JP2007005028A - Composition for forming bi-based dielectric thin film and bi-based dielectric thin film - Google Patents

Composition for forming bi-based dielectric thin film and bi-based dielectric thin film Download PDF

Info

Publication number
JP2007005028A
JP2007005028A JP2005181034A JP2005181034A JP2007005028A JP 2007005028 A JP2007005028 A JP 2007005028A JP 2005181034 A JP2005181034 A JP 2005181034A JP 2005181034 A JP2005181034 A JP 2005181034A JP 2007005028 A JP2007005028 A JP 2007005028A
Authority
JP
Japan
Prior art keywords
thin film
dielectric thin
based dielectric
composition
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005181034A
Other languages
Japanese (ja)
Inventor
Tomoya Kumagai
智弥 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2005181034A priority Critical patent/JP2007005028A/en
Publication of JP2007005028A publication Critical patent/JP2007005028A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for forming a Bi-based dielectric thin film with which a crystallized thin film of Bi-based dielectric can be obtained even by low-temperature baking below 800°C, and also to provide a Bi-based dielectric thin film. <P>SOLUTION: This composition for forming the Bi-based dielectric thin film is constituted by containing a compound obtained by reaction of alkoxide, organic salt or a complex of at least each metal of Sr, Bi, Ta and a lanthanoid element or a composite metal. The crystallized thin film of the Bi-based dielectric represented by a general formula: Sr<SB>1-X</SB>A<SB>β</SB>Bi<SB>2</SB>+Y(Ta<SB>2-Z</SB>Nb<SB>Z</SB>)O<SB>9+α</SB>... (1) (where A is a lanthanoid element. X, Y, and α are numbers of 0 or more and less than 1 independently, Z is a number of zero or more and less than 2, and β is a number of 0.09 or more and 0.9 or less) is obtained by baking a coating film of this composition at low temperatures below 800°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、Bi系誘電体薄膜形成用組成物およびBi系誘電体薄膜に関するものである。詳しくは800℃未満の低温焼成によりBi系誘電体の結晶化薄膜を形成することが可能なBi系誘電体薄膜形成用組成物、および該組成物から得られたBi系誘電体薄膜に関するものである。   The present invention relates to a Bi-based dielectric thin film forming composition and a Bi-based dielectric thin film. Specifically, the present invention relates to a Bi-based dielectric thin film forming composition capable of forming a Bi-based dielectric crystallized thin film by low-temperature firing at less than 800 ° C., and a Bi-based dielectric thin film obtained from the composition. is there.

近年、半導体メモリ用やセンサ用の材料として、Bi系層状構造強誘電体(Bismuth layer-structured ferroelectrics(BLSF))と呼称される誘電体の結晶化薄膜がP−Eヒステリシスの抗電界が少なく、低電界での分極反転が可能であるなどの優れた特性を示すことから、種々開発がなされている。Bi系層状構造強誘電体とは、(Bi222+(Am-1m3m+12-(ただし、Aは1、2、3価のイオン及びこれらのイオンの組み合わせを示し;Bは4、5、6価のイオン及びこれらのイオンの組み合わせを示し;m=1〜5である)の一般式で表される誘電体である。 In recent years, as a material for semiconductor memories and sensors, a crystallized thin film of a dielectric called Bi-based layer-structured ferroelectrics (BLSF) has a low coercive field of PE hysteresis, Various developments have been made since it exhibits excellent characteristics such as polarization inversion in a low electric field. Bi-based layered ferroelectrics are (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2− (where A is a 1, 2, 3 valent ion or any of these ions) B represents a combination, and B represents a 4, 5, 6-valent ion and a combination of these ions; m = 1 to 5).

従来、前記Bi系強誘電体薄膜を形成するための材料として、例えば、特定の金属に対応するアルコキシ金属、金属錯体、酢酸金属等と、アルコール、無水カルボン酸、グリコール、β−ジケトン、ジカルボン酸モノエステル等とを反応させて得られる化合物を配合してなる塗布液(例えば、特許文献1参照)や、BLSF薄膜を構成する各金属化合物を複合化、加水分解することによって得られる有機金属化合物を含有する塗布液(例えば、特許文献2参照)等が提案されている。   Conventionally, as a material for forming the Bi-based ferroelectric thin film, for example, an alkoxy metal corresponding to a specific metal, a metal complex, a metal acetate, and the like, alcohol, carboxylic anhydride, glycol, β-diketone, dicarboxylic acid An organometallic compound obtained by compounding and hydrolyzing each metal compound constituting a BLSF thin film, or a coating liquid (for example, see Patent Document 1) containing a compound obtained by reacting with a monoester or the like There has been proposed a coating liquid containing, for example, Patent Document 2.

また、BLSF膜を利用したデバイスとして、主として<105>軸が厚さ方向に配向したSrBi2(TaXNb1-X29(X=0〜1)の薄膜および該薄膜を挟む一対の電極からなることを特徴とする薄層キャパシタ(例えば、特許文献3参照)も提案されている。 Further, as a device using a BLSF film, a thin film of SrBi 2 (Ta x Nb 1-x ) 2 O 9 (X = 0 to 1) whose <105> axis is oriented in the thickness direction and a pair sandwiching the thin film There has also been proposed a thin-layer capacitor (see, for example, Patent Document 3), which is characterized by comprising the above electrodes.

さらにBLSFとして、特に、SrBi2Ta29系誘電体の薄膜が特性的に優れていることが確認されている。例えば、SrBi2Ta29誘電体にランタン(La)を導入することにより、さらに特性の向上が可能であり、その強誘電体を、固相法により1200℃以上の温度で結晶化したことが発表されている(非特許文献1)。 Further, it has been confirmed that a thin film of SrBi 2 Ta 2 O 9 based dielectric is excellent in characteristics as BLSF. For example, by introducing lanthanum (La) into a SrBi 2 Ta 2 O 9 dielectric, the characteristics can be further improved, and the ferroelectric is crystallized at a temperature of 1200 ° C. or higher by a solid phase method. Has been announced (Non-patent Document 1).

特許第3217699号公報Japanese Patent No. 3217699 特許第3108039号公報Japanese Patent No. 3108039 特開平8−23073号公報Japanese Patent Laid-Open No. 8-23073 第62回応用物理学会学術講演会、講演予稿集、384−385頁、12a−ZR−6、762nd Japan Society of Applied Physics Academic Lecture, Proceedings of Lectures, 384-385, 12a-ZR-6, 7

前述のSrBi2Ta29系誘電体を始めとしたBi系層状構造強誘電体に十分な特性を発揮させるためには、結晶化が必要であり、各種回路デバイスに適用するためには、薄膜化が必要である。 In order to exhibit sufficient characteristics for the Bi-based layered structure ferroelectrics including the aforementioned SrBi 2 Ta 2 O 9- based dielectrics, crystallization is necessary, and in order to apply to various circuit devices, Thinning is necessary.

これに対して、上記非特許文献1に記載の技術では、誘電体の結晶化に固相法を用いているが、固相法では、誘電体を薄膜に形成することが困難である。誘電体を薄膜化できなければ、半導体メモリや半導体センサなどの半導体回路基板に適用することができない。また、この非特許文献1に記載の技術では、結晶化するために、1200℃の焼成温度を必要としているが、半導体回路基板は、800℃を超える温度を印加すると熱損傷などの劣化を引き起こす虞がある。   On the other hand, in the technique described in Non-Patent Document 1, the solid phase method is used for crystallization of the dielectric, but it is difficult to form the dielectric in a thin film by the solid phase method. If the dielectric cannot be thinned, it cannot be applied to a semiconductor circuit substrate such as a semiconductor memory or a semiconductor sensor. In the technique described in Non-Patent Document 1, a calcination temperature of 1200 ° C. is required for crystallization. However, when a temperature exceeding 800 ° C. is applied to a semiconductor circuit substrate, deterioration such as thermal damage is caused. There is a fear.

そこで、Bi系誘電体の薄膜形成方法を検討する必要が出てくるが、従来、Bi系誘電体の薄膜形成方法としては、スパッタ法、CVD法、塗布型被膜形成法による各薄膜形成方法が提供されている。スパッタ法やCVD法による薄膜形成方法では、構成する金属酸化物成分が多いことから、高価な装置を必要としコストがかかること、所望の誘電体膜組成制御とその管理が難しいことなどの理由により、特に大口径の基板への適用は困難とされている。これに対して、塗布型被膜形成法による薄膜形成方法は、高価な装置を必要とせず、成膜コストが比較的安価で、しかも所望の誘電体膜組成制御やその管理も容易なため有望視されている。   Therefore, it is necessary to examine a Bi-based dielectric thin film forming method. Conventionally, Bi-based dielectric thin film forming methods include sputtering, CVD, and coating-type film forming methods. Is provided. Thin film formation methods such as sputtering and CVD have many constituent metal oxide components, which requires expensive equipment and costs, and it is difficult to control and manage the desired dielectric film composition. In particular, application to a large-diameter substrate is considered difficult. On the other hand, the thin film formation method by the coating-type film formation method does not require an expensive apparatus, the film formation cost is relatively low, and the desired dielectric film composition control and management thereof are easy, and therefore promising. Has been.

