JP2004324632A - One-cycle engine with four strokes or more - Google Patents

One-cycle engine with four strokes or more Download PDF

Info

Publication number
JP2004324632A
JP2004324632A JP2003167181A JP2003167181A JP2004324632A JP 2004324632 A JP2004324632 A JP 2004324632A JP 2003167181 A JP2003167181 A JP 2003167181A JP 2003167181 A JP2003167181 A JP 2003167181A JP 2004324632 A JP2004324632 A JP 2004324632A
Authority
JP
Japan
Prior art keywords
engine
valve
intake
air
stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003167181A
Other languages
Japanese (ja)
Other versions
JP2004324632A5 (en
Inventor
Osamu Nakada
治 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003167181A priority Critical patent/JP2004324632A/en
Publication of JP2004324632A publication Critical patent/JP2004324632A/en
Publication of JP2004324632A5 publication Critical patent/JP2004324632A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an engine which consumes no fuel when power (force) is not required, in a piston engine (one-cycle engine with four strokes). <P>SOLUTION: An engine which performs one or more intake strokes and exhaust strokes at one explosion and in which a valve b is attached to an engine a is provided. Also, an engine c is provided. (For the engine a, the valve b and the engine c, refer to the specification). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ピストンエンジンの4ストローク1サイクルエンジン(4サイクルエンジン。)に於て、パワーを必要としない時の対応に関する。
【0002】
【従来の技術】
従来の、4ストローク1サイクルエンジンに於ては、パワーを必要としなくても、エンジンが動いている間(爆発回転している間。)は、必ず、吸気工程(混合気、又は、空気を吸気する。)→圧縮工程(圧縮し、最終的に、点火、又は燃料噴射、燃料噴射と点火をする。)→膨張工程(爆発膨張し、パワーを、ピストン、そして、クランク・シャフトへ伝える。)→排気工程(燃焼ガスを排出する。)、と行なわれていた。
【0003】
【発明が解決しようとする課題】
本発明は、エンジンが動いていても(回転しているだけの間。)、パワーを必要としない時には、圧縮工程と膨張工程をしないエンジンを得る事を目的としている。
【0004】
【課題を解決するための手段】
上記目的を達成する為に、本発明のエンジンにおいては、エンジンa、にする。
【0005】
また、エンジンaの、2回目の吸気工程以降の吸気工程の為に、弁b、を設ける。
【0006】
そして、エンジンc、にする。
【0007】
エンジンa、と、弁b、と、エンジンc、は、特許請求の範囲、並びに、符号の説明を参照の事。
【0008】
【発明の実施の形態】
発明の実施の形態を、実施例に基づき図面を参照して説明する。
図1においては、エンジンaの代表として、ガソリンエンジンの弁とプラグの配置の実施例を示す、横断面図であり、要は、混合気の吸気弁と、排気弁と、弁bと、プラグの配置を示す図である。
【0009】
また、弁の数と配置と大きさは、エンジンに因って、まちまちである。
【0010】
そして、以後、ガソリンエンジンの混合気の吸気弁を、弁d、とし、排気弁を、弁e、とする。
【0011】
図2から図9に示される実施例では、ガソリンエンジンの、4ストローク以上の1サイクルエンジンの工程を示す、図1を断面A−Aの方向から見たと仮定した、縦断面図であり、図2から図9は、
図2 1回目の吸気工程(混合気の吸気工程)
弁dは開き、弁eと弁bは閉じている。
図3 圧縮工程(点火)
弁dと弁eと弁bは、閉じている。
図4 膨張工程(燃焼工程)
弁dと弁eと弁bは、閉じている。
図5 1回目の排気工程
弁dは閉じ、弁eは開き、弁bは閉じている。
図6 2回目の吸気工程(1回目の空気の吸気工程)
弁dと弁eは閉じ、弁bは開いている。
図7 2回目の排気工程
弁dは閉じ、弁eは開き、弁bは閉じている。
図8 3回目の吸気工程(2回目の空気の吸気工程)
弁dと弁eは閉じ、弁bは開いている。
図9 3回目の排気工程
弁dは閉じ、弁eは開き、弁bは閉じている。
を示す図である。
【0012】
従って、エンジンaの場合は、パワーを必要とする場合は、4ストローク1サイクルエンジン(図2から図5までの工程を繰り返す。)であり、パワーの必要量に応じて、6ストローク1サイクルエンジン(図2から図7までの工程を繰り返す。)であったり、8ストローク1サイクルエンジン(図2から図9までの工程を繰り返す。)であったり、10ストローク以上の、1サイクルエンジン(8ストローク1サイクルエンジンに、パワーを必要とするまで、空気の吸気工程と排気工程を繰り返す。)である事を示す図である。
【0013】
図10に示される実施例では、エンジンcの代表として、筒内噴射ガソリンエンジンの弁と燃料噴射器とプラグの配置を示す、横断面図であり、要は、吸気弁と、排気弁と、燃料噴射器と、プラグの配置を示す図である。
【0014】
また、弁の数と配置と大きさは、エンジンに因って、まちまちである。
【0015】
そして、以後、筒内噴射ガソリンエンジンの吸気弁を、弁f、とし、排気弁を、弁g、とする。
【0016】
図11から図18に示される実施例では、筒内噴射ガソリンエンジンの、4ストローク以上の1サイクルエンジンの工程を示す、図10を断面B−Bの方向から見たと仮定した、縦断面図であり、図11から図18は、
図11 1回目の吸気工程
弁fは開き、弁gは閉じている。
図12 圧縮工程(燃料噴射・点火)
弁fと弁gは、閉じている。
図13 膨張工程(燃焼工程)
弁fと弁gは、閉じている。
図14 1回目の排気工程
弁fは閉じ、弁gは開いている。
図15 2回目の吸気工程
弁fは開き、弁gは閉じている。
図16 2回目の排気工程
弁fは閉じ、弁gは開いている。
図17 3回目の吸気工程
弁fは開き、弁gは閉じている。
図18 3回目の排気工程
弁fは閉じ、弁gは開いている。
を示す図である。
【0017】
従って、エンジンcの場合は、パワーを必要とする場合は、4ストローク1サイクルエンジン(図11から図14までの工程を繰り返す。)であり、パワーの必要量に応じて、6ストローク1サイクルエンジン(図11から図16までの工程を繰り返す。)であったり、8ストローク1サイクルエンジン(図11から図18までの工程を繰り返す。)であったり、10ストローク以上の、1サイクルエンジン(8ストローク1サイクルエンジンに、パワーを必要とするまで、吸気工程と排気工程を繰り返す。)である事を示す図である。
【0018】
また、図2から図9と、図11から図18の工程においての、弁のバルブ・タイミングは含まれておらず、バルブ・タイミングを含まないのは、工程を分り易くする為でもある。
