JP2004320700A - Method for manufacturing temperature-compensated quartz oscillator - Google Patents

Method for manufacturing temperature-compensated quartz oscillator Download PDF

Info

Publication number
JP2004320700A
JP2004320700A JP2003151704A JP2003151704A JP2004320700A JP 2004320700 A JP2004320700 A JP 2004320700A JP 2003151704 A JP2003151704 A JP 2003151704A JP 2003151704 A JP2003151704 A JP 2003151704A JP 2004320700 A JP2004320700 A JP 2004320700A
Authority
JP
Japan
Prior art keywords
substrate
temperature
container
crystal oscillator
temperature compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003151704A
Other languages
Japanese (ja)
Other versions
JP4113459B2 (en
Inventor
Hidefumi Hatanaka
英文 畠中
Riyouma Sasagawa
亮磨 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003151704A priority Critical patent/JP4113459B2/en
Publication of JP2004320700A publication Critical patent/JP2004320700A/en
Application granted granted Critical
Publication of JP4113459B2 publication Critical patent/JP4113459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacture for obtaining a downsized temperature-compensated quartz oscillator which is easy to handle and is highly productive. <P>SOLUTION: A motherboard 15 which has substrate regions A having windows 16 and margin regions B to be discarded having writing control terminals 17 is prepared. Then a case 1 in which a quartz oscillator 5 is housed is mounted in each of the substrate regions A of the motherboard 15 in such a way that it covers the window 16. An IC device 7 is mounted on the surface of each of the cases 1 positioned inside the windows 16 and temperature compensation data is inputted to each of the IC devices 7 in the substrate regions A through the writing control terminals 17 for storing the temperature compensation data in the memory of each of the IC devices 7. Finally, the motherboard 15 is cut along the periphery of each of the substrate regions A for separating the substrate regions A from the margin regions B to be discarded. IN In this way, temperature-compensated quartz oscillators are manufactured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、携帯用通信機器等の電子機器に用いられる温度補償型水晶発振器の製造方法に関するものである。
【0002】
【従来の技術】
従来より、携帯用通信機器等の電子機器に温度補償型水晶発振器が用いられている。
【0003】
