが好ましく、しかも、低粘度であることが好ましい。また、反応性の点から、2官能以上であることが好ましく、波長500〜1700nmでの光透過率が厚み100mmで90%以上であることが好ましい。粘度は、5Pa・s(室温)以下であると、球状シリカ粉末混合後の取り扱い性の点から好ましい。具体的には、水添ビスフェノールA型エポキシ樹脂、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、3,4−エポキシシクロヘキシルエチル−3,4−エポキシシクロヘキサンカルボキシレート等が、透明性、粘性、反応性の観点から好ましい。これらは単独でもしくは2種以上併せて用いられる。なかでも、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレートが低粘度であり特に好ましく用いられる。
【0017】
本発明において、エポキシ樹脂(A)としては、上記式(1)で表されるナフタレン骨格を有するエポキシ樹脂(a1)および脂環式エポキシ樹脂(a2)を必須成分とし、これに従来公知のエポキシ樹脂を用いてもよい。具体的には、汎用のビスフェノール型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂等を用いることができる。なお、上記従来公知のエポキシ樹脂を用いる場合、その使用量は、エポキシ樹脂(A)全体中の30重量%以下に設定することが好ましい。
【0018】
上記エポキシ樹脂(A)とともに用いられる光重合開始剤(B)としては、特に限定するものではなく、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、芳香族スルホキソニウム塩、メタロセン化合物あるいは鉄アレーン系化合物等を用いることができる。その中でも、光硬化性の観点から、芳香族スルホニウム塩が好ましく、特に芳香族スルホニウム・ヘキサフロロホスホニウム化合物、芳香族スルホニウム・ヘキサフロロアンチモネート化合物、またはその両者の併用が、硬化性、接着性等の観点から好ましい。さらに、上記光重合開始剤(B)とともに、光増感剤や酸増殖剤等も必要に応じて添加することができる。
【0019】
上記光重合開始剤(B)の含有量は、上記エポキシ樹脂(A)および後述の特定の球状シリカ粉末(C)の合計量100重量部(以下「部」と略す)に対して1〜15部に設定することが好ましく、特に好ましくは2〜10部である。
【0020】
上記エポキシ樹脂(A)および光重合開始剤(B)とともに用いられる特定の球状シリカ粉末(C)は、一般に略球状を有するシリカ粉末であれば特に限定するものではないが、真球度の高いものを用いることがより好ましい。そして、本発明においては、球状シリカ粉末(C)は、平均粒径0.3〜0.5μmの範囲で、かつ粒径5μm以上のものを実質的に含有しないものである。上記範囲の平均粒径を有し、しかも粒径5μm以上の大きな粒径の粒子を含まない球状シリカ粉末を用いることにより、紫外線硬化性の低下と粘度の上昇が軽減されるのである。なお、上記平均粒径の測定は、例えば、レーザー回折散乱式粒度分布測定装置を用いて測定することができる。上記粒径5μm以上の球状シリカ粒子を実質的に含有しないものを得るための、粒径5μm以上の球状シリカ粒子の分別・除去方法としては、例えば、篩や遠心分離等により除去する方法があげられる。また、合成シリカであれば、pHの調整により2次凝集を発生させないようにして取り扱うことにより、粒径と分布を精密に制御することが可能である。そして、粒径を制御して合成した後、表面処理によって凝集を防ぐ方法も、粒径5μm以上の粒子を発生させない方法として有効である。
【0021】
上記特定の球状シリカ粉末(C)の含有量は、上記エポキシ樹脂(A)および球状シリカ粉末(C)の合計量中40〜60重量%の範囲に設定することが好ましい。すなわち、特定の球状シリカ粉末(C)の含有量が40重量%未満では、エポキシ樹脂組成物硬化体の線膨張係数が充分に下げられず、良好な寸法安定性が得られ難く、60重量%を超えると、エポキシ樹脂組成物が非常に高粘度となり作業性が低下するばかりでなく、光硬化性の低下をも引き起こす傾向がみられるからである。
【0022】
また、本発明の紫外線硬化型エポキシ樹脂組成物には、上記(A)〜(C)以外に、接着性を高めるためにシラン系あるいはチタン系のカップリング剤、合成ゴムやシリコーン化合物等の可撓性付与剤等の化合物、さらに酸化防止剤、消泡剤等の他の添加剤を必要に応じて適宜に配合することができる。
【0023】
本発明の紫外線硬化型エポキシ樹脂組成物は、例えば、前記式(1)で表されるナフタレン骨格を有するエポキシ樹脂(a1)および脂環式エポキシ樹脂(a2)と、光重合開始剤(B)、特定の球状シリカ粉末(C)さらに必要に応じて他の添加剤を用いて、つぎのようにして作製される。まず、予め、上記特定の球状シリカ粉末(C)を上記脂環式エポキシ樹脂(a2)に配合して分散させる。ついで、この分散物に、残りの配合成分を所定の割合で配合し溶融混合した後、室温に冷却することにより作製される。
【0024】
上記特定の球状シリカ粉末(C)を上記脂環式エポキシ樹脂(a2)に配合して分散させる予備混合における条件としては、温度25〜100℃が好ましく、50〜70℃の範囲が特に好ましい。また、凝集を防ぐために、溶剤を加えて分散させた後に脱溶媒してもよい。また、上記分散物に残りの配合成分を配合して溶融混合する際の溶融条件としては、温度25〜100℃が好ましく、50〜70℃の範囲が特に好ましい。
【0025】
このように、予め球状シリカ粉末(C)を脂環式エポキシ樹脂(a2)に配合して分散させることにより、球状シリカ粉末(C)のエポキシ樹脂組成物全体における均一分散が図られ、さらには球状シリカ粉末(C)の粒子とエポキシ樹脂との界面において濡れ性が向上して粘度の上昇が軽減できるようになる。また、上記濡れ性の一層の向上を図る目的で、先に述べたシランカップリング剤等のカップリング剤により球状シリカ粉末(C)の表面処理を行うことが好ましい。
【0026】
そして、本発明の紫外線硬化型エポキシ樹脂組成物の粘度は、接着剤としての使用時における作業性等を考慮して、25℃で1〜100Pa・s程度であることが好ましい。
【0027】
このようにして得られる紫外線硬化型エポキシ樹脂組成物は、例えば、UVランプ等により紫外線を照射した後、所定の温度でのポストキュアを行うことにより硬化させることができる。
【0028】
つぎに、実施例について比較例と併せて説明する。
【0029】
まず、下記に示す各成分を準備した。
【0030】
〔エポキシ樹脂1〕
前記式(1)で表されるナフタレン骨格を有するエポキシ樹脂