【0019】
そして、各工程は、完了直前の図であり、開いている弁は、閉じる直前の図である。
【0020】
さらに、各弁が開いている1つ前の工程の図は、開く直前の図である。
【0021】
【発明の効果】
本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
【0022】
エンジンaに弁bを取り付ける事に因り、力を必要としない時には、無駄な工程を行なわず、2回目以降の吸気工程も、空気を吸気して排気するので、無駄な燃料の消費がない〔エンジンが動く(爆発回転する。)こと事態に力は要るが、自動車では、下り坂でエンジンブレーキを掛けた時、力を必要としなくても強制的に、吸気工程(混合気の吸気)→圧縮工程(点火)→膨張工程→排気工程、と工程が行なわれる。〕。
【0023】
また、エンジンcにする事に因り、力を必要としない時には、無駄な工程を行なわず、2回目以降の吸気工程も、空気を吸気して排気するので、無駄な燃料の消費がない〔エンジンが動く(爆発回転する。)こと事態に力は要るが、自動車では、下り坂でエンジンブレーキを掛けた時、力を必要としなくても強制的に、吸気工程(空気の吸気)→圧縮工程(燃料噴射、又は、燃料噴射と点火)→膨張工程→排気工程、と工程が行なわれる。〕。
【0024】
そして、エンジンaに弁bを取り付けたエンジンと、エンジンcにする事に因り、無駄な燃料の消費かない、と言う事は、省資源、省エネルギーにつながり、無駄な燃料の消費がない、と言う事は、低公害にもつながる。
【0025】
さらに、従来の4サイクルエンジンでは、圧縮工行完了後、混合気、又は、燃料噴射器から噴射された燃料に、火が付いても付か無くても、燃料と力を必要とするが、それが無いので、省資源、省エネルギーにつながる。
【図面の簡単な説明】
【図1】4ストローク以上の1サイクルエンジンの、エンジンaの代表として、ガソリンエンジンの、弁dと弁eと弁bとプラグの配置を示す、横断面図である。
【図2】図1を、断面A−Aの方向から見たと仮定した工程を示す、縦断面図である〔1回目の吸気工程(混合気の吸気工程)〕。
【図3】図1を、断面A−Aの方向から見たと仮定した工程を示す、縦断面図である〔圧縮工程(点火)〕。
【図4】図1を、断面A−Aの方向から見たと仮定した工程を示す、縦断面図である〔膨張工程(燃焼工程)〕。
【図5】図1を、断面A−Aの方向から見たと仮定した工程を示す、縦断面図である(1回目の排気工程)。
【図6】図1を、断面A−Aの方向から見たと仮定した工程を示す、縦断面図である〔2回目の吸気工程(1回目の空気の吸気工程)〕。
【図7】図1を、断面A−Aの方向から見たと仮定した工程を示す、縦断面図である(2回目の排気工程)。
【図8】図1を、断面A−Aの方向から見たと仮定した工程を示す、縦断面図である。〔3回目の吸気工程(2回目の空気の吸気工程)〕。
【図9】図1を、断面A−Aの方向から見たと仮定した工程を示す、縦断面図である(3回目の排気工程)。
【図10】4ストローク以上の1サイクルエンジンの、エンジンcの代表として、筒内噴射ガソリンエンジンの、弁fと弁gと燃料噴射器とプラグの配置を示す、横断面図である。
【図11】図10を、断面B−Bの方向から見たと仮定した工程を示す、縦断面図である(1回目の吸気工程)。
【図12】図10を、断面B−Bの方向から見たと仮定した工程を示す、縦断面図である。〔圧縮工程(燃料噴射・点火)〕。
【図13】図10を、断面B−Bの方向から見たと仮定した工程を示す、縦断面図である。〔膨張工程(燃焼工程)〕。
【図14】図10を、断面B−Bの方向から見たと仮定した工程を示す、縦断面図である(1回目の排気工程)。
【図15】図10を、断面B−Bの方向から見たと仮定した工程を示す、縦断面図である。(2回目の吸気工程)。
【図16】図10を、断面B−Bの方向から見たと仮定した工程を示す、縦断面図である。(2回目の排気工程)。
【図17】図10を、断面B−Bの方向から見たと仮定した工程を示す、縦断面図である(3回目の吸気工程)。
【図18】図10を、断面B−Bの方向から見たと仮定した工程を示す、縦断面図である。(3回目の排気工程)。
【符号の説明】
1 ガソリンエンジンの混合気の吸気弁(弁d)
2 ガソリンエンジンの排気弁(弁e)
3 エンジンaの、2回目以降の吸気工程の為に、空気だけをシリンダーの中に吸気する、空気専用の吸気弁(弁b)
4 プラグ
5 気化器
6 混合気の吸気管
7 排気管
8 空気専用の吸気管
9 ピストン
10 弁eと弁b
11 筒内噴射ガソリンエンジンの吸気弁(弁f)
12 筒内噴射ガソリンエンジンの排気弁(弁g)
13 燃料噴射器
14 吸気管
15 プラグと燃料噴射器
A−A 断面
B−B 断面
エンジンa ピストンエンジンに於て、1回の爆発で、1回以上の吸気工程と排気工程を行なう、空気と燃料を混合してシリンダーの中に吸気し、それを圧縮して点火し、膨張工程の時にエネルギーを得る(ガソリンエンジン、天然ガスエンジンなど。)、4ストローク以上の、1サイクルエンジン(4ストローク以上の、4以上は、偶数である。)。
弁b エンジンaの、2回目以降の吸気工程の為に、空気だけをシリンダーの中に吸気する、空気専用の吸気弁。
エンジンc ピストンエンジンに於て、1回の爆発で、1回以上の吸気工程と排気工程を行なう、空気をシリンダーの中に吸気し、それを圧縮して燃料噴射、又は、燃料噴射と点火をし、膨張工程の時にエネルギーを得る(ディーゼルエンジン、筒内噴射ガソリンエンジンなど。)、4ストローク以上の、1サイクルエンジン(4ストローク以上の、4以上は、偶数である。)。
弁d ガソリンエンジンの混合気の吸気弁
弁e ガソリンエンジンの排気弁
弁f 筒内噴射ガソリンエンジンの吸気弁
弁g 筒内噴射ガソリンエンジンの排気弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a case where power is not required in a four-stroke one-cycle engine (four-cycle engine) of a piston engine.
[0002]
[Prior art]
In a conventional four-stroke, one-cycle engine, even if power is not required, an air intake process (air-fuel mixture or air) must be performed while the engine is running (during explosion rotation). Inhale. → Compression process (compress and eventually ignite or fuel injection, fuel injection and ignition.) → Expansion process (explode and expand, transmitting power to piston and crankshaft.) ) → Exhaust process (discharge combustion gas).
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide an engine that does not perform a compression step and an expansion step when power is not required even when the engine is running (while it is only rotating).
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the engine of the present invention is engine a.
[0005]
Further, a valve b is provided for the intake process of the engine a after the second intake process.
[0006]
Then, the engine c is set.
[0007]
