JP2004337985A - Water tank for water cooling of billet - Google Patents

Water tank for water cooling of billet Download PDF

Info

Publication number
JP2004337985A
JP2004337985A JP2004258038A JP2004258038A JP2004337985A JP 2004337985 A JP2004337985 A JP 2004337985A JP 2004258038 A JP2004258038 A JP 2004258038A JP 2004258038 A JP2004258038 A JP 2004258038A JP 2004337985 A JP2004337985 A JP 2004337985A
Authority
JP
Japan
Prior art keywords
water
slab
billet
cooling
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004258038A
Other languages
Japanese (ja)
Inventor
Mutsumi Tada
睦 多田
Yuji Miki
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004258038A priority Critical patent/JP2004337985A/en
Publication of JP2004337985A publication Critical patent/JP2004337985A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water tank for water cooling of a billet capable of reducing partial brightness unevenness and scab. <P>SOLUTION: The water tank for cooling the billet by immersing the billet in water is provided with a billet supporting section for supporting the billet in the water tank in such a manner that its broad surfaces turn into top and under surfaces and a water injector which injects the water to the under surface of the billet supported by the billet supporting section. The water injector is preferably so disposed that its water injection direction is made into a direction perpendicular to or diagonal with the under surface of the billet and at this time, the distance between the water injection position and the under surface of the billet is preferably set at 30 to 500 mm. By such water tank, the billet can be immersed into the water in such a manner that its broad surfaces turn into the top and bottom surfaces and the water can be injected to the under surface of the billet. As a result, the partial brightness unevenness and scab which occur when especially the continuously cast chromium steel billet containing 5 to 30wt% Cr is rolled down to a cold rolled steel sheet can be reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鋼片の水冷に係り、具体的にはたとえば鋼の連続鋳造設備において製造された連鋳スラブなどの高温下にある鋼片を水中に浸漬して急冷するに好適な設備に関する。   The present invention relates to water cooling of steel slabs, and more particularly, to an apparatus suitable for rapidly quenching steel slabs at high temperatures such as continuous cast slabs manufactured in a continuous steel casting facility by immersing them in water.

鋼の製造プロセスにおいては、精錬され所定の成分組成に調整された溶鋼を連続鋳造法や造塊法によって鋼片としたのち、これを熱間圧延や冷間圧延して所定の形状の鋼材にすることが一般的に行われている。このようなプロセスの、とくに凝固後の高温にある鋼片が冷却される過程で、鋼材の表面品質や内部品質を劣化させる変態を回避したり、好ましくない析出物の析出を避けるために、鋼片を水中で急冷することがある。   In the steel manufacturing process, molten steel that has been refined and adjusted to a predetermined component composition is made into a slab by a continuous casting method or an ingot-making method, and then hot-rolled or cold-rolled into a steel material having a predetermined shape. It is generally done. In order to avoid the transformation that deteriorates the surface quality and internal quality of the steel material, especially in the process of cooling the hot slab after solidification in such a process, and to avoid the precipitation of undesired precipitates, Pieces may be quenched in water.

たとえば、ステンレス鋼の連続鋳造鋳片を鋳造後そのまま放冷すると、その冷却過程で鋼中のクロムなどの合金元素と炭素が結合して炭化物となり、それが結晶粒界に選択的に析出し、析出物近傍にクロム欠乏層が形成されることがある。このような成分の不均一を内包する鋳片を圧延した場合、とくに熱間圧延後さらに冷間圧延した場合には、鋼板に上記の成分不均一に起因する光沢むらなどの表面欠陥が生じることがある。   For example, if a continuous cast slab of stainless steel is allowed to cool as it is after casting, alloying elements such as chromium in the steel and carbon are combined into carbon in the cooling process, which selectively precipitates at crystal grain boundaries, A chromium deficient layer may be formed near the precipitate. When a slab containing such non-uniformity of components is rolled, particularly when hot rolling is further performed and then cold rolling, surface defects such as uneven gloss due to the non-uniformity of components described above may occur in the steel sheet. There is.

また、連続鋳造鋳片の表面には、モールドの上下振動(オシレーション)によって周期的な凹凸(オシレーションマーク)が形成される。このオシレーションマークの凹部(谷部)に形成されるNiの濃化した表面偏析部が圧延、酸洗後に木目模様状の欠陥となり、問題となってきた。   In addition, periodic irregularities (oscillation marks) are formed on the surface of the continuous cast slab due to vertical vibration (oscillation) of the mold. Ni-enriched surface segregation formed in the recesses (valleys) of the oscillation marks becomes a grain pattern defect after rolling and pickling, which has been a problem.

上記した問題に対処するために、本出願人は、先に特許文献1で連続鋳造鋳片を所定の冷却速度以上で急冷するステンレス鋼鋳片の製造方法を、特許文献2で連続鋳造鋳片を表面温度が400 ℃以上で急冷したのちさらにショットブラスト処理しついで1100℃以上に加熱して鋳片のスケールを除去するステンレス鋼鋳片の精整方法を、提案した。そして特許文献3で水中急冷に好適な高温スラブの急速冷却装置を提案した。
特開平6-87054 号公報 特開平4-266416号公報 特開平7-100609号公報
In order to cope with the above-mentioned problem, the present applicant has previously described a method for producing a stainless steel slab in which a continuous cast slab is rapidly cooled at a predetermined cooling rate or more in Patent Document 1, and a continuous cast slab in Patent Document 2. A method for refining stainless steel slabs, in which slabs were quenched at a surface temperature of 400 ° C. or more, further subjected to shot blasting, and then heated to 1100 ° C. or more to remove scales of the slabs, was proposed. Patent Document 3 proposes a rapid cooling device for a high-temperature slab suitable for rapid cooling in water.
JP-A-6-87054 JP-A-4-266416 JP-A-7-100609

ところが、本発明者らが、特許文献3に記載されたスラブの急速冷却装置を用いて、特許文献1や特許文献2に記載された方法によって連続鋳造製ステンレス鋼スラブを処理し、これを熱間圧延および冷間圧延してステンレス鋼板を製造したところ、一部の鋼板の表面に、部分的に光沢むらやへげなどの表面欠陥が認められる事態に遭遇した。   However, the present inventors processed a continuously cast stainless steel slab by the method described in Patent Documents 1 and 2 using the rapid cooling device for slabs described in Patent Document 3 and heat it. When a stainless steel sheet was manufactured by cold rolling and cold rolling, a situation was encountered in which a part of the surface of the steel sheet was partially observed with surface defects such as uneven gloss and swarf.

本発明は、このような従来技術において予測しなかった問題点を有利に解決し、冷延鋼板まで圧延した際に発生する部分的な光沢むらやへげを可及的に低減できる、鋼片の水冷用水槽を提供することを目的とする。   The present invention advantageously solves such problems that were not anticipated in the prior art, and can reduce as much as possible partial gloss unevenness and shedding generated when rolling to a cold-rolled steel sheet. It is an object of the present invention to provide a water tank for water cooling.

上記した課題を達成するため、まず、本発明者らは、特許文献1や特許文献2に記載された方法で処理されたスラブを、熱間圧延および冷間圧延し薄鋼板としたステンレス鋼薄鋼板の1部表面に発生する、表面欠陥の発生原因について詳細に調査した。その結果、スラブに、(1)特許文献1に記載された方法と同様に、急冷(水冷)処理のみを施した場合と、(2)特許文献2に記載された方法と同様に、急冷(水冷)処理後、さらにショットブラスト処理を施した場合、のいずれにおいても程度の差はあるにせよ部分的な光沢むらやへげ等の表面欠陥が発生することを確認した。   In order to achieve the above object, first, the present inventors hot-rolled and cold-rolled a slab treated by the method described in Patent Document 1 or Patent Document 2 to obtain a stainless steel sheet. The cause of the surface defect occurring on one surface of the steel sheet was investigated in detail. As a result, (1) the case where only the quenching (water cooling) treatment was performed in the same manner as in the method described in Patent Document 1, and (2) the quenching (in the same manner as the method described in Patent Document 2). After the (water cooling) treatment, when a shot blasting treatment was further performed, it was confirmed that any surface defects such as uneven gloss and shading occurred in any of the cases.