【0031】
〔エポキシ樹脂2〕
下記の式(a)で表される脂環式エポキシ樹脂(ダイセル化学社製、セロキサイド2021P:3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート)
【化5】
Figure 2004339262
【0032】
〔球状シリカ粉末A〕
平均粒径0.3μmで粒径5μm以上の粒子を含まない球状シリカ粉末(アドマテックス社製、SE1050)
【0033】
〔球状シリカ粉末B〕
平均粒径0.5μmで粒径5μm以上の粒子を含まない球状シリカ粉末(アドマテックス社製、SE2050)
【0034】
〔球状シリカ粉末C〕
平均粒径1.5μmで粒径5μm以上の粒子を3重量%含有する球状シリカ粉末(アドマテックス社製、SO−E5)
【0035】
〔光重合開始剤〕
スルホニウム・ヘキサフロロアンチモン系重合開始剤(旭電化社製、SP−170)
【0036】
〔酸化防止剤〕
HCA(三光化学社製)
【0037】
〔カップリング剤〕
γ−グリシドキシプロピルトリメトキシシラン
【0038】
【実施例1〜8、比較例1〜2】
まず、下記の表1〜表2に示す割合で、予め球状シリカ粉末をエポキシ樹脂2(脂環式エポキシ樹脂)に配合して分散させた(条件:50℃×30分)。ついで、この分散物に、同表に示す割合で残りの配合成分を配合し溶融混合(条件:50℃×30分)した後、室温に冷却することにより紫外線硬化型エポキシ樹脂組成物を作製した。なお、比較例1は球状シリカ粉末を配合しないため、予備分散を行わず、下記の表2に示す各成分を同表に示す割合で配合し混合した。
【0039】
【表1】
Figure 2004339262
【0040】
【表2】
Figure 2004339262
【0041】
このようにして得られた実施例および比較例の各紫外線硬化型エポキシ樹脂組成物を用いて、25℃でのエポキシ樹脂組成物の粘度、線膨張係数、硬化後の初期接着強度・耐湿接着強度、耐湿試験、吸水率を下記の方法に従ってそれぞれ測定・評価した。これらの結果を後記の表3〜表4に併せて示す。
【0042】
〔エポキシ樹脂組成物の粘度〕
E型粘度計を用いて25℃での粘度を測定した。
【0043】
〔線膨張係数〕
500WのUVランプ(高圧水銀ランプ)を用いて720mJ/cmにて光照射した後、100℃で1時間のポストキュアを行うことにより、厚み100μmのフィルムを作製した。そして、このフィルムを用い、TMA(測定機器:リガク社製のThermoplus 8210 、測定温度:30〜250℃)により引張モードにて測定した。そして、50℃での線膨張係数(α1)の数値を読み取った。
【0044】
〔初期接着強度・耐湿接着強度〕
まず、柱状の石英ガラス板(縦3.3mm×横3.3mm×厚み5mm)に、紫外線硬化型エポキシ樹脂組成物を接着剤として塗布した後、石英ガラス板(縦20mm×横35mm×厚み2mm)に圧着して貼り合わせ、つぎの硬化条件で接着剤を硬化させることにより接着片を作製した。すなわち、上記硬化は、上記と同様、500WのUVランプ(高圧水銀ランプ)を用いて720mJ/cmにて光照射した後、100℃で1時間のポストキュアを行うことにより硬化させた。
【0045】
そして、初期接着強度は、上記接着片を用い、25℃にてプッシュプルゲージを用いて、剪断の接着強度を測定した。
【0046】
また、耐湿接着強度は、上記接着片を、PCT条件下(121℃×202.6kPa)に24時間放置して吸湿させた後、25℃にてプッシュプルゲージを用いて、剪断の接着強度を測定した。
【0047】
〔耐湿試験〕
30mm×20mm×厚み2mmの石英ガラス板を2枚準備し、両石英ガラス板を紫外線硬化型エポキシ樹脂組成物を用いて貼り合わせ、厚み100μmとなるよう硬化させた。ついで、これをPCT条件下(121℃×202.6kPa)に24時間放置して吸湿させた後、石英ガラス板の剥離状況の有無を目視により観察した。上記硬化条件は、上記初期接着強度における試料の作製と同様に設定した。
【0048】
〔吸水率〕
紫外線硬化型エポキシ樹脂組成物を用い、500WのUVランプ(高圧水銀ランプ)を用いて720mJ/cmにて光照射した後、100℃で1時間のポストキュアを行うことにより、厚み100μmのフィルムを作製した。そして、このフィルムを用い、25℃で水中に24時間浸漬させ、その初期重量からの重量変化から吸水率を求めた。
【0049】
【表3】
Figure 2004339262
【0050】
【表4】
Figure 2004339262
【0051】
上記結果から、実施例品は、シリカ粉末が含有されているにもかかわらず充分硬化し、初期接着強度はもちろん耐湿接着強度においても高い数値が得られ、耐湿試験における剥離の発生も見られなかった。しかも、吸水率も低く、さらに線膨張係数も低く低線膨張化が図られている。
【0052】
これに対して、球状シリカ粉末を用いない比較例1品では、吸水率が高く、耐湿接着強度も低く、しかも耐湿試験において剥離が発生し、線膨張係数も60ppmと高いものであった。そして、粘度が低かった。また、平均粒径が0.5μmを超え、粒径5μm以上の粒子を含有する球状シリカ粉末を用いた比較例2品では、紫外線が樹脂組成物の内部に到達しにくいため、硬化性が悪く、その結果、耐湿接着強度が低く、耐湿試験において剥離が発生した。
【0053】
【発明の効果】
以上のように、本発明は、前記式(1)で表されるナフタレン骨格を有するエポキシ樹脂(a1)および脂環式エポキシ樹脂(a2)を含有するエポキシ樹脂(A)とともに、前記特定の球状シリカ粉末(C)を用いた紫外線硬化型エポキシ樹脂組成物である。このため、紫外線が樹脂組成物の内部に到達し易く、光硬化性が良好であり、かつ高温高湿雰囲気下での吸水性が低く、初期および吸湿後の耐湿接着強度も高く優れた実用性を備えている。しかも、上記特定の球状シリカ粉末(C)を含有するため、低線膨張係数で優れた寸法安定性を備えている。そして、このような本発明の紫外線硬化型エポキシ樹脂組成物は、予め上記特定の球状シリカ粉末(C)を上記脂環式エポキシ樹脂(a2)に分散させた後、これに残りの成分を配合し混合することにより製造され、このような製造工程を経由することにより、上記特定の球状シリカ粉末(C)が樹脂組成物中に均一に分散される。したがって、本発明の紫外線硬化型エポキシ樹脂組成物を、光通信系における光導波路やVグルーヴ等の精密光部品の接着およびファイバーアレイの接着用途、またレンズ等の小型部品の固定用等に適用すると、長期信頼性に優れた接着結合部を実現することができる。
【0054】