For the engine a, the valve b, and the engine c, refer to the claims and the description of the reference numerals.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described based on examples with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of the arrangement of a valve and a plug of a gasoline engine as a representative of the engine a. In short, an intake valve for an air-fuel mixture, an exhaust valve, a valve b, and a plug It is a figure which shows arrangement | positioning.
[0009]
Also, the number, arrangement and size of the valves vary depending on the engine.
[0010]
Thereafter, the intake valve of the gas-fuel mixture of the gasoline engine is referred to as a valve d, and the exhaust valve is referred to as a valve e.
[0011]
In the embodiment shown in FIGS. 2 to 9, it is a longitudinal sectional view showing the process of a one-cycle engine of four strokes or more of a gasoline engine, assuming that FIG. 1 is viewed from the direction of section A-A. 2 to 9
Figure 2 First intake process (air-fuel mixture intake process)
Valve d is open and valves e and b are closed.
Figure 3 Compression process (ignition)
Valve d, valve e, and valve b are closed.
Figure 4 Expansion process (combustion process)
Valve d, valve e, and valve b are closed.
FIG. 5 The first exhaust process valve d is closed, the valve e is open, and the valve b is closed.
Fig. 6 Second air intake process (first air intake process)
Valves d and e are closed and valve b is open.
FIG. 7 The second exhaust process valve d is closed, the valve e is open, and the valve b is closed.
Fig. 8 Third air intake process (second air intake process)
Valves d and e are closed and valve b is open.
FIG. 9 The third evacuation process valve d is closed, the valve e is open, and the valve b is closed.
FIG.
[0012]
Therefore, in the case of the engine a, when power is required, the engine is a four-stroke one-cycle engine (the steps from FIG. 2 to FIG. 5 are repeated). (Repeat the steps from FIG. 2 to FIG. 7), an eight-stroke one-stroke engine (repeat the steps from FIG. 2 to FIG. 9), or a one-stroke engine (eight stroke FIG. 9 is a diagram showing that an air intake process and an air exhaust process are repeated until power is required for a one-cycle engine.
[0013]
In the embodiment shown in FIG. 10, as a representative of the engine c, it is a cross-sectional view showing the arrangement of a valve, a fuel injector, and a plug of a direct injection gasoline engine, that is, an intake valve, an exhaust valve, FIG. 3 is a diagram showing the arrangement of a fuel injector and a plug.
[0014]
Also, the number, arrangement and size of the valves vary depending on the engine.
[0015]
Thereafter, the intake valve of the direct injection gasoline engine is referred to as a valve f, and the exhaust valve is referred to as a valve g.
[0016]
In the embodiment shown in FIGS. 11 to 18, a longitudinal sectional view showing the process of a four-stroke or longer one-stroke engine of a direct injection gasoline engine, assuming that FIG. 10 is viewed from the direction of section BB, is shown. And FIGS. 11 to 18 show:
FIG. 11 The first intake process valve f is open and the valve g is closed.
Figure 12 Compression process (fuel injection / ignition)
Valve f and valve g are closed.
Figure 13 Expansion process (combustion process)
Valve f and valve g are closed.
FIG. 14 The first evacuation process valve f is closed and the valve g is open.
FIG. 15 The second intake process valve f is open and the valve g is closed.
FIG. 16 The second evacuation process valve f is closed and the valve g is open.
FIG. 17 The third intake process valve f is open and the valve g is closed.
