JP2004336929A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2004336929A
JP2004336929A JP2003131447A JP2003131447A JP2004336929A JP 2004336929 A JP2004336929 A JP 2004336929A JP 2003131447 A JP2003131447 A JP 2003131447A JP 2003131447 A JP2003131447 A JP 2003131447A JP 2004336929 A JP2004336929 A JP 2004336929A
Authority
JP
Japan
Prior art keywords
power semiconductor
elements
control
radiator
heat conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003131447A
Other languages
Japanese (ja)
Inventor
Akira Sasaki
亮 佐々木
Shoichiro Shimoike
正一郎 下池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003131447A priority Critical patent/JP2004336929A/en
Publication of JP2004336929A publication Critical patent/JP2004336929A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power converter in which the fixing work of a heat conduction material to a power semiconductor element or a control element is easy. <P>SOLUTION: The power converter includes a plurality of the power semiconductor elements 1, a plurality of the control elements 2 for controlling the plurality of the power semiconductor elements, a substrate 3 for mounting these elements, a drive circuit for driving the plurality of the power semiconductor elements, a control circuit having the plurality of the control elements, and a heat sink unit 4 which cools the power semiconductor elements and the control elements. The plurality of the power semiconductor elements and the plurality of the control elements are mounted on one of the substrates. The heat conductive members are provided fixedly between at least one opposite mounting side of the plurality of the power semiconductor elements and the plurality of the control elements and the heat sink unit. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、同一基板上に複数のパワー半導体素子と複数の制御素子が高密度実装されたサーボアンプやインバータの電力変換装置に関する。
【0002】
【従来の技術】
従来の電力変換装置においては、パワー半導体素子の上面に熱緩衝板を接合し、熱衝撃板の上部に金属電極を接合し、金属電極の上部に絶縁基板を接合したものがある(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2002−95267(第2−4頁、図1)
【0004】
図4は、その一例を示す断面図である。図4において、第一の絶縁基板9の上部には、第一の金属電極10を接合している。さらに、IGBT17およびダイオード18の上部には熱緩衝板11を高温はんだにより接合している。また、熱緩衝板11の上部には、第二の金属電極12を高温はんだにより接合している。さらに第二の金属電極12の上部には絶縁基板13を接合している。
上記のような電力変換装置において、IGBT17およびダイオード18の上部に熱緩衝板11が接合され、その上部に第二の金属電極25が接合され、さらにその上部に第二の絶縁基板13が接合されていることにより、IGBT17およびダイオード18を絶縁をとりながら両面冷却している。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の電力変換装置においては、パワー半導体素子と熱緩衝板を高温はんだにより接合するため、パワー半導体素子と上部の熱緩衝板と絶縁基板との工程管理が厳密に行わなければならずコストがかかるという問題があった。また、パワー半導体素子と熱緩衝板を高温はんだにより接合するため、複数のパワー半導体素子の高さを厳密に管理し揃えなければいけないという問題があった。また、基板の同一面に高さの異なる複数のパワー半導体素子と複数の制御素子を混載したものの上に熱緩衝板を接合し、その上に絶縁基板接合する形態をとることができなかった。