そして、上記a1の含有量を、エポキシ樹脂(A)全体の20〜70重量%の範囲に設定すると、耐湿接着性および流動性に一層優れるようになる。
【0055】
また、上記特定の球状シリカ粉末(C)の含有量を、上記エポキシ樹脂(A)および特定の球状シリカ粉末(C)の合計量中40〜60重量%の範囲に設定すると、低線膨張係数化が図られ寸法安定性に一層優れるようになり、しかも作業性に関してもより良好なものが得られるようになる。
【0056】
さらに、上記a2である脂環式エポキシ樹脂として、3,4−エポキシシクロヘキシルエチル−3,4−エポキシシクロヘキサンカルボキシレートを用いると、透明性、粘性、反応性に関して、一層好ましいものとなる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultraviolet-curable transparent liquid epoxy resin composition having excellent adhesive strength, low outgassing (gas volatilized under high temperature conditions), low moisture absorption and high dimensional stability, and a method for producing the same. An adhesive suitable for fixing an optical component or a lens such as a ball lens, sealing an optical device package or fixing an optical fiber to a V-groove substrate, that is, does not deteriorate even under severe temperature and humidity conditions. The present invention relates to an ultraviolet-curable epoxy resin composition, which is an adhesive useful for fixing an optical element or an optical component having adhesiveness, and a method for producing the same.
[0002]
[Prior art]
In recent years, in the assembly of precision optical fiber connector parts, a method using an adhesive has been used. At the time of this assembling, since fixing accuracy on the order of microns is required, an adhesive material having a low linear expansion coefficient, small molding shrinkage, and excellent dimensional stability has been demanded. In addition, from the viewpoint of long-term reliability, excellent adhesiveness to quartz glass and optical fibers, and excellent adhesiveness even when placed in a high-temperature and high-humidity environment have been demanded. Since optical components dislike thermal stress, photocurable adhesives such as ultraviolet curing are often used. In particular, when the fiber or cover glass is fixed or the lens is fixed in the assembly of the fiber array, an optical axis shift occurs. Therefore, a resin having particularly high dimensional stability has been demanded.
[0003]
For example, a cationically polymerizable photo-curing adhesive using a conventional epoxy resin has relatively excellent adhesiveness, but the adhesiveness to quartz glass and optical fibers, especially when used under high temperature and high humidity, has a high water absorption. And the adhesive strength was greatly reduced due to this, which was not satisfactory. Furthermore, a radical polymerization type photo-curing adhesive using an acrylic resin generally has high adhesive strength, but has high dimensional stability and heat resistance due to large curing shrinkage and low glass transition temperature. Was not satisfactory. In addition, a conventional liquid epoxy resin-based adhesive or an acrylic resin-based liquid adhesive has a low viscosity, and it is difficult to control the wraparound of the resin. Therefore, a high-viscosity adhesive has been required.