FIG. 18 The third evacuation process valve f is closed and the valve g is open.
FIG.
[0017]
Therefore, in the case of the engine c, when power is required, the engine is a four-stroke one-cycle engine (the steps from FIG. 11 to FIG. 14 are repeated). Depending on the required power, the six-stroke one-cycle engine is used. (Repeat the steps from FIG. 11 to FIG. 16), an 8-stroke one-cycle engine (repeat the steps from FIG. 11 to FIG. 18), or a one-stroke engine (8-stroke It is a diagram showing that the intake process and the exhaust process are repeated until power is required for the one-cycle engine.)
[0018]
Also, in the processes of FIGS. 2 to 9 and FIGS. 11 to 18, the valve timing of the valve is not included, and the reason that the valve timing is not included is also to make the process easier to understand.
[0019]
And each process is a figure just before completion, and the valve which is open is a figure just before closing.
[0020]
Further, the figure of the step immediately before each valve is open is a figure just before opening.
[0021]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
[0022]
When no force is required due to the attachment of the valve b to the engine a, no wasteful steps are performed, and air is sucked and exhausted in the second and subsequent intake steps, so that there is no wasteful consumption of fuel. Power is required for the engine to move (explode and rotate), but in an automobile, when the engine brake is applied on a downhill, the intake process (suction of air-fuel mixture) is forcibly performed without the need for power. → The compression step (ignition) → the expansion step → the exhaust step. ].
[0023]
In addition, when no power is required due to the engine c, no wasteful process is performed, and air is sucked and exhausted in the second and subsequent intake processes, so that there is no wasteful consumption of fuel [engine It takes power to move (explode and rotate), but in a car, when the engine brake is applied on a downhill, the intake process (air intake) → compression is forcibly performed even if no power is required. Steps (fuel injection or fuel injection and ignition) → expansion step → exhaust step are performed. ].
[0024]
The fact that there is no useless fuel consumption due to the engine a with the valve b attached to the engine a and the engine c leads to resource and energy savings and no useless fuel consumption. Things also lead to low pollution.
[0025]
Further, in the conventional four-stroke engine, after completion of the compression work, the mixture or the fuel injected from the fuel injector needs fuel and power whether or not the fuel is ignited. Because there is not, it leads to resource saving and energy saving.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the arrangement of a valve d, a valve e, a valve b, and a plug of a gasoline engine as a representative of an engine a of a one-stroke engine of four strokes or more.
FIG. 2 is a longitudinal sectional view showing a process assuming that FIG. 1 is viewed from a direction of a section AA [first intake process (a mixture intake process)].
FIG. 3 is a longitudinal sectional view showing a step assuming that FIG. 1 is viewed from a direction of a section AA [compression step (ignition)].
FIG. 4 is a longitudinal sectional view showing a step assuming that FIG. 1 is viewed from the direction of the section AA [expansion step (combustion step)].
FIG. 5 is a longitudinal sectional view showing a step assuming that FIG. 1 is viewed from the direction of the section AA (first exhaust step).