このことから、本発明者らは、部分的な光沢むらやへげ等の表面欠陥は、ショットブラスト処理以外に起因すると推測した。   From the above, the present inventors presumed that surface defects such as partial gloss unevenness and bulge were caused by other than shot blasting.

次に、本発明者らは、鋼板の表面欠陥がスラブのどちらの面に相当する面で多く発生するかを調査した。その結果、スラブの上面側に相当する面では皆無であり、もっぱらスラブの下面側に相当する面に発生することが明らかとなった。   Next, the present inventors investigated which surface of the slab had a large number of surface defects of the steel sheet. As a result, it was found that there was no surface on the surface corresponding to the upper surface side of the slab, and that it occurred exclusively on the surface corresponding to the lower surface side of the slab.

そこで、本発明者らは、上記欠陥が、連続鋳造の過程または鋳片を急冷(水冷)する過程のいずれかに起因するものと推測した。   Then, the present inventors presumed that the above-mentioned defect was caused by either the process of continuous casting or the process of rapidly cooling (water cooling) a slab.

つぎに、本発明者らは、連続鋳造して得られたスラブを表裏反転して水冷処理したのち、熱間圧延および冷間圧延して冷延鋼板とし、鋼板表面の欠陥発生状況を調査した。その結果、反転した後のスラブの下面側に相当する鋼板面においてのみ欠陥が発生するという知見を得た。このことから、鋼板の表面欠陥はスラブの水冷処理での現象に起因するものと推測した。   Next, the present inventors turned the slab obtained by continuous casting upside down and water-cooled, then hot-rolled and cold-rolled into a cold-rolled steel sheet, and investigated the occurrence of defects on the steel sheet surface. . As a result, it has been found that defects occur only on the steel sheet surface corresponding to the lower surface side of the slab after the reversal. From this, it was presumed that the surface defect of the steel sheet was caused by a phenomenon in the water cooling treatment of the slab.

この知見に基づき、本発明者らは、スラブの水冷処理時にスラブ下面側の冷却が不十分であるか、あるいは不均一となっているものと推測し、これを改善する方法を検討した。   Based on this finding, the present inventors presumed that the cooling of the lower surface side of the slab was insufficient or non-uniform during the water cooling treatment of the slab, and examined a method for improving this.

まず、スラブの水中急冷において下面側の冷却を強化・改善する方法として、特開昭55-147468 号公報に開示された方法、すなわち高温のスラブを冷却液に浸漬しスラブの下方より圧縮気体を強制噴出しながら急冷する方法を試用してみた。この方法はスラブの水中冷却の際の爆発音や反りの防止を目的としたものであり、本発明者らの試用によっても騒音の低減と反りの防止には、ある程度の効果はみられたが、しかし、冷延鋼板の表面欠陥の防止には効果が認められなかった。   First, as a method of strengthening and improving the cooling of the lower surface side in the quenching of the slab underwater, a method disclosed in Japanese Patent Application Laid-Open No. 55-147468, that is, a high-temperature slab is immersed in a cooling liquid and compressed gas is applied from below the slab. I tried a method of quenching while forcing out. This method is intended to prevent explosion sound and warpage when the slab is cooled in water, and although the present inventors have tried it, noise reduction and warpage prevention have been somewhat effective. However, no effect was observed in preventing surface defects of the cold-rolled steel sheet.

ついで、本発明者らは、冷却後のスラブの表面形状と脱クロム層の発生状況との対応、およびスラブの脱クロム層と該スラブを熱間圧延および冷間圧延した鋼板の鋼板表面欠陥発生位置との対応を詳細に調べた。その結果、スラブの窪みやオシレーションマークが特に深い部分に、クロム炭化物の析出量が多く、かつ脱クロム層が発達していること、そしてその部分に対応する鋼板でとくに表面欠陥が発生していることをつきとめた。   Next, the inventors of the present invention corresponded to the correspondence between the surface shape of the slab after cooling and the state of occurrence of the dechromized layer, and the occurrence of steel sheet surface defects in the dechromized layer of the slab and the steel sheet obtained by hot rolling and cold rolling the slab. The correspondence with the position was examined in detail. As a result, a large amount of chromium carbide is deposited, and the dechromized layer is developed, especially in the parts where the slab depressions and oscillation marks are particularly deep, and surface defects occur especially in the steel sheet corresponding to that part. I found that I was.

このことから、本発明者らは、スラブを水中で急冷する際に発生する水蒸気の気泡や水蒸気膜がスラブのくぼみ部やオシレーションマークの特に深い部分に停滞して、しかも圧縮気体を強制噴出する程度の攪拌力ではこのような水蒸気膜は除去されず、当該部分からの抜熱を妨げたか、あるいは強制噴出された気体そのものがスラブ下面側に停滞して同様にスラブと水との伝熱を妨げ、冷却不足が生じたものと推測した。   From this, the present inventors have found that bubbles and water vapor film of water vapor generated when the slab is rapidly cooled in water are stagnated in the cavities of the slab and particularly deep portions of the oscillation marks, and forcibly eject compressed gas. Such a water vapor film is not removed with sufficient agitation force, preventing the removal of heat from the relevant portion, or the gas itself that has been forcibly ejected stagnates on the lower surface side of the slab, and similarly heat transfer between the slab and water It was presumed that cooling was insufficient.

上記した知見に基づき、本発明者らはさらにスラブ下面側の冷却を強化するために、とくにスラブ下面に停滞している水蒸気膜を洗い流すように、スラブ下面に対して水が流動するように水槽内で冷却水そのものを噴射することを想到し、ついに本発明の完成に到ったのである。   Based on the above findings, the present inventors further strengthened the cooling of the lower surface side of the slab, in particular, to wash away the water vapor film stagnant on the lower surface of the slab, and to set a water tank so that water flows to the lower surface of the slab. The inventors have conceived of injecting the cooling water itself, and have finally completed the present invention.

すなわち、本発明は、鋼片を浸漬して冷却する水槽において、該水槽の内部で前記鋼片をその広面が上下面となるように支持する鋼片支持部と、該鋼片支持部で支持された前記鋼片の下面に水を噴射する水噴射装置とを配設したことを特徴とする鋼片の水冷用水槽である。また、本発明では、前記水噴射装置の水噴射方向を、前記鋼片の下面に対し垂直または斜め方向となるように設けられているのが好ましく、その際前記水噴射装置の水噴射位置と前記鋼片の下面間の距離を、30〜500mm とするのがよい。   That is, the present invention provides, in a water tank for cooling a steel slab by immersing the steel slab, a steel slab support portion for supporting the steel slab inside the water tub so that the wide surface thereof is the upper and lower surfaces, and a steel slab support portion. And a water injection device for injecting water on the lower surface of the steel slab. In the present invention, it is preferable that the water injection direction of the water injection device is provided so as to be perpendicular or oblique to the lower surface of the steel slab. The distance between the lower surfaces of the billets is preferably 30 to 500 mm.