しかしながら、薄膜形成方法として利点の多い塗布型被膜形成法による薄膜形成方法を用いる場合であっても、得られたBi系誘電体薄膜に良好な電気特性を具備させるためには800℃以上の加熱処理(焼成)が必要であり、このような高温での加熱処理は、半導体回路基板への熱損傷等の劣化を引き起こしやすい。そのため、Bi系誘電体薄膜の形成プロセスにおける加熱処理(焼成)温度を800℃より低い温度、例えば700℃以下とすることが望まれていた。   However, even when a thin film forming method based on a coating type film forming method, which has many advantages as a thin film forming method, is used, in order to provide the obtained Bi-based dielectric thin film with good electrical characteristics, heating at 800 ° C. or higher is required. Treatment (firing) is necessary, and such heat treatment at a high temperature tends to cause deterioration such as thermal damage to the semiconductor circuit substrate. Therefore, it has been desired that the heat treatment (firing) temperature in the formation process of the Bi-based dielectric thin film is lower than 800 ° C., for example, 700 ° C. or less.

本発明は、かかる従来の事情に鑑みてなされたもので、その課題は、半導体回路基板に熱劣化を生じない温度である800℃未満の低温での焼成によってもBi系誘電体の結晶化薄膜を形成することができるBi系誘電体薄膜形成用組成物と、該組成物を用いて得たBi系誘電体薄膜を提供することを課題とする。   The present invention has been made in view of such conventional circumstances, and the problem is that a Bi-based dielectric crystallized thin film can be obtained by firing at a low temperature of less than 800 ° C., which is a temperature at which a semiconductor circuit substrate does not undergo thermal degradation. It is an object of the present invention to provide a Bi-based dielectric thin film-forming composition capable of forming a Bi-based dielectric thin film obtained by using the composition.

本発明者らは、前記課題を解決するために鋭意研究を進めた結果、タンタルストロンチウムビスマス(SBT)のAサイトにランタノイド系金属元素を置換したBi系誘電体を得ることができるよう塗布型被膜形成用塗布液(Bi系誘電体薄膜形成用組成物)を調製すれば、800℃未満の低温での焼成によっても特性に優れたBi系誘電体の結晶化薄膜を形成することができることを見いだした。   As a result of diligent research to solve the above-mentioned problems, the present inventors have obtained a coating-type coating so that a Bi-based dielectric material in which a lanthanoid-based metal element is substituted at the A site of tantalum strontium bismuth (SBT) can be obtained. It has been found that if a coating liquid for forming (composition for forming a Bi-based dielectric thin film) is prepared, a Bi-based dielectric crystallized thin film having excellent characteristics can be formed even by baking at a low temperature of less than 800 ° C. It was.

すなわち、本発明にかかるBi系誘電体薄膜形成用組成物は、下記一般式(1)
Sr1-XAβBi2+Y(Ta2-ZNbZ)O9+α・・・・・(1)
(式中、Aは、ランタノイド系元素を表す。X、Y、αは、それぞれ独立に0以上1未満の数を表し、Zは、0以上2未満の数を表し、βは、0.09以上0.9以下の数を表す。)で表されるBi系誘電体の結晶化薄膜を形成するためのBi系誘電体薄膜形成用組成物であって、前記一般式(1)中の少なくともSr、Bi、Taおよびランタノイド系元素Aの各金属あるいは複合金属のアルコキシド、有機塩あるいは錯体を反応させることによって得られるSr、Bi、Taおよびランタノイド系元素Aを少なくとも含む化合物を含有することを特徴とする。
That is, the Bi-based dielectric thin film forming composition according to the present invention has the following general formula (1):
Sr 1-X AβBi 2 + Y (Ta 2−Z Nb Z ) O 9+ α (1)
(In the formula, A represents a lanthanoid element. X, Y and α each independently represents a number of 0 or more and less than 1, Z represents a number of 0 or more and less than 2, and β represents 0.09. And a Bi-based dielectric thin film forming composition for forming a Bi-based dielectric crystallized thin film represented by the formula (1): It contains a compound containing at least Sr, Bi, Ta and a lanthanoid element A obtained by reacting an alkoxide, organic salt or complex of each metal or composite metal of Sr, Bi, Ta and lanthanoid element A And

また、本発明のBi系誘電体薄膜は、前記Bi系誘電体薄膜形成用組成物の塗膜が焼成により結晶化されて得られたことを特徴とする。   The Bi-based dielectric thin film of the present invention is obtained by crystallizing a coating film of the Bi-based dielectric thin film forming composition by firing.

本発明のBi系誘電体薄膜形成用組成物は、塗布型被膜形成方法により薄膜を得るための塗布液として使用することができ、その塗膜を800℃以下の低温焼成により結晶化でき、半導体回路デバイスの誘電体膜に適した特性を有する誘電体薄膜を形成することができる。したがって、本発明のBi系誘電体薄膜形成用組成物によれば、半導体回路基板上に該基板に熱劣化を生じさせることなく特性に優れたBi系誘電体の結晶化薄膜を形成することができ、半導体回路デバイスの省スペース化および高性能化に寄与することができる。   The composition for forming a Bi-based dielectric thin film of the present invention can be used as a coating solution for obtaining a thin film by a coating-type film forming method, and the coating film can be crystallized by low-temperature baking at 800 ° C. or lower. A dielectric thin film having characteristics suitable for the dielectric film of a circuit device can be formed. Therefore, according to the composition for forming a Bi-based dielectric thin film of the present invention, a Bi-based dielectric crystallized thin film having excellent characteristics can be formed on a semiconductor circuit substrate without causing thermal degradation of the substrate. This can contribute to space saving and high performance of the semiconductor circuit device.

本発明のBi系誘電体薄膜形成用組成物は、下記一般式(1)
Sr1-XAβBi2+Y(Ta2-ZNbZ)O9+α・・・・・(1)
(式中、Aは、ランタノイド系元素を表す。X、Y、αは、それぞれ独立に0以上1未満の数を表し、Zは、0以上2未満の数を表し、βは、0.09以上0.9以下の数を表す。)で表されるBi系誘電体の結晶化薄膜を形成するためのBi系誘電体薄膜形成用組成物であって、前記一般式(1)中の少なくともSr、Bi、Taおよびランタノイド系元素Aの各金属あるいは複合金属のアルコキシド、有機塩あるいは錯体を反応させることによって得られるSr、Bi、Taおよびランタノイド系元素Aを少なくとも含む化合物を含有することを特徴とする。
なお、本発明のBi系誘電体薄膜では、前記一般式(1)中のNbは組成比率zが0以上2未満の値を取るため、Nbが全く含まれない組成も可能となる。
The Bi-based dielectric thin film forming composition of the present invention has the following general formula (1):
Sr 1-X AβBi 2 + Y (Ta 2−Z Nb Z ) O 9+ α (1)
(In the formula, A represents a lanthanoid element. X, Y and α each independently represents a number of 0 or more and less than 1, Z represents a number of 0 or more and less than 2, and β represents 0.09. And a Bi-based dielectric thin film forming composition for forming a Bi-based dielectric crystallized thin film represented by the formula (1): It contains a compound containing at least Sr, Bi, Ta and a lanthanoid element A obtained by reacting an alkoxide, organic salt or complex of each metal or composite metal of Sr, Bi, Ta and lanthanoid element A And
In the Bi-based dielectric thin film of the present invention, Nb in the general formula (1) has a composition ratio z of 0 or more and less than 2, so that a composition containing no Nb is possible.

本発明に用いられるランタノイド系元素としては、例えば、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)等が挙げられる。これらの中でもランタンが好ましい。   Examples of the lanthanoid element used in the present invention include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium ( Gd) and the like. Of these, lanthanum is preferred.

上記Sr、Bi、Ta、(必要に応じて、Nb)およびランタノイド元素Aの各金属あるいは複合金属のアルコキシドを形成するアルコールとしては、下記一般式(2)
1OH・・・・・(2)
(式中、R1は、炭素原子数1〜6の飽和または不飽和の炭化水素を表す。)
で表されるアルコールが好ましい。
Examples of the alcohol that forms the alkoxide of each metal or composite metal of Sr, Bi, Ta, (Nb if necessary) and lanthanoid element A include the following general formula (2)
R 1 OH (2)
(In the formula, R 1 represents a saturated or unsaturated hydrocarbon having 1 to 6 carbon atoms.)
The alcohol represented by these is preferable.

このようなアルコール類としては、具体的には、例えば、メタノール、エタノール、ブタノール、アミルアルコール、シクロヘキサノール、メチルシクロヘキサノール等が挙げられる。   Specific examples of such alcohols include methanol, ethanol, butanol, amyl alcohol, cyclohexanol, methylcyclohexanol, and the like.