[0004]
On the other hand, a technique of lowering the linear expansion coefficient of a cured resin obtained by adding an inorganic filler is widely used. As an example of the ultraviolet-curable resin composition containing the above-mentioned inorganic filler, a resin composition containing, as an essential component, an inorganic filler composed of a plate-like inorganic filler or a flaky inorganic filler together with an epoxy compound has been proposed. (See Patent Document 1).
[0005]
[Patent Document 1]
JP 2000-191745 A
[Problems to be solved by the invention]
However, when the particle size of the inorganic filler to be added becomes finer and becomes sub-micron units, the surface area is remarkably increased and the interaction is strengthened, so that the inorganic filler cannot be uniformly dispersed or thickened. It is known that it becomes difficult to add a large amount of an inorganic filler because it cannot be handled as a liquid resin. Also, it is known that if a large amount of an inorganic filler is added, it is naturally difficult for light to pass through and ultraviolet curing is difficult. As described above, the conventional UV-curable epoxy resin composition containing an inorganic filler does not have sufficient properties as various optical adhesives, and it is a fact that satisfactory ones have not yet been obtained. .
[0007]
The present invention has been made in view of such circumstances, and an optical element and an optical element comprising a high-viscosity resin composition having a stable adhesive force even under conditions of high temperature and high humidity and having a low linear expansion coefficient and high dimensional stability. It is an object of the present invention to provide an ultraviolet-curable epoxy resin composition used for an adhesive for fixing parts and the like and a method for producing the same.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention is an ultraviolet-curable epoxy resin composition containing the following (A) to (C).
(A) An epoxy resin containing the following (a1) and (a2).
(A1) An epoxy resin having a naphthalene skeleton represented by the following formula (1).
Embedded image
Figure 2004339262
(A2) Alicyclic epoxy resin.
(B) a photopolymerization initiator.
(C) A spherical silica powder having an average particle size in the range of 0.3 to 0.5 μm and substantially not containing a particle size of 5 μm or more.
[0009]
The present invention also relates to a method for producing an ultraviolet-curable epoxy resin composition containing (A) to (C), wherein the spherical silica powder (C) is dispersed in the alicyclic epoxy resin (a2) in advance. After that, an ultraviolet-curable epoxy resin composition is prepared by mixing and mixing the dispersion, the epoxy resin (a1) having a naphthalene skeleton represented by the above formula (1), and the remaining components including the photopolymerization initiator (B). The manufacturing method of the product is the second gist.
[0010]
That is, the present inventors have intensively studied to obtain an ultraviolet-curable epoxy resin composition having excellent adhesion even under high temperature and high humidity conditions, and having a low linear expansion coefficient and excellent dimensional stability. Was. As a result, as the epoxy resin (A), the epoxy resin (a1) having the naphthalene skeleton represented by the above formula (1) and the alicyclic epoxy resin (a2) are used in combination and the specific epoxy resin (a) is used. When the spherical silica powder (C) having an average particle diameter and containing no particles having a specific particle diameter or more is used, the above-mentioned spherical silica powder (C) is uniformly dispersed, light is easily transmitted, and ultraviolet curability is good. The present inventors have found that the above-mentioned desired objects are achieved, and have reached the present invention. Then, such an epoxy resin composition is prepared by previously dispersing the above-mentioned specific spherical silica powder (C) in the alicyclic epoxy resin (a2), and then blending and mixing the remaining components with the epoxy resin. It was found that the specific spherical silica powder (C) was uniformly dispersed in the resin composition.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail.
[0012]
The ultraviolet-curable epoxy resin composition of the present invention comprises a specific epoxy resin (a1) having a naphthalene skeleton, an epoxy resin (A) containing an alicyclic epoxy resin (a2), and a photopolymerization initiator (B). And a specific spherical silica powder (C).
[0013]
The epoxy resin (a1) having a naphthalene skeleton is an epoxy resin (a1) having a naphthalene skeleton represented by the following formula (1). For example, HP-4032D (crystallinity, room temperature) manufactured by Dainippon Ink and Chemicals, Inc. 23000 mPa · s).
[0014]
Embedded image
Figure 2004339262
[0015]
The content of the epoxy resin (a1) having a naphthalene skeleton represented by the above formula (1) is preferably set so as to account for 20 to 70% by weight of the entire epoxy resin (A). Particularly preferably, it is 25 to 50% by weight. That is, if the amount is less than 20% by weight, it is difficult to obtain a desired effect due to a decrease in moisture-resistant adhesiveness. Conversely, if the amount exceeds 70% by weight, the viscosity becomes extremely high and the fluidity becomes extremely poor. This is because there is a tendency that the properties are significantly reduced.
[0016]
Further, the alicyclic epoxy resin (a2) used together with the above-mentioned a1 is not particularly limited, but it is preferable to use a highly reactive and transparent one, and it is preferable that it has a low viscosity. Further, from the viewpoint of reactivity, it is preferably bifunctional or more, and the light transmittance at a wavelength of 500 to 1700 nm is preferably 90% or more at a thickness of 100 mm. It is preferable that the viscosity is 5 Pa · s (room temperature) or less from the viewpoint of handleability after mixing the spherical silica powder. Specifically, hydrogenated bisphenol A type epoxy resin, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxycyclohexylethyl-3,4-epoxycyclohexanecarboxylate and the like are transparent. It is preferable from the viewpoints of properties, viscosity and reactivity. These may be used alone or in combination of two or more. Among them, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate has a low viscosity and is particularly preferably used.