FIG. 6 is a longitudinal sectional view showing a step assuming that FIG. 1 is viewed from the direction of the section AA [second intake step (first air intake step)].
FIG. 7 is a longitudinal sectional view showing a step assuming that FIG. 1 is viewed from the direction of the section AA (second exhaust step).
FIG. 8 is a longitudinal sectional view showing a step assuming that FIG. 1 is viewed from the direction of the section AA. [Third intake step (second air intake step)].
FIG. 9 is a longitudinal sectional view showing a step assuming that FIG. 1 is viewed from the direction of the section AA (third exhaust step).
FIG. 10 is a cross-sectional view showing the arrangement of a valve f, a valve g, a fuel injector, and a plug of a direct injection gasoline engine as a representative of an engine c of a four-stroke or longer one-cycle engine.
FIG. 11 is a longitudinal sectional view showing a step assuming that FIG. 10 is viewed from the direction of the section BB (first intake step).
FIG. 12 is a longitudinal sectional view showing a step assuming that FIG. 10 is viewed from the direction of the section BB. [Compression process (fuel injection / ignition)].
FIG. 13 is a longitudinal sectional view showing a step assuming that FIG. 10 is viewed from the direction of the section BB. [Expansion step (combustion step)].
FIG. 14 is a longitudinal sectional view showing a step assuming that FIG. 10 is viewed from the direction of the section BB (first exhaust step).
FIG. 15 is a longitudinal sectional view showing a step assuming that FIG. 10 is viewed from the direction of the section BB. (Second intake step).
FIG. 16 is a longitudinal sectional view showing a step assuming that FIG. 10 is viewed from the direction of the section BB. (Second exhaust step).
FIG. 17 is a longitudinal sectional view showing a step assuming that FIG. 10 is viewed from the direction of the section BB (third intake step).
FIG. 18 is a longitudinal sectional view showing a step assuming that FIG. 10 is viewed from the direction of the section BB. (3rd exhaust step).
[Explanation of symbols]
1 Intake valve for mixture of gasoline engine (valve d)
2 Gasoline engine exhaust valve (valve e)
3. Intake valve for exclusive use of air (valve b) that draws only air into the cylinder for the second and subsequent intake processes of engine a.
4 Plug 5 Vaporizer 6 Air-intake pipe 7 for air-fuel mixture 7 Exhaust pipe 8 Intake pipe 9 for air only Piston 10 Valve e and valve b
11 Intake valve (valve f) of a direct injection gasoline engine
12 In-cylinder injection gasoline engine exhaust valve (valve g)
13 Fuel Injector 14 Intake Pipe 15 Plug and Fuel Injector AA Cross Section BB Cross Section Engine a In a piston engine, perform one or more intake and exhaust processes with one explosion, air and fuel Is mixed into the cylinder, compressed and ignited to obtain energy during the expansion process (gasoline engine, natural gas engine, etc.), 4 strokes or more, 1 cycle engine (4 strokes or more) , 4 and above are even numbers.)
Valve b An air-only intake valve that draws only air into the cylinder for the second and subsequent intake steps of engine a.
Engine c In a piston engine, perform one or more intake and exhaust processes with one explosion. Intake air into the cylinder and compress it to inject fuel or fuel injection and ignition. Then, energy is obtained during the expansion process (a diesel engine, a direct injection gasoline engine, etc.), a four-stroke or more, one-cycle engine (four or more strokes, four or more are even numbers).
Valve d Gasoline engine mixture intake valve e Gasoline engine exhaust valve f In-cylinder gasoline engine intake valve g g In-cylinder gasoline engine exhaust valve