本発明によれば、ステンレス鋼連鋳スラブの水中冷却にあたり、その下面側の冷却不足や冷却の不均一に起因する、熱間圧延、冷間圧延後の鋼板表面欠陥を可及的に低減することができ、産業上格別の効果を奏する。   According to the present invention, underwater cooling of a stainless steel continuous cast slab, due to insufficient cooling or uneven cooling of the lower surface side thereof, hot rolling, surface defects of the steel sheet after cold rolling are reduced as much as possible. It has a special industrial effect.

また、本発明は、ステンレス鋼スラブに限らず、鋼片下面側の水中での不均一冷却あるいは冷却不足が材質上の問題点を引き起こす可能性のある場合に好適に適用でき、鋼材の品質を格段に向上できるという効果もある。   Further, the present invention is not limited to stainless steel slabs, and can be suitably applied to a case where uneven cooling or insufficient cooling in water on the lower surface side of a slab may cause a problem in material, and the quality of steel material can be reduced. There is also an effect that it can be significantly improved.

本発明において対象とする鋼片は、圧延や鍛造などの加工によって最終製品を製造するための鋼素材であり、特に水中冷却の際に下面側に水蒸気膜が停滞しやすい形状を有するような鋼片である。具体的には、偏平な直方体形状をしたスラブやブルームなどがこれに相当する。本発明の直接の契機は、ステンレス鋼の連続鋳造スラブでの炭化物の不均一析出とそれに伴う脱クロム層起因のステンレス鋼板の欠陥であるが、スラブ下面側の水中での不均一冷却あるいは冷却不足が材質上の問題点を引き起こす可能性のある場合であれば、特に鋼種がステンレス鋼であると否とを問うものではない。また、加圧鋳造法によって製造されたスラブや、造塊法によって一旦インゴットとした後これを分塊圧延して得られたスラブであってもよいことは言うまでもない。   The steel slab that is the object of the present invention is a steel material for producing a final product by processing such as rolling or forging, and is a steel material having a shape in which a water vapor film is likely to stagnate on the lower surface side particularly during cooling in water. Is a piece. Specifically, a slab or bloom having a flat rectangular parallelepiped shape corresponds to this. The direct trigger of the present invention is the non-uniform precipitation of carbides in the continuous cast slab of stainless steel and the resulting defect of the stainless steel plate due to the dechromized layer.However, uneven cooling or insufficient cooling in water on the lower surface side of the slab. Does not particularly ask whether the steel type is stainless steel. Needless to say, the slab may be a slab manufactured by a pressure casting method or a slab obtained by forming an ingot once by an ingot-making method and then subjecting the ingot to slab rolling.

本発明では、鋼片を水中に浸漬して冷却する。これはスプレー冷却などに比べて水中冷却の方が一度に鋼片に接触しうる水量が圧倒的に多く急冷効果が高いからである。   In the present invention, the steel slab is immersed in water and cooled. This is because the amount of water that can come into contact with the steel slab at a time is much larger in underwater cooling than in spray cooling or the like, and the quenching effect is higher.

本発明では、鋼片を、鋼片の広面が上下面となるように水中に浸漬する。ここで、鋼片の広面とは、鋼片の外周を形成する複数の面のうち最も面積の広い面をいう。スラブで言えば、板厚方向に垂直な2つの面である。スラブを立てて水中に浸漬すればスラブの下面側に水蒸気膜が滞留するのを防止できることは容易に推測されるが、通常、連続鋳造スラブや圧延スラブ等のスラブの搬送は、スラブの広面をほぼ水平として行われている。このため、スラブを立てて水中に浸漬するためには、スラブの起倒装置を設ける必要があり、設備費がかさむという問題がある。   In the present invention, the billet is immersed in water such that the wide surface of the billet becomes the upper and lower surfaces. Here, the wide surface of the billet refers to a surface having the largest area among a plurality of surfaces forming the outer periphery of the billet. Speaking of slabs, these are two surfaces perpendicular to the thickness direction. It is easily presumed that standing a slab and immersing it in water can prevent the water vapor film from staying on the lower surface of the slab. It is performed almost horizontally. For this reason, in order to stand and immerse the slab in the water, it is necessary to provide a slab raising and lowering device, and there is a problem that equipment costs increase.

なお、ここで、鋼片の広面が上下面となるようにとは、大略水平となればよく、必ずしも鋼片の広面が鉛直方向に対して厳密に垂直であることを意味しない。本発明の趣旨からして、鋼片下面側からの水蒸気の洗い流しを促進するために、鋼片を多少傾けて保持するのは好ましいことである。しかし、鋼片をクレーンやトング等でハンドリングする場合、あまりに鋼片の傾きが激しいとハンドリングに支障を来すおそれがあるから、そのような支障を生じない程度の傾きに留めるのが望ましい。   Here, the expression that the wide surface of the billet is the upper and lower surfaces may be substantially horizontal, and does not necessarily mean that the wide surface of the billet is strictly perpendicular to the vertical direction. For the purpose of the present invention, it is preferable that the billet be held slightly inclined in order to promote the flushing of water vapor from the underside of the billet. However, when handling a steel slab with a crane, tongs, or the like, if the steel slab is too steeply inclined, handling may be impeded. Therefore, it is desirable to keep the steel slab to such an extent that such a hindrance does not occur.

本発明で最も重要な点は、水中に浸漬された鋼片の下面に対して水が流動するように水噴射を行うことである。この水噴射は噴射された水の運動量によって鋼片下面側に付着、停滞している水蒸気等の気泡や気体の膜を洗い流し、水と鋼片との直接接触伝熱を生じさせるとともに、乱流による熱伝達係数の増大をはかるものである。   The most important point in the present invention is to perform water injection so that water flows on the lower surface of the billet immersed in water. This water jet flushes the stagnant water vapor and other air bubbles and gaseous films on the lower surface of the steel slab due to the momentum of the injected water, causing direct contact heat transfer between the water and the steel slab and turbulence. To increase the heat transfer coefficient.

特に重要なことは、計算上水の平均流速が十分に大きくて鋼片表面の温度を 100℃未満に維持できる条件となっていても、鋼片表面の凹凸によって必ず、局所的に水の流速の小さい部分ができることである。そのような部分では鋼片表面温度が 100℃以上となり、沸騰し水蒸気気泡ができてしまう。   It is especially important that even if the average flow velocity of water is sufficiently large to maintain the temperature of the slab surface below 100 ° C, the unevenness Is that a small part of can be made. In such a part, the surface temperature of the slab becomes 100 ° C or more, and boiling occurs to generate steam bubbles.

この観点から、水噴射量は多いほど、そして鋼片の下面に近い位置から噴射することが重要となる。しかし、水噴射量を必要以上増加しても、水と鋼片間の伝熱抵抗よりも鋼片内部での伝熱抵抗が相対的に大きくなり鋼片内部での伝導伝熱律速となるため、水噴射量の増大効果が飽和してしまう。   From this viewpoint, it is important that the larger the water injection amount is, and that the water is injected from a position closer to the lower surface of the billet. However, even if the water injection amount is increased more than necessary, the heat transfer resistance inside the steel slab becomes relatively larger than the heat transfer resistance between water and the steel slab, and the conduction heat transfer rate inside the steel slab is limited. However, the effect of increasing the water injection amount is saturated.