[0017]
In the present invention, the epoxy resin (A) comprises, as essential components, an epoxy resin (a1) having a naphthalene skeleton represented by the above formula (1) and an alicyclic epoxy resin (a2). A resin may be used. Specifically, a general-purpose bisphenol type epoxy resin, a hydrogenated bisphenol type epoxy resin, a novolak type epoxy resin, a glycidyl ether type epoxy resin, a glycidyl ester type epoxy resin, or the like can be used. When the above-mentioned conventionally known epoxy resin is used, its amount is preferably set to 30% by weight or less based on the entire epoxy resin (A).
[0018]
The photopolymerization initiator (B) used together with the epoxy resin (A) is not particularly limited, and may be an aromatic diazonium salt, an aromatic sulfonium salt, an aromatic iodonium salt, an aromatic sulfoxonium salt, or a metallocene compound. Alternatively, an iron arene-based compound or the like can be used. Among them, from the viewpoint of photocurability, aromatic sulfonium salts are preferable, and in particular, aromatic sulfonium hexafluorophosphonium compounds, aromatic sulfonium hexafluoroantimonate compounds, or a combination of both thereof is curable, adhesive, etc. It is preferable from the viewpoint of. Further, together with the photopolymerization initiator (B), a photosensitizer, an acid multiplying agent and the like can be added as required.
[0019]
The content of the photopolymerization initiator (B) is 1 to 15 with respect to 100 parts by weight (hereinafter abbreviated as “parts”) of the total amount of the epoxy resin (A) and the specific spherical silica powder (C) described below. Is preferably set to 2 parts, particularly preferably 2 to 10 parts.
[0020]
The specific spherical silica powder (C) used together with the epoxy resin (A) and the photopolymerization initiator (B) is not particularly limited as long as it is generally a silica powder having a substantially spherical shape. It is more preferable to use one. In the present invention, the spherical silica powder (C) has an average particle size of 0.3 to 0.5 μm and does not substantially contain a particle size of 5 μm or more. By using a spherical silica powder having an average particle diameter in the above range and not containing particles having a large particle diameter of 5 μm or more, a decrease in ultraviolet curability and an increase in viscosity are reduced. The average particle size can be measured, for example, using a laser diffraction / scattering type particle size distribution analyzer. As a method for separating and removing the spherical silica particles having a particle diameter of 5 μm or more in order to obtain a particle substantially not containing the spherical silica particles having a particle diameter of 5 μm or more, for example, a method of removing the particles by a sieve or centrifugal separation can be mentioned. Can be Further, in the case of synthetic silica, it is possible to precisely control the particle size and distribution by adjusting the pH so as not to cause secondary aggregation. Also, a method of preventing aggregation by surface treatment after controlling and synthesizing the particle size is also effective as a method of not generating particles having a particle size of 5 μm or more.
[0021]
The content of the specific spherical silica powder (C) is preferably set in the range of 40 to 60% by weight based on the total amount of the epoxy resin (A) and the spherical silica powder (C). That is, when the content of the specific spherical silica powder (C) is less than 40% by weight, the linear expansion coefficient of the cured epoxy resin composition cannot be sufficiently reduced, and it is difficult to obtain good dimensional stability. If it exceeds 3, the epoxy resin composition will have a very high viscosity and not only the workability will be reduced, but also the photocurability will tend to be reduced.
[0022]
In addition to the above (A) to (C), the ultraviolet-curable epoxy resin composition of the present invention may contain a silane-based or titanium-based coupling agent, a synthetic rubber, a silicone compound, or the like in order to enhance adhesiveness. Compounds such as a flexibility-imparting agent and other additives such as an antioxidant and an antifoaming agent can be appropriately compounded as required.
[0023]
The ultraviolet-curable epoxy resin composition of the present invention comprises, for example, an epoxy resin (a1) having a naphthalene skeleton represented by the formula (1) and an alicyclic epoxy resin (a2), and a photopolymerization initiator (B) The specific spherical silica powder (C) is produced as follows using, if necessary, other additives. First, the specific spherical silica powder (C) is previously mixed and dispersed in the alicyclic epoxy resin (a2). Next, this dispersion is mixed with the remaining components at a predetermined ratio, melt-mixed, and cooled to room temperature.
[0024]
The conditions for the premixing in which the specific spherical silica powder (C) is mixed and dispersed in the alicyclic epoxy resin (a2) are preferably a temperature of 25 to 100 ° C, and particularly preferably a temperature of 50 to 70 ° C. Further, in order to prevent aggregation, the solvent may be added and dispersed, and then the solvent may be removed. In addition, as a melting condition when the remaining compounding components are blended with the dispersion and melt-mixed, a temperature of 25 to 100 ° C is preferable, and a range of 50 to 70 ° C is particularly preferable.
[0025]
In this way, by previously mixing and dispersing the spherical silica powder (C) with the alicyclic epoxy resin (a2), uniform dispersion of the spherical silica powder (C) in the entire epoxy resin composition is achieved. The wettability is improved at the interface between the particles of the spherical silica powder (C) and the epoxy resin, and the increase in viscosity can be reduced. For the purpose of further improving the wettability, it is preferable to perform the surface treatment of the spherical silica powder (C) with a coupling agent such as the silane coupling agent described above.
[0026]
The viscosity of the ultraviolet-curable epoxy resin composition of the present invention is preferably about 1 to 100 Pa · s at 25 ° C. in consideration of workability when used as an adhesive.