かかる従来の温度補償型水晶発振器としては、例えば図7に示す如く、下面に複数個の外部端子22が被着されている枠状基体21の上面に、内部に水晶振動素子24が収容されている容器体23を取着させるとともに、前記枠状基体21の内壁面と容器体23の下面とで囲まれるキャビティ部25に前記水晶振動素子24の振動に基づいて発振出力を制御するIC素子26やコンデンサ等の電子部品素子27を配設し、これらのIC素子26や電子部品素子27を前記容器体23の下面に搭載した構造のものが知られている(例えば、特許文献1参照。)。
【0004】
尚、このような容器体23の基板や上述した枠状基体21は、通常、ガラス−セラミック等のセラミック材料によって一体的に形成されており、その内部及び表面には配線導体が形成され、従来周知のセラミックグリーンシート積層法等を採用することによって製作されている。
【0005】
また、前記IC素子26の内部には、水晶振動素子24の温度特性に応じて作成された温度補償データに基づいて水晶発振器の発振出力を補正するための温度補償回路が設けられており、温度補償型水晶発振器を組み立てた後、上述の温度補償データをIC素子26内のメモリに格納するために、枠状基体21の下面や外側面等に温度補償データ書込用の書込制御端子(図示せず)を設けておくのが一般的であった。
【0006】
【特許文献1】
特開2000―151283号公報(図2、図5)
【0007】
【発明が解決しようとする課題】
しかしながら、上述した従来の温度補償型水晶発振器においては、枠状基体21の下面や外側面等に温度補償データを書き込むための書込制御端子が設けられており、これらの書込制御端子を配置させるための広いスペースが枠状基体2の表面に必要となることから、その分、枠状基体21の面積が面方向もしくは厚み方向に大きくなり、全体構造の小型化に供しないという不都合があることに加え、温度補償型水晶発振器をマザーボード等の外部電気回路に搭載する際に両者の接合に用いられている導電性接合材の一部が書込制御端子に付着して温度補償型水晶発振器の外部端子との間でショートを招く恐れがあり、そのため、前記外部端子に対応したマザーボード側の電極形状に自由度がなくなる等、製品の取扱いが煩雑であるという不都合もあった。
【0008】
また、上述の書込制御端子が枠状基体21の外側面に配置させてある場合は、枠状基体21の製作に用いられるセラミック製の母基板に貫通穴を開けて、その内面に電極パターンを被着させる等の複雑な加工プロセスが必要となり、それによって生産性の低下を招いてしまう上に、枠状基体21の外側面に設けられている書込制御端子に書込装置のプローブ針を直接当てて書込作業を行うことが極めて困難であることから、個々の温度補償型水晶発振器を温度補償データ書込用のソケットに装着する等して温度補償データを書き込まなければならず、その場合、ソケット等の製造設備が別途、必要になるとともに、個々の温度補償型水晶発振器をソケットに装着する等の煩雑な工程が必要となり、製造プロセスが複雑化する欠点を有していた。
【0009】
更に上述した従来の温度補償型水晶発振器においては、容器体23と枠状基体21とがセラミックグリーンシート積層法等によって一体的に形成されており、かかる製法によって得られる容器体23の下面にIC素子26が搭載されていることから、温度補償型水晶発振器を“複数個取り”の手法によって製造するにあたり、容器体23及び枠状基体21が切り出される母基板にIC素子26を搭載した後で母基板を分割するような場合には、分割に伴なう衝撃がIC素子26に対して直接的に伝わり、この衝撃によってIC素子26そのものやIC素子26と容器体23との接合部に破損を招来する欠点が誘発される。従って、従来の製造プロセスにおいては、通常、容器体23と枠状基体21だけを“複数個取り”の手法によって製作し、分割後に得られた個々の個片に水晶振動素子24やIC素子26を個別に搭載することによって製品を組み立てるようにしており、その場合、個々の個片をキャリアに搭載して保持させた上、IC素子26等の搭載作業を行なう必要があることから、その分、製造設備が増え、製造工程も複雑化する欠点を有していた。
【0010】
本発明は上記欠点に鑑み案出されたもので、その目的は、取り扱いが簡便で、かつ、生産性にも優れた小型の温度補償型水晶発振器を得ることができる温度補償型水晶発振器の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明の温度補償型水晶発振器の製造方法は、窓部を有する基板領域と書込制御端子を有する捨代領域とを相互に隣接させて複数個ずつ配置させてなる母基板を準備する工程Aと、前記母基板の各基板領域に、水晶振動素子が収容されている容器体を、前記窓部を塞ぐようにして取着させるとともに、前記窓部の内側に位置する前記容器体の表面に、前記水晶振動素子の温度特性を補償する温度補償データに基づいて発振出力を制御するIC素子を搭載する工程Bと、前記書込制御端子を介して各基板領域内のIC素子に温度補償データを入力し、IC素子内のメモリに温度補償データを格納する工程Cと、前記母基板を各基板領域の外周に沿って切断することにより、各基板領域を捨代領域より切り離し、前記容器体に前記基板領域に対応した実装用基体とIC素子とを取着させてなる複数個の温度補償型水晶発振器を同時に得る工程Dと、を含むことを特徴とするものである。
【0012】
また本発明の温度補償型水晶発振器の製造方法は、前記母基板の基板領域に複数個の外部端子が形成されており、これら外部端子と前記書込制御端子とが母基板の同一主面上に配設されていることを特徴とするものである。