Claims (3)

ピストンエンジンに於て、1回の爆発で、1回以上の吸気工程と排気工程を行なう、空気と燃料を混合してシリンダーの中に吸気し、それを圧縮して点火し、膨張工程の時にエネルギーを得る(ガソリンエンジン、天然ガスエンジンなど。)、4ストローク以上の、1サイクルエンジン(4ストローク以上の、4以上は、偶数であり、以後、この様なエンジンを、エンジンa、とする。)。In a piston engine, perform one or more intake and exhaust processes with one explosion. Mix air and fuel, inhale into the cylinder, compress it, ignite it, and use it during the expansion process. Obtain energy (gasoline engine, natural gas engine, etc.), 4-stroke or more, 1-cycle engine (4-stroke or more, 4 or more are even numbers, hereinafter referred to as engine a). ). 請求項1記載のエンジンaの、2回目以降の吸気工程の為に、空気だけをシリンダーの中に吸気する、空気専用の吸気弁、を設けた、4ストローク以上の、1サイクルエンジン(以後、空気専用の吸気弁を、弁b、とする。)。A four-stroke or more one-cycle engine (hereinafter, referred to as an engine a) according to claim 1, further comprising an air-only intake valve for taking only air into the cylinder for the second and subsequent intake steps. The intake valve dedicated to air is referred to as a valve b.). ピストンエンジンに於て、1回の爆発で、1回以上の吸気工程と排気工程を行なう、空気をシリンダーの中に吸気し、それを圧縮して燃料噴射、又は、燃料噴射と点火をし、膨張工程の時にエネルギーを得る(ディーゼルエンジン、筒内噴射ガソリンエンジンなど。)、4ストローク以上の、1サイクルエンジン(4ストローク以上の、4以上は、偶数であり、以後、この様なエンジンを、エンジンc、とする。)。In a piston engine, perform one or more intake and exhaust processes with one explosion. Inhale air into a cylinder and compress it to inject fuel or fuel injection or ignition. Energy is obtained during the expansion process (diesel engine, in-cylinder gasoline engine, etc.), 4-stroke or more, 1-cycle engine (4-stroke or more, 4 or more are even numbers, hereinafter referred to as such engines, Engine c).
JP2003167181A 2003-04-22 2003-04-22 One-cycle engine with four strokes or more Pending JP2004324632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003167181A JP2004324632A (en) 2003-04-22 2003-04-22 One-cycle engine with four strokes or more