また、前記アルコール以外のアルコール類としては、R1がさらに炭素原子数1〜6のアルコキシル基で置換されたものが挙げられ、具体的には、メトキシメタノール、メトキシエタノール、エトキシメタノール、エトキシエタノール等が挙げられる。 Examples of alcohols other than the alcohol include those in which R 1 is further substituted with an alkoxyl group having 1 to 6 carbon atoms. Specifically, methoxymethanol, methoxyethanol, ethoxymethanol, ethoxyethanol, etc. Is mentioned.

前記Sr、Bi、Ta、(Nb)およびランタノイド系元素Aの各金属あるいは複合金属の有機塩としては、例えば、酢酸金属塩、金属アルコキシド、β-ジケトン金属錯体、等が挙げられる。   Examples of the organic salt of each metal or composite metal of Sr, Bi, Ta, (Nb) and lanthanoid element A include acetic acid metal salts, metal alkoxides, β-diketone metal complexes, and the like.

前記ランタノイド系元素の金属アルコキシドとしては、具体的には、例えば、ランタンメトキシド、ランタンエトキシド、ランタンプロポキシド、ランタンブトキシド、ランタンエトキシエチレート、等が挙げられる。   Specific examples of the metal alkoxide of the lanthanoid element include lanthanum methoxide, lanthanum ethoxide, lanthanum propoxide, lanthanum butoxide, lanthanum ethoxyethylate, and the like.

前記Sr、Bi、Ta、(Nb)およびランタノイド系元素Aの各金属または複合金属の錯体としては、例えば、β‐ジケトン金属錯体が挙げられる。前記β‐ジケトン金属錯体を形成するβ‐ジケトン類としては、下記一般式(3)
2COCR3HCOR4・・・・・(3)
(式中、R2は炭素原子数1〜6の飽和又は不飽和の炭化水素基を表し;R3はHまたはCH3を表し;R4は炭素原子数1〜6のアルキル基またはアルコキシル基を表す。)で表されるβ‐ケトエステルを含むβ‐ジケトンの中から選ばれる少なくとも1種が好適に用いられる。
Examples of the complex of each metal or complex metal of Sr, Bi, Ta, (Nb) and the lanthanoid element A include a β-diketone metal complex. Examples of the β-diketone forming the β-diketone metal complex include the following general formula (3)
R 2 COCR 3 HCOR 4 (3)
(Wherein, R 2 represents a hydrocarbon group represents a saturated or unsaturated having 1 to 6 carbon atoms; R 3 represents H or CH 3; R 4 represents an alkyl group or an alkoxyl group having 1 to 6 carbon atoms It is preferable to use at least one selected from β-diketones including β-ketoesters represented by:

本発明で用いられるβ‐ジケトンとしては、具体的には、例えば、アセチルアセトン、3−メチル−2,4−ペンタンジオン、ベンゾイルアセトン等を挙げることができる。また、β‐ケトエステルとしては、例えば、アセト酢酸エチル、マロン酸ジエチル等を挙げることができる。これら以外の錯体形成剤も適用可能ではあるが、ジピバロイルメタンやそのTHF付加体、さらに焼成後、金属ハロゲン化物を形成するヘキサフルオロアセチルアセトンなどの錯体形成剤は、昇華性または揮発性の高い金属錯体を形成するため、本発明のBi系誘電体薄膜形成用組成物への使用は不適当である。   Specific examples of the β-diketone used in the present invention include acetylacetone, 3-methyl-2,4-pentanedione, benzoylacetone and the like. Examples of β-ketoesters include ethyl acetoacetate and diethyl malonate. Complex forming agents other than these are also applicable, but complex forming agents such as dipivaloylmethane and its THF adduct, and hexafluoroacetylacetone that forms a metal halide after calcination are sublimable or volatile. Since it forms a high metal complex, it is not suitable for use in the Bi-based dielectric thin film forming composition of the present invention.

本発明のBi系誘電体薄膜形成用組成物は、前記Sr、Bi、Ta、(Nb)およびランタノイド系元素Aの各金属または複合金属のアルコキシド、有機塩あるいは錯体を反応させることによって得られる化合物を含有する。   The Bi-based dielectric thin film forming composition of the present invention is a compound obtained by reacting each metal or composite metal alkoxide, organic salt or complex of the Sr, Bi, Ta, (Nb) and lanthanoid element A Containing.

前記「Sr、Bi、Ta、(Nb)およびランタノイド系元素Aの各金属または複合金属のアルコキシド、有機塩あるいは錯体」の反応としては、例えば、水または水と触媒を用いた加水分解反応等が挙げられる。   Examples of the reaction of the “Sr, Bi, Ta, (Nb) and lanthanoid element A metal alkoxides, organic salts or complexes of lanthanoid elements A” include, for example, water or a hydrolysis reaction using water and a catalyst. Can be mentioned.

前記加水分解反応は、前記Sr、Bi、Ta、(Nb)およびランタノイド系元素Aの各金属または複合金属のアルコキシド、有機酸あるいは錯体を、酸素原子を分子中に有する溶媒に溶解し、その後、水または水と触媒を添加し、20〜50℃で数時間〜数日間撹拌して行われる。   In the hydrolysis reaction, the alkoxide, organic acid or complex of each metal or composite metal of the Sr, Bi, Ta, (Nb) and lanthanoid element A is dissolved in a solvent having an oxygen atom in the molecule, and then Water or water and a catalyst are added, and stirring is performed at 20 to 50 ° C. for several hours to several days.

前記酸素原子を分子中に有する溶媒としては、例えば、アルコール系溶媒、多価アルコール系溶媒、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、低級カルボン酸系溶媒等を挙げられる。   Examples of the solvent having an oxygen atom in the molecule include alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, ester solvents, lower carboxylic acid solvents, and the like.

前記アルコール系溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、アミルアルコール、シクロヘキサノール、メチルシクロヘキサノール等が挙げられる。   Examples of the alcohol solvent include methanol, ethanol, propanol, butanol, amyl alcohol, cyclohexanol, methylcyclohexanol, and the like.

前記多価アルコール系溶媒としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノアセトエステル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノアセテート、プロピレングリコールモノエチルエーテル、プロピレングリコールモノアセテート、ジプロピレングリコールモノエチルエーテル、メトキシブタノール等が挙げられる。   Examples of the polyhydric alcohol solvent include ethylene glycol monomethyl ether, ethylene glycol monoacetate, diethylene glycol monomethyl ether, diethylene glycol monoacetate, propylene glycol monoethyl ether, propylene glycol monoacetate, dipropylene glycol monoethyl ether, methoxybutanol. Etc.

前記エーテル系溶媒としては、例えば、メチラール、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジアミルエーテル、ジエチルアセタール、ジヘキシルエーテル、トリオキサン、ジオキサン等が挙げられる。   Examples of the ether solvent include methylal, diethyl ether, dipropyl ether, dibutyl ether, diamyl ether, diethyl acetal, dihexyl ether, trioxane, dioxane and the like.

前記ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、メチルアミルケトン、メチルシクロヘキシルケトン、ジエチルケトン、エチルブチルケトン、トリメチルノナノン、アセトニトリルアセトン、ジメチルオキシド、ホロン、シクロヘキサノン、ダイアセトンアルコール等が挙げられる。   Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, methyl cyclohexyl ketone, diethyl ketone, ethyl butyl ketone, trimethylnonanone, acetonitrile acetone, dimethyl oxide, phorone, cyclohexanone, Examples include diacetone alcohol.

前記エステル系溶媒としては、例えば、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸シクロヘキシル、プロピオン酸メチル、酪酸エチル、オキシイソ酪酸エチル、アセト酢酸エチル、乳酸エチル、メトキシブチルアセテート、シュウ酸ジエチル、マロン酸ジエチル等が挙げられる。   Examples of the ester solvent include ethyl formate, methyl acetate, ethyl acetate, butyl acetate, cyclohexyl acetate, methyl propionate, ethyl butyrate, ethyl oxyisobutyrate, ethyl acetoacetate, ethyl lactate, methoxybutyl acetate, diethyl oxalate, And diethyl malonate.

前記低級カルボン酸系溶媒としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸等が挙げられる。   Examples of the lower carboxylic acid solvent include acetic acid, propionic acid, butyric acid, valeric acid and the like.

後述する安定化処理においては、これらの溶媒、特にアルコール系溶媒と、前記Sr、Bi、Ta、(Nb)、およびランタノイド系元素Aの各金属または複合金属アルコキシド、有機塩あるいは錯体との反応が一部行われていてもよい。   In the stabilization treatment to be described later, these solvents, particularly alcohol solvents, react with the respective metals or complex metal alkoxides, organic salts or complexes of the Sr, Bi, Ta, (Nb), and lanthanoid elements A. Some may have been done.

前記溶媒は、単独もしくは2種以上を混合した形で用いることができる。   The said solvent can be used individually or in the form of mixing 2 or more types.