以上の点からいろいろな鋼種、サイズの鋼片について実験を繰り返したところ、水噴射の流量は鋼片の下面の面積に対して10〜 150l/m2・minとするのが好ましいことが明らかとなった。水の流量が10l/m2・min未満の場合は、オシレーションマークの深い連鋳スラブや、広面側の平坦度が劣る鋼片において、一部冷却の不均一が残る場合がある。また、 150l/m2・minを超える流量では効果がほぼ飽和に達するため、 150l/m2・minを超える流量の増大は用役コストの増大と、ポンプや配管系の設備負荷を増大するので好ましくない。 From the above points, the experiment was repeated for steel slabs of various steel types and sizes, and it was clarified that the flow rate of water injection was preferably set to 10 to 150 l / m 2 · min with respect to the area of the lower surface of the steel slab. became. If the flow rate of water is less than 10 l / m 2 · min, non-uniform cooling may remain partially in a continuously cast slab having a deep oscillation mark or a steel slab having a poor flatness on the wide surface side. Moreover, the effect reaches a substantially saturated at a flow rate of greater than 150l / m 2 · min, the increase in flow rate of greater than 150l / m 2 · min is the increase in utilities costs, since to increase the equipment load of the pump and piping system Not preferred.

水噴射方向は、鋼片の下面に対して平行方向とする場合と、鋼片の下面に対して垂直または斜め方向から行う場合があるが、いずれを採用してもかまわない。好ましくは、鋼片下面側により大きな乱流を引き起こし、高い冷却効果と気泡の除去効果を達成する観点から、鋼片の下面に対して垂直または斜め方向から行うのがよい。   The water injection direction may be a direction parallel to the lower surface of the steel slab or a direction perpendicular or oblique to the lower surface of the steel slab. Either may be employed. Preferably, from the viewpoint of causing a larger turbulence on the lower surface side of the slab and achieving a high cooling effect and an effect of removing bubbles, the slab is preferably performed in a direction perpendicular or oblique to the lower surface of the slab.

この場合に、水噴射の位置から鋼片下面までの距離は、短い方が、水の噴射位置から鋼片下面に到る間における水の流速の減衰が小さく、それだけ鋼片下面での水の線流速を大きくでき、気泡の洗い流しと、鋼片の冷却の観点からは好ましい。しかし、この距離があまりにも小さいと、鋼片下面に衝突し反転した水流と噴射する水流が干渉し、水噴射位置の圧損を増大してしまう。そのためにポンプや配管系の設備負荷を著しく増大する結果を招く。また、水量増大の場合と同様に、水と鋼片間の伝熱抵抗よりも鋼片内部での伝熱抵抗が相対的に大きくなるため鋼片の冷却は鋼片内部での伝導伝熱律速となるので、もはや距離の低減効果が飽和してしまう。これらを考慮した場合に、水噴射の位置から鋼片下面までの距離を30〜500mm とするのが好ましい。水噴射装置の水噴射位置と鋼片下面間の距離が30mm未満では、効果が飽和に達し、設備負荷をいたずらに増大させる。   In this case, the shorter the distance from the water injection position to the lower surface of the billet, the smaller the attenuation of the flow velocity of water from the water injection position to the lower surface of the billet. The linear flow velocity can be increased, which is preferable from the viewpoint of washing out bubbles and cooling the billet. However, if this distance is too small, the water flow that has collided with the underside of the billet and has been inverted will interfere with the water flow to be injected, increasing the pressure loss at the water injection position. As a result, the load on the equipment of the pump and the piping system is significantly increased. Also, as in the case of increasing the amount of water, the heat transfer resistance inside the slab is relatively larger than the heat transfer resistance between water and the slab. Therefore, the effect of reducing the distance is no longer saturated. In consideration of these, it is preferable to set the distance from the position of the water injection to the lower surface of the billet to 30 to 500 mm. When the distance between the water injection position of the water injection device and the lower surface of the billet is less than 30 mm, the effect reaches saturation and the equipment load is unnecessarily increased.

一方、水噴射位置と鋼片下面間の距離を遠ざけることは、鋼片下面への到達時の水の流速を低下し、また水槽の深さを増す必要があり設備コストが大きくなる。水噴射位置と鋼片下面間の距離が500mm を超えると、オシレーションマークの深い連鋳スラブや、広面側の平坦度が劣るスラブにおいて、一部冷却の不均一が残る場合がある。   On the other hand, increasing the distance between the water injection position and the lower surface of the billet decreases the flow velocity of water when reaching the lower surface of the billet, and requires increasing the depth of the water tank, which increases equipment costs. If the distance between the water injection position and the lower surface of the slab exceeds 500 mm, non-uniform cooling may remain partially in a continuously cast slab having a deep oscillation mark or a slab having a poor flatness on a wide surface side.

次に、上記した鋼片の水冷方法を、鋼片が含クロム鋼鋳片の場合について説明する。ここで対象とするのは、鋼板まで圧延した際に表面欠陥が発生しやすいCrを5〜30wt%含有する含クロム鋼の連続鋳造鋳片である。Crを5〜30wt%含有する含クロム鋼の連続鋳造鋳片は、特に冷却過程でクロム炭化物が析出し、このクロム炭化物に起因して、鋼板まで圧延した際に表面欠陥が発生しやすい。なお、連続鋳造の形式は、垂直型、垂直曲げ型、全湾曲型、水平型などが知られているが、本発明では特にその形式を問うものではない。   Next, the water cooling method of the above-mentioned steel slab will be described in the case where the steel slab is a chromium-containing steel cast slab. The subject here is a continuous cast slab of chromium-containing steel containing 5 to 30 wt% of Cr, which is likely to cause surface defects when rolled to a steel sheet. In a continuous cast slab of chromium-containing steel containing 5 to 30 wt% of Cr, chromium carbide precipitates particularly during the cooling process, and surface defects are likely to occur when the steel sheet is rolled due to the chromium carbide. As the type of continuous casting, a vertical type, a vertical bending type, a fully curved type, a horizontal type, and the like are known, but the present invention is not particularly limited to such a type.

本発明において、水中に浸漬して冷却する含クロム鋼鋳片はその冷却前の表面温度を500 ℃以上とする。鋳片表面温度が500 ℃未満では、鋳片表層には大量のクロム炭化物が析出しているため、本発明の水冷方法をもってしても、圧延後の鋼板の表面欠陥を十分に低減することが難しい。   In the present invention, the surface temperature of the chromium-containing steel slab to be cooled by immersion in water is set to 500 ° C. or higher before cooling. When the slab surface temperature is less than 500 ° C, a large amount of chromium carbide is precipitated on the slab surface layer, so that even with the water cooling method of the present invention, it is possible to sufficiently reduce the surface defects of the rolled steel sheet. difficult.

つぎに冷却前の鋳片表面温度を500 ℃以上とする具体的方法について説明する。   Next, a specific method for setting the surface temperature of the slab before cooling to 500 ° C. or higher will be described.

鋼の連続鋳造にあっては、溶鋼をまず両端解放の内部水冷鋳型内に注入して、外側を凝固させたのち、案内ロール群によって連続的に引き出しつつ、さらに冷却水をスプレーして冷却(これを二次冷却と呼ぶ)して内部まで完全に凝固させる。完全に凝固したのち、、酸素と可熱ガスの炎によって所定長さに溶断(これをトーチカットと呼ぶ)して鋳片とする。この二次冷却の仕方によって、トーチカット後の鋳片の表面温度が異なる。また、トーチカット後の鋳片の経過時間によっても、大気への放冷によって鋳片表面温度が変化する。   In the continuous casting of steel, molten steel is first poured into an internal water-cooled mold with both ends open, and after solidifying the outside, it is continuously drawn out by guide rolls and sprayed with cooling water to cool ( This is called secondary cooling) to completely solidify the inside. After being completely solidified, it is cut to a predetermined length by a flame of oxygen and a hot gas (this is called a torch cut) to obtain a slab. The surface temperature of the slab after torch cutting differs depending on the manner of the secondary cooling. Also, the slab surface temperature changes by cooling to the atmosphere depending on the elapsed time of the slab after torch cutting.