[0027]
The ultraviolet-curable epoxy resin composition thus obtained can be cured by irradiating ultraviolet rays with a UV lamp or the like and then performing post-curing at a predetermined temperature.
[0028]
Next, examples will be described together with comparative examples.
[0029]
First, the following components were prepared.
[0030]
[Epoxy resin 1]
An epoxy resin having a naphthalene skeleton represented by the above formula (1)
[Epoxy resin 2]
Alicyclic epoxy resin represented by the following formula (a) (Celloxide 2021P: 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, manufactured by Daicel Chemical Industries, Ltd.)
Embedded image
Figure 2004339262
[0032]
[Spherical silica powder A]
Spherical silica powder having an average particle diameter of 0.3 μm and containing no particles having a particle diameter of 5 μm or more (manufactured by Admatechs, SE1050)
[0033]
[Spherical silica powder B]
Spherical silica powder having an average particle diameter of 0.5 μm and containing no particles having a particle diameter of 5 μm or more (manufactured by Admatechs, SE2050)
[0034]
[Spherical silica powder C]
Spherical silica powder containing 3% by weight of particles having an average particle size of 1.5 μm and a particle size of 5 μm or more (manufactured by Admatechs, SO-E5)
[0035]
(Photopolymerization initiator)
Sulfonium hexafluoroantimony polymerization initiator (SP-170, manufactured by Asahi Denka Co., Ltd.)
[0036]
〔Antioxidant〕
HCA (manufactured by Sanko Chemical)
[0037]
(Coupling agent)
γ-glycidoxypropyltrimethoxysilane
Examples 1 to 8, Comparative Examples 1 and 2
First, spherical silica powder was previously mixed and dispersed in epoxy resin 2 (alicyclic epoxy resin) at the ratios shown in Tables 1 and 2 below (conditions: 50 ° C. × 30 minutes). Then, the remaining components were mixed with the dispersion at the ratios shown in the same table, melt-mixed (conditions: 50 ° C. × 30 minutes), and then cooled to room temperature to prepare an ultraviolet-curable epoxy resin composition. . In Comparative Example 1, since no spherical silica powder was blended, the components shown in Table 2 below were blended and mixed in the proportions shown in Table 2 without performing preliminary dispersion.
[0039]
[Table 1]
Figure 2004339262
[0040]
[Table 2]
Figure 2004339262
[0041]
Using the ultraviolet-curable epoxy resin compositions of Examples and Comparative Examples obtained in this way, the viscosity of the epoxy resin composition at 25 ° C., the coefficient of linear expansion, the initial adhesive strength after curing and the moisture-resistant adhesive strength , Moisture resistance test and water absorption were measured and evaluated according to the following methods. The results are shown in Tables 3 and 4 below.
[0042]
(Viscosity of epoxy resin composition)
The viscosity at 25 ° C. was measured using an E-type viscometer.
[0043]
(Linear expansion coefficient)
After irradiation with light at 720 mJ / cm 2 using a 500 W UV lamp (high pressure mercury lamp), a 100 μm thick film was prepared by performing post-curing at 100 ° C. for 1 hour. The film was measured in a tensile mode by TMA (measurement instrument: Thermoplus 8210 manufactured by Rigaku Corporation, measurement temperature: 30 to 250 ° C.). Then, the numerical value of the coefficient of linear expansion (α1) at 50 ° C. was read.
[0044]
[Initial adhesive strength / moisture resistant adhesive strength]
First, an ultraviolet-curable epoxy resin composition is applied as an adhesive to a columnar quartz glass plate (3.3 mm long × 3.3 mm wide × 5 mm thick), and then the quartz glass plate (20 mm long × 35 mm wide × 2 mm thick) is applied. ) Was bonded by pressure bonding, and the adhesive was cured under the following curing conditions to produce an adhesive piece. That is, similarly to the above, curing was performed by irradiating light at 720 mJ / cm 2 using a 500 W UV lamp (high-pressure mercury lamp) and then performing post-curing at 100 ° C. for 1 hour.
[0045]
And the initial adhesive strength measured the adhesive strength of shearing using the said adhesive piece and the push-pull gauge at 25 degreeC.
[0046]
Further, the moisture-resistant adhesive strength was determined by measuring the shear strength of the above-mentioned adhesive piece by using a push-pull gauge at 25 ° C. after leaving the adhesive piece under PCT conditions (121 ° C. × 202.6 kPa) for 24 hours to absorb moisture. It was measured.
[0047]
(Moisture resistance test)
Two quartz glass plates of 30 mm × 20 mm × 2 mm thickness were prepared, and both quartz glass plates were bonded using an ultraviolet-curable epoxy resin composition and cured to a thickness of 100 μm. Then, after leaving it under PCT conditions (121 ° C. × 202.6 kPa) for 24 hours to absorb moisture, the presence or absence of peeling state of the quartz glass plate was visually observed. The curing conditions were set in the same manner as in the preparation of the sample with the initial adhesive strength.
[0048]
(Water absorption)
Using a UV-curable epoxy resin composition, irradiating light at 720 mJ / cm 2 using a 500 W UV lamp (high-pressure mercury lamp), and performing post-curing at 100 ° C. for 1 hour to obtain a 100 μm thick film Was prepared. Using this film, the film was immersed in water at 25 ° C. for 24 hours, and the water absorption was determined from the weight change from its initial weight.
