JP2004339057A - COATING LIQUID FOR DEPOSITING Bi-BASED FERROELECTRIC THIN FILM, AND METHOD OF DEPOSITING Bi-BASED FERROELECTRIC THIN FILM USING THE SAME - Google Patents

COATING LIQUID FOR DEPOSITING Bi-BASED FERROELECTRIC THIN FILM, AND METHOD OF DEPOSITING Bi-BASED FERROELECTRIC THIN FILM USING THE SAME Download PDF

Info

Publication number
JP2004339057A
JP2004339057A JP2004192506A JP2004192506A JP2004339057A JP 2004339057 A JP2004339057 A JP 2004339057A JP 2004192506 A JP2004192506 A JP 2004192506A JP 2004192506 A JP2004192506 A JP 2004192506A JP 2004339057 A JP2004339057 A JP 2004339057A
Authority
JP
Japan
Prior art keywords
thin film
coating liquid
based ferroelectric
ferroelectric thin
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004192506A
Other languages
Japanese (ja)
Inventor
Yoshimi Sato
善美 佐藤
Atsushi Kawakami
敦史 川上
Yoshiyuki Takeuchi
義行 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2004192506A priority Critical patent/JP2004339057A/en
Publication of JP2004339057A publication Critical patent/JP2004339057A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1283Control of temperature, e.g. gradual temperature increase, modulation of temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating liquid for depositing a BLTO (Bi-La-Ti-O) type Bi-based ferroelectric thin film in which the decomposing temperature of organic components is low, inorganization is possible in a short time, and also, the reduction ratio in weight after decomposition is low, and to provide a method of depositing a Bi-based ferroelectric thin film using the same. <P>SOLUTION: The coating liquid is used for depositing a thin film comprising a Bi layered compound expressed by the formula of La<SB>1-x</SB>Bi<SB>4-y</SB>Ti<SB>3</SB>O<SB>12+α</SB>(wherein, x, y and α are the number of 0 to <1). The coating liquid is (i) the one for depositing a Bi-based ferroelectric thin film comprising an organic metal compound(s) obtained in such a manner that a metal alkoxide corresponding to two or more kinds of metals selected from La, Bi and Ti forms compound metal alkoxide, or (ii) the one for depositing a Bi-based ferroelectric thin film comprising an organic metal compound containing La, Bi and Ti and a specified compound(s) represented by triglyme, tetraglyme, dipivaloyl methane, pinacol, pivalic acid, hexylene glycol or the like. The method of depositing a Bi-based ferroelectric thin film uses these coating liquids. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はBLTO型のBi系強誘電体薄膜を形成するための塗布液、およびこれを用いたBi系強誘電体薄膜の形成方法に関する。本発明は特に不揮発性の強誘電体メモリ等に好適に利用される。   The present invention relates to a coating solution for forming a BLTO-type Bi-based ferroelectric thin film and a method for forming a Bi-based ferroelectric thin film using the same. The present invention is suitably used particularly for nonvolatile ferroelectric memories.

近年、(Bi222+(Am-1m3m+12-〔ただし、Aは1、2、3価のイオン(例えば、Bi、Pb、Ba、Sr、Ca、Na、K、および希土類元素)およびこれらのイオンの組み合わせを示し;Bは4、5、6価のイオン(例えば、Ti、Nb、Ta、W、Mo、Fe、Co、Cr等の金属元素)およびこれらのイオンの組み合わせを示し;m=1〜5の整数である〕の一般式で表される層状構造を有するBi系強誘電体(BLSF)薄膜は、P−Eヒステリシスの抗電界が小さく、分極反転に伴う膜の疲労性が少ないなどの特性を有することから、半導体メモリ用およびセンサ用の材料として脚光を浴びている(例えば、非特許文献1、2参照)。中でも、A金属元素としてSrを用い、B金属元素としてTaを用いたSBTO型;A金属元素としてSrを用い、B金属元素してNbを用いたSBNO型;A金属元素としてSrを用い、B金属元素としてTaおよびNbを用いたSBTNO型;A金属元素としてLaを用い、B金属元素としてTiを用いたBLTO型などのBi系強誘電体薄膜は、上記の特性をよく示す材料として注目されており、近年、活発に研究が行われている。 In recent years, (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2- Na, K, and rare earth elements) and combinations of these ions; B represents 4, 5, or 6-valent ions (eg, metal elements such as Ti, Nb, Ta, W, Mo, Fe, Co, and Cr) And a combination of these ions; m = 1 to 5 is an integer). The Bi-based ferroelectric (BLSF) thin film having a layered structure represented by the following general formula has a small coercive electric field of PE hysteresis. Since it has characteristics such as less fatigue of a film due to polarization reversal, it has been spotlighted as a material for semiconductor memories and sensors (for example, see Non-Patent Documents 1 and 2). Among them, SBTO type using Sr as A metal element and Ta as B metal element; SBNO type using Sr as A metal element and Nb as B metal element; Bi-based ferroelectric thin films such as SBTNO type using Ta and Nb as metal elements; BLTO type using La as A metal element and Ti as B metal element are attracting attention as materials that exhibit the above characteristics well. In recent years, research has been actively conducted.

Bi系強誘電体薄膜の形成方法としては、スパッタ法、CVD法、塗布型被膜形成法等が挙げられるが、Bi系強誘電体薄膜は、該薄膜を構成する金属元素の酸化物成分が多いことから、スパッタ法やCVD法による薄膜形成法は、高価な装置を必要としてコストがかかること、所望の誘電体膜組成制御とその管理が難しいことなどの理由により、特に大口径の基板への適用には困難とされている。これに対し塗布型被膜形成法は、高価な装置を必要とせず、成膜コストが比較的安価で、しかも所望の誘電体膜組成制御やその管理も容易なため有望視されている。   Examples of the method of forming the Bi-based ferroelectric thin film include a sputtering method, a CVD method, and a coating type film forming method. The Bi-based ferroelectric thin film has a large amount of an oxide component of a metal element constituting the thin film. Therefore, the thin film forming method by the sputtering method or the CVD method requires an expensive apparatus and is expensive, and it is difficult to control the composition of a desired dielectric film and to manage the dielectric film. It is considered difficult to apply. On the other hand, the coating film forming method is promising because it does not require expensive equipment, the film forming cost is relatively low, and the control of the desired dielectric film composition and its management are easy.

この塗布型被膜形成法に使用されるBi系強誘電体薄膜形成用塗布液としては、2−エチルヘキサン酸などの中鎖炭化水素基を有するカルボン酸と当該薄膜の構成金属元素との塩や、エタノール、メトキシエタノール、メトキシプロパノールなどのアルコールと当該薄膜の構成金属元素とからなる金属アルコキシド化合物等の有機金属化合物を、有機溶媒に溶解してなる有機系の塗布液が知られている。   Examples of the coating liquid for forming a Bi-based ferroelectric thin film used in this coating film forming method include a salt of a carboxylic acid having a medium-chain hydrocarbon group such as 2-ethylhexanoic acid and a metal element constituting the thin film. There is known an organic coating solution obtained by dissolving an organic metal compound such as a metal alkoxide compound including an alcohol such as ethanol, methoxyethanol and methoxypropanol and a metal element constituting the thin film in an organic solvent.

中でも、金属アルコキシド化合物を含有する塗布液は、金属アルコキシド化合物の複合化処理や加水分解処理により、塗布液中の金属組成比を安定化させることができ、薄膜形成時に昇華性の高い金属(Biなど)が焼失して薄膜中の金属組成比が変化する現象を抑制することができるとして注目されている(例えば、特許文献1、2参照)。   Among them, the coating liquid containing the metal alkoxide compound can stabilize the metal composition ratio in the coating liquid by complexing or hydrolyzing the metal alkoxide compound, and the metal (Bi) having a high sublimation property when forming a thin film. (See, for example, Patent Documents 1 and 2).

ところで、Bi系強誘電体薄膜を利用して、膜疲労が少なく、電気特性に優れたBi系強誘電体メモリ等の素子を製造するには、800℃程度の高温で30〜120分間程度の長時間加熱処理(膜の結晶化処理)を行う工程が必要とされている。しかしながら、このような長時間高温加熱処理は、一方で集積回路や基板の熱損傷等を引き起こしやすいという問題がある。近年の半導体装置の高密度、高集積化への急速な進展に伴い、これら半導体装置に用いられる強誘電体素子の製造においては、加熱処理による熱損傷等の影響をできるだけ受けないような製造プロセスが以前にもまして強く求められている。そのため、低温で結晶化が可能な塗布液や、短時間加熱で結晶化が可能な塗布液の開発が求められている。   By the way, in order to manufacture a device such as a Bi-based ferroelectric memory having a small film fatigue and excellent electric characteristics by using a Bi-based ferroelectric thin film, it is necessary to use a high temperature of about 800 ° C. for about 30 to 120 minutes. A step of performing a long-time heat treatment (crystallization treatment of a film) is required. However, such a long-time high-temperature heat treatment has a problem that an integrated circuit or a substrate is likely to be thermally damaged. With the rapid progress of high density and high integration of semiconductor devices in recent years, in the manufacture of ferroelectric elements used in these semiconductor devices, a manufacturing process which is not affected as much as possible by heat damage due to heat treatment. Is more strongly required than before. Therefore, development of a coating solution that can be crystallized at a low temperature or a coating solution that can be crystallized by heating for a short time is required.