また、芳香族炭化水素系溶媒に対しても、前記Sr、Bi、Ta、(Nb)の各金属アルコキシド、有機塩あるいは錯体は良好な溶解性を示すが、これらの溶媒はその使用方法、管理方法等が著しく制限される傾向にあり、あまり好ましくない。   In addition, each metal alkoxide, organic salt or complex of Sr, Bi, Ta, and (Nb) shows good solubility in aromatic hydrocarbon solvents, but these solvents are used and controlled. The method and the like tend to be remarkably limited, which is not preferable.

前記した種々の溶媒は、オープンスピン塗布法、密閉スピン塗布法、ミスト化塗布のLSM−CVD法、ディッピング法等の塗布条件の違いにより、そのときどきに応じて最も好ましいものを用いることができる。   As the various solvents described above, the most preferable solvents can be used depending on the application conditions such as the open spin coating method, the closed spin coating method, the LSM-CVD method of mist coating, and the dipping method.

本発明に用いられる触媒としては、金属アルコキシドの加水分解反応用として公知のもの、例えば、塩酸、硫酸、硝酸等の無機酸、酢酸、プロピオン酸、酪酸等の有機酸などの酸触媒や、水酸化ナトリウム、水酸化カリウム、アンモニア、モノエタノールアミン、ジエタノールアミン、テトラメチルアンモニウムヒドロキシド等の無機・有機アルカリ触媒などを挙げることができる。   Examples of the catalyst used in the present invention include those known for metal alkoxide hydrolysis reactions, such as inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, acid catalysts such as organic acids such as acetic acid, propionic acid and butyric acid, and water. Examples thereof include inorganic and organic alkali catalysts such as sodium oxide, potassium hydroxide, ammonia, monoethanolamine, diethanolamine, and tetramethylammonium hydroxide.

ここで、水酸化ナトリウム、水酸化カリウム等の無機アルカリを使用した場合は、ナトリウム、カリウム等の金属イオンがBi系誘電体薄膜形成用組成物に残存して、被膜の電気特性に影響を与えることが懸念される。また、アンモニア、アミン等の含窒素系のアルカリを使用した場合は、加水分解反応後、沸点の高い窒素化合物を形成することがあり、これが焼成工程時の被膜の緻密化に影響を与えることが懸念される。従って、本発明においては、酸触媒を用いることが特に好ましい。   Here, when an inorganic alkali such as sodium hydroxide or potassium hydroxide is used, metal ions such as sodium and potassium remain in the Bi-based dielectric thin film forming composition and affect the electrical characteristics of the coating. There are concerns. In addition, when nitrogen-containing alkalis such as ammonia and amines are used, nitrogen compounds with a high boiling point may be formed after the hydrolysis reaction, which may affect the densification of the coating during the firing process. Concerned. Therefore, in the present invention, it is particularly preferable to use an acid catalyst.

前記加水分解反応は、前記Sr、Bi、Ta、(Nb)およびランタノイド系元素Aの各金属または複合金属のアルコキシド、有機塩あるいは錯体の酸素原子を分子中に有する溶媒に溶解した溶液を電極上に塗布後、被膜表面を加湿雰囲気に晒すことによっても行うことができる。具体的には、例えば、50〜120℃で10〜60分間程度、50〜100%の湿度下で行うことができる。   In the hydrolysis reaction, a solution of each metal of Sr, Bi, Ta, (Nb) and lanthanoid element A or an alkoxide of a composite metal, an organic salt or a complex having an oxygen atom in the molecule is dissolved on the electrode. After coating, it can also be carried out by exposing the coating surface to a humidified atmosphere. Specifically, for example, it can be performed at 50 to 120 ° C. for about 10 to 60 minutes under a humidity of 50 to 100%.

以上の条件は、被膜を用いる用途に応じ適宜選択することができ、前記に限られるものではない。   The above conditions can be appropriately selected according to the use of the coating, and are not limited to the above.

このように加水分解処理することにより、乾燥工程後の塗布膜全体に占める有機成分の含有量を低減させることができる。また、各金属のメタロキサン結合が形成されるため、Bi等の金属元素の析出(偏析)、焼失を抑制することができる。各有機金属化合物は、有機基をその構造中に有するが、加水分解処理することによりアルコキシル基等の有機基を脱離させ、より一層無機性の高いメタロキサン結合をつくることができるためである。脱離した有機基は、低沸点のアルコール、グリコール等になり、Bi系誘電体薄膜形成用組成物または被膜中に残存するが、乾燥工程において溶媒とともに蒸発するため、焼成工程前の被膜の無機性が高まり、緻密な膜の形成が可能となる。   By performing the hydrolysis treatment in this manner, the content of the organic component in the entire coating film after the drying step can be reduced. Moreover, since the metalloxane bond of each metal is formed, precipitation (segregation) and burning of metal elements such as Bi can be suppressed. This is because each organometallic compound has an organic group in its structure, but by hydrolyzing, an organic group such as an alkoxyl group can be eliminated to form a more inorganic metalloxane bond. The detached organic group becomes a low-boiling point alcohol, glycol or the like and remains in the Bi-based dielectric thin film forming composition or film, but evaporates with the solvent in the drying process. Therefore, a dense film can be formed.

また、メタロキサン結合の生成により、金属元素同士の結びつきが強くなり、Bi等の金属元素の析出(偏析)、焼失が抑えられ、リーク電流が小さく、水素熱処理耐性および耐圧性に優れた膜の形成が可能となる。   In addition, the formation of metalloxane bonds strengthens the bond between metal elements, suppresses the precipitation (segregation) and burnout of metal elements such as Bi, and forms a film with low leakage current and excellent resistance to hydrogen heat treatment and pressure resistance. Is possible.

前記加水分解によって得られる化合物を800℃未満、好ましくは750℃以下、より好ましくは700℃以下で焼成することにより、下記一般式(1)
Sr1-XAβBi2+Y(Ta2-ZNbZ)O9+α・・・・・(1)
(式中、Aは、ランタノイド系元素を表す。X、Y、αは、それぞれ独立に0以上1未満の数を表し、Zは、0以上2未満の数を表し、βは、0.09以上0.9以下の数を表す。)で表されるBi系誘電体の結晶化薄膜を得ることができる。
By calcining the compound obtained by the hydrolysis at less than 800 ° C., preferably at 750 ° C. or less, more preferably at 700 ° C. or less, the following general formula (1)
Sr 1-X AβBi 2 + Y (Ta 2−Z Nb Z ) O 9+ α (1)
(In the formula, A represents a lanthanoid element. X, Y and α each independently represents a number of 0 or more and less than 1, Z represents a number of 0 or more and less than 2, and β represents 0.09. A Bi-based dielectric crystallized thin film represented by the following formula can be obtained.

前記ランタノイド系元素Aは、ランタン(La)元素であることが好ましい。これは、特に焼成温度の低温化に効果があるためである。   The lanthanoid element A is preferably a lanthanum (La) element. This is because it is particularly effective for lowering the firing temperature.

前記一般式(1)中のxは、0以上1未満の数を表し、yは、0以上1未満の数を表し、zは、0以上2未満の数を表し、αは、0以上1未満の数を表す。   In the general formula (1), x represents a number of 0 or more and less than 1, y represents a number of 0 or more and less than 1, z represents a number of 0 or more and less than 2, and α represents 0 or more and 1 or less. Represents a number less than.

前記βは、0.09以上0.9以下の数を表し、この範囲の中でも好ましくは0.18以上0.45以下である。0.09以上、0.9以下にすることにより焼成温度の低温化に特に効果がある。   Β represents a number of 0.09 or more and 0.9 or less, and preferably in the range of 0.18 or more and 0.45 or less. By setting it to 0.09 or more and 0.9 or less, it is particularly effective for lowering the firing temperature.

本発明のBi系誘電体薄膜形成用組成物中に含まれる「前記加水分解等の反応により得られる化合物」は、前記金属アルコキシドを、安定化剤と反応させた後に行うことによって得られる化合物であってもよい。この「化合物」は、あるいは、前記金属アルコキシドを、水または水と触媒を用いて加水分解した後、安定化剤と反応させて得られる化合物であってもよい。   The “compound obtained by the reaction such as hydrolysis” contained in the composition for forming a Bi-based dielectric thin film of the present invention is a compound obtained by reacting the metal alkoxide with a stabilizer. There may be. The “compound” may alternatively be a compound obtained by hydrolyzing the metal alkoxide with water or water and a catalyst and then reacting with a stabilizer.

前記安定化剤は、Bi系誘電体薄膜形成用組成物の保存安定性を向上させるためのものであり、本発明においては無水カルボン酸類、ジカルボン酸モノエステル類、β−ジケトン類、およびグリコール類の中から選ばれる少なくとも1種が好ましく用いられる。   The stabilizer is for improving the storage stability of the Bi-based dielectric thin film forming composition. In the present invention, the stabilizer is a carboxylic acid anhydride, a dicarboxylic acid monoester, a β-diketone, or a glycol. At least one selected from among these is preferably used.