そこで、本発明では、二次冷却の条件、鋳造速度、トーチカットから水中浸漬冷却開始までの経過時間を調整し、冷却前の鋳片表面温度を500 ℃以上に調整するのが望ましい。   Therefore, in the present invention, it is desirable to adjust the conditions of the secondary cooling, the casting speed, the elapsed time from the torch cutting to the start of the submersion cooling in water, and adjust the surface temperature of the slab before cooling to 500 ° C. or more.

このように、表面温度を500 ℃以上に調整した鋳片を水中に浸漬し、上記した本発明の鋼片の冷却方法で、鋳片表面温度が400 ℃以下となるまで冷却する。   Thus, the slab whose surface temperature has been adjusted to 500 ° C. or higher is immersed in water, and cooled by the above-described method for cooling a slab until the slab surface temperature becomes 400 ° C. or lower.

このように水中に浸漬する冷却(急冷)によって、鋳片表層にクロム炭化物が析出していない500 ℃以上の高温域から、粒界にクロム炭化物が析出しない400 ℃以下の温度域まで冷却し、クロム炭化物の粒界析出を回避することができる。なお、この冷却に際し、鋳片の中心部が400 ℃以下になるまで冷却してもよいが、その場合、鋳片を長時間、水中に浸漬しておく必要があり、生産性を阻害することになる。   By immersing in water in this way (quenching), the slab is cooled from a high temperature range of 500 ° C or higher where chromium carbide does not precipitate on the surface layer to a temperature range of 400 ° C or lower where chromium carbide does not precipitate at the grain boundaries, Grain boundary precipitation of chromium carbide can be avoided. During this cooling, the slab may be cooled until the center of the slab becomes 400 ° C or less, but in this case, the slab must be immersed in water for a long time, which impairs productivity. become.

そこで、水中に浸漬して冷却し、その冷却途中で鋳片を取り出して、後処理を施すようにすれば、水中浸漬冷却に要する時間を短縮し、生産性が向上する。   Therefore, if the slab is cooled by immersion in water, the slab is taken out during the cooling, and post-treatment is performed, the time required for immersion cooling in water is reduced, and the productivity is improved.

一般に、水中に浸漬されて冷却途中にある鋳片では、表面が低温で内部ほど高温となる温度分布を示している。このような温度分布を有する鋳片を水中から取り出して大気中で放置すると、大気への自然放冷が生じる一方で、内部の高温部から表面の低温部に向けて熱の移動が生じる。このため、鋳片の表面温度は上昇し、ある時点でピークを示したのち、ゆっくりと降下する、復熱現象を生じる。   In general, a slab that is being cooled while being immersed in water has a temperature distribution in which the surface has a low temperature and the inside has a higher temperature. If a slab having such a temperature distribution is taken out of water and left in the air, spontaneous cooling to the air occurs, while heat moves from a high temperature portion inside to a low temperature portion on the surface. For this reason, the surface temperature of the slab rises, shows a peak at a certain point in time, and then falls slowly, resulting in a recuperation phenomenon.

したがって、5〜30wt%Crを含有する含クロム鋼鋳片の場合、水中に浸漬され冷却途中にある鋳片を取り出して放置してもその復熱時のピーク温度が400 ℃を超えなければ、クロム炭化物の析出を回避することができることになる。   Therefore, in the case of a chromium-containing steel slab containing 5 to 30 wt% Cr, even if the slab immersed in water and being cooled is taken out and allowed to stand, if the peak temperature at the time of reheating does not exceed 400 ° C, Thus, precipitation of chromium carbide can be avoided.

また、本発明者らの知見によれば、含クロム鋼鋳片を圧延し鋼板とした場合に表面欠陥は、鋳片厚みの1%までのごく最表層の析出物や異常組織に起因して発生しており、少なくともこの範囲でクロム炭化物の析出を回避できれば、クロム炭化物の析出による表面欠陥の発生を防止できることになる。   Further, according to the findings of the present inventors, when a chromium-containing steel slab is rolled into a steel sheet, surface defects are caused by extremely fine precipitates and abnormal structures in the outermost layer up to 1% of the slab thickness. If the precipitation of chromium carbide can be avoided at least in this range, the occurrence of surface defects due to the precipitation of chromium carbide can be prevented.

そこで、本発明では、5〜30wt%Crを含有する含クロム鋼鋳片を冷却する場合には、鋳片を水中に浸漬する冷却時間を、鋳片を水中から取り出し放置後にその表面から鋳片厚みの1%以内の位置における復熱最高温度が400 ℃を超えないように設定することとした。図6に、鋳片を水中に浸漬する冷却時間によって、鋳片の表面温度が復熱する状況を模式的に示す。case1の場合は、水中に浸漬する冷却時間が不足し復熱により鋳片の表面温度が400 ℃を超えている。case2の場合は、水中に浸漬する冷却時間が適切であり復熱による鋳片の表面温度が400 ℃以下に抑えられている。   Therefore, in the present invention, when cooling a chromium-containing steel slab containing 5 to 30% by weight of Cr, the cooling time for immersing the slab in water is determined by taking the slab out of the water and leaving it to stand. The maximum reheat temperature at a position within 1% of the thickness was set so as not to exceed 400 ° C. FIG. 6 schematically shows a situation in which the surface temperature of the slab is restored by the cooling time during which the slab is immersed in water. In case 1, the cooling time for immersion in water is insufficient, and the surface temperature of the slab exceeds 400 ° C. due to reheating. In case 2, the cooling time for immersion in water is appropriate, and the surface temperature of the slab due to reheating is suppressed to 400 ° C. or less.

なお、鋳片内の温度分布は通常、実測が困難であるため、伝熱計算によって推定するのがよい。伝熱計算は3次元で行っても良いが、図7に示すように鋳片の長手方向中央位置(1/2L,L:鋳片長さ)の代表断面について、2次元で行うのが、簡便でかつ実際との一致度も高く、好ましい。なぜならば、復熱によって最も温度が高くなる位置は、鋳片の長手方向中央であり、また長手方向中央位置ではほぼ長手方向への熱の移動はゼロに近く、長手方向中央位置の断面で、二次元方向での伝熱計算を行っても実際との乖離は小さいためである。ここでは、初期条件として、水中浸漬冷却前の鋳片内部温度が表面温度と等しく一様であると仮定する。水中浸漬時の境界条件は水の流速を用いて強制対流の熱伝達係数を使用する。また、水中から引き上げた後の伝熱計算は、大気中での自然対流の熱伝達係数を使用する。このようにして数値計算することによって、水中浸漬冷却時とその後の復熱時の鋳片内温度分布の推定が可能であり、問題となる表層下1%厚み位置での温度履歴を推定することができる。   Note that the temperature distribution in the slab is usually difficult to measure, so it is better to estimate it by heat transfer calculation. Although heat transfer calculation may be performed in three dimensions, as shown in FIG. 7, it is convenient to perform two-dimensional calculation on a representative cross section at the central position in the longitudinal direction of the slab (1 / 2L, L: slab length). The degree of coincidence with actuality is also high, which is preferable. Because, the position where the temperature becomes the highest due to recuperation is the longitudinal center of the slab, and in the longitudinal central position, the heat transfer in the longitudinal direction is almost zero, and in the cross section at the longitudinal central position, This is because even if the heat transfer calculation in the two-dimensional direction is performed, the deviation from the actual one is small. Here, as an initial condition, it is assumed that the slab internal temperature before immersion cooling in water is equal to the surface temperature and uniform. As the boundary condition during immersion in water, the heat transfer coefficient of forced convection using the flow velocity of water is used. Further, the heat transfer calculation after withdrawing from the water uses the heat transfer coefficient of natural convection in the atmosphere. By performing the numerical calculation in this manner, it is possible to estimate the temperature distribution in the slab at the time of immersion cooling in water and thereafter at the time of reheating, and to estimate the temperature history at the 1% thickness position below the surface layer, which is a problem. Can be.