特に、短時間加熱で結晶化が可能な塗布液はスループット向上の点からも望ましく、そのためRTA(=Rapid Thermal Annealing)法やRTP(=Rapid Thermal Processing)法と呼ばれる急速加熱処理法に適した塗布液の開発が望まれている。Bi系強誘電体薄膜は無機の金属酸化膜であることから、RTA法に適した塗布液としては、塗布液中の有機成分の分解温度が低く、短時間で無機化するものが望ましい。また、クラックが入ったりポーラスな膜にならないよう、有機成分分解後の重量減少率が小さいものが望ましい。   In particular, a coating solution that can be crystallized by heating for a short time is desirable from the viewpoint of improving the throughput. Therefore, a coating solution suitable for a rapid heating treatment method called an RTA (= Rapid Thermal Annealing) method or an RTP (= Rapid Thermal Processing) method. Development of a liquid is desired. Since the Bi-based ferroelectric thin film is an inorganic metal oxide film, it is desirable that the coating liquid suitable for the RTA method has a low decomposition temperature of an organic component in the coating liquid and is inorganic in a short time. Further, it is desirable that the weight loss after decomposition of the organic component is small so that cracks do not occur and a porous film is not formed.

竹中正、「ビスマス層状構造強誘電体と粒子配向」、(社)応用物理学会 応用電子物性分科会研究報告、1994年11月22日、pp.1−8Tadashi Takenaka, “Bismuth Layered Structure Ferroelectrics and Particle Orientation”, Report of the Japan Society of Applied Physics, Applied Electronic Properties Subcommittee, November 22, 1994, pp. 1-8 「セラミックス」Vol.30、No.6、pp.499−503(1995)"Ceramics" Vol. 30, no. 6, pp. 499-503 (1995) 特開平10−258252号公報JP-A-10-258252 特開平10−259007号公報JP-A-10-259007

本発明は上記事情に鑑みてなされたもので、有機成分の分解温度が低く、短時間で無機化が可能で、かつ、分解後の重量減少率が小さいBi系強誘電体薄膜形成用塗布液、およびこれを用いたBi系強誘電体薄膜形成方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a coating liquid for forming a Bi-based ferroelectric thin film that has a low decomposition temperature of an organic component, can be mineralized in a short time, and has a small weight loss rate after decomposition. And a method of forming a Bi-based ferroelectric thin film using the same.

上記課題を解決するために本発明者らは鋭意研究を重ねた結果、特にBLTO型のBi系強誘電体薄膜形成には、複合金属アルコキシドを含む有機金属化合物を含有する塗布液が上記課題を解決し得ること、さらには、上記塗布液にさらに、トリグリム、ジピバロイルメタン、ピナコール、ピバル酸、ヘキシレングリコール等に代表される特定の化合物を配合することにより、上記課題を解決し得ることを見出し、本発明を完成するに至った。   The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a coating solution containing an organometallic compound containing a composite metal alkoxide has solved the above-mentioned problems, especially for forming a BLTO-type Bi-based ferroelectric thin film. The above problem can be solved by further blending a specific compound represented by triglyme, dipivaloylmethane, pinacol, pivalic acid, hexylene glycol and the like into the coating solution. This led to the completion of the present invention.

すなわち本発明は、下記一般式(1)   That is, the present invention provides the following general formula (1)

La1-xBi4-yTi312+α (1) La 1-x Bi 4-y Ti 3 O 12 + α (1)

(式中、x、y、αは、それぞれ独立に0以上1未満の数を表す)
で表されるBi層状化合物を含有する薄膜を形成するための塗布液であって、該塗布液が、La、Bi、Tiのうちの少なくとも2種の金属に対応する金属アルコキシドが複合金属アルコキシドを形成してなる有機金属化合物を含有する、Bi系強誘電体薄膜形成用塗布液を提供する。
(In the formula, x, y, and α each independently represent a number from 0 to less than 1.)
A coating liquid for forming a thin film containing a Bi layered compound represented by the formula: wherein the coating liquid is a metal alkoxide corresponding to at least two metals of La, Bi, and Ti; Provided is a coating liquid for forming a Bi-based ferroelectric thin film, comprising a formed organometallic compound.

また本発明は、下記一般式(1)   Further, the present invention provides the following general formula (1)

La1-xBi4-yTi312+α (1) La 1-x Bi 4-y Ti 3 O 12 + α (1)

(式中、x、y、αは、それぞれ独立に0以上1未満の数を表す)
で表されるBi層状化合物を含有する薄膜を形成するための塗布液であって、該塗布液が、La、Bi、Tiを含む有機金属化合物と、下記一般式(2)〜(6)
(In the formula, x, y, and α each independently represent a number from 0 to less than 1.)
A coating liquid for forming a thin film containing a Bi layered compound represented by the formula: wherein the coating liquid is an organic metal compound containing La, Bi, and Ti; and the following general formulas (2) to (6)

3CO−(C24O)n−CH3 (2)
(R13C−CO−CH2−CO−C(R13 (3)
(R12C(OH)−C(OH)(R12 (4)
(R13C−COOH (5)
(R12C(OH)−CH2−CH(OH)R1 (6)
H 3 CO- (C 2 H 4 O) n -CH 3 (2)
(R 1 ) 3 C—CO—CH 2 —CO—C (R 1 ) 3 (3)
(R 1) 2 C (OH ) -C (OH) (R 1) 2 (4)
(R 1 ) 3 C-COOH (5)
(R 1 ) 2 C (OH) —CH 2 —CH (OH) R 1 (6)

(式中、R1は炭素原子数1〜3のアルキル基を表し、nは2〜5の整数を表す)
で表される化合物の中から選ばれる少なくとも1種を含有することを特徴とする、Bi系強誘電体薄膜形成用塗布液を提供する。
(Wherein, R 1 represents an alkyl group having 1 to 3 carbon atoms, and n represents an integer of 2 to 5)
A coating liquid for forming a Bi-based ferroelectric thin film, comprising at least one compound selected from the compounds represented by the formula:

また本発明は、上記Bi系強誘電体薄膜形成用塗布液を基板上に塗布、乾燥した後、昇温速度10℃/s以上の急速加熱処理によりBi系強誘電体薄膜を形成することを特徴とする、Bi系強誘電体薄膜の形成方法を提供する。   Further, the present invention provides a method of forming a Bi-based ferroelectric thin film by applying a coating solution for forming a Bi-based ferroelectric thin film on a substrate, drying the applied solution, and then performing a rapid heating treatment at a temperature rising rate of 10 ° C./s or more. A method for forming a Bi-based ferroelectric thin film is provided.

本発明により、有機成分の分解温度が低く、短時間で無機化が可能で、かつ、分解後の重量減少率が小さいBLTO型のBi系強誘電体薄膜を形成するための塗布液、およびこれを用いたBi系強誘電体薄膜形成方法が提供される。したがって本発明により、従来のように800℃程度の高温での長時間加熱を行うことなく膜の結晶化を行うことができる。また得られる薄膜は結晶性が良好で、結晶粒子が微細で緻密性が高い、ボイドの少ない膜質が優れる。またPr値(分極値)の向上もみられる。   According to the present invention, a coating solution for forming a BLTO-type Bi-based ferroelectric thin film that has a low decomposition temperature of an organic component, can be mineralized in a short time, and has a small weight loss rate after decomposition, and And a method of forming a Bi-based ferroelectric thin film using the same. Therefore, according to the present invention, crystallization of a film can be performed without performing long-time heating at a high temperature of about 800 ° C. as in the related art. The resulting thin film has good crystallinity, fine crystal grains, high density, and excellent film quality with few voids. In addition, the Pr value (polarization value) is also improved.

本発明に係るBi系強誘電体薄膜形成用塗布液として、以下の2態様がある。   The coating liquid for forming a Bi-based ferroelectric thin film according to the present invention includes the following two embodiments.

第1の態様は、下記一般式(1)   The first aspect is represented by the following general formula (1)

La1-xBi4-yTi312+α (1) La 1-x Bi 4-y Ti 3 O 12 + α (1)

(式中、x、y、αは、それぞれ独立に0以上1未満の数を表す)
で表されるBi層状化合物を含有する薄膜を形成するための塗布液であって、該塗布液が、La、Bi、Tiのうちの少なくとも2種の金属に対応する金属アルコキシドが複合金属アルコキシドを形成してなる有機金属化合物を含有する、Bi系強誘電体薄膜形成用塗布液である。
(In the formula, x, y, and α each independently represent a number from 0 to less than 1.)
A coating liquid for forming a thin film containing a Bi layered compound represented by the formula: wherein the coating liquid is a metal alkoxide corresponding to at least two metals of La, Bi, and Ti; It is a coating liquid for forming a Bi-based ferroelectric thin film, which contains the formed organometallic compound.

上記において、有機金属化合物が、少なくともBiアルコキシドとTiアルコキシドにより形成されたBiTi複合金属アルコキシドを含有するものであるのが好ましい。   In the above, it is preferable that the organometallic compound contains at least a BiTi composite metal alkoxide formed by a Bi alkoxide and a Ti alkoxide.

また第2の態様は、上記一般式(1)(式中、x、y、αは、上記で定義したとおり)で表されるBi層状化合物を含有するBi系強誘電体薄膜を形成するための塗布液であって、該塗布液が、Bi、La、Tiを含む有機金属化合物と、下記一般式(2)〜(6)   A second aspect is to form a Bi-based ferroelectric thin film containing a Bi layered compound represented by the general formula (1) (where x, y, and α are as defined above). Wherein the coating liquid comprises an organometallic compound containing Bi, La, and Ti, and the following general formulas (2) to (6):

3CO−(C24O)n−CH3 (2)
(R13C−CO−CH2−CO−C(R13 (3)
(R12C(OH)−C(OH)(R12 (4)
(R13C−COOH (5)
(R12C(OH)−CH2−CH(OH)R1 (6)
H 3 CO- (C 2 H 4 O) n -CH 3 (2)
(R 1 ) 3 C—CO—CH 2 —CO—C (R 1 ) 3 (3)
(R 1) 2 C (OH ) -C (OH) (R 1) 2 (4)
(R 1 ) 3 C-COOH (5)
(R 1 ) 2 C (OH) —CH 2 —CH (OH) R 1 (6)

(式中、R1は炭素原子数1〜3のアルキル基を表し、nは2〜5の整数を表す)
で表される化合物の中から選ばれる少なくとも1種を含有する、Bi系強誘電耐薄膜形成用塗布液である。
(Wherein, R 1 represents an alkyl group having 1 to 3 carbon atoms, and n represents an integer of 2 to 5)
A coating liquid for forming a Bi-based ferroelectric thin film, comprising at least one selected from the compounds represented by

上記第2の態様において、上記有機金属化合物が、La、Bi、Tiのうちの少なくとも2種の金属に対応する金属アルコキシドにより形成された複合金属アルコキシドを含有するのが好ましい。さらには、上記有機金属化合物が、少なくともBiアルコキシドとTiアルコキシドにより形成されたBiTi複合金属アルコキシドを含有するのが好ましい。   In the second aspect, the organometallic compound preferably contains a composite metal alkoxide formed by a metal alkoxide corresponding to at least two metals of La, Bi, and Ti. Further, it is preferable that the organometallic compound contains at least a BiTi composite metal alkoxide formed by a Bi alkoxide and a Ti alkoxide.