前記無水カルボン酸類としては、下記一般式(4)
5(CO)2O・・・・・(4)
(式中、R5は2価の炭素原子数1〜6の飽和または不飽和の炭化水素基を表す。)で表される無水カルボン酸の中から選ばれる少なくとも1種が好適に用いられる。このような無水カルボン酸類としては、具体的には、例えば、無水マレイン酸、無水シトラコン酸、無水イタコン酸、無水コハク酸、無水メチルコハク酸、無水グルタル酸、無水α−メチルグルタル酸、無水α,α−ジメチルグルタル酸、無水トリメチルコハク酸等が挙げられる。
Examples of the carboxylic anhydrides include the following general formula (4)
R 5 (CO) 2 O (4)
(In the formula, R 5 represents a divalent saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms.) At least one selected from carboxylic anhydrides represented by the formula is preferably used. Specific examples of the carboxylic anhydrides include maleic anhydride, citraconic anhydride, itaconic anhydride, succinic anhydride, methyl succinic anhydride, glutaric anhydride, α-methylglutaric anhydride, α, α-dimethyl glutaric acid, trimethyl succinic anhydride, and the like can be mentioned.

前記ジカルボン酸モノエステル類としては、下記一般式(5)
6OCOR7COOH・・・・・(5)
(式中、R6は炭素原子数1〜6の飽和または不飽和の炭化水素基を表し;R7は2価の炭素原子数1〜6の飽和または不飽和の炭化水素基を表す。)で表されるジカルボン酸モノエステル類の中から選ばれる少なくとも1種が好ましく用いられる。
Examples of the dicarboxylic acid monoesters include the following general formula (5)
R 6 OCOR 7 COOH (5)
(In the formula, R 6 represents a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms; R 7 represents a saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms.) Preferably, at least one selected from dicarboxylic acid monoesters represented by the formula:

本発明で用いられるジカルボン酸モノエステル類としては、具体的には、例えば、2塩基酸のカルボン酸とアルコールとを反応させてハーフエステル化したものを用いることができる。具体的には、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼリン酸、セバシン酸、マレイン酸、シトラコン酸、イタコン酸、メチルコハク酸、α−メチルグルタル酸、α,α−ジメチルグルタル酸、トリメチルグルタル酸等の2塩基酸のカルボン酸の少なくとも1種と、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、アミルアルコール、ヘキシルアルコール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等の少なくとも1種とを公知の方法によりエステル化反応させて合成することができる。   As the dicarboxylic acid monoesters used in the present invention, specifically, for example, those obtained by reacting a dibasic carboxylic acid with an alcohol to form a half ester can be used. Specifically, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, speric acid, azelic acid, sebacic acid, maleic acid, citraconic acid, itaconic acid, methyl succinic acid, α-methyl glutaric acid, At least one dicarboxylic acid such as α, α-dimethylglutaric acid or trimethylglutaric acid, and methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, amyl alcohol, hexyl alcohol, ethylene glycol monomethyl ether, propylene glycol It can be synthesized by an esterification reaction with at least one kind such as monomethyl ether by a known method.

前記β−ジケトン類としては、前記一般式(3)で表されるβ−ケトエステルを含むβ−ジケトンの中から選ばれる少なくとも1種が好適に用いられる。   As the β-diketone, at least one selected from β-diketones including a β-ketoester represented by the general formula (3) is preferably used.

本発明で用いられるβ−ジケトン類としては、具体的には、例えば、アセチルアセトン、3−メチル−2、4−ペンタンジオン、ベンゾイルアセトン等を挙げることができる。また、本発明で用いられるβ−ケトエステルとしては、例えば、アセト酢酸エチル、マロン酸ジエチル等を挙げることができる。これら以外の錯体形成剤も適用可能ではあるが、ジピバロイルメタンやそのTHF付加体、さらに焼成後、金属ハロゲン化物を形成するヘキサフルオロアセチルアセトンなどの錯体形成剤は、昇華性または揮発性の高い金属錯体を形成するため、本発明の組成物への使用は好ましくない。   Specific examples of the β-diketone used in the present invention include acetylacetone, 3-methyl-2, 4-pentanedione, benzoylacetone and the like. Examples of the β-ketoester used in the present invention include ethyl acetoacetate and diethyl malonate. Complex forming agents other than these are also applicable, but complex forming agents such as dipivaloylmethane and its THF adduct, and hexafluoroacetylacetone that forms a metal halide after calcination are sublimable or volatile. Use in the composition of the present invention is not preferred because it forms a high metal complex.

前記グリコール類としては、下記一般式(6)
HOR8OH・・・・・(6)
(式中、R8は2価の炭素原子数1〜6の飽和または不飽和の炭化水素基を表す。)で表されるグリコールの中から選ばれる少なくとも1種が好適に用いられる。
As the glycols, the following general formula (6)
HOR 8 OH (6)
(In the formula, R 8 represents a divalent saturated or unsaturated hydrocarbon group having 1 to 6 carbon atoms.) At least one selected from glycols represented by

本発明で用いられるグリコール類としては、具体的には、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブタンジオール、ペンタンジオール、ヘキシレングリコール、グリセリングリコール等を挙げることができる。これらグリコール類は、安定化剤としてβ−ジケトンを用いた場合に特に効果があり、後の加水分解反応後の液の安定性を高める。   Specific examples of the glycols used in the present invention include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butanediol, pentanediol, hexylene glycol, and glycerin glycol. These glycols are particularly effective when β-diketone is used as a stabilizer, and increases the stability of the liquid after the subsequent hydrolysis reaction.

以上の安定化剤は、いずれも炭素原子数が1〜6の短鎖のものであることが、乾燥工程後の被膜の無機性を高める点で好ましい。   Any of the above stabilizers is preferably a short chain having 1 to 6 carbon atoms from the viewpoint of enhancing the inorganic properties of the coating after the drying step.

前記Sr、Bi、Ta、(Nb)、およびランタノイド系元素Aの各金属または複合金属のアルコキシド、有機塩あるいは錯体と前記安定化剤との反応生成物同士の反応生成物も、本発明において好適に使用できる。   A reaction product of the reaction product of each metal of the Sr, Bi, Ta, (Nb), and the lanthanoid element A or an alkoxide, organic salt or complex of a complex metal and the stabilizer is also suitable in the present invention. Can be used for

前記安定化剤を使用した場合の反応の具体的態様としては、例えば、以下のものが例示されるが、これらに限定されるものではない。   Specific examples of the reaction when the stabilizer is used include the following, but are not limited thereto.

[1]金属アルコキシドとジカルボン酸モノエステルとの反応、[2]金属アルコキシドと無水カルボン酸との反応、[3]金属アルコキシドとβ−ケトエステルとの反応、[4]前記[1]の異種反応生成物同士の反応、[5]金属アルコキシドとジカルボン酸モノエステルとβ−ケトエステルとの反応、[6]金属アルコキシドと無水カルボン酸とβ−ケトエステルとの反応、[7]金属アルコキシドと酢酸金属塩との反応(同種、異種金属を含む)、[8]前記[7]の反応生成物とジカルボン酸モノエステル、無水カルボン酸又はβ−ケトエステルとの反応、[9]前記[7]の反応生成物と[1]〜[6]の反応生成物との反応、[10]前記[8]の反応生成物の一部加水分解物、[11]酸性金属アルコキシドと塩基性アルコキシ金属との反応、[12]前記[11]の反応生成物とジカルボン酸モノエステル、無水カルボン酸又はβ−ケトエステルとの反応、[13]異種金属であって前記[12]の反応生成物同士の反応、[14]前記[13]の反応生成物の一部加水分解物。   [1] Reaction between metal alkoxide and dicarboxylic acid monoester, [2] Reaction between metal alkoxide and carboxylic anhydride, [3] Reaction between metal alkoxide and β-ketoester, [4] Heterogeneous reaction of [1] Reaction between products, [5] Reaction between metal alkoxide, dicarboxylic acid monoester and β-ketoester, [6] Reaction between metal alkoxide, carboxylic anhydride and β-ketoester, [7] Metal alkoxide and metal acetate [8] reaction of the reaction product of [7] with a dicarboxylic acid monoester, carboxylic anhydride or β-ketoester, [9] reaction generation of [7] [10] a partial hydrolyzate of the reaction product of [8], [11] an acidic metal alkoxide and a basic alkoxide. Reaction with metal, [12] Reaction of reaction product of [11] with dicarboxylic acid monoester, carboxylic anhydride or β-ketoester, [13] Reaction of different metals with reaction products of [12] [14] A partial hydrolyzate of the reaction product of [13].

前記[1]〜[6]、[8]、[9]、[12]及び[13]はMOD(Metallo-Organic Decomposition)型塗布液として好適であり、[10]、[14]はゾル−ゲル型塗布液に好適である。[7]、[11]の化合物は、そのアルコキシ基の一部を無水カルボン酸、β−ジケトン等で置換することにより、Bi系誘電体薄膜形成用組成物の保存安定化、実用的な有機溶媒に対する溶解性の向上を図ることができる。   [1] to [6], [8], [9], [12] and [13] are suitable as a MOD (Metallo-Organic Decomposition) type coating solution, and [10] and [14] are sol- Suitable for gel-type coating liquid. The compounds [7] and [11] are obtained by substituting a part of the alkoxy groups with carboxylic anhydride, β-diketone, etc., thereby stabilizing the storage of the Bi-based dielectric thin film forming composition, and practical organic The solubility with respect to a solvent can be improved.