水中に所定時間浸漬して冷却された鋳片は、表層下のクロム炭化物の析出が抑制され、表面欠陥を引き起こす原因となる脱クロム相の形成がなく、したがってこのような鋳片を用いることにより、表面欠陥のきわめて少ない鋼板を得ることができる。   The slab cooled by being immersed in water for a predetermined time is suppressed in the precipitation of chromium carbide under the surface layer, and there is no formation of a dechromized phase that causes surface defects.Therefore, by using such a slab, Thus, a steel sheet having very few surface defects can be obtained.

次に、本発明の鋼片の冷却方法を実施するに好適な冷却用水槽について説明する。冷却用水槽の1実施例を図1および図2に示す。   Next, a cooling water tank suitable for carrying out the method for cooling a billet of the present invention will be described. One embodiment of the cooling water tank is shown in FIGS.

本発明の鋼片の冷却用水槽1は、鋼片を水中に浸漬して冷却する水槽であり、水槽1の内部で前記鋼片をその広面が水平となるように支持する鋼片支持部2と、鋼片支持部2で支持された鋼片4の下面に水を噴射する水噴射装置3とを配設したことを特徴とする。   The steel slab cooling water tub 1 of the present invention is a water tub for cooling a steel slab by immersing the steel slab in water, and a steel slab supporting portion 2 for supporting the steel slab inside the water tub 1 so that its wide surface is horizontal. And a water injection device 3 for injecting water on the lower surface of the steel slab 4 supported by the steel slab support portion 2.

この水槽の基本的な形状は、たとえば特開平8-253807号公報や特開平7-100609号公報などに開示されているような、上方から鋼片を出し入れできるように上面がオープンな水槽が好適に適用できる。このような水槽であれば、鋼片を連続鋳造設備や分塊圧延設備で製造されたままの向き、つまり広面が上下面となるような向きのまま浸漬できる。水槽のこれ以外の形状についてはなんの限定も必要はない。また、水槽は鋼片の冷却に要する時間と生産速度を考慮して、鋼片を複数枚横に並べて浸漬できるようにするのが好ましい。   The basic shape of this water tank is preferably a water tank whose upper surface is open so that a steel slab can be taken in and out from above, as disclosed in, for example, JP-A-8-253807 and JP-A-7-100609. Applicable to With such a water tank, the steel slab can be immersed in the direction as it was produced by the continuous casting facility or the slab rolling facility, that is, in such a direction that the wide surface becomes the upper and lower surfaces. There is no need to limit the other shapes of the aquarium. In addition, it is preferable that a plurality of steel slabs can be immersed side by side in consideration of the time required for cooling the slabs and the production rate.

鋼片支持部2は、鋼片4の広面を上下面となるように支持し、かつ鋼片4の下面を水槽の底から離隔して保持できる、さらに鋼片の下面に水を噴射する水噴射装置3が設置でき、さらに、噴射された水を流すことができる水路が確保できれば、その構造はとくに限定されない。たとえば、水槽1の底にレールを敷設したり、図1に示すように鋼板2dを縦にして溶接するなどして、水槽の底に水槽とは別の部材を取り付ける構造としてもよく、また、水槽の底を一部突起させる構造としてもよく、あるいは図4、図5に示すように水槽の側壁1aや、水槽上部から支持部材2aや支持部材2bで鋼片4を保持できるような構造としてもよい。図4は鋼片支持部2を水槽の側壁に取り付けた例であり、図5は鋼片支持部2を水槽側壁上端に懸架するようにした例である。なお図4、図5では水噴射装置は図示を省略されている。その他、多くの変化例が考えられるが、本発明の基本的な技術思想を使用しそれと同等の効果を奏するものであれば、些細な異同に関わらず本発明の技術的範囲ないしその均等の範囲に属するものである。   The billet support portion 2 supports the wide surface of the billet 4 so as to be the upper and lower surfaces, and can hold the lower surface of the billet 4 at a distance from the bottom of the water tank, and further sprays water onto the lower surface of the billet. The structure is not particularly limited as long as the injection device 3 can be installed and a water channel through which the injected water can flow can be secured. For example, a structure in which a member different from the water tank is attached to the bottom of the water tank by laying a rail on the bottom of the water tank 1 or welding the steel plate 2d vertically as shown in FIG. A structure in which the bottom of the water tank is partially protruded may be used, or a structure in which the steel slab 4 can be held by the support member 2a or the support member 2b from the side wall 1a of the water tank or the upper part of the water tank as shown in FIGS. Is also good. FIG. 4 shows an example in which the billet supporting portion 2 is attached to the side wall of the water tank, and FIG. 5 shows an example in which the billet supporting portion 2 is suspended on the upper end of the side wall of the water tank. 4 and 5, the illustration of the water injection device is omitted. In addition, although many other variations are conceivable, as long as the basic technical idea of the present invention is used and an effect equivalent thereto is obtained, the technical scope of the present invention or a range equivalent thereto, regardless of slight differences. It belongs to.

さらに、鋼片支持部2によって支持された鋼片4の下面に対して、水が流動するように水を噴射する水噴射装置3を設ける。水噴射装置の1例を図2、図3に示す。水噴射装置3は、水を鋼片4下面に水を噴射する水噴射ノズル3aと、水噴射ノズル3aに水を供給する給水管3bと、給水管3bをサポートする給水管サポート3cを有する。給水管3bから供給された噴射用水(冷却水)は、水噴射ノズル3aを介し鋼片4の下面に噴射される。水噴射ノズル3aは、特にその形式を問うものではないが、水中噴射ノズル、スリットから膜状に水を噴射する噴射スリット、単に給水パイプに噴射孔を設けたもの、水槽の側壁に開口を設けそこから水を噴射するものなどが好適であり、さらにその変化形態が考えられる。給水管3bは、給水管サポート3cで保持されている。   Further, a water injection device 3 for injecting water so that water flows on the lower surface of the steel slab 4 supported by the steel slab support portion 2 is provided. One example of the water injection device is shown in FIGS. The water injection device 3 includes a water injection nozzle 3a for injecting water onto the lower surface of the billet 4, a water supply pipe 3b for supplying water to the water injection nozzle 3a, and a water supply pipe support 3c for supporting the water supply pipe 3b. The injection water (cooling water) supplied from the water supply pipe 3b is injected to the lower surface of the billet 4 via the water injection nozzle 3a. The water injection nozzle 3a is not particularly limited in its form, but includes an underwater injection nozzle, an injection slit for injecting water in a film form from a slit, an arrangement in which an injection hole is simply provided in a water supply pipe, and an opening in a side wall of a water tank. A device that sprays water therefrom is suitable, and further variations thereof are conceivable. The water supply pipe 3b is held by a water supply pipe support 3c.

また、水を噴射する方向は、鋼片の下面に対して平行方向とする場合と、鋼片の下面に対して垂直または斜め方向から行う場合があるが、いずれを採用してもかまわない。好ましくは、鋼片下面側により大きな乱流を引き起こし高い冷却効果と気泡の除去効果を達成する点から、鋼片の下面に対して垂直(図2)または斜め方向(図3)から噴射するように水噴射ノズル3aを設けるのがよい。   The direction in which water is sprayed may be parallel to the lower surface of the slab, or may be perpendicular or oblique to the lower surface of the slab. Either may be employed. Preferably, the injection is performed perpendicularly (FIG. 2) or obliquely (FIG. 3) with respect to the lower surface of the steel slab from the viewpoint of causing greater turbulence on the lower surface of the steel slab and achieving a high cooling effect and a bubble removing effect. Is preferably provided with a water injection nozzle 3a.