以下、上記第1、第2の態様のBi系強誘電体薄膜形成用塗布液につき詳述する。   Hereinafter, the coating liquid for forming a Bi-based ferroelectric thin film according to the first and second embodiments will be described in detail.

本発明のBi系強誘電体薄膜形成用塗布液において、La、Bi、Ti(すなわちBLTO型のBi系強誘電体薄膜を構成する金属元素)を含む有機金属化合物としては、2−エチルヘキサン酸などの中鎖炭化水素基を有するカルボン酸とLa、Bi、Tiとの塩や、エタノール、メトキシエタノール、メトキシプロパノールなどのアルコールとLa、Bi、Tiとからなる金属アルコキシド化合物、金属酢酸塩などの有機金属化合物が挙げられる。本発明では、少なくとも1つのアルコキシル基が結合されている金属アルコキシド化合物のほうが、金属組成比を安定化の点や、特に第2の態様の塗布液においては、アルコキシドの交換等により、後述する一般式(2)〜(6)で表される化合物との反応がより容易であること等の点から、から好ましく用いられる。   In the coating liquid for forming a Bi-based ferroelectric thin film of the present invention, the organic metal compound containing La, Bi, and Ti (that is, the metal element constituting the BLTO-type Bi-based ferroelectric thin film) is 2-ethylhexanoic acid. Such as a salt of a carboxylic acid having a medium chain hydrocarbon group with La, Bi, and Ti; a metal alkoxide compound composed of La, Bi, and Ti; and an alcohol such as ethanol, methoxyethanol, and methoxypropanol; and a metal acetate. Organometallic compounds are mentioned. In the present invention, the metal alkoxide compound to which at least one alkoxyl group is bonded is generally used in the coating liquid of the second embodiment because of the stabilization of the metal composition ratio, and particularly, in the coating liquid of the second embodiment, due to alkoxide exchange and the like. It is preferably used from the viewpoint that the reaction with the compounds represented by the formulas (2) to (6) is easier.

このような金属アルコキシド化合物としては、Biアルコキシド、Laアルコキシド、およびTiアルコキシドを含むものが好ましいものとして挙げられる。   Preferred examples of such a metal alkoxide compound include those containing a Bi alkoxide, a La alkoxide, and a Ti alkoxide.

該金属アルコキシド化合物は、その金属元素にアルコキシル基以外の複数の異なる基が結合していてもよく、例えばカルボキシル基等が結合していてもよい。   In the metal alkoxide compound, a plurality of different groups other than the alkoxyl group may be bonded to the metal element, for example, a carboxyl group or the like may be bonded.

本発明では特に、上記Laアルコキシド、Tiアルコキシド、Biアルコキシドのうち、少なくとも2種の異種金属アルコキシドが複合金属アルコキシドを形成しているのが好ましい。このように2種以上の異種金属アルコキシドを複合化することにより、単独の金属元素の析出(偏析)、焼失を抑制することができ、もってリーク電流の発生をより効果的に抑制することができる。   In the present invention, it is particularly preferable that at least two different metal alkoxides among the La alkoxide, Ti alkoxide, and Bi alkoxide form a composite metal alkoxide. By thus forming a composite of two or more different metal alkoxides, the precipitation (segregation) and burning out of a single metal element can be suppressed, and thus the generation of leak current can be more effectively suppressed. .

上記Bi系強誘電体薄膜形成用塗布液に含有される金属アルコキシドの態様は、具体的には以下の(a)〜(e)が例示される。   Specific examples of the metal alkoxide contained in the coating liquid for forming a Bi-based ferroelectric thin film include the following (a) to (e).

(a)LaBi複合金属アルコキシド、およびTiアルコキシド。
(b)BiTi複合金属アルコキシド、およびLaアルコキシド。
(c)LaTi複合金属アルコキシド、およびBiアルコキシド。
(d)LaBiTi複合金属アルコキシド。
(e)Laアルコキシド、Tiアルコキシド、およびBiアルコキシド。
(A) LaBi composite metal alkoxide and Ti alkoxide.
(B) BiTi composite metal alkoxide and La alkoxide.
(C) LaTi composite metal alkoxide and Bi alkoxide.
(D) LaBiTi composite metal alkoxide.
(E) La alkoxide, Ti alkoxide, and Bi alkoxide.

本発明でいう複合金属アルコキシドとは、異種金属アルコキシドどうしを溶媒中で20〜100℃の温度条件下で、2〜15時間程度反応させることにより得られる化合物をいう。反応の終点は、液体が徐々に変色し、最終的には茶褐色の液体となるので、このように液体が完全に変色した時点を反応の終点とするのがよい。このようにして得られた複合金属アルコキシドは、「ゾル・ゲル法によるガラス・セラミックスの製造技術とその応用」(応用技術出版(株)、1989年6月4日発行)のpp.46〜47に定義されているものであると考えられ、具体的には、LaBi(OR23(OR33、TiBi(OR44(OR33、LaTi(OR23(OR44、LaTiBi(OR23(OR44(OR33(ここで、R2、R3、R4はそれぞれ独立に炭素原子数1〜6のアルキル基を表す)で表されるものであると考えられる。中でも、昇華性が高いといわれるBiを複合化したLaBi(OR23(OR33、TiBi(OR44(OR33、LaTiBi(OR23(OR44(OR33、すなわち、上記例示した態様のうち(a)、(b)、および(d)のものを用いるのが好ましい。 The composite metal alkoxide referred to in the present invention refers to a compound obtained by reacting different metal alkoxides in a solvent at a temperature of 20 to 100 ° C. for about 2 to 15 hours. At the end point of the reaction, the color of the liquid gradually changes and eventually turns into a brownish liquid. Therefore, the point at which the liquid completely changes color is preferably set as the end point of the reaction. The composite metal alkoxide obtained in this manner is described in “Plasma Ceramics Production Technology by Sol-Gel Method and Its Application” (Applied Technology Publishing Co., Ltd., published on June 4, 1989), pp. 147-181. 46-47, and specifically, LaBi (OR 2 ) 3 (OR 3 ) 3 , TiBi (OR 4 ) 4 (OR 3 ) 3 , LaTi (OR 2 ) 3 (OR 4 ) 4 , LaTiBi (OR 2 ) 3 (OR 4 ) 4 (OR 3 ) 3 (where R 2 , R 3 and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms) It is considered to be represented by Above all, LaBi (OR 2 ) 3 (OR 3 ) 3 , TiBi (OR 4 ) 4 (OR 3 ) 3 , LaTiBi (OR 2 ) 3 (OR 4 ) 4 (OR 3 ) 3 , that is, it is preferable to use (a), (b), and (d) among the above exemplified embodiments.

なおLa、Ti、Biに対応する金属化合物は、金属アルコキシドのみならず、上述したように金属酢酸塩等も用いることができる。本発明では、入手容易、かつ安価であり、特性に優れるなどの点から、ランタンは酢酸金属塩(酢酸ランタン)が好適に用いられる。Ti、Biは、それぞれの金属アルコキシドを用いるのが好ましい。酢酸ランタンを用いた場合、上記複合金属アルコキシドの態様(b)は「BiTi複合金属アルコキシド、および酢酸La」となる。   As the metal compound corresponding to La, Ti, and Bi, not only metal alkoxide but also metal acetate and the like can be used as described above. In the present invention, metal acetate (lanthanum acetate) is preferably used as lanthanum in terms of easy availability, low cost, and excellent characteristics. It is preferable that Ti and Bi use respective metal alkoxides. When lanthanum acetate is used, the aspect (b) of the composite metal alkoxide is “BiTi composite metal alkoxide and La acetate”.

上記金属アルコキシド、複合金属アルコキシドを形成するアルコールとしては、下記一般式(7)   Examples of the metal alkoxide and the alcohol forming the composite metal alkoxide include the following general formula (7)

5OH (7) R 5 OH (7)

(式中、R5は炭素原子数1〜6の飽和または不飽和の炭化水素基を表す)
が好ましく用いられる。これらアルコール類としては、具体的には、メタノール、エタノール、プロパノール、ブタノール、アミルアルコール、シクロヘキサノール等が例示される。
(Wherein, R 5 represents a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms)
Is preferably used. Specific examples of these alcohols include methanol, ethanol, propanol, butanol, amyl alcohol, and cyclohexanol.

また、上記のアルコール以外のアルコール類としては、R5がさらに炭素原子数1〜6のアルコキシル基で置換されたものが挙げられ、具体的には、メトキシメタノール、メトキシエタノール、エトキシメタノール、エトキシエタノール、メトキシプロパノール、エトキシプロパノール等が例示される。 Examples of alcohols other than the above-mentioned alcohols include those in which R 5 is further substituted with an alkoxyl group having 1 to 6 carbon atoms, and specifically, methoxymethanol, methoxyethanol, ethoxymethanol, ethoxyethanol , Methoxypropanol, ethoxypropanol and the like.