そこで、本発明はこのような問題を鑑みてなされたものであり、複数のパワー半導体素子の高さを厳密に管理しなくてもパワー半導体素子の上面に熱伝導材を容易に固定することができるようにするとともに、高さが異なる複数のパワー半導体素子と複数の制御素子を混載した基板においても、その上面に熱伝導材を固定することができる電力変換装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記問題を解決するため、本発明は次のように構成したものである。
請求項1記載の発明は、複数のパワー半導体素子と、前記複数のパワー半導体素子を制御する複数の制御素子と、これらの素子を実装する基板と、前記複数のパワー半導体素子を駆動する駆動回路と、前記複数の制御素子からなる制御回路と、前記パワー半導体素子と前記制御素子を冷却する放熱器とを備えた電力変換装置において、前記基板の一つに前記複数のパワー半導体素子と前記複数の制御素子とを実装し、前記複数のパワー半導体素子と前記複数の制御素子の少なくとも一方の反実装側と前記放熱器との間に熱伝導部材を設けて固定したものである。
このようになっているため、複数のパワー半導体素子と上部の熱伝導材とを放熱器で容易に固定することができ、複数のパワー半導体素子の高さを厳密に管理しなくてもパワー半導体素子の上面に熱伝導材を固定することができる
請求項2に記載の発明は、前記放熱器の前記熱伝導部材との固定部に突部を設けたものである。
このようになっているため、高さが異なる複数の半導体素子と熱伝導材とを放熱器で固定することができる。
請求項3に記載する発明は、前記突部を少なくとも2個設け、前記突部間に傾斜を設けたものである。このようになっているため、高さが異なる複数の半導体素子を一枚の熱伝導材により放熱器で固定することができ、組み立て工程を簡略化できる。
【0007】
【発明の実施の形態】
以下、本発明の具体的実施例を図に基づいて説明する。
(第1実施例)
図1は、本発明の第1実施例を示す電力変換装置の側面図である。図において、1はパワー半導体素子、2は制御素子、3は基板、4は放熱器、6は熱伝導材、7は固定手段のネジである。
パワー半導体素子1は、パワーMOSFET半導体チップが樹脂で被覆されチップと電気的に接続されたリードが外部に突き出ているSOPパッケージである。制御素子2は、複数のパワー半導体素子1を駆動する駆動回路に制御指令を与えるもので、パッケージ形態はQFP(Quad Flat Package)である。基板3は、厚さ1mmのガラスエポキシ両面基板であり、両面に銅の電極と配線が施されており、基板の四隅にはΦ3.6mmの穴が施してある。なお、基板3はメタルコア基板でもよい。放熱器4は、アルミ製で縦60mm、横60mm、板厚4mmで四隅を7×7mmの高さ11mmの柱状で台座を形成し、底面にΦ3mmのネジ穴を加工している。また、放熱器4の上部にはファンやヒートパイプなどの冷却機構を追加することもできる。熱伝導材6は、SiOの粒子を含んだ弾性体の樹脂製シートである。7はΦ3mmのネジである。
つぎに、本実施形態の動作について述べる。
パワー半導体素子1の6個の素子をガラスエポキシ両面基板3の上面の電極にはんだにより実装し,3相のインバータ部を形成している。基板3の下面には制御素子2をはんだ実装し、インバータ部を形成しているパワー半導体素子1の駆動回路に制御信号を与えるようになっている。このパワー半導体素子1と制御素子2を実装した基板3上にパワー半導体素子1の6個の素子すべてを覆える大きさに整えた熱伝導材6を載せた状態で、放熱器4を基板3にネジ7で挟み込みことで熱伝導材6が加圧されパワー半導体素子1と放熱器6とを熱的に接続させることができる。この状態で、上位から制御素子2に指令を与え、パワー半導体素子1を駆動するとパワー半導体素子が発熱し、熱は熱伝導材から放熱器を経由して伝導し放熱する。
したがって、複数のパワー半導体素子と上部の熱伝導材とを放熱器で容易に固定することができ、複数のパワー半導体素子の高さを厳密に管理しなくてもパワー半導体素子の上面に熱伝導材を密着固定することができる
【0008】
(第2実施例)
図2は、本発明の第2実施例を示す電力変換装置の側面図である。図において、5は突起、61、62は熱伝導材である。その他の部分は第1実施例と同様であるため、説明を省略する。
突起5は、板厚6mmとなっている。また、熱伝導材61、62は、第1実施例と同じくSiOの粒子を含んだ弾性体の樹脂製シートであるが、それぞれ大きさを変えている。
つぎに、本実施例の動作について述べる。
本実施例の電力変換装置は、パワー半導体素子1の6個の素子と制御素子2をガラスエポキシ両面基板3の上面の電極にはんだにより実装し,3相のインバータ部と制御回路を形成している。パワー半導体素子1の6個の素子すべてを覆うことができる大きさに整えた熱伝導材61をパワー半導体素子に載せ、制御素子2の上に熱伝導材61と厚さは同じで大きさの異なる熱伝導材62を制御素子2の上に載せた状態で、放熱器41の突起5の部分をパワー半導体素子1の位置に合わせて基板3にネジ7で挟み込みことで熱伝導材61と熱伝導材62が加圧されパワー半導体素子1および制御素子1と放熱器41を熱的に接続させることができる。この状態で、上位から制御素子2に指令を与え、パワー半導体素子1を駆動すると制御素子2とパワー半導体素子1が発熱し、熱は熱伝導材61と熱伝導材62から放熱器41を経由して伝導し放熱する。この実施の形態によれば、請求項1記載の電力変換装置において放熱器に突部を設けたことを特徴とするものである。
したがって、高さが異なる複数の半導体素子と熱伝導材とを放熱器で固定することができる。また、パワー半導体素子と制御半導体素子を熱伝導材を介して基板と放熱器で挟み込むために、両面冷却もできるという効果もある。
【0009】