[0049]
[Table 3]
Figure 2004339262
[0050]
[Table 4]
Figure 2004339262
[0051]
From the above results, the product of the example hardened sufficiently despite containing the silica powder, a high numerical value was obtained not only in the initial adhesive strength but also in the moisture resistant adhesive strength, and no occurrence of peeling was observed in the moisture resistant test. Was. In addition, the water absorption is low, the linear expansion coefficient is low, and low linear expansion is achieved.
[0052]
On the other hand, Comparative Example 1, which did not use the spherical silica powder, had a high water absorption, a low moisture-proof adhesive strength, peeled off in a moisture-proof test, and had a high linear expansion coefficient of 60 ppm. And the viscosity was low. Further, in Comparative Example 2 using spherical silica powder containing particles having an average particle diameter of more than 0.5 μm and having a particle diameter of 5 μm or more, ultraviolet rays hardly reach the inside of the resin composition, so that the curability is poor. As a result, the moisture-resistant adhesive strength was low, and peeling occurred in the moisture resistance test.
[0053]
【The invention's effect】
As described above, the present invention provides, together with the epoxy resin (A1) containing the epoxy resin (a1) having a naphthalene skeleton represented by the formula (1) and the alicyclic epoxy resin (a2), the specific spherical It is an ultraviolet-curable epoxy resin composition using silica powder (C). For this reason, the ultraviolet light easily reaches the inside of the resin composition, the photocurability is good, and the water absorption under a high-temperature and high-humidity atmosphere is low, and the moisture resistance adhesive strength at the initial stage and after the moisture absorption is high and excellent practicability. It has. In addition, since it contains the specific spherical silica powder (C), it has a low linear expansion coefficient and excellent dimensional stability. In the ultraviolet-curable epoxy resin composition of the present invention, after the specific spherical silica powder (C) is dispersed in the alicyclic epoxy resin (a2) in advance, the remaining components are blended. The specific spherical silica powder (C) is uniformly dispersed in the resin composition by passing through such a manufacturing process. Accordingly, when the ultraviolet-curable epoxy resin composition of the present invention is applied to bonding of precision optical components such as optical waveguides and V-grooves in optical communication systems and bonding of fiber arrays, and fixing of small components such as lenses. As a result, it is possible to realize an adhesive joint having excellent long-term reliability.
[0054]
When the content of a1 is set in the range of 20 to 70% by weight of the entire epoxy resin (A), the moisture resistance and the fluidity are further improved.
[0055]
When the content of the specific spherical silica powder (C) is set in the range of 40 to 60% by weight based on the total amount of the epoxy resin (A) and the specific spherical silica powder (C), a low linear expansion coefficient is obtained. As a result, the dimensional stability can be further improved, and the workability can be improved.
[0056]
Further, when 3,4-epoxycyclohexylethyl-3,4-epoxycyclohexanecarboxylate is used as the alicyclic epoxy resin of the above a2, transparency, viscosity and reactivity become more preferable.

Claims (5)

下記の(A)〜(C)を含有することを特徴とする紫外線硬化型エポキシ樹脂組成物。
(A)下記の(a1)および(a2)を含有するエポキシ樹脂。
(a1)下記の式(1)で表されるナフタレン骨格を有するエポキシ樹脂。
Figure 2004339262
(a2)脂環式エポキシ樹脂。
(B)光重合開始剤。
(C)平均粒径が0.3〜0.5μmの範囲で、かつ粒径5μm以上のものを実質的に含有しない球状シリカ粉末。
An ultraviolet-curable epoxy resin composition comprising the following (A) to (C).
(A) An epoxy resin containing the following (a1) and (a2).
(A1) An epoxy resin having a naphthalene skeleton represented by the following formula (1).
Figure 2004339262
(A2) Alicyclic epoxy resin.
(B) a photopolymerization initiator.
(C) A spherical silica powder having an average particle size in the range of 0.3 to 0.5 μm and substantially not containing a particle size of 5 μm or more.
上記式(1)で表されるエポキシ樹脂(a1)の含有量が、上記(A)であるエポキシ樹脂全体の20〜70重量%の範囲に設定されている請求項1記載の紫外線硬化型エポキシ樹脂組成物。The ultraviolet-curable epoxy according to claim 1, wherein the content of the epoxy resin (a1) represented by the formula (1) is set in a range of 20 to 70% by weight of the entire epoxy resin (A). Resin composition. 上記球状シリカ粉末(C)の含有量が、エポキシ樹脂(A)および球状シリカ粉末(C)の合計量中40〜60重量%の範囲に設定されている請求項1または2記載の紫外線硬化型エポキシ樹脂組成物。The ultraviolet curable type according to claim 1 or 2, wherein the content of the spherical silica powder (C) is set in a range of 40 to 60% by weight based on the total amount of the epoxy resin (A) and the spherical silica powder (C). Epoxy resin composition. 上記脂環式エポキシ樹脂(a2)が、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレートである請求項1〜3のいずれか一項に記載の紫外線硬化型エポキシ樹脂組成物。The ultraviolet curable epoxy resin composition according to any one of claims 1 to 3, wherein the alicyclic epoxy resin (a2) is 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate. 請求項1〜4のいずれか一項に記載の下記の(A)〜(C)を含有する紫外線硬化型エポキシ樹脂組成物の製法であって、予め上記球状シリカ粉末(C)を上記脂環式エポキシ樹脂(a2)に分散させた後、この分散物と上記式(1)で表されるナフタレン骨格を有するエポキシ樹脂(a1)および光重合開始剤(B)を含む残りの成分を配合し混合することを特徴とする紫外線硬化型エポキシ樹脂組成物の製法。
(A)下記の(a1)および(a2)を含有するエポキシ樹脂。
(a1)下記の式(1)で表されるナフタレン骨格を有するエポキシ樹脂。
Figure 2004339262
(a2)脂環式エポキシ樹脂。
(B)光重合開始剤。
(C)平均粒径が0.3〜0.5μmの範囲で、かつ粒径5μm以上のものを実質的に含有しない球状シリカ粉末。
It is a manufacturing method of the ultraviolet curing epoxy resin composition containing the following (A)-(C) as described in any one of Claims 1-4, Comprising: The said spherical silica powder (C) is made into the said alicyclic in advance. After dispersing in the epoxy resin of formula (a2), the dispersion is mixed with the epoxy resin (a1) having a naphthalene skeleton represented by the above formula (1) and the remaining components including the photopolymerization initiator (B). A method for producing an ultraviolet-curable epoxy resin composition, comprising mixing.