本発明塗布液には、上記有機金属化合物に加えて、下記一般式(2)〜(6)で表される化合物(以下、「特定化合物」とも記す)の中から選ばれる少なくとも1種が好適に配合される。   In the coating liquid of the present invention, in addition to the organometallic compound, at least one selected from compounds represented by the following general formulas (2) to (6) (hereinafter, also referred to as “specific compounds”) is preferable. It is blended in.

3CO−(C24O)n−CH3 (2)
(R13C−CO−CH2−CO−C(R13 (3)
(R12C(OH)−C(OH)(R12 (4)
(R13C−COOH (5)
(R12C(OH)−CH2−CH(OH)R1 (6)
H 3 CO- (C 2 H 4 O) n -CH 3 (2)
(R 1 ) 3 C—CO—CH 2 —CO—C (R 1 ) 3 (3)
(R 1) 2 C (OH ) -C (OH) (R 1) 2 (4)
(R 1 ) 3 C-COOH (5)
(R 1 ) 2 C (OH) —CH 2 —CH (OH) R 1 (6)

(式中、R1は炭素原子数1〜3のアルキル基を表し、nは2〜5の整数を表す。)
上記特定化合物中、一般式(2)で表される化合物としては、例えばトリグリム、テトラグリムなどが挙げられる。中でもテトラグリムが分解温度が著しく低く、分解特性がよい点で好ましい。
(In the formula, R 1 represents an alkyl group having 1 to 3 carbon atoms, and n represents an integer of 2 to 5.)
Among the above specific compounds, examples of the compound represented by the general formula (2) include triglyme and tetraglyme. Among them, tetraglyme is preferable because the decomposition temperature is extremely low and the decomposition characteristics are good.

一般式(3)で表される化合物としては、特にジピバロイルメタンが分解特性がよい点で好ましい。   As the compound represented by the general formula (3), dipivaloylmethane is particularly preferred because of its good decomposition characteristics.

一般式(4)で表される化合物としては、特にピナコールが分解特性がよい点で好ましい。   As the compound represented by the general formula (4), pinacol is particularly preferred because of its good decomposition properties.

一般式(5)で表される化合物としては、特にピバル酸が付加体をつくりやすく、分解特性がよい点で好ましい。なお、一般式(IV)で表される化合物は、酸無水物を形成していてもよい。   As the compound represented by the general formula (5), pivalic acid is particularly preferable since it easily forms an adduct and has good decomposition characteristics. The compound represented by the general formula (IV) may form an acid anhydride.

一般式(6)で表される化合物としては、特に2−メチル−2,4−ペンタンジオール(=ヘキシレングリコール)が分解特性がよい点で好ましい。   As the compound represented by the general formula (6), 2-methyl-2,4-pentanediol (= hexylene glycol) is particularly preferred because of its good decomposition characteristics.

本発明の第2の態様の塗布液では、これら特定化合物と上記有機金属化合物を、両者を反応させて得られる反応生成物として含有するのが、有機性成分の分解除去効率が非常に高く、分解後の重量減少率が小さいため好ましい。   In the coating liquid according to the second aspect of the present invention, the specific compound and the organometallic compound are contained as a reaction product obtained by reacting the two, and the decomposition efficiency of the organic component is very high, This is preferable because the weight loss rate after decomposition is small.

該反応生成物は、例えば、有機金属化合物の1種または2種以上を有機溶媒中に添加し、ここに上記特定化合物の1種または2種以上を添加した後、10〜80℃程度の温度条件下で、0.5〜10時間程度加熱処理により合成することができるが、反応条件は、上記温度、反応時間等に限定されるものではない。   The reaction product is obtained, for example, by adding one or more kinds of organometallic compounds to an organic solvent, adding one or more kinds of the above-mentioned specific compounds, and then adding a temperature of about 10 to 80 ° C. Under the conditions, it can be synthesized by heat treatment for about 0.5 to 10 hours, but the reaction conditions are not limited to the above temperature, reaction time, and the like.

本発明の第2の態様の塗布液は、このように合成したそれぞれの有機金属化合物と特定化合物との反応生成物を、有機溶媒に添加、混合することにより得ることができる。あるいは、あらかじめ用いる有機金属化合物を有機溶媒中に添加、混合した混合溶液中に、用いる特定化合物を添加し、10〜80℃程度の温度条件下で、0.5〜3時間程度の加熱、特には50〜60℃程度の温度条件下で、1.5〜2.5時間程度の加熱処理をすることによっても得ることができるが、本発明塗布液の調製はこれら上記例示に限定されるものでない。   The coating liquid of the second aspect of the present invention can be obtained by adding and mixing the reaction product of each of the thus synthesized organometallic compounds and the specific compound to an organic solvent. Alternatively, a specific compound to be used is added to a mixed solution in which an organometallic compound to be used in advance is added to an organic solvent and mixed, and heating is performed for about 0.5 to 3 hours under a temperature condition of about 10 to 80 ° C., particularly, Can be obtained by performing a heat treatment for about 1.5 to 2.5 hours under a temperature condition of about 50 to 60 ° C., but the preparation of the coating solution of the present invention is limited to the above examples. Not.

上記特定化合物の使用量は、塗布液中の化学量論的組成比の金属元素の総価数(以下単に「総価数」という)に対して、下記数1で示す式   The amount of the specific compound to be used is expressed by the following formula 1 with respect to the total valence of the metal element having a stoichiometric composition ratio in the coating solution (hereinafter simply referred to as “total valence”).

Figure 2004339057
Figure 2004339057

で表される使用量(モル数)の範囲であることが好ましい。数式1中、特には(総価数)/6≦使用量(モル数)≦(総価数)/2の範囲が好ましい。使用量(モル数)が(総価数)/30未満では有機成分の分解温度の低温化効果が十分に発揮されにくい。なお、特定化合物使用量の上限は特に制限はないが、あまり過剰に添加すると塗布液の塗布特性の劣化や、形成した被膜の緻密化に影響を与える場合があるので、塗布液中の金属元素の総価数に対して、(総価数)/2モル以下程度が好ましい。 Is preferably in the range of the amount of use (the number of moles). In Formula 1, the range of (total valence) / 6 ≦ used amount (mol number) ≦ (total valence) / 2 is particularly preferable. When the amount (mol number) used is less than (total valence) / 30, the effect of lowering the decomposition temperature of the organic component is not sufficiently exerted. The upper limit of the amount of the specific compound used is not particularly limited. However, if added in an excessively large amount, the coating characteristics of the coating solution may be degraded or may affect the densification of the formed film. Is preferably about (total valence) / 2 mol or less with respect to the total valence of

なお、上記総価数は下記数2で示す式   The total valence is calculated by the following equation (2).

Figure 2004339057
Figure 2004339057

で表される値である。例えば、La化合物0.75モル、Bi化合物3.25モル、およびTi化合物3.0モルを含有する化学量論的組成比の塗布液の場合、{[3(Laの価数)×0.75(モル)]+[3(Biの価数)×3.25(モル)]+[4(Tiの価数)×3(モル)]}=24(総価数)となる。 Is the value represented by For example, in the case of a coating solution having a stoichiometric composition ratio containing 0.75 mol of a La compound, 3.25 mol of a Bi compound, and 3.0 mol of a Ti compound, {[3 (valence of La) × 0. 75 (mol)] + [3 (valence of Bi) × 3.25 (mol)] + [4 (valence of Ti) × 3 (mol)]} = 24 (total valence).

上記第1の態様、第2の態様に係るBi系強誘電体薄膜形成用塗布液の溶媒としては、飽和脂肪族系溶媒、芳香族系溶媒、アルコール系溶媒、グリコール系溶媒、エーテル系溶媒、ケトン系溶媒、エステル系溶媒等を挙げることができる。中でも、酸素原子を分子中に有するアルコール系溶媒、グリコール系溶媒、エーテル系溶媒、ケトン系溶媒、エステル系溶媒等は、加水分解型のゾル−ゲル液を調製する場合に好適に用いられる。   Examples of the solvent of the coating liquid for forming a Bi-based ferroelectric thin film according to the first embodiment and the second embodiment include a saturated aliphatic solvent, an aromatic solvent, an alcohol solvent, a glycol solvent, an ether solvent, Ketone solvents, ester solvents and the like can be mentioned. Among them, alcohol-based solvents, glycol-based solvents, ether-based solvents, ketone-based solvents, ester-based solvents and the like having an oxygen atom in the molecule are suitably used when preparing a hydrolysis-type sol-gel solution.

アルコール系溶媒としては、メタノール、エタノール、プロパノール、ブタノール、アミルアルコール、シクロヘキサノール、メチルシクロヘキサノール等が例示される。   Examples of the alcohol solvent include methanol, ethanol, propanol, butanol, amyl alcohol, cyclohexanol, methylcyclohexanol and the like.

グリコール系溶媒としては、エチレングリコールモノメチルエーテル、エチレングリコールモノアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノアセテート、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジプロピルエーテル、ジプロピレングリコールモノエチルエーテル、3−メトキシ−1−ブタノール、3−メトキシ−3−メチルブタノール、3,3’−ジメチルブタノール等が例示される。   Examples of glycol solvents include ethylene glycol monomethyl ether, ethylene glycol monoacetate, diethylene glycol monomethyl ether, diethylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monoacetate, propylene glycol dimethyl ether, propylene glycol diethyl ether, and propylene. Examples thereof include glycol dipropyl ether, dipropylene glycol monoethyl ether, 3-methoxy-1-butanol, 3-methoxy-3-methylbutanol, and 3,3′-dimethylbutanol.

エーテル系溶媒としては、メチラール、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジアミルエーテル、ジエチルアセタール、ジヘキシルエーテル、トリオキサン、ジオキサン等が例示される。   Examples of ether solvents include methylal, diethyl ether, dipropyl ether, dibutyl ether, diamyl ether, diethyl acetal, dihexyl ether, trioxane, dioxane, and the like.