(第3実施例)
図3は、本発明の第3実施例を示す電力変換装置の側面図である。図において、5は突起、63は熱伝導材、8は傾斜である。その他の部分は第2実施例と同様であるため、説明を省略する。
突起51は、板厚6mmとなっており側面が傾斜8を持つように加工されている。つぎに、本実施例の動作について述べる。
本実施例の電力変換装置は、パワー半導体素子1の6個の素子と制御素子2のすべてを覆える大きさにした熱伝導材63をパワー半導体素子1と制御素子2上に載せる。放熱器42の突起51の部分をパワー半導体素子1と制御素子2の位置に合わせて基板3にネジ7で挟み込みことで熱伝導材63が加圧されパワー半導体素子1および制御素子2と放熱器42を熱的に接続させることができる。また、突起51の傾斜8に沿って滑らかに変形するため、熱伝導材51破損させることなく、高さと大きさの異なるパワー半導体素子1と制御素子2を熱伝導材51を介して放熱器42に熱的に接続させることができる。この状態で、上位から制御素子2に指令を与え、パワー半導体素子1を駆動すると制御素子2とパワー半導体素子1が発熱し、熱は熱伝導材63から放熱器42を経由して伝導し放熱する。
したがって、高さが異なる複数の半導体素子を一枚の熱伝導材により放熱器で固定することができ、組み立て工程を簡略化できる。
【0010】
【発明の効果】
以上述べたように、本発明の電力変換装置によれば、基板の一つに複数のパワー半導体素子と複数の制御素子とを実装し、複数のパワー半導体素子と複数の制御素子の少なくとも一方の反実装側と放熱器との間に熱伝導部材を設けて固定したので、複数のパワー半導体素子と上部の熱伝導材とを放熱器で容易に固定することができ、複数のパワー半導体素子の高さを厳密に管理をすることなしにパワー半導体素子の上面に熱伝導材を固定できるという効果がある。
また、請求項2に記載の電力変換装置によれば、放熱器の熱伝導部材との固定部に突部を設けたので、高さが異なる複数の半導体素子と熱伝導材とを放熱器で固定できるという効果がある。
また、請求項3に記載の電力変換装置によれば、突部を少なくとも2個設け、その突部間に傾斜を設けたので、高さが異なる複数の半導体素子を一枚の熱伝導材により放熱器で固定することができ、組み立て工程を簡略化できるという効果がある。また、パワー半導体素子と制御半導体素子を熱伝導材を介して基板と放熱器で挟み込むために、両面冷却もできるという効果もある。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す電力変換装置の側面図である。
【図2】本発明の第2の実施例を示す電力変換装置の側面図である。
【図3】本発明の第3の実施例を示す電力変換装置の側面図である。
【図4】従来の電力変換装置を示す側面図である。
【符号の説明】
1 パワー半導体素子
2 制御素子
3 基板
4、41、42 放熱器
5、51 突起
6、61、62、63 熱伝導材
7 ネジ
8 傾斜
9 第一の絶縁基板
10 第一の金属電極
11 熱緩衝板
12 第二の金属電極
13 第二の絶縁基板
14 エミッタ電極取出口
15 電流センスワイヤボンディング
16 電極センス取出口
17 IGBT
18 ダイオード
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power conversion device for a servo amplifier or an inverter in which a plurality of power semiconductor elements and a plurality of control elements are mounted on the same substrate at a high density.
[0002]
[Prior art]
In a conventional power conversion device, there is a device in which a thermal buffer plate is joined to an upper surface of a power semiconductor element, a metal electrode is joined to an upper portion of a thermal shock plate, and an insulating substrate is joined to an upper portion of the metal electrode (for example, see Patent Reference 1).
[0003]
[Patent Document 1]
JP-A-2002-95267 (pages 2-4, FIG. 1)
[0004]
FIG. 4 is a cross-sectional view showing one example. In FIG. 4, a first metal electrode 10 is joined to an upper portion of a first insulating substrate 9. Further, a thermal buffer plate 11 is joined to the upper part of the IGBT 17 and the diode 18 by high-temperature solder. A second metal electrode 12 is joined to the upper portion of the heat buffer plate 11 by high-temperature solder. Further, an insulating substrate 13 is joined to the upper part of the second metal electrode 12.