なお、この場合、水噴射位置から鋼片下面までの距離hを30〜500mm とすることが好ましい。その理由は前述した通りである。図3の場合、水噴射位置と鋼片下面との距離hはその噴射方向中立軸に沿ってはかればよい。   In this case, it is preferable that the distance h from the water injection position to the lower surface of the billet is 30 to 500 mm. The reason is as described above. In the case of FIG. 3, the distance h between the water injection position and the lower surface of the billet may be measured along the neutral axis in the injection direction.

〔本発明例1〕
図1および図2に概略を示す水槽(長さ10m×幅10m×水深1.2 m)に、連続鋳造設備にて鋳造されトーチカットされた直後のSUS 304 ステンレス鋼スラブ(厚さ200mm 、長さ9.0 m、幅650 〜1600mm、スラブ表面温度850 ℃)をスラブの広面が略水平となるように水中に浸漬し、水冷した。水冷中は、スラブ下面に対し水噴射装置3から水を噴射し、水を流動させた。なお、水噴射装置3の水噴射位置とスラブ(鋼片)下面との間隔hを130mm とし、噴射する水の流量を50l/m2・minとした。なお、この水槽はスラブの冷却に要する時間と生産速度を考慮してスラブを複数枚横に並べて浸漬できるように設計されており、本発明例では、10枚を同時に水冷した。また、水槽の底には厚さ20mmの鋼板を複数枚を立てた状態で溶接した鋼片支持部2が設けられ、スラブ(鋼片)4の下面を水槽の底から離隔して保持できるようにしてある。
[Example 1 of the present invention]
A SUS 304 stainless steel slab (200 mm thick, 9.0 mm long) immediately after being cast by a continuous casting facility and torch cut into a water tank (length 10 m × width 10 m × water depth 1.2 m) schematically shown in FIGS. 1 and 2. m, a width of 650 to 1600 mm, and a slab surface temperature of 850 ° C.) were immersed in water so that the wide surface of the slab was substantially horizontal, and cooled with water. During water cooling, water was injected from the water injection device 3 to the lower surface of the slab to flow the water. The distance h between the water injection position of the water injection device 3 and the lower surface of the slab (slab) was 130 mm, and the flow rate of the injected water was 50 l / m 2 · min. The water tank is designed so that a plurality of slabs can be arranged side by side in consideration of the time required for cooling the slab and the production speed. In the present invention, ten slabs were simultaneously cooled with water. Further, a steel slab supporting portion 2 formed by welding a plurality of steel plates having a thickness of 20 mm in a standing state is provided at the bottom of the water tank so that the lower surface of the slab (steel slab) 4 can be held apart from the bottom of the water tank. It is.

水中でスラブ中心温度が 400℃以下になるまで急冷したのち、水槽から引上げ、ついでこれらスラブ(10枚) をスラブ加熱炉で加熱したのち、熱間圧延と冷間圧延を施して 1.0mm厚のステンレス鋼板とし、さらに2B+BA仕上げを行い本発明例1とした。これら鋼板の表面状況を調査した。その結果、得られたステンレス鋼板の両面のいずれにも、へげや光沢のむらは認められなかった。
〔本発明例2〕
本発明例1と同様に、図1および図2に概略を示す水槽を用いて、連続鋳造設備にて鋳造されトーチカットされた直後のSUS 304 ステンレス鋼スラブ(厚さ200mm 、長さ9.0m、幅650 〜1600mm、スラブ表面温度850 ℃)をスラブの広面が略水平となるように水中に浸漬し、20分間水冷したのち、水槽から引き上げた。なお、水の噴射条件は本発明例1と同一条件とした。
After quenching in water until the center temperature of the slab is 400 ° C or less, pull it out of the water tank, and then heat these slabs (10 pieces) in a slab heating furnace. It was made into a stainless steel plate, and was further subjected to 2B + BA finishing to obtain Example 1 of the present invention. The surface condition of these steel sheets was investigated. As a result, no unevenness or luster was observed on both sides of the obtained stainless steel sheet.
[Example 2 of the present invention]
As in Example 1 of the present invention, a SUS 304 stainless steel slab (200 mm thick, 9.0 m long, immediately after being cast and torch cut by a continuous casting facility using a water tank schematically shown in FIGS. 1 and 2, A slab having a width of 650 to 1600 mm and a slab surface temperature of 850 ° C.) was immersed in water so that the wide surface of the slab was substantially horizontal, cooled with water for 20 minutes, and then pulled out of the water tank. The water injection conditions were the same as those of the first embodiment of the present invention.

予め二次元の伝熱計算により、水中から引き上げ後のスラブ表面から鋳片厚みの1%位置の温度推移を予測した。その結果、復熱最高温度が400 ℃以下とするには、水中浸漬冷却を15分以上行う必要があることが分かった。そこで、水中に浸漬して冷却する時間を20分とした。   The temperature transition at a position of 1% of the thickness of the slab from the slab surface after being pulled out of the water was predicted in advance by a two-dimensional heat transfer calculation. As a result, it was found that immersion cooling in water had to be performed for 15 minutes or more in order to make the maximum reheating temperature 400 ° C or less. Therefore, the time for cooling by immersion in water was set to 20 minutes.

水槽から引上げたのち、ついで、これらスラブ(10枚)をスラブ加熱炉で加熱し、熱間圧延と冷間圧延を施して1.0mm 厚のステンレス鋼板とし、さらに2B+BA仕上げを行い、本発明例2とした。これら鋼板の表面状況を調査した結果、得られたステンレス鋼板の両面いずれにも、へげや光沢のむらは認められなかった。
〔本発明例3〕
本発明例2と同じ条件で製造したスラブ(2枚)を、スラブ加熱炉で加熱したのち、熱間圧延と冷間圧延を施して0.5mm 厚のステンレス鋼板とし、さらに2B+BA仕上げを行い、本発明例3とした。これら鋼板の表面状況を調査した結果、光沢むらは認められなかったが、へげ部が0.2 %の表面欠陥率で認められた。なお、表面欠陥率(%)は、(欠陥をもつコイルの長さ)/(ステンレス鋼コイル全長)×100 %で表したものである。
〔比較例〕
一方、水槽中での水冷に際し、水噴射ノズルからの水の噴射に代えて圧縮空気(供給圧5kgf/mm2)で噴射し、冷却し比較例1とした。なお、他の条件は、本発明例1と同様にした。比較例1のステンレス鋼板のスラブ上面相当面には、へげや光沢のむらは認められなかったが、スラブ下面相当面には光沢むら部とへげ部をあわせて1.8 %の表面欠陥が認められた。ただし、表面欠陥率(%)は、(欠陥をもつコイルの長さ)/(ステンレス鋼コイル全長)×100 %で定義した。
After being pulled out of the water tank, these slabs (10 pieces) were heated in a slab heating furnace, subjected to hot rolling and cold rolling to form a 1.0 mm-thick stainless steel sheet, and further subjected to 2B + BA finishing. And As a result of investigating the surface condition of these steel sheets, no scabbing or unevenness in gloss was observed on both sides of the obtained stainless steel sheet.
[Example 3 of the present invention]
The slabs (2 pieces) manufactured under the same conditions as in Example 2 of the present invention were heated in a slab heating furnace, and then subjected to hot rolling and cold rolling to form a 0.5 mm thick stainless steel sheet, and further subjected to 2B + BA finishing. Inventive Example 3. As a result of examining the surface condition of these steel sheets, gloss unevenness was not found, but the ridges were found at a surface defect rate of 0.2%. The surface defect rate (%) is represented by (length of coil having defect) / (total length of stainless steel coil) × 100%.
(Comparative example)
On the other hand, when water was cooled in the water tank, compressed air (supply pressure: 5 kgf / mm 2 ) was injected instead of water injection from the water injection nozzle, and cooled to obtain Comparative Example 1. The other conditions were the same as those of Example 1 of the present invention. No unevenness or luster was observed on the surface corresponding to the upper surface of the slab of the stainless steel plate of Comparative Example 1, but a surface defect of 1.8% was observed on the surface equivalent to the lower surface of the slab including the uneven glossy portion and the unevenness. Was. Here, the surface defect rate (%) was defined as (length of coil having defect) / (total length of stainless steel coil) × 100%.