ケトン系溶媒としては、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、メチルシクロヘキシルケトン、ジエチルケトン、エチルブチルケトン、トリメチルノナノン、アセトニトリルアセトン、ジメチルオキシド、ホロン、シクロヘキサノン、ダイアセトンアルコール等が例示される。   Ketone solvents include acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, methyl cyclohexyl ketone, diethyl ketone, ethyl butyl ketone, trimethyl nonanone, acetonitrile acetone, dimethyl oxide, holon, cyclohexanone, diacetone alcohol Etc. are exemplified.

エステル系溶媒としては、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸シクロヘキシル、プロピオン酸メチル、酪酸エチル、オキシイソ酪酸エチル、アセト酢酸エチル、乳酸エチル、メトキシブチルアセテート、シュウ酸ジエチル、マロン酸ジエチル、クエン酸トリエチル、クエン酸トリブチル等が例示される。   Ester solvents include ethyl formate, methyl acetate, ethyl acetate, butyl acetate, cyclohexyl acetate, methyl propionate, ethyl butyrate, ethyl oxyisobutyrate, ethyl acetoacetate, ethyl lactate, methoxybutyl acetate, diethyl oxalate, diethyl malonate , Triethyl citrate, tributyl citrate and the like.

これら溶媒は、1種または2種以上を混合した形で用いることができる。   These solvents can be used alone or in a mixture of two or more.

本発明では、上記第1の態様、第2の態様のBi系強誘電体薄膜形成用塗布液が、水、または水と触媒を用いて加水分解・部分重縮合処理されたゾル−ゲル液であるものも好ましく用いられる。   In the present invention, the coating liquid for forming a Bi-based ferroelectric thin film according to the first or second embodiment is water or a sol-gel liquid which has been subjected to hydrolysis and partial polycondensation treatment using water and a catalyst. Some are also preferably used.

また、上記Bi系強誘電体薄膜形成用塗布液が、無水カルボン酸類、ジカルボン酸モノエステル類、β−ジケトン類、グリコール類などの安定化剤により安定化処理されたものも好ましく用いられる。   In addition, those in which the above-mentioned coating liquid for forming a Bi-based ferroelectric thin film has been subjected to a stabilization treatment with a stabilizer such as carboxylic anhydrides, dicarboxylic monoesters, β-diketones, and glycols are also preferably used.

さらに、上記加水分解・部分縮重合処理と、上記安定化処理の両者を併用してもよい。   Further, both the above-mentioned hydrolysis / partial polycondensation treatment and the above-mentioned stabilization treatment may be used in combination.

すなわち本発明では、(i)上記塗布液を、水、または水と触媒を用いて加水分解・部分重縮合処理することによってゾル−ゲル液とする、(ii)上記塗布液を、水、または水と触媒を用いて加水分解・部分重縮合処理してゾル−ゲル液とした後、安定化剤を加えて安定化処理させる、(iii)上記塗布液を、安定化処理させる、(iv)上記塗布液を安定化処理させた後、水、または水と触媒を用いて加水分解・部分重縮合処理してゾル−ゲル液とする、等の態様が好ましい例として挙げられる。   That is, in the present invention, (i) the coating liquid is subjected to hydrolysis or partial polycondensation treatment using water or water and a catalyst to form a sol-gel liquid. (Ii) The coating liquid is water or A hydrolysis and partial polycondensation treatment using water and a catalyst to form a sol-gel liquid, and then a stabilizing treatment by adding a stabilizing agent; (iii) a stabilizing treatment of the coating solution; (iv) Preferred examples include stabilizing the coating solution and then subjecting it to hydrolysis or partial polycondensation using water or water and a catalyst to form a sol-gel solution.

上記安定化剤は、塗布液の保存安定性を向上させるためのものであり、特に加水分解後の塗布液の増粘、ゲル化を抑制するものである。   The stabilizer is for improving the storage stability of the coating solution, and particularly for suppressing the thickening and gelling of the coating solution after hydrolysis.

上記安定化剤において、無水カルボン酸類としては、下記一般式(8)   In the above stabilizer, the carboxylic anhydrides include the following general formula (8)

6(CO)2O (8) R 6 (CO) 2 O (8)

(式中、R6は2価の炭素原子数1〜6の飽和または不飽和の炭化水素基を表す)
で表される無水カルボン酸の中から選ばれる少なくとも1種が好適に用いられる。
(Wherein, R 6 represents a divalent saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms)
At least one selected from the carboxylic anhydrides represented by

このような無水カルボン酸類としては、具体的には、例えば無水マレイン酸、無水シトラコン酸、無水イタコン酸、無水コハク酸、無水メチルコハク酸、無水グルタル酸、無水α−メチルグルタル酸、無水α,α−ジメチルグルタル酸、無水トリメチルコハク酸等を挙げることができる。   Specific examples of such carboxylic anhydrides include, for example, maleic anhydride, citraconic anhydride, itaconic anhydride, succinic anhydride, methylsuccinic anhydride, glutaric anhydride, α-methylglutaric anhydride, α, α -Dimethylglutaric acid, trimethylsuccinic anhydride and the like.

また、ジカルボン酸モノエステル類としては、下記一般式(9)   Further, as the dicarboxylic acid monoesters, the following general formula (9)

7OCOR8COOH (9) R 7 OCOR 8 COOH (9)

(式中、R7は炭素原子数1〜6の飽和または不飽和の炭化水素基を表し;R8は2価の炭素原子数1〜6の飽和または不飽和の炭化水素基を表す)
で表されるジカルボン酸モノエステル類の中から選ばれる少なくとも1種が好ましく用いられる。
(Wherein, R 7 represents a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms; R 8 represents a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms)
At least one selected from dicarboxylic acid monoesters represented by

このようなジカルボン酸モノエステル類としては、具体的には、例えば2塩基酸のカルボン酸とアルコールとを反応させてハーフエステル化したものを用いることができ、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼリン酸、セバシン酸、マレイン酸、シトラコン酸、イタコン酸、メチルコハク酸、α−メチルグルタル酸、α,α−ジメチルグルタル酸、トリメチルグルタル酸等の2塩基酸のカルボン酸の少なくとも1種と、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、アミルアルコール、ヘキシルアルコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等の少なくとも1種とを公知の方法によりエステル化反応させて合成することができる。   As such a dicarboxylic acid monoester, specifically, for example, a half-esterified product obtained by reacting a carboxylic acid of a dibasic acid with an alcohol can be used, and oxalic acid, malonic acid, succinic acid, Glutaric acid, adipic acid, pimelic acid, speric acid, azelic acid, sebacic acid, maleic acid, citraconic acid, itaconic acid, methylsuccinic acid, α-methylglutaric acid, α, α-dimethylglutaric acid, trimethylglutaric acid, etc. An ester of at least one carboxylic acid of a basic acid and at least one kind of methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, amyl alcohol, hexyl alcohol, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, etc. by a known method. Reaction It can be synthesized.

β−ジケトン類としては、下記一般式(10)   As β-diketones, the following general formula (10)

9COCR10HCOR11 (10) R 9 COCR 10 HCOR 11 (10)

(式中、R9は炭素原子数1〜6の飽和または不飽和の炭化水素基を表し;R10はHまたはCH3を表し;R11は炭素原子数1〜6のアルキル基またはアルコキシル基を表す)
で表されるβ−ケトエステルを含むβ−ジケトンの中から選ばれる少なくとも1種が好適に用いられる。
(Wherein, R 9 represents a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms; R 10 represents H or CH 3 ; R 11 represents an alkyl group or an alkoxyl group having 1 to 6 carbon atoms) Represents)
At least one selected from β-diketones containing β-ketoesters represented by the following formulas is preferably used.

本発明で用いられるβ−ジケトン類としては、具体的には、例えばアセチルアセトン、3−メチル−2、4−ペンタンジオン、ベンゾイルアセトン等を挙げることができる。またβ−ケトエステルとしては、例えばアセト酢酸エチル、マロン酸ジエチル等を挙げることができる。これ以外の錯体形成剤も適用可能ではあるが、焼成後、金属ハロゲン化物を形成するヘキサフルオロアセチルアセトンなどの錯体形成剤は、昇華性または揮発性の高い金属錯体を形成するため、本発明の塗布液への使用は不適当である。   Specific examples of the β-diketones used in the present invention include, for example, acetylacetone, 3-methyl-2,4-pentanedione, benzoylacetone and the like. Examples of the β-ketoester include ethyl acetoacetate and diethyl malonate. Although other complexing agents are also applicable, complexing agents such as hexafluoroacetylacetone, which form a metal halide after firing, form a highly sublimable or highly volatile metal complex. Use in liquids is unsuitable.

グリコール類としては、下記一般式(11)   As glycols, the following general formula (11)

HOR12OH (11) HOR 12 OH (11)

(式中、R12は炭素原子数1〜6の飽和または不飽和の2価の炭化水素基を表す)
で表されるグリコールの中から選ばれる少なくとも1種が好適に用いられる。
(Wherein, R 12 represents a saturated or unsaturated divalent hydrocarbon group having 1 to 6 carbon atoms)
At least one selected from glycols represented by formula (1) is preferably used.

本発明で用いられるグリコール類としては、具体的には、1,2−エタンジオール、1,3−プロパンジオール、1,2−プロパンジオール、2,3−ブタンジオール、ジエチレングリコール、1,5−ペンタンジオール、2,2−ジメチル−1,3−プロパンジオール、1,4−シクロヘキサンジオール、ジプロピレングリコール、2,2−ジエチル−1,3−プロパンジオール、2,5−ジメチル−2,5−ヘキサンジオール、2−エチル−1,3−ヘキサンジオール、テトラエチレングリコール等を例示的に挙げることができる。   As the glycols used in the present invention, specifically, 1,2-ethanediol, 1,3-propanediol, 1,2-propanediol, 2,3-butanediol, diethylene glycol, 1,5-pentane Diol, 2,2-dimethyl-1,3-propanediol, 1,4-cyclohexanediol, dipropylene glycol, 2,2-diethyl-1,3-propanediol, 2,5-dimethyl-2,5-hexane Diol, 2-ethyl-1,3-hexanediol, tetraethylene glycol and the like can be exemplified.