In the power converter as described above, the thermal buffer plate 11 is joined to the upper part of the IGBT 17 and the diode 18, the second metal electrode 25 is joined to the upper part, and the second insulating substrate 13 is joined to the upper part. As a result, the IGBT 17 and the diode 18 are cooled on both sides while insulating.
[0005]
[Problems to be solved by the invention]
However, in the above-described conventional power converter, since the power semiconductor element and the thermal buffer board are joined by high-temperature solder, the process control between the power semiconductor element, the upper thermal buffer board, and the insulating substrate must be strictly performed. There was a problem that costs were high. In addition, since the power semiconductor element and the heat buffer plate are joined by high-temperature solder, there is a problem that the heights of a plurality of power semiconductor elements must be strictly controlled and aligned. Further, it has not been possible to adopt a configuration in which a thermal buffer plate is bonded on a substrate on which a plurality of power semiconductor elements and control elements having different heights are mixedly mounted on the same surface of a substrate, and an insulating substrate is bonded thereon.
Therefore, the present invention has been made in view of such a problem, and it is possible to easily fix the heat conductive material on the upper surface of the power semiconductor element without strictly managing the heights of the plurality of power semiconductor elements. It is an object of the present invention to provide a power conversion device capable of fixing a heat conductive material on an upper surface of a substrate on which a plurality of power semiconductor elements and a plurality of control elements having different heights are mixedly mounted. .
[0006]
[Means for Solving the Problems]
In order to solve the above problem, the present invention is configured as follows.
The invention according to claim 1, wherein a plurality of power semiconductor elements, a plurality of control elements for controlling the plurality of power semiconductor elements, a substrate on which these elements are mounted, and a drive circuit for driving the plurality of power semiconductor elements And a control circuit including the plurality of control elements, and a power converter including the power semiconductor element and a radiator for cooling the control element, wherein the plurality of power semiconductor elements and the plurality of power semiconductor elements are provided on one of the substrates. And a heat conductive member is provided and fixed between the radiator and the non-mounting side of at least one of the plurality of power semiconductor elements and the plurality of control elements.
Because of this, a plurality of power semiconductor elements and the upper heat conductive material can be easily fixed with a radiator, and the power semiconductor element can be easily controlled without strictly controlling the height of the plurality of power semiconductor elements. The invention according to claim 2, wherein a heat conductive material can be fixed to the upper surface of the element, is provided with a projection at a fixing portion of the radiator to the heat conductive member.
With this configuration, the plurality of semiconductor elements having different heights and the heat conductive material can be fixed by the radiator.
According to a third aspect of the present invention, at least two protrusions are provided, and an inclination is provided between the protrusions. With such a configuration, a plurality of semiconductor elements having different heights can be fixed by a radiator using a single heat conductive material, and the assembly process can be simplified.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a side view of a power converter showing a first embodiment of the present invention. In the figure, 1 is a power semiconductor element, 2 is a control element, 3 is a substrate, 4 is a radiator, 6 is a heat conductive material, and 7 is a screw of fixing means.
The power semiconductor element 1 is an SOP package in which a power MOSFET semiconductor chip is covered with a resin, and leads electrically connected to the chip project outside. The control element 2 gives a control command to a drive circuit that drives the plurality of power semiconductor elements 1, and has a package form of QFP (Quad Flat Package). The substrate 3 is a glass epoxy double-sided substrate having a thickness of 1 mm, copper electrodes and wiring are provided on both surfaces, and holes of Φ 3.6 mm are provided at four corners of the substrate. Note that the substrate 3 may be a metal core substrate. The radiator 4 is made of aluminum and has a pedestal formed of a column having a length of 60 mm, a width of 60 mm, a thickness of 4 mm, and four corners of 7 × 7 mm and a height of 11 mm, and a Φ3 mm screw hole formed on the bottom surface. Further, a cooling mechanism such as a fan or a heat pipe can be added to the upper part of the radiator 4. The heat conductive material 6 is an elastic resin sheet containing particles of SiO 2 . Reference numeral 7 denotes a Φ3 mm screw.
Next, the operation of the present embodiment will be described.