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003167181A JP2004324632A (en) 2003-04-22 2003-04-22 One-cycle engine with four strokes or more

Publications (2)

Publication Number Publication Date
JP2004324632A true JP2004324632A (en) 2004-11-18
JP2004324632A5 JP2004324632A5 (en) 2006-07-20

Family

ID=33508973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003167181A Pending JP2004324632A (en) 2003-04-22 2003-04-22 One-cycle engine with four strokes or more

Country Status (1)

Country Link
JP (1) JP2004324632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315369A (en) * 2006-05-23 2007-12-06 Osamu Nakada Method for coping with overlapping

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238361A (en) * 1997-02-22 1998-09-08 Osamu Nakada Eight-cycle diesel engine
JPH10252495A (en) * 1997-03-10 1998-09-22 Osamu Nakada Combination of 4 cycle diesel engine and 8 cycle diesel engine
JPH10274053A (en) * 1997-03-31 1998-10-13 Osamu Nakada Cylinder fuel injection eight cycle gasoline engine
JPH10317986A (en) * 1997-05-21 1998-12-02 Osamu Nakada Eight-stroke gasoline engine
JPH1162615A (en) * 1997-08-19 1999-03-05 Osamu Nakada Engine of ten cycles or more of gasoline engine, diesel engine, and cylinder injection gasoline engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10238361A (en) * 1997-02-22 1998-09-08 Osamu Nakada Eight-cycle diesel engine
JPH10252495A (en) * 1997-03-10 1998-09-22 Osamu Nakada Combination of 4 cycle diesel engine and 8 cycle diesel engine
JPH10274053A (en) * 1997-03-31 1998-10-13 Osamu Nakada Cylinder fuel injection eight cycle gasoline engine
JPH10317986A (en) * 1997-05-21 1998-12-02 Osamu Nakada Eight-stroke gasoline engine
JPH1162615A (en) * 1997-08-19 1999-03-05 Osamu Nakada Engine of ten cycles or more of gasoline engine, diesel engine, and cylinder injection gasoline engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007315369A (en) * 2006-05-23 2007-12-06 Osamu Nakada Method for coping with overlapping