以上の安定化剤は、いずれも炭素原子数が1〜6の短鎖のものであることが、金属化合物の極性、塗布後の無機性を高める点で好ましい。   Any of the above stabilizers is preferably a short-chain one having 1 to 6 carbon atoms from the viewpoint of increasing the polarity of the metal compound and the inorganicity after coating.

なお、酢酸、プロピオン酸、酪酸、吉草酸等の低級モノカルボン酸類も、所望により安定化剤として用いることができる。   In addition, lower monocarboxylic acids such as acetic acid, propionic acid, butyric acid, and valeric acid can be used as a stabilizer if desired.

また、上記Bi系強誘電体形成用塗布液を加水分解・部分重縮合させる場合において、加水分解・部分重縮合反応は、塗布液中に水、または水と触媒を添加し、20〜50℃で数時間〜数日間撹拌して行われる。触媒としては、金属アルコキシドの加水分解反応用として公知のもの、例えば塩酸、硫酸、硝酸等の無機酸、酢酸、プロピオン酸、酪酸等の有機酸などの酸触媒や、水酸化ナトリウム、水酸化カリウム、アンモニア、モノエタノールアミン、ジエタノールアミン、テトラメチルアンモニウムヒドロキシド等の無機・有機アルカリ触媒などを挙げることができるが、本発明では、被膜特性の点から酸触媒を用いることが特に好ましい。   When the Bi-based ferroelectric coating solution is subjected to hydrolysis / partial polycondensation, the hydrolysis / partial polycondensation reaction is carried out by adding water, or water and a catalyst to the coating solution, and treating the solution at 20 to 50 ° C. For several hours to several days. As the catalyst, those known for hydrolysis reaction of metal alkoxides, for example, acid catalysts such as inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, organic acids such as acetic acid, propionic acid and butyric acid, sodium hydroxide and potassium hydroxide Examples thereof include inorganic and organic alkali catalysts such as ammonia, monoethanolamine, diethanolamine, and tetramethylammonium hydroxide. In the present invention, it is particularly preferable to use an acid catalyst from the viewpoint of film properties.

上述のように複合金属アルコキシドを安定化剤と反応させてカルボキシル化、β−ジケトン化、キレート化等の処理をすることにより、極性を有し、しかも安定性に優れた生成物を得ることができ、加水分解性が向上するとともに、実用的な極性溶媒への溶解性も向上する。その結果、塗布液中でゾル−ゲル法による縮合重合反応を十分に進行させることができ、Bi−O−Bi、Bi−O−T1、Bi−O−La、Ti−O−Bi−O−La等の無機結合(メタロキサン)結合の生成により、さらにBi等の特定の金属元素の析出(偏析)量、焼失量を低減することができるとともに、塗布液全体の無機化を高めることができる。   By reacting the composite metal alkoxide with the stabilizer as described above and performing a treatment such as carboxylation, β-diketonation, or chelation, a product having polarity and excellent stability can be obtained. As a result, the hydrolysis property is improved, and the solubility in a practical polar solvent is also improved. As a result, the condensation polymerization reaction by the sol-gel method can sufficiently proceed in the coating solution, and Bi-O-Bi, Bi-OT1, Bi-O-La, Ti-O-Bi-O- Generation of an inorganic bond (metalloxane) bond such as La can further reduce the amount of precipitation (segregation) and burnout of a specific metal element such as Bi, and can increase the mineralization of the entire coating liquid.

本発明の薄膜形成方法では、上記本発明塗布液を基板上に塗布、乾燥した後、昇温速度10℃/s以上、好ましくは50℃/s以上の急速加熱処理によりBi系強誘電体薄膜を形成する。   In the method of forming a thin film of the present invention, the Bi-based ferroelectric thin film is subjected to a rapid heating treatment at a rate of 10 ° C./s or more, preferably 50 ° C./s or more, after the above-mentioned coating solution of the present invention is applied on a substrate and dried. To form

用いる基板は、特に限定されるものではなく、例えば、シリコン等の半導体基板、ガラス基板等を挙げることができる。   The substrate to be used is not particularly limited, and examples thereof include a semiconductor substrate such as silicon and a glass substrate.

さらには、強誘電体メモリの電極材料が形成された基板でもよく、例えばシリコンウェーハ等の基板上部を酸化してSi酸化膜等を形成して、その上に電極材料が形成された基板や、絶縁層、下層配線、層間絶縁層等を形成した基板上に電極材料が形成された基板でもよい。電極材料を設ける場合、該電極材料はスパッタリング、蒸着等の公知の方法により形成することができ、またその膜厚も特に限定されるものではない。電極材料としては、導電性を示す材料であればよく、特に制限されるものでなく、例えばPt、Ir、Ru、Re、Os等の金属、およびその金属酸化物である導電性金属酸化物等を用いることができる。   Further, a substrate on which an electrode material of a ferroelectric memory is formed may be used.For example, an upper portion of a substrate such as a silicon wafer is oxidized to form a Si oxide film or the like, and a substrate on which an electrode material is formed, A substrate in which an electrode material is formed on a substrate on which an insulating layer, a lower wiring, an interlayer insulating layer, and the like are formed may be used. When an electrode material is provided, the electrode material can be formed by a known method such as sputtering or vapor deposition, and its film thickness is not particularly limited. The electrode material is not particularly limited as long as it is a material exhibiting conductivity, and examples thereof include metals such as Pt, Ir, Ru, Re, and Os, and conductive metal oxides that are metal oxides thereof. Can be used.

上記Bi系強誘電体薄膜形成用塗布液の塗布方法は、ミスト堆積法(LSMCD)、スピンナー法、ディップ法等の公知の塗布方法を用いることができる。   As a method of applying the coating liquid for forming a Bi-based ferroelectric thin film, a known application method such as a mist deposition method (LSMCD), a spinner method, or a dip method can be used.

乾燥処理は、窒素中、大気中、または酸素雰囲気中などで行うことができる。乾燥時間は乾燥温度によって異なり、特に限定されるものではないが、基板の搬送時に、基板上の塗膜が流動して膜厚が変化したり流れ落ちたりしない程度に行うのが好ましい。乾燥手段としては特に制限はなく、例えば温度設定されたホットプレート上に、塗膜が形成された基板を載置する等の方法により行うことができる。   The drying treatment can be performed in a nitrogen atmosphere, an air atmosphere, an oxygen atmosphere, or the like. The drying time varies depending on the drying temperature, and is not particularly limited. However, it is preferable that the drying time is such that the coating film on the substrate does not flow and the film thickness does not change or flow down when the substrate is transported. The drying means is not particularly limited, and can be performed by, for example, a method of placing a substrate on which a coating film is formed on a hot plate at a set temperature.

続いて加熱処理を行う。加熱処理により塗膜中の有機成分が焼成除去され、金属酸化膜が形成される。加熱手段としては特に制限はないが、本発明塗布液は、有機成分の分解温度が低く、短時間で無機化が可能であり、また分解後の重量減少率が小さい材料であることから、ホットプレートやアニールランプ等による急速加熱処理(RTA)法に好適である。本発明塗布液を用いることにより、RTA法のような短時間の加熱処理においても、有機成分の分解が不十分になることはなく、結晶性に優れた被膜を形成することができる。つまり本発明においては、上記本発明塗布液を用いることにより、フルオライト構造からペロブスカイト構造への結晶化に優れる被膜が形成される。このことは、例えばXRD測定において、フルオライト構造に由来する2θ=33゜付近、および48゜付近のブロードピークがほとんどないこと、さらにペロブスカイト構造に由来する2θ=29゜付近のシャープなピークが大きくみられることから示される。   Subsequently, a heat treatment is performed. By the heat treatment, the organic components in the coating film are baked and removed, and a metal oxide film is formed. Although there is no particular limitation on the heating means, the coating liquid of the present invention is a material that has a low decomposition temperature of organic components, can be mineralized in a short time, and has a small weight loss rate after decomposition. It is suitable for a rapid heating (RTA) method using a plate or an annealing lamp. By using the coating liquid of the present invention, the decomposition of organic components does not become insufficient even in a short heat treatment such as the RTA method, and a film having excellent crystallinity can be formed. That is, in the present invention, a film excellent in crystallization from a fluorite structure to a perovskite structure is formed by using the above-mentioned coating solution of the present invention. This means that, for example, in the XRD measurement, there is almost no broad peak around 2θ = 33 ° and around 48 ° derived from the fluorite structure, and further, a sharp peak around 2θ = 29 ° derived from the perovskite structure is large. It is shown from what is seen.

なお、加熱処理は、窒素等の不活性ガス中、大気中、または酸素雰囲気中などで行うことができ、目的に応じて適宜選択できる。   Note that the heat treatment can be performed in an inert gas such as nitrogen, in the air, or in an oxygen atmosphere, and can be appropriately selected depending on the purpose.

また、ファーネス(炉)を用いた昇温速度の遅い低速加熱処理法も適用することができる。なお、この低速加熱処理法を用いる場合は、上記した加水分解処理や安定化剤添加処理を行った塗布液を用いたほうが、形成被膜の表面モホロジーの向上の点から好ましい。特に、安定化剤添加処理を行ったものは、被膜の緻密性および電気特性に優れる。   Further, a low-speed heat treatment method using a furnace (furnace) with a low temperature rising rate can also be applied. When this low-speed heating treatment method is used, it is preferable to use a coating solution that has been subjected to the above-mentioned hydrolysis treatment and stabilizer addition treatment from the viewpoint of improving the surface morphology of the formed film. In particular, those subjected to the stabilizer addition treatment are excellent in the denseness and electrical properties of the coating.