(A) An epoxy resin containing the following (a1) and (a2).
(A1) An epoxy resin having a naphthalene skeleton represented by the following formula (1).
Figure 2004339262
(A2) Alicyclic epoxy resin.
(B) a photopolymerization initiator.
(C) A spherical silica powder having an average particle size in the range of 0.3 to 0.5 μm and substantially not containing a particle size of 5 μm or more.
JP2003133984A 2003-05-13 2003-05-13 UV curable epoxy resin composition Expired - Fee Related JP4142980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003133984A JP4142980B2 (en) 2003-05-13 2003-05-13 UV curable epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003133984A JP4142980B2 (en) 2003-05-13 2003-05-13 UV curable epoxy resin composition

Publications (2)

Publication Number Publication Date
JP2004339262A true JP2004339262A (en) 2004-12-02
JP4142980B2 JP4142980B2 (en) 2008-09-03

Family

ID=33524654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003133984A Expired - Fee Related JP4142980B2 (en) 2003-05-13 2003-05-13 UV curable epoxy resin composition

Country Status (1)

Country Link
JP (1) JP4142980B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088172A (en) * 2005-09-21 2007-04-05 Sumitomo Bakelite Co Ltd Resin composition, laminated body, wiring board, and method for manufacturing the same
JP2007103683A (en) * 2005-10-05 2007-04-19 Sumitomo Bakelite Co Ltd Resin composition, laminated body, wiring board, and manufacturing method therefor
JP2011111557A (en) * 2009-11-27 2011-06-09 Hitachi Chem Co Ltd Adhesive composition, circuit connecting material, connector and connection method of circuit member, and semiconductor device
JP2012160741A (en) * 2012-03-16 2012-08-23 Sumitomo Bakelite Co Ltd Resin composition, laminate, wiring board, and wiring board manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088172A (en) * 2005-09-21 2007-04-05 Sumitomo Bakelite Co Ltd Resin composition, laminated body, wiring board, and method for manufacturing the same
JP2007103683A (en) * 2005-10-05 2007-04-19 Sumitomo Bakelite Co Ltd Resin composition, laminated body, wiring board, and manufacturing method therefor
JP2011111557A (en) * 2009-11-27 2011-06-09 Hitachi Chem Co Ltd Adhesive composition, circuit connecting material, connector and connection method of circuit member, and semiconductor device
JP2012160741A (en) * 2012-03-16 2012-08-23 Sumitomo Bakelite Co Ltd Resin composition, laminate, wiring board, and wiring board manufacturing method

Also Published As

Publication number Publication date
JP4142980B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
JP5401767B2 (en) Curable composition and optical device
JP5919574B2 (en) UV curable resin composition, optical component adhesive, and organic EL device sealing material
KR101220047B1 (en) Sealant composition for liquid crystal display device
JP2010018797A (en) Curable composition for optical parts, adhesive agent for optical parts, and sealing agent for organic electroluminescence element
JP4589211B2 (en) UV curable liquid resin composition for optics
EP1803768B1 (en) Low out-gassing room temperature curable rubbery polymer, preparation thereof and device comprising same
KR20100136434A (en) Photocurable resin composition and optical component using the same
JP4421938B2 (en) UV curable resin composition
JP4142981B2 (en) UV-curable epoxy resin composition and process for producing the same
JP2004307845A (en) Transparent composite composition
JP2004155954A (en) Photocurable composition and method for producing the same and cured product
JP2010248500A (en) Energy ray-curable resin composition, and adhesive and cured product using the same
JP4142980B2 (en) UV curable epoxy resin composition
TW201934645A (en) Resin composition and cured material of same, adhesive, semiconductor device, and electronic component
JP2007297582A (en) Adhesive for optical display device and optical display element
JP2006008740A (en) Ultraviolet curable resin composition
JP2004352771A (en) Ultraviolet-curable epoxy resin composition
JP5684275B2 (en) Energy ray curable resin composition, adhesive and cured product using the same
JP4426198B2 (en) UV curable epoxy resin composition
JP2008308589A (en) Curable composition and optical device using the same
JP4268014B2 (en) UV curable epoxy resin composition
JP2004010674A (en) Ultraviolet light-curable adhesive
JP4331644B2 (en) UV curable resin composition
JP4261240B2 (en) UV curable epoxy resin composition
JP5116730B2 (en) UV curable epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080613

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees