JP2004330115A - 排気ガス浄化用触媒及びその製造方法 - Google Patents

排気ガス浄化用触媒及びその製造方法 Download PDF

Info

Publication number
JP2004330115A
JP2004330115A JP2003130949A JP2003130949A JP2004330115A JP 2004330115 A JP2004330115 A JP 2004330115A JP 2003130949 A JP2003130949 A JP 2003130949A JP 2003130949 A JP2003130949 A JP 2003130949A JP 2004330115 A JP2004330115 A JP 2004330115A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas purifying
purifying catalyst
porous body
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003130949A
Other languages
English (en)
Inventor
Katsuo Suga
克雄 菅
Masanori Shimada
真紀 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003130949A priority Critical patent/JP2004330115A/ja
Publication of JP2004330115A publication Critical patent/JP2004330115A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

【課題】耐久後においても優れたNOx吸着性能を発揮する排気ガス浄化用触媒及びその製造方法を提供すること。
【解決手段】貴金属、多孔質体及びBaSr1−xCOを含んで成り、排気ガス浄化用触媒を500℃以上800℃未満で加熱し常温まで戻すときのX線回折測定において、BaSr1−xCOが(111)面の面間隔(d)がd=3.63±0.07Åを満足する斜方晶系の複合化合物である排気ガス浄化用触媒である。BaSr1−xCOの結晶子径が40nm以下である。
多孔質体に貴金属を担持させ、Ba及びSrを含む混合水溶液を該貴金属担持多孔質体に含浸させて上記排ガス浄化用触媒を製造する。
【選択図】 なし

Description

【0001】
【発明の属する技術分野】
本発明は、排気ガス浄化用触媒及びその製造方法に係り、更に詳細には、ディーゼル自動車、ボイラーなどの内燃機関から排出される排ガス中の炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)及びパティキュレート(PM)を浄化する排気ガス浄化用触媒及びその製造方法に関するものであり、特に酸化雰囲気下におけるNOxの浄化に着目したものである。
【0002】
【従来の技術】
近年、石油資源の枯渇問題、地球温暖化問題から、低燃費自動車の要求が高まっており、希薄燃焼自動車の開発が注目されている。この希薄燃焼自動車における排気浄化の課題は、酸素過剰雰囲気のNOx(以下「リーンNOx」と称す)の浄化である。通常の三元触媒では、過剰な酸素の影響からNOx浄化作用が不十分となる。従って、リーンNOxを浄化できる触媒が望まれている。
【0003】
一方、従来からリーン域のNOxを浄化する触媒が種々提案されており、例えばPtとアルカリ土類金属化合物を多孔質担体に担持した触媒に代表されるように、リーン域でNOxをトラップし、ストイキ〜リッチ域でNOxを放出させ浄化する触媒が提案されている(例えば特許文献1参照。)。
【0004】
【特許文献1】
特開平5−317652号公報
【0005】
【発明が解決しようとする課題】
しかし、このような触媒では排気ガスのような高温に曝されるとNOx吸着材が結晶成長し、NOx吸着機能が低下するという問題点があった。
この解決策として、例えば、X線回折におけるBaCOの(111)面の面間隔(d)がd=3.72ű0.02Åに観測される斜方晶系の変性炭酸バリウムを含む排ガス浄化用触媒が提案されている(特許文献2参照)。
【0006】
【特許文献2】
特開2001−120996号公報
【0007】
しかしながら、このような構造をとっても、自動車で用いられるような長時間高温雰囲気に曝されると結晶が成長、肥大化し、結晶の集合体であるBaCO粒子も凝集することにより、NOがNOになる酸化サイトであるPtとの接触面積が低下し、NOの吸着サイトとしての表面積が低下するという問題点があった。
【0008】
また、本発明者らは、NOx吸着機能を有する炭酸バリウムが、リーン時に窒素酸化物と反応して硝酸バリウムになり、リッチ時に還元剤と反応して炭酸バリウムに戻る反応を繰り返すことで結晶成長し性能が低下する、という予測に基づき、結晶構造が異なる種々の触媒を製造し、自動車の排ガスで耐久した後のNOx吸着性能について検討した。その結果、炭酸バリウムと炭酸ストロンチウムの複合化生成物BaSr1−xCOの斜方晶系(111)面のピークと耐久後のNOx吸着性能が密接に関係していることを見出した。
【0009】
本発明は、このような従来技術の有する課題及び新たな知見に鑑みてなされたものであり、その目的とするところは、耐久後においても優れたNOx吸着性能を発揮する排気ガス浄化用触媒及びその製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、触媒を構成する貴金属及び多孔質体とともに、結晶子径及び粒子径が小さいバリウム及びストロンチウムの複合酸化物を含有することにより、上記課題が解決できることを見出し、本発明を完成するに至った。
【0011】
【発明の実施の形態】
以下、本発明の排気ガス浄化用触媒について詳細に説明する。なお、本明細書において「%」は、特記しない限り質量百分率を示す。
【0012】
本発明の排気ガス浄化用触媒は、貴金属、多孔質体及び複合化合物を含んで成る。
また、上記複合化合物としては、次式(1)
BaSr1−xCO …(1)
(xは0≦x≦1を示す)で表される複合化合物を使用する。かかる複合化合物は、斜方晶系の複合化合物であって、該排気ガス浄化用触媒を500℃以上800℃未満で加熱し常温まで戻すときのX線回折測定において、(111)面の面間隔(d)がd=3.63±0.07Åを満足することを特徴とする。
【0013】
このような構造を有することによって、BaCOのみを含有する場合に比べてNOx吸着機能がより高まる。現時点では、このメカニズムの詳細は明らかではないが、上記複合化合物が式(1)に示すような構造を有することで、高温の排ガスに曝されても微小な結晶構造を維持し、その結果反応活性が高く維持されるためであると推察できる。なお、面間隔(d)が上記範囲から外れると単独のBaCOに近い特性となり、高温で使用すると結晶成長によりNOx吸着性能が低下する。
【0014】
ここで、上記多孔質体としては、一般に排気ガス浄化用触媒で使われるものを選択でき、例えばアルミナ(Al)、ジルコニア(ZrO)、セリア(CeO)、ランタン(La)及びゼオライトなどが挙げられる。特にアルミナを使用することが望ましく、この場合はアルミナへのバリウムの固溶を抑制し得るランタン、ジルコニウム及びセリウムなどを予めアルミナに担持することがより望ましい。
また、上記貴金属としては、例えば白金(Pt)、ロジウム(Rh)又はパラジウム(Pd)、及びこれらを任意に組合わせたものなどを使用できる。
更に、本排気ガス浄化用触媒に使用する複合化合物の粒子径は10〜40nm、多孔質体の粒子径は1〜5μm、貴金属の粒子径は0.1〜50nm程度であることが望ましい。
【0015】
また、上記X線回折測定法の具体的な条件を以下に例示する。
・測定装置 :マックサイエンス(MAC Science)製広角X線回折装置 MXP18VAHF型
・サンプル調製 :メノウ乳鉢で粉砕後、ガラス板に詰め込む。
・X線源 :Cu
・波長 :1.54056Å
・ゴニオメータ ;縦形ゴニオメータ
・モノクロメータ ;使用
・管電圧 ;40kV
・管電流 ;300mA
・データ範囲 ;2θ=5〜90Deg.
・スキャン軸 ;2θ/θ
・サンプリング間隔;0.02Deg.
・スキャン速度 ;4Deg./min.
・発散スリット ;1.0Deg.
・散乱スリット ;1.0Deg.
・発光スリット ;0.3mm
【0016】
更に、上述の面間隔(d値)は、次式
2dsinθ=λ
(ここで、λ(入射X線の波長)は1.54056、θはブラック角を示す)
で表されるブラッグ(Bragg)の式より求められる。
更にまた、後述する結晶子径tは、次式
t=0.9λ/(Bcosθ)
(tは回折ピークに対応する結晶面に対して垂直方向の結晶子の大きさ、Bは半値幅を示す)
で表されるシェラー(Scherrer)の式より求められる。なお、「結晶子」とは、単一の結晶形が同一の方向性を有する集合体をいう。
【0017】
また、本発明の排気ガス浄化用触媒は、ストロンチウム(Sr)を含まず単独で存在する炭酸バリウム(BaCO)とBaSr1−xCOとのX線回折ピーク強度比が、次式(2)
0.1<BaCO/BaSr1−xCO …(2)
を満たすことが好適である。
これは、触媒に含まれるBaとSrは互いに全て複合化していることが望ましいが、微量のBaCOが残存しても上記範囲内であれば性能への影響は殆ど現れないからである。一方、上記範囲を外れると複合化合物とは別個独立して存在するBaCOが多くなり、NOx吸着性能が十分に得られないことがある。
【0018】
更に、上記BaSr1−xCOは、結晶子径が40nm以下であることが好適である。このような微小の結晶子径を有することで、排気ガスとの接触面積が増大し、NOx吸着性能が良好となり得る。一方、40nmを超えると十分なNOx吸着性能が得られないことがある。また、結晶子径を40nm以下とするには、上記多孔質体としては、表面積が100m/g以上、より望ましくは200m/g以上のものを使用することが良い。
【0019】
更にまた、上記BaSr1−xCOのxは、0.2<x<0.8の範囲にあることが好適である。このときは、面間隔(d)がd=3.63±0.07Åを満足することとなり、BaとSrが複合化して存在し得る。一方、xがこの範囲から外れると炭酸バリウムや炭酸ストロンチウムのような単独炭酸塩が存在し易い。
なお、X線回折測定の参考資料などで使われる「Material Analysis and Characterization」によると、BaSr1−xCOの(111)面の面間隔(d)は、x=0.5でd=3.63、x=0.8でd=3.69、x=0.2でd=3.57であり、上述のxとdの相関関係と合致する。
【0020】
また、上記多孔質体に担持されるBaとSrの担持濃度は、多孔質体100g当たりBaとSrの合計で0.08mol以下であることが好適である。この範囲を超えると多孔質体の細孔を閉塞してしまいNOx吸着機能が十分に得られないことがある。
【0021】
本発明の排気ガス浄化用触媒は、ゼオライト上に被覆して成ることが好ましく、更にこのゼオライトはハニカム担体上に配設されていることが好ましい。このように、ゼオライトを下層とした構造により、反応にあまり寄与しないハニカム担体セル内のコーナー部がゼオライトで目詰され、本触媒成分が中心部に均一に担持され得るため、NOx吸着効率を向上できる。また、ゼオライトは未燃HCを一時的に保持することから、エンジンスタート直後のHC低減にも貢献し得る。
また、上記担体としては、例えば、コーディエライトなどのセラミックスやフェライト系ステンレスなどの金属材料等から成るモノリスハニカム担体を使用できる。ハニカム担体のセル形状は4角セルや6角セルなどの多角形セルであることが良い。なお、担体上には、ゼオライト及び本排気ガス浄化用触媒を2層構造で被覆する構成に限定されず、その他種々の機能を発揮し得る成分を積層したり含有することなどができる。
【0022】
次に、本発明の排気ガス浄化用触媒の製造方法について、詳細に説明する。
本製造方法では、まず多孔質体に貴金属を担持させる。次いで、バリウム及びストロンチウムを含む混合水溶液を該貴金属担持多孔質体に含浸させることにより上述の排気ガス浄化用触媒を得る。具体的には、例えば、アルミナなどの多孔質体に白金などを担持したスラリを作製し、これにBaとSrを含む混合水溶液を添加し混合し、必要に応じて担体に被覆し、乾燥・焼成して製造する。
このような製造方法により、微小の結晶子径を有するBaとSrの複合化合物が含有される。なお、上記BaとSrを混合する水溶液としては水溶性の高さから酢酸水溶液を使用するのが望ましい。
【0023】
【実施例】
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0024】
(実施例1)
アルミナに硝酸Rh水溶液を含浸、乾燥、焼成し、Rh担持アルミナ粉末を作製した。また、アルミナにジニトロジアンミンPt水溶液を含浸、乾燥、焼成し、Pt担持アルミナ粉末を作製した。更に、酢酸Ba水溶液と酢酸Sr水溶液を混合し、Ba+Sr水溶液を作製した。
上記Rh担持アルミナ粉末、Pt担持アルミナ粉末、ベーマイト粉末、セリア粉末及び水を磁性ボールミルに投入し、湿式粉砕し、スラリを得た。これをコーディライトハニカム担体に塗布し、余剰スラリを取り除き乾燥、焼成した。更にこれをBa+Sr水溶液に含浸、乾燥、焼成し、排気ガス浄化用触媒を得た。
【0025】
(実施例2〜4)
表1に示すように、BaとSrの混合量を変化させた以外は、実施例1と同様の操作を繰り返して、排気ガス浄化用触媒を得た。
【0026】
(実施例5)
予めゼオライト粉末を湿式粉砕によってハニカム担体に担持した以外は、実施例1と同様の操作を繰り返して、排気ガス浄化用触媒を得た。
【0027】
(比較例1、2、4)
表1に示すように、BaとSrの混合量を変化させた以外は、実施例1と同様の操作を繰り返して、排気ガス浄化用触媒を得た。
【0028】
(比較例3)
予め1070℃で焼成し比表面積を70m/gとしたアルミナを用いた以外は、実施例1と同様の操作を繰り返して、排気ガス浄化用触媒を得た。
【0029】
<評価試験方法>
実施例及び比較例で得られた触媒を以下条件で耐久させた後、NO吸着量を測定し評価した。この結果を表1に示す。
触媒容量:50cc
耐久条件:日産製ガソリン3LV6エンジン、入口700℃×30hr
評価条件:モデルガス評価装置、NO=180ppm、O=5%、HO=1 0%、残部N、流量40L/min30sec間の入口NO量に対 するNO吸着量を測定した。
【0030】
【表1】
Figure 2004330115
【0031】
表1、図1及び図2より、本発明の好適形態である実施例1〜3で得られた触媒は、比較例1、2で得られた触媒と比較すると、NOx吸着率が良好であることがわかる。
また、図3より、実施例1と比較例1で得られた触媒を比較すると、炭酸バリウムが本発明の好適範囲にあるときは、NOx吸着率が良好であることがわかる。
更に、図4より、実施例1と比較例3で得られた触媒を比較すると、結晶子径が本発明の好適範囲にあるときは、NOx吸着率が良好であることがわかる。
更にまた、図5より、実施例1、4と比較例4で得られた触媒を比較すると、多孔質体に含まれるBa+Srが0.08mol以下であれば、NOx吸着率が良好であることがわかる。
【0032】
【発明の効果】
以上説明してきたように、本発明によれば、触媒を構成する貴金属及び多孔質体とともに、結晶子径及び粒子径が小さいバリウム及びストロンチウムの複合酸化物を含有することとしたため、耐久後においても優れたNOx吸着性能を発揮する排気ガス浄化用触媒及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】BaSr1−xCOのx値に対するNOx吸着率を示すグラフである。
【図2】面間隔(d)に対するNOx吸着率を示すグラフである。
【図3】BaCO/BaSr1−xCOの値に対するNOx吸着率を示すグラフである。
【図4】BaSr1−xCOの結晶子径に対するNOx吸着率を示すグラフである。
【図5】多孔質体中のBa+Srに対するNOx吸着率を示すグラフである。

Claims (7)

  1. 貴金属と、多孔質体と、次式(1)
    BaSr1−xCO …(1)
    (式中のxは0≦x≦1を示す)
    で表される複合化合物とを含んで成る排気ガス浄化用触媒であって、
    該排気ガス浄化用触媒を500℃以上800℃未満で加熱し常温まで戻すときのX線回折測定において、上記複合化合物が、(111)面の面間隔(d)がd=3.63±0.07Åを満足する斜方晶系の複合化合物であることを特徴とする排気ガス浄化用触媒。
  2. 炭酸バリウムと上記BaSr1−xCOとのX線回折ピーク強度比が、次式(2)
    0.1<BaCO/BaSr1−xCO …(2)
    (式中のxは0<x<1を示す)
    を満たすことを特徴とする請求項1に記載の排気ガス浄化用触媒。
  3. 上記BaSr1−xCOの結晶子径が40nm以下であることを特徴とする請求項1又は2に記載の排気ガス浄化用触媒。
  4. 上記式(1)中のxが0.2<x<0.8の範囲にあることを特徴とする請求項1〜3のいずれか1つの項に記載の排気ガス浄化用触媒。
  5. 上記多孔質体がバリウム及びストロンチウムを担持し、これらの担持濃度が多孔質体100g当たりバリウム及びストロンチウムの合計で0.08mol以下であることを特徴とする請求項1〜4のいずれか1つの項に記載の排気ガス浄化用触媒。
  6. ハニカム担体上に配設したゼオライト上に被覆して成ることを特徴とする請求項1〜5のいずれか1つの項に記載の排気ガス浄化用触媒。
  7. 請求項1〜6のいずれか1つの項に記載の排気ガス浄化用触媒を製造するに当たり、
    多孔質体に貴金属を担持させ、バリウム及びストロンチウムを含む混合水溶液を該貴金属担持多孔質体に含浸させることを特徴とする排ガス浄化用触媒の製造方法。
JP2003130949A 2003-05-09 2003-05-09 排気ガス浄化用触媒及びその製造方法 Pending JP2004330115A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130949A JP2004330115A (ja) 2003-05-09 2003-05-09 排気ガス浄化用触媒及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003130949A JP2004330115A (ja) 2003-05-09 2003-05-09 排気ガス浄化用触媒及びその製造方法

Publications (1)

Publication Number Publication Date
JP2004330115A true JP2004330115A (ja) 2004-11-25

Family

ID=33506250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130949A Pending JP2004330115A (ja) 2003-05-09 2003-05-09 排気ガス浄化用触媒及びその製造方法

Country Status (1)

Country Link
JP (1) JP2004330115A (ja)

Similar Documents

Publication Publication Date Title
RU2504431C2 (ru) УДЕРЖИВАЮЩИЕ NOx МАТЕРИАЛЫ И ЛОВУШКИ, УСТОЙЧИВЫЕ К ТЕРМИЧЕСКОМУ СТАРЕНИЮ
JP5350614B2 (ja) 排ガス浄化触媒及びこれを用いた排ガス浄化装置
RU2468862C1 (ru) Очищающий от дисперсных частиц материал, фильтр-катализатор для очистки от дисперсных частиц с использованием очищающего от дисперсных частиц материала и способ регенерирования фильтра-катализатора для очистки от дисперсных частиц
KR100199909B1 (ko) 고내열성 촉매 담체와 이의 제조방법 및 고내열성 촉매와 이의 제조방법
EP2644271A1 (en) Nox storage materials and traps resistant to thermal aging
JPH09141098A (ja) 排気ガス浄化用触媒及びその製造方法
JP6906624B2 (ja) 酸素吸放出材料、触媒、排ガス浄化システム、および排ガス処理方法
US20190126248A1 (en) Exhaust gas purifying catalyst
WO2010010714A1 (ja) 酸素貯蔵材料、排ガス浄化用触媒、及び排ガス浄化用ハニカム触媒構造体
WO2005084796A1 (en) Exhaust gas purifying catalyst, metal oxide particle and production process thereof
JPH10286462A (ja) 排気ガス浄化用触媒
JPWO2008091004A1 (ja) 排ガス浄化用触媒及び排ガス浄化用ハニカム触媒構造体
JP2019166450A (ja) 排ガス浄化用触媒、及びその製造方法、並びに一体構造型排ガス浄化用触媒
JP4859100B2 (ja) 排気ガス浄化用触媒
JP3766568B2 (ja) 排ガス浄化用触媒および排ガス浄化方法
JPH09248462A (ja) 排気ガス浄化用触媒
JP2002361089A (ja) 排気ガス浄化用触媒及びその製造方法
JP2002331240A (ja) 排ガス浄化用触媒及び排ガス浄化装置
JP5029273B2 (ja) パティキュレートフィルタ
JP2004230241A (ja) 排気ガス浄化触媒及びその製造方法
JP2000051700A (ja) 排気ガス浄化用触媒及びその製造方法
JP3488999B2 (ja) 排気ガス浄化用触媒組成物およびその製造方法、並びに排気ガス浄化用触媒
JP2004330115A (ja) 排気ガス浄化用触媒及びその製造方法
JP3885376B2 (ja) 排気ガス浄化用触媒及びその使用方法
JP3309711B2 (ja) 排気ガス浄化用触媒及びその製造方法