強誘電体薄膜の膜厚は特に制限はないが、1層あたり20〜100nm程度で積層し、最終膜厚が80〜300nm程度になるまで数回(通常、2〜5回程度)、塗布→乾燥→加熱処理を繰り返して行うことが、良好な電気特性を得るために好ましい。   The thickness of the ferroelectric thin film is not particularly limited, but is laminated at about 20 to 100 nm per layer, and applied several times (usually about 2 to 5 times) until the final film thickness becomes about 80 to 300 nm. It is preferable to repeat the drying → heating treatment in order to obtain good electric characteristics.

本発明により、従来のように800℃程度の高温での長時間加熱を行うことなく膜の結晶化を行うことができる。また得られる薄膜は結晶性が良好で、結晶粒子が微細で緻密性が高い、ボイドの少ない膜質が優れる。またPr値(分極値)の向上もみられる。   According to the present invention, crystallization of a film can be performed without performing long-time heating at a high temperature of about 800 ° C. as in the related art. The resulting thin film has good crystallinity, fine crystal grains, high density, and excellent film quality with few voids. In addition, the Pr value (polarization value) is also improved.

[実施例]
以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例によりなんら限定されるものではない。
[Example]
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

[塗布液1の調製](複合化→加水分解)
室温(25℃)において、2−メトキシプロパノール700gをかき混ぜながら、これに酢酸La0.075モル、Tiイソプロポキシド0.30モル、Biブトキシド0.325モルを順に添加し、均一に溶解するまで攪拌を続けた。
[Preparation of coating liquid 1] (composite → hydrolysis)
At room temperature (25 ° C.), while stirring 700 g of 2-methoxypropanol, 0.075 mol of La acetate, 0.30 mol of Ti isopropoxide, and 0.325 mol of Bibutoxide are added in this order, and the mixture is stirred until it is uniformly dissolved. Continued.

次いで、液温が80℃になるまで加温し、この温度を維持したまま2時間攪拌した。   Then, the mixture was heated until the liquid temperature reached 80 ° C., and stirred for 2 hours while maintaining this temperature.

その後、加温を止め、液温が室温になるまで攪拌を続けた後、水0.2モルを少量ずつ添加し、添加終了後、2時間攪拌を行い、複合金属アルコキシド溶液(溶液B)を得た。   Thereafter, the heating was stopped, and stirring was continued until the liquid temperature reached room temperature. Then, 0.2 mol of water was added little by little. After the addition was completed, stirring was performed for 2 hours, and the composite metal alkoxide solution (solution B) was added. Obtained.

次いで、2−メトキシプロパノールで希釈して、ランタンビスマスチタン酸化物換算で10重量%濃度の塗布液1を調製した。   Subsequently, the mixture was diluted with 2-methoxypropanol to prepare a coating solution 1 having a concentration of 10% by weight in terms of lanthanum bismuth titanium oxide.

[塗布液2の調製](複合化→加水分解→特定化合物添加)
塗布液1の調製で述べた方法と同様の方法により複合金属アルコキシド溶液(溶液B)を得た。
[Preparation of coating liquid 2] (composite → hydrolysis → addition of specific compound)
A composite metal alkoxide solution (solution B) was obtained in the same manner as described in Preparation of Coating Liquid 1.

次いで、溶液Bを激しくかき混ぜながらテトラグリム0.45モル(金属元素の総価数を24価に換算したときの4.5モル当量に相当)を添加し、その後、液温が50℃になるまで加温し、同温度を維持したまま3時間攪拌を行った。   Then, while stirring the solution B vigorously, 0.45 mol of tetraglyme (corresponding to 4.5 mol equivalents when the total valence of metal elements is converted into 24 valences) is added, and then the liquid temperature becomes 50 ° C. The mixture was stirred for 3 hours while maintaining the same temperature.

次いで、2−メトキシプロパノールで希釈して、ランタンビスマスチタン酸化物換算で10重量%濃度の塗布液2を調製した。   Subsequently, the mixture was diluted with 2-methoxypropanol to prepare a coating liquid 2 having a concentration of 10% by weight in terms of lanthanum bismuth titanium oxide.

[TG曲線の評価]
上記塗布液1、塗布液2を、20℃/minで加熱処理して溶媒を除去した後、いったん20℃まで冷却して、再び20℃/minの昇温速度で加熱処理して、TG(=Thermogravimetry)曲線を求めた。塗布液1のTG曲線を図1に、塗布液2のTG曲線を図2に示す。なお、図1、2中、「TEMP」曲線は被膜温度(℃)を示す。
[Evaluation of TG curve]
The coating solution 1 and the coating solution 2 were subjected to a heat treatment at 20 ° C./min to remove the solvent, and then cooled once to 20 ° C., and again subjected to a heat treatment at a heating rate of 20 ° C./min to obtain TG ( = Thermogravimetry) curves were determined. The TG curve of the coating solution 1 is shown in FIG. 1, and the TG curve of the coating solution 2 is shown in FIG. In FIGS. 1 and 2, the “TEMP” curve indicates the coating temperature (° C.).

図1と図2との比較から、いずれの場合も有機分の分解温度が低く短時間で無機化が行われているが、塗布液2のほうが、塗布液1に比べ、さらに有機成分の分解温度が低く短時間で無機化が行われたことがわかった。なお塗布液1、塗布液2ともに、分解後の重量減少率が約25〜45%と小さいことがわかった。   From the comparison between FIG. 1 and FIG. 2, in each case, the decomposition temperature of the organic component is low and the mineralization is performed in a short period of time. It was found that the temperature was low and the mineralization was performed in a short time. In addition, it turned out that the weight reduction rate after decomposition | disassembly of both the coating liquid 1 and the coating liquid 2 is small about 25-45%.

塗布液1のTG曲線を示すグラフである。3 is a graph showing a TG curve of a coating solution 1. 塗布液2のTG曲線を示すグラフである。6 is a graph showing a TG curve of a coating solution 2.

Claims (12)