Six elements of the power semiconductor element 1 are mounted on electrodes on the upper surface of the glass epoxy double-sided board 3 by solder to form a three-phase inverter section. The control element 2 is mounted on the lower surface of the substrate 3 by solder, and a control signal is supplied to a drive circuit of the power semiconductor element 1 forming the inverter section. The radiator 4 is mounted on the substrate 3 with the heat conductive material 6 sized so as to cover all six elements of the power semiconductor element 1 mounted on the substrate 3 on which the power semiconductor element 1 and the control element 2 are mounted. The heat conductive material 6 is pressurized by being sandwiched between the power semiconductor element 1 and the power semiconductor element 1 and the radiator 6 can be thermally connected. In this state, when a command is given to the control element 2 from the host and the power semiconductor element 1 is driven, the power semiconductor element generates heat, and the heat is transmitted from the heat conductive material via the radiator and radiated.
Therefore, the plurality of power semiconductor elements and the upper heat conductive material can be easily fixed by the radiator, and the heat conduction to the upper surface of the power semiconductor element can be easily performed without strictly controlling the height of the plurality of power semiconductor elements. The material can be fixed tightly.
(Second embodiment)
FIG. 2 is a side view of a power converter according to a second embodiment of the present invention. In the figure, 5 is a protrusion, and 61 and 62 are heat conductive materials. The other parts are the same as in the first embodiment, and the description is omitted.
The protrusion 5 has a plate thickness of 6 mm. The heat conductive members 61 and 62 are elastic resin sheets containing SiO 2 particles, as in the first embodiment, but have different sizes.
Next, the operation of this embodiment will be described.
In the power converter of the present embodiment, the six elements of the power semiconductor element 1 and the control element 2 are mounted on electrodes on the upper surface of the glass epoxy double-sided board 3 by soldering to form a three-phase inverter and a control circuit. I have. A heat conductive material 61 sized so as to cover all six elements of the power semiconductor element 1 is placed on the power semiconductor element, and the thickness of the heat conductive material 61 is the same as that of the heat conductive material 61 on the control element 2. With the different heat conducting material 62 placed on the control element 2, the protrusion 5 of the radiator 41 is aligned with the position of the power semiconductor element 1, and the heat conducting material 61 and the heat conducting material 61 are sandwiched by the screws 7. The conductive material 62 is pressurized, and the power semiconductor element 1 and the control element 1 can be thermally connected to the radiator 41. In this state, when a command is given to the control element 2 from the host and the power semiconductor element 1 is driven, the control element 2 and the power semiconductor element 1 generate heat, and heat is transmitted from the heat conductive material 61 and the heat conductive material 62 via the radiator 41. To conduct and dissipate heat. According to this embodiment, in the power converter according to claim 1, a radiator is provided with a projection.
Therefore, the plurality of semiconductor elements having different heights and the heat conductive material can be fixed by the radiator. Further, since the power semiconductor element and the control semiconductor element are sandwiched between the substrate and the radiator via the heat conductive material, there is also an effect that both sides can be cooled.
[0009]
(Third embodiment)
FIG. 3 is a side view of a power converter showing a third embodiment of the present invention. In the figure, 5 is a protrusion, 63 is a heat conductive material, and 8 is a slope. The other parts are the same as in the second embodiment, and the description is omitted.
The protrusion 51 has a plate thickness of 6 mm and is processed so that the side surface has an inclination 8. Next, the operation of this embodiment will be described.
In the power converter of the present embodiment, a heat conductive material 63 sized to cover all of the six elements of the power semiconductor element 1 and the control element 2 is mounted on the power semiconductor element 1 and the control element 2. The heat conductive material 63 is pressurized by inserting the protrusion 51 of the heat radiator 42 into the substrate 3 with the screw 7 while matching the position of the power semiconductor element 1 and the control element 2, and the power semiconductor element 1, the control element 2 and the heat radiator 42 can be thermally connected. In addition, since the heat semiconductor 51 is smoothly deformed along the inclination 8 of the projection 51, the power semiconductor element 1 and the control element 2 having different heights and sizes are connected to the radiator 42 via the heat conductive material 51 without damaging the heat conductive material 51. Can be thermally connected. In this state, when a command is given to the control element 2 from the host and the power semiconductor element 1 is driven, the control element 2 and the power semiconductor element 1 generate heat, and the heat is conducted from the heat conductive material 63 via the radiator 42 and radiated. I do.