前記加水分解反応によって得られた化合物を含有するBi系誘電体薄膜形成用組成物は、そのまま使用してもよいし、前記酸素原子を分子中に有する溶媒を用いてさらに希釈して使用してもよい。   The Bi-based dielectric thin film forming composition containing the compound obtained by the hydrolysis reaction may be used as it is, or further diluted with a solvent having the oxygen atom in the molecule. Also good.

本発明のBi系誘電体薄膜は、先に述べたように、前記Bi系誘電体薄膜形成用組成物の塗膜が焼成により結晶化されて得られたことを特徴とする。   As described above, the Bi-based dielectric thin film of the present invention is obtained by crystallizing a coating film of the Bi-based dielectric thin film forming composition by firing.

以下、本発明のBi系誘電体薄膜形成用組成物を用いて得たBi系誘電体薄膜と、この薄膜を半導体回路デバイスとして誘電体メモリーに適用した場合の作製方法の一例を示す。   Hereinafter, an example of a Bi-based dielectric thin film obtained by using the Bi-based dielectric thin film forming composition of the present invention and an example of a manufacturing method when this thin film is applied to a dielectric memory as a semiconductor circuit device will be described.

まず、Siウェーハ等の基板を酸化して基板上部にSi酸化膜を形成し、その上にPt、Ir、Ru、Re、Os等の金属、およびその金属酸化物である導電性金属酸化物をスパッタ法、蒸着法等の公知の方法により形成し、下部電極を作製する。   First, a substrate such as a Si wafer is oxidized to form a Si oxide film on the substrate, and a metal such as Pt, Ir, Ru, Re, Os, and a conductive metal oxide that is a metal oxide thereof are formed thereon. The lower electrode is formed by a known method such as sputtering or vapor deposition.

次に、この下部電極上に、スピンナー法、ディップ法等の公知の塗布法により本発明のBi系誘電体薄膜形成用組成物を塗布し、50〜200℃の温度で乾燥を行い、続いて200〜700℃の温度で仮焼成を行う。好ましくは、塗布から仮焼成までの操作を数回繰り返して行い、所望の膜厚に設定する。   Next, the Bi-based dielectric thin film forming composition of the present invention is applied onto the lower electrode by a known application method such as a spinner method or a dip method, followed by drying at a temperature of 50 to 200 ° C., Temporary baking is performed at a temperature of 200 to 700 ° C. Preferably, the operation from application to pre-baking is repeated several times to set the desired film thickness.

次いで、酸素雰囲気中、800℃未満、好ましくは750℃以下、より好ましくは700℃以下の温度で本焼成を行い、Bi系誘電体の結晶化薄膜を形成する。本焼成工程においては、室温から5〜20℃/min程度の昇温速度で本焼成温度まで昇温し、その後、本焼成温度を維持して30〜80分程度焼成するファーネス法、室温から50〜150℃/sec程度の昇温速度で本焼成温度まで昇温し、その後、本焼成温度を維持して0.5〜3分間程度焼成するRTP法など、種々の焼成方法を選ぶことができる。   Next, main firing is performed in an oxygen atmosphere at a temperature of less than 800 ° C., preferably 750 ° C. or less, more preferably 700 ° C. or less to form a Bi-based dielectric crystallized thin film. In the main baking step, a furnace method in which the temperature is raised from room temperature to the main baking temperature at a temperature increase rate of about 5 to 20 ° C./min, and then maintained at the main baking temperature for about 30 to 80 minutes, from room temperature to 50 Various firing methods can be selected such as RTP method in which the temperature is raised to the main firing temperature at a temperature rise rate of about 150 ° C./sec, and then the main firing temperature is maintained for about 0.5 to 3 minutes. .

次いで、上述のようにして作製した誘電体薄膜上に電極(上部電極)を形成する。上部電極としては、前記下部電極用材料とした金属、金属酸化物等を用いることができ、これら材料をスパッタ法、蒸着法等の公知の方法により誘電体薄膜上に形成して誘電体メモリーを得る。このとき、上部電極としては、下部電極と異なる材料を用いてもよく、例えば、下部電極にIrを用い、上部電極にRuを用いてもよい。   Next, an electrode (upper electrode) is formed on the dielectric thin film produced as described above. As the upper electrode, metals, metal oxides and the like as the material for the lower electrode can be used, and these materials are formed on a dielectric thin film by a known method such as sputtering or vapor deposition to form a dielectric memory. obtain. At this time, as the upper electrode, a material different from that of the lower electrode may be used. For example, Ir may be used for the lower electrode and Ru may be used for the upper electrode.

なお、加湿雰囲気下で加水分解反応を行う場合は、上述の仮焼成の前に、湿度50〜100%、好ましくは70〜100%、温度50〜120℃、10〜60分間で行うことができる。   In addition, when performing a hydrolysis reaction in a humidified atmosphere, it can be carried out at a humidity of 50 to 100%, preferably 70 to 100%, a temperature of 50 to 120 ° C., for 10 to 60 minutes before the above-described preliminary baking. .

前記上部電極形成後、SiO2等の保護膜形成(パッシベーション)、アルミ配線等を行う。なお、本発明のBi系誘電体薄膜は、特に水素熱処理耐性に優れているので、前記パッシベーション膜形成時およびアルミ配線の焼成時における誘電体特性の劣化の心配がなく、得られる誘電体メモリーの電気特性を良好に実現することができる。 After the upper electrode is formed, a protective film such as SiO 2 is formed (passivation), aluminum wiring, and the like are performed. Since the Bi-based dielectric thin film of the present invention is particularly excellent in resistance to hydrogen heat treatment, there is no risk of deterioration of dielectric characteristics during the formation of the passivation film and during the firing of the aluminum wiring, and the dielectric memory obtained is Electrical characteristics can be realized satisfactorily.

また、前記ゾル−ゲル法(加水分解処理)による無機化が不十分なBi系誘電体薄膜形成用組成物、または全く加水分解処理を行わないBi系誘電体薄膜形成用組成物であっても、基板への被膜形成時において、被膜の焼成前に該被膜を加湿雰囲気中に一定時間晒すことにより、被膜の加水分解縮重合による無機化を行うことができ、緻密な膜の形成が可能である。   Further, even if it is a Bi-based dielectric thin film forming composition that is not sufficiently mineralized by the sol-gel method (hydrolysis treatment) or a Bi-based dielectric thin film forming composition that is not hydrolyzed at all. When the film is formed on the substrate, the film can be mineralized by hydrolytic condensation polymerization by exposing the film to a humidified atmosphere for a certain period of time before firing the film, and a dense film can be formed. is there.

上述したBi系誘電体薄膜形成用組成物中での加水分解処理は、過剰に行われるとBi系誘電体薄膜形成用組成物の増粘・ゲル化、または経時変化を引き起こすおそれがあるため、前記の被膜形成時の加水分解処理による方法も有効である。   If the hydrolysis treatment in the Bi-based dielectric thin film forming composition described above is excessively performed, the Bi-based dielectric thin film-forming composition may cause thickening / gelation or change with time, A method using the hydrolysis treatment at the time of forming the film is also effective.

以下、本発明の実施例を示し、本発明について更に詳細に説明するが、本発明は下記実施例に限定されるものではない。なお、使用した試薬等については特に記載したものを除いては、一般に市販しているものを用いた。   EXAMPLES Hereinafter, examples of the present invention will be shown and the present invention will be described in more detail. However, the present invention is not limited to the following examples. In addition, about the reagent etc. which were used except what was described especially, what was marketed generally was used.

(実施例1)
タンタルエトキシド2モル、ビスマスブトキシド2.1モル、ストロンチウムイソプロポキシド0.72モル、ランタンエトキシエチレート0.18モルをプロピレングリコールモノメチルエーテル中で10分間室温で攪拌し、均一な混合液を得た。次いで、アセト酢酸エチル3モルを添加し、60℃で2時間、加熱攪拌を行なった。その後、プロピレングリコール1モルを添加し、室温で1時間攪拌した。さらに、水2モルを攪拌しながら滴下し、全量の滴下終了後、2時間室温で攪拌した。以上のようにして金属酸化物固形分6.5質量%のBi系誘電体薄膜形成用組成物を得た。
Example 1
2 moles of tantalum ethoxide, 2.1 moles of bismuth butoxide, 0.72 moles of strontium isopropoxide and 0.18 moles of lanthanum ethoxyethylate are stirred in propylene glycol monomethyl ether for 10 minutes at room temperature to obtain a uniform mixed solution It was. Next, 3 mol of ethyl acetoacetate was added, and the mixture was heated and stirred at 60 ° C. for 2 hours. Thereafter, 1 mol of propylene glycol was added and stirred at room temperature for 1 hour. Furthermore, 2 mol of water was added dropwise with stirring, and after completion of the total addition, the mixture was stirred at room temperature for 2 hours. As described above, a Bi-based dielectric thin film forming composition having a metal oxide solid content of 6.5% by mass was obtained.