また、水槽中での水冷に際し、水噴射ノズルからの水の噴射を行わずに、冷却し、比較例2とした。なお他の条件は本発明例1と同様にした。この結果比較例2のステンレス鋼板のスラブ上面相当面には、へげや光沢のむらは認められなかったが、スラブ下面相当面には光沢むら部とへげ部をあわせて2.0 %の表面欠陥が認められた。   In addition, when water was cooled in the water tank, water was not injected from the water injection nozzle, and cooling was performed. The other conditions were the same as in Example 1 of the present invention. As a result, no unevenness or uneven luster was observed on the surface corresponding to the upper surface of the slab of the stainless steel sheet of Comparative Example 2, but 2.0% of surface defects including the uneven glossy portion and the unevenness were observed on the lower equivalent surface of the slab. Admitted.

本発明の1実施例である冷却用水槽の構成を示す概略説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic explanatory drawing which shows the structure of the cooling water tank which is one Example of this invention. 本発明の1実施例である冷却用水槽における水噴射装置の構成を示す概略断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic sectional drawing which shows the structure of the water injection apparatus in the cooling water tank which is one Example of this invention. 本発明の1実施例である冷却用水槽における水噴射装置の構成を示す概略断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic sectional drawing which shows the structure of the water injection apparatus in the cooling water tank which is one Example of this invention. 本発明の冷却用水槽における鋼片支持部の1例を示す概略断面図である。It is an outline sectional view showing an example of the billet support part in the water tank for cooling of the present invention. 本発明の冷却用水槽における鋼片支持部の1例を示す概略断面図である。It is an outline sectional view showing an example of the billet support part in the water tank for cooling of the present invention. 鋳片を水中に浸漬し冷却途中で水中から引上げた時の鋳片表面温度の変化を示す模式図である。It is a schematic diagram which shows the change of the slab surface temperature when a slab is immersed in water and pulled out of the water during cooling. 伝熱計算で鋳片内の温度分布を計算する際の代表断面の位置を示す説明図である。It is explanatory drawing which shows the position of the typical cross section at the time of calculating the temperature distribution in a slab by heat transfer calculation. 鋳片の反り率の定義を示す説明図である。It is explanatory drawing which shows the definition of the warpage rate of a slab.

符号の説明Explanation of reference numerals

1 水槽
1a 側壁
2 鋼片支持部
2a 支持部材
2b 支持部材
2d 鋼板
3 水噴射装置
3a 水噴射ノズル
3b 給水管
3c 給水管サポート
4 鋼片(スラブ)
6 水
DESCRIPTION OF SYMBOLS 1 Water tank 1a Side wall 2 Steel piece support part 2a Support member 2b Support member 2d Steel plate 3 Water injection device 3a Water injection nozzle 3b Water supply pipe 3c Water supply pipe support 4 Steel slab (slab)
6 water

Claims (3)

鋼片を浸漬して冷却する水槽において、該水槽の内部で前記鋼片をその広面が上下面となるように支持する鋼片支持部と、該鋼片支持部で支持された鋼片の下面に水を噴射する水噴射装置とを配設したことを特徴とする鋼片の水冷用水槽。   A water tank for immersing and cooling a steel slab, a steel slab support portion for supporting the steel slab such that the wide surface thereof is the upper and lower surfaces inside the water tub, and a lower surface of the steel slab supported by the steel slab support portion And a water injection device for injecting water to the steel slab. 前記水噴射装置の水噴射方向が、鋼片下面に対し垂直または斜め方向となるように設けられていることを特徴とする請求項1に記載の鋼片の水冷用水槽。   The water bath for steel slab water cooling according to claim 1, wherein the water injection direction of the water injection device is provided to be perpendicular or oblique to the lower surface of the steel slab. 前記水噴射装置の水噴射位置と前記鋼片下面間の距離を、30〜500mm とすることを特徴とする請求項2に記載の鋼片の水冷用水槽。   The water tank for cooling billets according to claim 2, wherein a distance between a water injection position of the water injection device and a lower surface of the billet is 30 to 500 mm.
JP2004258038A 1998-05-28 2004-09-06 Water tank for water cooling of billet Pending JP2004337985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258038A JP2004337985A (en) 1998-05-28 2004-09-06 Water tank for water cooling of billet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP14745398 1998-05-28
JP2004258038A JP2004337985A (en) 1998-05-28 2004-09-06 Water tank for water cooling of billet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24617498A Division JP3726506B2 (en) 1998-05-28 1998-08-31 Billet water cooling method

Publications (1)

Publication Number Publication Date
JP2004337985A true JP2004337985A (en) 2004-12-02

Family

ID=33542784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258038A Pending JP2004337985A (en) 1998-05-28 2004-09-06 Water tank for water cooling of billet

Country Status (1)

Country Link
JP (1) JP2004337985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106955983A (en) * 2017-05-15 2017-07-18 安徽富凯特材有限公司 A kind of device for reducing slab nose
CN109604570A (en) * 2018-12-04 2019-04-12 江苏盛航精密制造有限公司 A kind of die casting cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106955983A (en) * 2017-05-15 2017-07-18 安徽富凯特材有限公司 A kind of device for reducing slab nose
CN109604570A (en) * 2018-12-04 2019-04-12 江苏盛航精密制造有限公司 A kind of die casting cooling device

Similar Documents

Publication Publication Date Title
JP3726506B2 (en) Billet water cooling method
TWI381894B (en) Method and casting-rolling plant for the manufacture of hot-rolled metal strip-more preferably steel material strip with high surface quality
JP5444807B2 (en) Method for preventing surface cracks in continuous cast slabs
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
JP5999294B2 (en) Steel continuous casting method
JP4321325B2 (en) Secondary cooling method for continuous cast slabs
JP2011224649A (en) Continuous casting method of steel
JP2010082637A (en) Secondary cooling method in continuous casting
JP2008254062A (en) Secondary cooling device for continuous casting machine, and secondary cooling method therefor
JP2004337985A (en) Water tank for water cooling of billet
JP5416342B2 (en) Cooling method for bloom slab
JP4337739B2 (en) Continuous casting method for molten steel
JP5121039B2 (en) Billet water cooling method
CA1241178A (en) Method and apparatus for continuous casting of crystalline strip
JP5402678B2 (en) Steel continuous casting method
KR101795871B1 (en) Mathod for manufacturing high copper stainless steel with twin roll strip casting apparatus
JP4758606B2 (en) Slab continuous casting method
JPS5839210B2 (en) Cooling method of steel strip during continuous annealing
JPH09206899A (en) Method for cooling continuous casting bloom
JP2000237858A (en) Continuous casting method
KR20180069301A (en) Austenitic stainless steel continuous casting method with uniform distribution of cooling water of second cooling stand
JPH0218936B2 (en)
JP3406459B2 (en) Cooling method for continuous casting bloom
JP2006181583A (en) Method for producing continuously cast slab
RU2779384C1 (en) Method for continuous casting of steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040906

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070529

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120