Therefore, a plurality of semiconductor elements having different heights can be fixed by the radiator with one heat conductive material, and the assembly process can be simplified.
[0010]
【The invention's effect】
As described above, according to the power converter of the present invention, a plurality of power semiconductor elements and a plurality of control elements are mounted on one of the substrates, and at least one of the plurality of power semiconductor elements and the plurality of control elements is mounted. Since the heat conductive member is provided and fixed between the non-mounting side and the radiator, the plurality of power semiconductor elements and the upper heat conductive material can be easily fixed with the radiator, and the plurality of power semiconductor elements can be fixed. There is an effect that the heat conductive material can be fixed on the upper surface of the power semiconductor element without strictly controlling the height.
According to the power converter of the second aspect, since the protrusion is provided on the fixing portion of the radiator to the heat conductive member, the plurality of semiconductor elements having different heights and the heat conductive material are separated by the radiator. There is an effect that it can be fixed.
According to the power converter of the third aspect, since at least two protrusions are provided and an inclination is provided between the protrusions, a plurality of semiconductor elements having different heights can be formed by one heat conductive material. It can be fixed with a radiator, which has the effect of simplifying the assembly process. Further, since the power semiconductor element and the control semiconductor element are sandwiched between the substrate and the radiator via the heat conductive material, there is also an effect that both sides can be cooled.
[Brief description of the drawings]
FIG. 1 is a side view of a power converter according to a first embodiment of the present invention.
FIG. 2 is a side view of a power converter according to a second embodiment of the present invention.
FIG. 3 is a side view of a power converter according to a third embodiment of the present invention.
FIG. 4 is a side view showing a conventional power converter.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 power semiconductor element 2 control element 3 substrate 4, 41, 42 radiator 5, 51 protrusion 6, 61, 62, 63 heat conductive material 7 screw 8 inclined 9 first insulating substrate 10 first metal electrode 11 heat buffer plate 12 Second metal electrode 13 Second insulating substrate 14 Emitter electrode outlet 15 Current sense wire bonding 16 Electrode sense outlet 17 IGBT
18 Diode

Claims (3)

複数のパワー半導体素子と、前記複数のパワー半導体素子を制御する複数の制御素子と、これらの素子を実装する基板と、前記複数のパワー半導体素子を駆動する駆動回路と、前記複数の制御素子からなる制御回路と、前記パワー半導体素子と前記制御素子を冷却する放熱器とを備えた電力変換装置において、
前記基板の一つに前記複数のパワー半導体素子と前記複数の制御素子とを実装し、前記複数のパワー半導体素子と前記複数の制御素子の少なくとも一方の反実装側と前記放熱器との間に熱伝導部材を設けて固定したことを特徴とする電力変換装置。
A plurality of power semiconductor elements, a plurality of control elements for controlling the plurality of power semiconductor elements, a board on which these elements are mounted, a drive circuit for driving the plurality of power semiconductor elements, and a plurality of control elements. Control circuit, and a power converter comprising a radiator for cooling the power semiconductor element and the control element,
The plurality of power semiconductor elements and the plurality of control elements are mounted on one of the substrates, and between the anti-mounting side of at least one of the plurality of power semiconductor elements and the plurality of control elements and the radiator. A power converter, wherein a heat conducting member is provided and fixed.
前記放熱器の前記熱伝導部材との固定部に突部を設けたことを特徴とする請求項1記載の電力変換装置。The power converter according to claim 1, wherein a protrusion is provided on a fixing portion of the radiator to the heat conductive member. 前記突部を少なくとも2個設け、前記突部間に傾斜を設けたことを特徴とする請求項2記載の電力変換装置。The power converter according to claim 2, wherein at least two protrusions are provided, and an inclination is provided between the protrusions.