このようにして得たBi系誘電体薄膜形成用組成物をSi基板上にスピンコーターを用いて500rpmで1秒間、次いで2000rpmで30秒間回転塗布して、均一な厚みの塗膜を得た。その後、第1の加熱処理をファーネスで600℃、30分間行なった。以上の塗布から加熱処理までを3回繰り返した後、第2の加熱処理をファーネスで600℃、1時間行なった。その結果、約100nmの誘電体薄膜1を得た。   The Bi-based dielectric thin film forming composition thus obtained was spin-coated on a Si substrate at 500 rpm for 1 second and then at 2000 rpm for 30 seconds using a spin coater to obtain a coating film having a uniform thickness. Thereafter, the first heat treatment was performed at 600 ° C. for 30 minutes in a furnace. After repeating the above coating to heat treatment three times, the second heat treatment was performed at 600 ° C. for 1 hour in the furnace. As a result, a dielectric thin film 1 of about 100 nm was obtained.

[X線回析(XRD)測定]
得られた誘電体薄膜1に対してXRD測定を行なった。ここで、図1は、誘電体薄膜1のXRD測定により得られたグラフ(XRD曲線)を示す図である。この図1より、600℃という低温焼成でSBTN系誘電体薄膜の主軸である(115)のピークが発現しており、誘電体薄膜の結晶化が行なわれていることが確認された。なお、X線回析は、測定装置「RINT−2500HF」(装置名;株式会社リガク社製)を使用した。また、X線:CuKα1、管電圧:30kV、管電流:50mA、スキャンスピード:20°/min、スキャンステップ:0.020°の測定条件にて行なった。
[X-ray diffraction (XRD) measurement]
XRD measurement was performed on the obtained dielectric thin film 1. Here, FIG. 1 is a diagram showing a graph (XRD curve) obtained by XRD measurement of the dielectric thin film 1. From FIG. 1, the peak of (115), which is the main axis of the SBTN dielectric thin film, was developed by low-temperature firing at 600 ° C., and it was confirmed that the dielectric thin film was crystallized. For the X-ray diffraction, a measuring apparatus “RINT-2500HF” (apparatus name; manufactured by Rigaku Corporation) was used. The measurement was performed under the measurement conditions of X-ray: CuKα 1 , tube voltage: 30 kV, tube current: 50 mA, scan speed: 20 ° / min, scan step: 0.020 °.

[走査型電子顕微鏡(SEM)観察]
得られた結晶化誘電体薄膜を走査型電子顕微鏡(SEM)により観察したところ、結晶化に伴うグレイン(粒界)が形成されているのが確認された。
[Scanning electron microscope (SEM) observation]
When the obtained crystallized dielectric thin film was observed with a scanning electron microscope (SEM), it was confirmed that grains (grain boundaries) accompanying crystallization were formed.

(実施例2)
ストロンチウムイソプロポキシド0.63モル、ランタンエトキシエチレート0.27モルに変更した以外は、実施例1と同様にして誘電体薄膜2を得た。この誘電体薄膜2を実施例1と同様にしてXRD測定を行なった。ここで、図2は、誘電体薄膜2のXRD測定により得られたグラフ(XRD曲線)を示す図である。この図2より、600℃という低温焼成でSBTN系誘電体薄膜の主軸である(115)のピークが発現しており、誘電体薄膜の結晶化が行なわれていることが確認された。また、得られた結晶化誘電体薄膜を走査型電子顕微鏡(SEM)により観察したところ、結晶化に伴うグレイン(粒界)が形成されているのが確認された。
(Example 2)
A dielectric thin film 2 was obtained in the same manner as in Example 1 except that the amount was changed to 0.63 mol of strontium isopropoxide and 0.27 mol of lanthanum ethoxyethylate. The dielectric thin film 2 was subjected to XRD measurement in the same manner as in Example 1. Here, FIG. 2 is a diagram showing a graph (XRD curve) obtained by XRD measurement of the dielectric thin film 2. From FIG. 2, the peak of (115), which is the main axis of the SBTN dielectric thin film, was developed by firing at a low temperature of 600 ° C., and it was confirmed that the dielectric thin film was crystallized. Further, when the obtained crystallized dielectric thin film was observed with a scanning electron microscope (SEM), it was confirmed that grains (grain boundaries) accompanying crystallization were formed.

(実施例3)
ストロンチウムイソプロポキシド0.45モル、ランタンエトキシエチレート0.45モルに変更した以外は、実施例1と同様にして誘電体薄膜3を得た。この誘電体薄膜3を実施例1と同様にしてXRD測定を行なった。ここで、図3は、誘電体薄膜3のXRD測定により得られたグラフ(XRD曲線)を示す図である。この図3より、600℃という低温焼成でSBTN系誘電体薄膜の主軸である(115)のピークが発現しており、誘電体薄膜の結晶化が行なわれていることが確認された。また、得られた結晶化膜を走査型電子顕微鏡(SEM)により観察したところ、結晶化に伴うグレイン(粒界)が形成されているのが確認された。
(Example 3)
A dielectric thin film 3 was obtained in the same manner as in Example 1 except that the amount was changed to 0.45 mol of strontium isopropoxide and 0.45 mol of lanthanum ethoxyethylate. The dielectric thin film 3 was subjected to XRD measurement in the same manner as in Example 1. Here, FIG. 3 is a diagram showing a graph (XRD curve) obtained by XRD measurement of the dielectric thin film 3. From FIG. 3, the peak of (115), which is the main axis of the SBTN dielectric thin film, was developed by firing at a low temperature of 600 ° C., and it was confirmed that the dielectric thin film was crystallized. Moreover, when the obtained crystallized film was observed with the scanning electron microscope (SEM), it was confirmed that the grain (grain boundary) accompanying crystallization was formed.

(比較例)
ストロンチウムイソプロポキシド0.9モルに変更し、ランタンエトキシエチレートを配合しなかった以外は、実施例1と同様にして誘電体薄膜4を得た。この誘電体薄膜4を実施例1と同様にしてXRD測定を行なった。ここで、図4は、誘電体薄膜4のXRD測定により得られたグラフ(XRD曲線)を示す図である。この図4より、600℃という低温焼成ではSBTN系誘電体薄膜の主軸である(115)のピークが発現しておらず、その代わりに前駆体であるフルオライトによるブロードなピークの発現が認められ、誘電体薄膜の結晶化が行われていないことが確認された。また、得られた誘電体薄膜を走査型電子顕微鏡(SEM)により観察したところ、結晶化に伴うグレイン(粒界)の発生割合が少ないことが確認された。
(Comparative example)
Dielectric thin film 4 was obtained in the same manner as in Example 1 except that strontium isopropoxide was changed to 0.9 mol and lanthanum ethoxyethylate was not blended. The dielectric thin film 4 was subjected to XRD measurement in the same manner as in Example 1. Here, FIG. 4 is a diagram showing a graph (XRD curve) obtained by XRD measurement of the dielectric thin film 4. From FIG. 4, the peak of (115), which is the main axis of the SBTN dielectric thin film, is not expressed at a low temperature firing of 600 ° C., but instead a broad peak is expressed by the precursor fluorite. It was confirmed that the dielectric thin film was not crystallized. Moreover, when the obtained dielectric thin film was observed with the scanning electron microscope (SEM), it was confirmed that the generation | occurrence | production ratio of the grain (grain boundary) accompanying crystallization is small.

以上説明したように、本発明のBi系誘電体薄膜形成用組成物は、塗布型被膜形成方法により薄膜を得るための塗布液として使用することができ、その塗膜を800℃以下の低温焼成により結晶化でき、半導体回路デバイスの誘電体膜に適した特性を有する誘電体薄膜を形成することができる。したがって、本発明のBi系誘電体薄膜形成用組成物によれば、半導体回路基板上に該基板に熱劣化を生じさせることなく特性に優れたBi系誘電体に結晶化薄膜を形成することができ、半導体回路デバイスの省スペース化および高性能化に寄与することができる。   As described above, the Bi-based dielectric thin film forming composition of the present invention can be used as a coating solution for obtaining a thin film by a coating type film forming method, and the coating film is fired at a low temperature of 800 ° C. or lower. Thus, a dielectric thin film having characteristics suitable for a dielectric film of a semiconductor circuit device can be formed. Therefore, according to the composition for forming a Bi-based dielectric thin film of the present invention, it is possible to form a crystallized thin film on a Bi-based dielectric having excellent characteristics without causing thermal degradation of the substrate on the semiconductor circuit substrate. This can contribute to space saving and high performance of the semiconductor circuit device.