Similar Documents

Publication Publication Date Title
WO2004027237A3 (en) Methods for operating a spark-ignition internal combustion engine
RU94046006A (en) Internal combustion engine and method of its operation
WO2004081356A3 (en) Cold air super-charged internal combustion engine working cycle &amp; method
EP1691057A3 (en) Engine of spark ignition type
JP2004324632A (en) One-cycle engine with four strokes or more
JP2001317412A (en) One cycle engine having six strokes or more
JP2003161162A (en) One-cycle engine with six strokes or more
JPH09273430A (en) Six-cycle gasoline engine
JP3053335U (en) Pollution-free, fuel-efficient, 6-cycle engine
JPH1162615A (en) Engine of ten cycles or more of gasoline engine, diesel engine, and cylinder injection gasoline engine
JP2004301112A (en) Method for taking actual expanding stroke during expansion stroke longer in terms of stroke than in actual compressing stroke during compression stroke and countermeasure against tool long stroke, and direct injection 4-cycle gasoline engine performing opening/closing at low/high engine speed or at low/high load, and opening/closing of passage from valve in relation to size and number of valves
JP2007315369A (en) Method for coping with overlapping
KR920000052B1 (en) Low pollution high power internal combustion engine
JP2009144696A (en) Corresponding method at overlapping
JP2004108319A (en) Internal combustion engine
JPH10331656A (en) Combined engine of four-cycle gasoline engine and eight-cycle gasoline engine
JP2000087751A (en) 2-cycle internal combustion engine
CN116608042A (en) Two-stroke method for internal combustion engine
JP2003262137A (en) Method for making actual expansion ratio larger than actual compression ratio when piston valve and rotary valve are used for 4-cycle engine, 6-cycle engine, 8-cycle engine, and 10-or-more cycle engine
WO2020115563A1 (en) Six stroke multi-cylinder hybrid with exhaust common rail technology
JPH10317986A (en) Eight-stroke gasoline engine
JP2005002980A (en) Method to make actual compression ratio larger than actual expansion ratio of an engine with 4 cycles, 6 cycles, 8 cycles, 10 cycles or more using piston valve or rotary valve
JP2012047166A (en) Method for responding when carrying out overlap
JPH10274053A (en) Cylinder fuel injection eight cycle gasoline engine
JPH04318220A (en) Internal combustion engine

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20040718

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20040722

Free format text: JAPANESE INTERMEDIATE CODE: A523

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20040921

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060226

A521 Written amendment

Effective date: 20060309

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20060321

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060409

A521 Written amendment

Effective date: 20060415

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20060421

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20060424

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20060505

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20060508

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060520

A521 Written amendment

Effective date: 20060523

Free format text: JAPANESE INTERMEDIATE CODE: A523

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20061003

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20070116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Effective date: 20090106

Free format text: JAPANESE INTERMEDIATE CODE: A131

A072 Dismissal of procedure

Effective date: 20090915

Free format text: JAPANESE INTERMEDIATE CODE: A073

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20091222

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20100406

A072 Dismissal of procedure

Effective date: 20100713

Free format text: JAPANESE INTERMEDIATE CODE: A073

A072 Dismissal of procedure

Effective date: 20101019

Free format text: JAPANESE INTERMEDIATE CODE: A073

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110215

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20120703