JP2003131447A 2003-05-09 2003-05-09 Power converter Pending JP2004336929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131447A JP2004336929A (en) 2003-05-09 2003-05-09 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131447A JP2004336929A (en) 2003-05-09 2003-05-09 Power converter

Publications (1)

Publication Number Publication Date
JP2004336929A true JP2004336929A (en) 2004-11-25

Family

ID=33506616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131447A Pending JP2004336929A (en) 2003-05-09 2003-05-09 Power converter

Country Status (1)

Country Link
JP (1) JP2004336929A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450387B2 (en) * 2006-03-02 2008-11-11 Tdk Innoveta Technologies, Inc. System for cooling electronic components
US7612448B2 (en) 2004-12-13 2009-11-03 Daikin Industries, Ltd. Power module having a cooling device and semiconductor devices mounted on a resin substrate, method of producing same, and air conditioner
JP2015222747A (en) * 2014-05-22 2015-12-10 ダイキン工業株式会社 Cooling jacket
JP2016213361A (en) * 2015-05-12 2016-12-15 富士通株式会社 Electronic device and manufacturing method of the same
JP2018148613A (en) * 2017-03-01 2018-09-20 日本電産株式会社 Power supply device and refrigerator
WO2019082783A1 (en) * 2017-10-26 2019-05-02 三菱電機株式会社 Heat sink and circuit device
JP2019102738A (en) * 2017-12-06 2019-06-24 株式会社デンソーウェーブ Heat dissipation structure of electronic component
JP2021136442A (en) * 2020-02-27 2021-09-13 技嘉科技股▲ふん▼有限公司Giga−Byte Technology Co., Ltd. Heat radiator

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7612448B2 (en) 2004-12-13 2009-11-03 Daikin Industries, Ltd. Power module having a cooling device and semiconductor devices mounted on a resin substrate, method of producing same, and air conditioner
AU2005315026B8 (en) * 2004-12-13 2010-03-18 Daikin Industries, Ltd. Power module, method of producing same, and air conditioner
US7450387B2 (en) * 2006-03-02 2008-11-11 Tdk Innoveta Technologies, Inc. System for cooling electronic components
JP2015222747A (en) * 2014-05-22 2015-12-10 ダイキン工業株式会社 Cooling jacket
JP2016213361A (en) * 2015-05-12 2016-12-15 富士通株式会社 Electronic device and manufacturing method of the same
JP2018148613A (en) * 2017-03-01 2018-09-20 日本電産株式会社 Power supply device and refrigerator
WO2019082783A1 (en) * 2017-10-26 2019-05-02 三菱電機株式会社 Heat sink and circuit device
CN111247879A (en) * 2017-10-26 2020-06-05 三菱电机株式会社 Radiator and loop device
GB2580262A (en) * 2017-10-26 2020-07-15 Mitsubishi Electric Corp Heat sink and circuit device
GB2580262B (en) * 2017-10-26 2022-09-14 Mitsubishi Electric Corp Heat sink and circuit device
US11557521B2 (en) 2017-10-26 2023-01-17 Mitsubishi Electric Corporation Heat sink and circuit device
JP2019102738A (en) * 2017-12-06 2019-06-24 株式会社デンソーウェーブ Heat dissipation structure of electronic component
JP2021136442A (en) * 2020-02-27 2021-09-13 技嘉科技股▲ふん▼有限公司Giga−Byte Technology Co., Ltd. Heat radiator
JP7118186B2 (en) 2020-02-27 2022-08-15 技嘉科技股▲ふん▼有限公司 Heat dissipation device

Similar Documents

Publication Publication Date Title
JPH10125832A (en) Heat conduction method and apparatus therefor
JP2001168562A (en) Cooling device of circuit module, and electronic equipment therewith
JP2008060430A (en) Power converter
JP2005123233A (en) Cooling structure of semiconductor device
JP2004336929A (en) Power converter
JP2007324016A (en) Induction heating apparatus
JP3152209B2 (en) Semiconductor device and manufacturing method thereof
JP5062014B2 (en) Electronic circuit module, power supply device, projector
JP2003347783A (en) Power conversion apparatus
JP2002164485A (en) Semiconductor module
JP2000058746A (en) Device for cooling inside of module
JPH1041445A (en) Electronic component heat radiating device
JP3797040B2 (en) Semiconductor device
JP4375299B2 (en) Power semiconductor device
JP2605910B2 (en) Power module
JP4946845B2 (en) Semiconductor device
JP3855726B2 (en) Power module
JP2005150454A (en) Cooling structure of electric power conversion system
JP5950872B2 (en) Semiconductor module
JP2745786B2 (en) TAB semiconductor device
JP3403338B2 (en) Power semiconductor module
JP3013612B2 (en) Semiconductor device
TWI765352B (en) High thermal conductivity ceramic substrate with protective pad and high-power module with the same
TWI840188B (en) Semiconductor power module package having lead frame anchored bars
JP2919313B2 (en) Printed wiring board and its mounting method