実施例1において得た誘電体薄膜1のXRD曲線を示す図である。It is a figure which shows the XRD curve of the dielectric thin film 1 obtained in Example 1. FIG. 実施例2において得た誘電体薄膜2のXRD曲線を示す図である。It is a figure which shows the XRD curve of the dielectric thin film 2 obtained in Example 2. FIG. 実施例3において得た誘電体薄膜3のXRD曲線を示す図である。It is a figure which shows the XRD curve of the dielectric thin film 3 obtained in Example 3. FIG. 比較例において得た誘電体薄膜4のXRD曲線を示す図である。It is a figure which shows the XRD curve of the dielectric thin film 4 obtained in the comparative example.

Claims (8)

下記一般式(1)
Sr1-XAβBi2+Y(Ta2-ZNbZ)O9+α・・・・・(1)
(式中、Aは、ランタノイド系元素を表す。X、Y、αは、それぞれ独立に0以上1未満の数を表し、Zは、0以上2未満の数を表し、βは、0.09以上0.9以下の数を表す。)で表されるBi系誘電体の結晶化薄膜を形成するためのBi系誘電体薄膜形成用組成物であって、
前記一般式(1)中の少なくともSr、Bi、Taおよびランタノイド系元素Aの各金属あるいは複合金属のアルコキシド、有機塩あるいは錯体を反応させることによって得られるSr、Bi、Taおよびランタノイド系元素Aを少なくとも含む化合物を含有することを特徴とするBi系誘電体薄膜形成用組成物。
The following general formula (1)
Sr 1-X AβBi 2 + Y (Ta 2−Z Nb Z ) O 9+ α (1)
(In the formula, A represents a lanthanoid element. X, Y and α each independently represents a number of 0 or more and less than 1, Z represents a number of 0 or more and less than 2, and β represents 0.09. A Bi-based dielectric thin film forming composition for forming a Bi-based dielectric crystallized thin film represented by the following formula:
Sr, Bi, Ta, and a lanthanoid element A obtained by reacting at least each metal of Sr, Bi, Ta, and a lanthanoid element A in the general formula (1), or an alkoxide, organic salt, or complex of a complex metal A composition for forming a Bi-based dielectric thin film, comprising a compound containing at least.
その塗膜が800℃未満の低温焼成にて結晶化可能であることを特徴とする請求項1に記載のBi系誘電体薄膜形成用組成物。   The composition for forming a Bi-based dielectric thin film according to claim 1, wherein the coating film can be crystallized by low-temperature firing at less than 800 ° C. 前記Bi系誘電体の結晶化薄膜が半導体回路基板上に形成される誘電体薄膜であることを特徴とする請求項1または2に記載のBi系誘電体薄膜形成用組成物。   3. The Bi-based dielectric thin film forming composition according to claim 1, wherein the Bi-based dielectric crystallized thin film is a dielectric thin film formed on a semiconductor circuit substrate. 前記ランタノイド系元素Aが、ランタン(La)であることを特徴とする請求項1から3のいずれか1項に記載のBi系誘電体薄膜形成用組成物。   The composition for forming a Bi-based dielectric thin film according to any one of claims 1 to 3, wherein the lanthanoid-based element A is lanthanum (La). 請求項1〜4のいずれか1項に記載のBi系誘電体薄膜形成用組成物の塗膜が焼成により結晶化されて得られたことを特徴とするBi系誘電体薄膜。   A Bi-based dielectric thin film obtained by crystallizing a coating film of the composition for forming a Bi-based dielectric thin film according to any one of claims 1 to 4 by firing. 前記焼成温度が800℃未満であることを特徴とする請求項5に記載のBi系誘電体薄膜。   The Bi-based dielectric thin film according to claim 5, wherein the firing temperature is less than 800 ° C. 半導体回路基板上に形成された結晶性誘電体薄膜であることを特徴とする請求項5または6に記載のBi系誘電体薄膜。   The Bi-based dielectric thin film according to claim 5 or 6, which is a crystalline dielectric thin film formed on a semiconductor circuit substrate. 前記半導体回路基板が誘電体メモリ用の回路基板であることを特徴とする請求項7に記載のBi系誘電体薄膜。   The Bi-based dielectric thin film according to claim 7, wherein the semiconductor circuit board is a circuit board for a dielectric memory.
JP2005181034A 2005-06-21 2005-06-21 Composition for forming bi-based dielectric thin film and bi-based dielectric thin film Pending JP2007005028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181034A JP2007005028A (en) 2005-06-21 2005-06-21 Composition for forming bi-based dielectric thin film and bi-based dielectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005181034A JP2007005028A (en) 2005-06-21 2005-06-21 Composition for forming bi-based dielectric thin film and bi-based dielectric thin film

Publications (1)

Publication Number Publication Date
JP2007005028A true JP2007005028A (en) 2007-01-11

Family

ID=37690452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181034A Pending JP2007005028A (en) 2005-06-21 2005-06-21 Composition for forming bi-based dielectric thin film and bi-based dielectric thin film

Country Status (1)

Country Link
JP (1) JP2007005028A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216845A (en) * 2010-03-18 2011-10-27 Ricoh Co Ltd Insulating film forming ink, manufacturing method for insulating film, and manufacturing method for semiconductor device
CN105097952A (en) * 2009-12-25 2015-11-25 株式会社理光 Field-effect transistor, semiconductor memory display element, image display device, and system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105097952A (en) * 2009-12-25 2015-11-25 株式会社理光 Field-effect transistor, semiconductor memory display element, image display device, and system
US10020374B2 (en) 2009-12-25 2018-07-10 Ricoh Company, Ltd. Field-effect transistor, semiconductor memory display element, image display device, and system
US11271085B2 (en) 2009-12-25 2022-03-08 Ricoh Company, Ltd. Field-effect transistor having amorphous composite metal oxide insulation film, semiconductor memory, display element, image display device, and system
JP2011216845A (en) * 2010-03-18 2011-10-27 Ricoh Co Ltd Insulating film forming ink, manufacturing method for insulating film, and manufacturing method for semiconductor device
JP2018056592A (en) * 2010-03-18 2018-04-05 株式会社リコー Insulator film forming ink, manufacturing method for insulator film, and manufacturing method for semiconductor device
JP2019176195A (en) * 2010-03-18 2019-10-10 株式会社リコー Oxide insulating film and photoelectric conversion element

Similar Documents

Publication Publication Date Title
JP3195265B2 (en) Coating solution for forming Bi-based ferroelectric thin film, ferroelectric thin film formed using the same, and ferroelectric memory
KR101289950B1 (en) Niobium 2-ethylhexanoate derivative, process for producing the derivative, organic acid metal salt composition containing the derivative, and process for producing thin film from the composition
KR100432621B1 (en) Composition For Forming Ba1-xSrxTiyO3 Thin Films And Method For Forming Ba1-xSrxTiyO3 Thin Films
KR102384736B1 (en) Mn-doped pzt-based piezoelectric film formation composition and mn-doped pzt-based piezoelectric film
KR100513724B1 (en) Ferroelectric thin film and preparing method thereof
TWI286996B (en) Coating solutions for use in forming bismuth-based paraelectric or ferroelectric thin films, and bismuth-based paraelectric or ferroelectric thin films
KR100327291B1 (en) Coating solution for forming bismuth-based ferroelectric thin film, ferroelectric thin film, ferroelectric capacitor, ferroelectric memory and method for manufacturing them
JP2001261338A (en) Raw material solution for forming titanium-containing metal oxide thin film, method of forming the same, and titanium-containing metal oxide thin film
JP2002047011A (en) Method of forming compact perovskite metallic oxide thin film and compact perovskite metallic oxide thin film
JP2007005028A (en) Composition for forming bi-based dielectric thin film and bi-based dielectric thin film
JP2007019432A (en) Paraelectric film and its forming method
JPH11163273A (en) Manufacture of dielectric thin film and dielectric capacitor and dielectric memory
KR100803440B1 (en) Complex metal oxide raw material composition
KR100385194B1 (en) Coating solutions for use in forming bismuth-based ferroelectric thin films and a method of forming bismuth-based ferroelectric thin films using the coating solutions
JP4042276B2 (en) Method for forming Pb-based perovskite metal oxide thin film
WO2007007561A1 (en) Composition for formation of paraelectric thin-film, paraelectric thin-film and dielectric memory
JP2003002650A (en) Sbt ferroelectric thin film, composition for forming the same, and producing method for the same
JP2007042903A (en) Bismuth-based ferroelectric thin film and manufacturing method thereof
JP2001298164A (en) Bismuth ferroelectric element improved in hysteresis characteristics and producing method therefor
JP2001072926A (en) Starting solution for formation of perovskite-type oxide thin film
JP2000351623A (en) Raw material solution for forming perovskite oxide thin film
JP2003002649A (en) Blt ferroelectric thin film, composition for forming the same, and producing method for the same
JP2007042902A (en) Bismuth-based ferroelectric element and manufacturing method thereof
JP2008004269A (en) Coating composition for forming high dielectric thin film, and its manufacturing method
JP2005285847A (en) FORMING METHOD OF Bi-BASED FERROELECTRIC THIN FILM, AND ADJUSTING METHOD OF COATING SOLUTION FOR FORMATION OF Bi-BASED FERROELECTRIC THIN FILM