下記一般式(1)
La1-xBi4-yTi312+α (1)
(式中、x、y、αは、それぞれ独立に0以上1未満の数を表す)
で表されるBi層状化合物を含有する薄膜を形成するための塗布液であって、該塗布液が、La、Bi、Tiのうちの少なくとも2種の金属に対応する金属アルコキシドが複合金属アルコキシドを形成してなる有機金属化合物を含有する、Bi系強誘電体薄膜形成用塗布液。
The following general formula (1)
La 1-x Bi 4-y Ti 3 O 12 + α (1)
(In the formula, x, y, and α each independently represent a number from 0 to less than 1.)
A coating liquid for forming a thin film containing a Bi layered compound represented by the formula: wherein the coating liquid is a metal alkoxide corresponding to at least two metals of La, Bi, and Ti; A coating liquid for forming a Bi-based ferroelectric thin film, comprising a formed organometallic compound.
上記有機金属化合物が、少なくともBiアルコキシドとTiアルコキシドにより形成されたBiTi複合金属アルコキシドを含有する、請求項1記載のBi系強誘電体薄膜形成用塗布液。   The coating liquid for forming a Bi-based ferroelectric thin film according to claim 1, wherein the organometallic compound contains at least a BiTi composite metal alkoxide formed by a Bi alkoxide and a Ti alkoxide. 上記Bi系強誘電体薄膜形成用塗布液が、水、または水と触媒を用いて加水分解・部分重縮合処理されたゾル−ゲル液である、請求項1または2記載のBi系強誘電体薄膜形成用塗布液。   3. The Bi-based ferroelectric substance according to claim 1, wherein the Bi-based ferroelectric thin film forming coating liquid is water or a sol-gel liquid that has been hydrolyzed and partially polycondensed using water and a catalyst. Coating liquid for thin film formation. 上記Bi系強誘電体薄膜形成用塗布液が、無水カルボン酸類、ジカルボン酸モノエステル類、β−ジケトン類、およびグリコール類の中から選ばれる少なくとも1種の安定化剤を用いて安定化処理されてなる、請求項1〜3のいずれか1項に記載のBi系強誘電体薄膜形成用塗布液。   The coating liquid for forming a Bi-based ferroelectric thin film is stabilized using at least one stabilizer selected from carboxylic anhydrides, dicarboxylic monoesters, β-diketones, and glycols. The coating liquid for forming a Bi-based ferroelectric thin film according to any one of claims 1 to 3. 請求項1〜4のいずれか1項に記載のBi系強誘電体薄膜形成用塗布液を基板上に塗布、乾燥した後、昇温速度10℃/s以上の急速加熱処理によりBi系強誘電体薄膜を形成することを特徴とする、Bi系強誘電体薄膜の形成方法。   A Bi-based ferroelectric thin film is formed by applying the coating liquid for forming a Bi-based ferroelectric thin film according to any one of claims 1 to 4 onto a substrate, drying the coated liquid, and then performing a rapid heating treatment at a temperature rising rate of 10 ° C./s or more. A method for forming a Bi-based ferroelectric thin film, comprising forming a body thin film. 下記一般式(1)
La1-xBi4-yTi312+α (1)
(式中、x、y、αは、それぞれ独立に0以上1未満の数を表す)
で表されるBi層状化合物を含有する薄膜を形成するための塗布液であって、該塗布液が、La、Bi、Tiを含む有機金属化合物と、下記一般式(2)〜(6)
3CO−(C24O)n−CH3 (2)
(R13C−CO−CH2−CO−C(R13 (3)
(R12C(OH)−C(OH)(R12 (4)
(R13C−COOH (5)
(R12C(OH)−CH2−CH(OH)R1 (6)
(式中、R1は炭素原子数1〜3のアルキル基を表し、nは2〜5の整数を表す)
で表される化合物の中から選ばれる少なくとも1種を含有することを特徴とする、Bi系強誘電体薄膜形成用塗布液。
The following general formula (1)
La 1-x Bi 4-y Ti 3 O 12 + α (1)
(In the formula, x, y, and α each independently represent a number from 0 to less than 1.)
A coating liquid for forming a thin film containing a Bi layered compound represented by the formula: wherein the coating liquid is an organic metal compound containing La, Bi, and Ti; and the following general formulas (2) to (6)
H 3 CO- (C 2 H 4 O) n -CH 3 (2)
(R 1 ) 3 C—CO—CH 2 —CO—C (R 1 ) 3 (3)
(R 1) 2 C (OH ) -C (OH) (R 1) 2 (4)
(R 1 ) 3 C-COOH (5)
(R 1 ) 2 C (OH) —CH 2 —CH (OH) R 1 (6)
(Wherein, R 1 represents an alkyl group having 1 to 3 carbon atoms, and n represents an integer of 2 to 5)
A coating liquid for forming a Bi-based ferroelectric thin film, comprising at least one compound selected from the compounds represented by the formula:
上記有機金属化合物と、上記一般式(2)〜(6)で表される化合物の中から選ばれる少なくとも1種とが反応生成物をなす、請求項6記載のBi系強誘電体薄膜形成用塗布液。   7. The Bi-based ferroelectric thin film according to claim 6, wherein the organometallic compound and at least one selected from the compounds represented by the general formulas (2) to (6) form a reaction product. Coating liquid. 上記有機金属化合物が、La、Bi、Tiのうちの少なくとも2種の金属に対応する金属アルコキシドにより形成された複合金属アルコキシドを含有する、請求項6または7記載のBi系強誘電体薄膜形成用塗布液。   8. The Bi-based ferroelectric thin film according to claim 6, wherein the organometallic compound contains a composite metal alkoxide formed by metal alkoxides corresponding to at least two kinds of metals among La, Bi, and Ti. Coating liquid. 上記有機金属化合物が、少なくともBiアルコキシドとTiアルコキシドにより形成されたBiTi複合金属アルコキシドを含有する、請求項6〜8のいずれか1項に記載のBi系強誘電体薄膜形成用塗布液。   The coating liquid for forming a Bi-based ferroelectric thin film according to any one of claims 6 to 8, wherein the organometallic compound contains at least a BiTi composite metal alkoxide formed by a Bi alkoxide and a Ti alkoxide. 上記Bi系強誘電体薄膜形成用塗布液が、水、または水と触媒を用いて加水分解・部分重縮合処理されたゾル−ゲル液である、請求項6〜9のいずれか1項に記載のBi系強誘電体薄膜形成用塗布液。   The coating liquid for forming a Bi-based ferroelectric thin film according to any one of claims 6 to 9, wherein the coating liquid is water or a sol-gel liquid that has been hydrolyzed and partially polycondensed using water and a catalyst. Coating liquid for forming a Bi-based ferroelectric thin film. Bi系強誘電体薄膜形成用塗布液が、無水カルボン酸類、ジカルボン酸モノエステル類、β−ジケトン類、およびグリコール類の中から選ばれる少なくとも1種の安定化剤を用いて安定化処理されてなる、請求項1、あるいは請求項6〜10のいずれか1項に記載のBi系強誘電体薄膜形成用塗布液。   The coating liquid for forming a Bi-based ferroelectric thin film is stabilized using at least one stabilizer selected from carboxylic anhydrides, dicarboxylic monoesters, β-diketones, and glycols. The coating liquid for forming a Bi-based ferroelectric thin film according to claim 1 or any one of claims 6 to 10. 請求項6〜11のいずれか1項に記載のBi系強誘電体薄膜形成用塗布液を基板上に塗布、乾燥した後、昇温速度10℃/s以上の急速加熱処理によりBi系強誘電体薄膜を形成することを特徴とする、Bi系強誘電体薄膜の形成方法。   A coating liquid for forming a Bi-based ferroelectric thin film according to any one of claims 6 to 11, which is applied to a substrate and dried, and then subjected to a rapid heating treatment at a temperature-raising rate of 10 ° C / s or more. A method for forming a Bi-based ferroelectric thin film, comprising forming a body thin film.
JP2004192506A 2000-02-28 2004-06-30 COATING LIQUID FOR DEPOSITING Bi-BASED FERROELECTRIC THIN FILM, AND METHOD OF DEPOSITING Bi-BASED FERROELECTRIC THIN FILM USING THE SAME Pending JP2004339057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004192506A JP2004339057A (en) 2000-02-28 2004-06-30 COATING LIQUID FOR DEPOSITING Bi-BASED FERROELECTRIC THIN FILM, AND METHOD OF DEPOSITING Bi-BASED FERROELECTRIC THIN FILM USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000050889 2000-02-28
JP2004192506A JP2004339057A (en) 2000-02-28 2004-06-30 COATING LIQUID FOR DEPOSITING Bi-BASED FERROELECTRIC THIN FILM, AND METHOD OF DEPOSITING Bi-BASED FERROELECTRIC THIN FILM USING THE SAME

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001044583A Division JP2001316117A (en) 2000-02-28 2001-02-21 COATING LIQUID FOR THIN FILM FORMING OF Bi SYSTEM FERROELECTRIC MATERIAL AND FORMING METHOD FOR THE SAME USING IT

Publications (1)

Publication Number Publication Date
JP2004339057A true JP2004339057A (en) 2004-12-02

Family

ID=33542853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004192506A Pending JP2004339057A (en) 2000-02-28 2004-06-30 COATING LIQUID FOR DEPOSITING Bi-BASED FERROELECTRIC THIN FILM, AND METHOD OF DEPOSITING Bi-BASED FERROELECTRIC THIN FILM USING THE SAME

Country Status (1)

Country Link
JP (1) JP2004339057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265224A (en) * 2001-03-09 2002-09-18 Toyota Central Res & Dev Lab Inc Blt ferroelectric thin film, manufacturing method therefore and application liquid therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265224A (en) * 2001-03-09 2002-09-18 Toyota Central Res & Dev Lab Inc Blt ferroelectric thin film, manufacturing method therefore and application liquid therefor
JP4649573B2 (en) * 2001-03-09 2011-03-09 独立行政法人産業技術総合研究所 BLT type ferroelectric thin film manufacturing method and coating liquid manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP3195265B2 (en) Coating solution for forming Bi-based ferroelectric thin film, ferroelectric thin film formed using the same, and ferroelectric memory
KR101371995B1 (en) Coating formulation and process for the production of titanate-based ceramic film with the coating formulation
KR101289950B1 (en) Niobium 2-ethylhexanoate derivative, process for producing the derivative, organic acid metal salt composition containing the derivative, and process for producing thin film from the composition
JP2006083040A (en) Precursor solution, its producing method, pztn multiple oxide, its producing method, piezoelectric element, inkjet printer, ferroelectric capacitor, and ferroelectric memory
US20060144293A1 (en) Coating solutions for use in forming bismuth-based ferroelectric thin films and a method of forming bismuth-based ferroelectric thin films using the coating solutions
US5811153A (en) Coating solutions for use in forming bismuth-based dielectric thin films, and dielectric thin films and memories formed with said coating solutions, as well as processes for production thereof
JP3108039B2 (en) Coating solution for forming a Bi-based ferroelectric thin film, ferroelectric thin film formed using the same, and ferroelectric memory
TW200536785A (en) Coating solutions for use in forming bismuth-based paraelectric or ferroelectric thin films, and bismuth-based paraelectric or ferroelectric thin films
JP2000332209A (en) MANUFACTURE OF Bi-BASED FERROELECTRIC ELEMENT
JP2002047011A (en) Method of forming compact perovskite metallic oxide thin film and compact perovskite metallic oxide thin film
JP2007019432A (en) Paraelectric film and its forming method
EP1790622A1 (en) Complex metal oxide raw material composition
JP2004339057A (en) COATING LIQUID FOR DEPOSITING Bi-BASED FERROELECTRIC THIN FILM, AND METHOD OF DEPOSITING Bi-BASED FERROELECTRIC THIN FILM USING THE SAME
JP2001298164A (en) Bismuth ferroelectric element improved in hysteresis characteristics and producing method therefor
JP2001316117A (en) COATING LIQUID FOR THIN FILM FORMING OF Bi SYSTEM FERROELECTRIC MATERIAL AND FORMING METHOD FOR THE SAME USING IT
JP2007005028A (en) Composition for forming bi-based dielectric thin film and bi-based dielectric thin film
JP2002211929A (en) Method for forming bismus system ferroelectric thin film
JP2005285847A (en) FORMING METHOD OF Bi-BASED FERROELECTRIC THIN FILM, AND ADJUSTING METHOD OF COATING SOLUTION FOR FORMATION OF Bi-BASED FERROELECTRIC THIN FILM
US20070062414A1 (en) Coating solutions for use in forming bismuth-based ferroelectric thin films and a method of forming bismuth-based ferroelectric thin films using the coating solutions
WO2007007561A1 (en) Composition for formation of paraelectric thin-film, paraelectric thin-film and dielectric memory
JP2005162582A (en) Method for producing perovskite-type crystal particle, method for producing perovskite-type crystal particle dispersion, and dielectric film
JP2002029753A (en) MATERIAL FOR FORMING Bi BASED FERROELECTRIC THIN FILM, Bi BASED FERROELECTRIC ELEMENT AND METHOD FOR PRODUCING THE ELEMENT
JP2001089146A (en) Forming method for bismuth-based ferroelectric thin film in which crystal growth in direction of c-axis is inhibited and bismuth-based ferroelectric thin film therefrom
JP2004345922A (en) High dielectric thin film, material for forming high dielectric thin film and method for forming high dielectric thin film
JP2001072926A (en) Starting solution for formation of perovskite-type oxide thin film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408