【0013】
更に本発明の温度補償型水晶発振器の製造方法は、前記母基板が樹脂材料から成り、前記容器体の基板がセラミック材料から成ることを特徴とするものである。
【0014】
また更に本発明の温度補償型水晶発振器の製造方法は、前記工程Bにおいて、前記母基板の基板領域に前記容器体を取着させるとともに、該容器体に前記IC素子を搭載することによって、前記捨代領域の書込制御端子と前記IC素子とが容器体及び母基板の配線導体を介して電気的に接続されることを特徴とするものである。
【0015】
更にまた本発明の温度補償型水晶発振器の製造方法は、前記工程Bにおいて、前記容器体が前記母基板に取着された後、前記IC素子が前記容器体に搭載されることを特徴とするものである。
【0016】
また更に本発明の温度補償型水晶発振器の製造方法は、前記工程Bにおいて、前記容器体に前記IC素子を搭載した後、前記容器体が前記母基板に取着されることを特徴とするものである。
【0017】
本発明によれば、温度補償データをIC素子に書き込むのに使用される書込制御端子を母基板の捨代領域に設けておき、温度補償データの書き込みを完了した後で子基板(実装用基体)より切り離すようにしたことから、実装用基体に書込制御端子を配置させるための広いスペースは不要となり、温度補償型水晶発振器の全体構造を小型化することができる。
【0018】
しかもこの場合、温度補償型水晶発振器の製造プロセスは比較的簡素となる上に、個々の温度補償型水晶発振器に温度補償データを書き込むためのソケット等の設備は一切不要であり、これによって温度補償型水晶発振器の生産性を高く維持することもできる。
【0019】
また本発明の製造方法によって得られる温度補償型水晶発振器には、上述した如く書込制御端子が存在していないことから、温度補償型水晶発振器をマザーボード等の外部電気回路に搭載する際、両者の接合に用いられている導電性接合材の一部が書込制御端子に付着してショートを起こすといった不都合を発生することはなく、製品の取扱いを簡便になすことができる。
【0020】
更に本発明によれば、前記IC素子は、容器体や導電性接合材を介して母基板に搭載されており、母基板には直接搭載されていないことから、母基板より実装用基体を切り出す際、母基板に印加される衝撃は、導電性接合材、容器体等を介してIC素子に伝導し、かかる伝導過程において十分に緩和されてからIC素子へと印加される。従って、水晶振動素子が収容された容器体を母基板に取着させるとともに、前記容器体にIC素子を搭載した後で母基板を個々の基板領域毎に分割するようにしても、IC素子そのものやIC素子と容器体との接合部が母基板を分割する際の衝撃によって破損してしまうことは殆どなく、これによっても温度補償型水晶発振器の生産性を高く維持することができる。またこの場合、前記母基板はIC素子を搭載した後で分割されるようになっており、IC素子の搭載時、母基板自体がIC素子搭載用のキャリアとして機能することから、従来例の項で説明したようなIC素子搭載用のキャリアは不要であり、母基板の分割によって得られた個々の子基板をキャリアに搭載するといった煩雑な作業も一切不要となる。これによっても、温度補償型水晶発振器の生産性が向上されるようになる。
【0021】
また更に本発明によれば、母基板の同一主面上に複数個の外部端子と書込制御端子とを配設しておくことにより、容器体にIC素子を搭載した後、母基板を裏返すことなく、そのまま温度補償データ書込装置のプローブ針を書込制御端子に当てて温度補償データをIC素子内のメモリに書き込む作業を行うことができ、温度補償型水晶発振器の製造プロセスを簡素に維持することができる利点もある。
【0022】
更にまた本発明によれば、容器体を加工性や封止性に優れたセラミック材料で形成し、母基板を切断時の作業性や取扱いの簡便性に優れた樹脂材料で形成しておくことにより、信頼性の高い温度補償型水晶発振器を極めて効率良く製作することができる。
【0023】
【発明の実施の形態】
以下、本発明を添付図面に基づいて詳細に説明する。
【0024】
図1は本発明の製造方法によって製作された温度補償型水晶発振器の斜視図、図2は図1の温度補償型水晶発振器の断面図、図3は図1の温度補償型水晶発振器を下方より見た平面図であり、これらの図に示す温度補償型水晶発振器は、内部に水晶振動素子としての水晶振動素子5を収容した容器体1の下面に、実装用基体(一対の脚部6a,6b)と、IC素子7とを取着させた構造を有している。
【0025】
前記容器体1は、例えば、ガラス−セラミック、アルミナセラミックス等のセラミック材料から成る基板2と、42アロイやコバール,リン青銅等の金属から成るシールリング3と、シールリング3と同様の金属から成る蓋体4とから成り、前記基板2の上面にシールリング3を取着させ、その上面に蓋体4を載置・固定させることによって容器体1が構成され、シールリング3の内側に位置する基板2の上面に水晶振動素子5が実装される。
【0026】
前記容器体1は、その内部、具体的には、基板2の上面とシールリング3の内面と蓋体4の下面とで囲まれる空間内に水晶振動素子5を収容して気密封止するためのものであり、基板2の上面には水晶振動素子5の振動電極に接続される一対の搭載パッド8a等が、基板2の下面には後述する脚部6a,6bの接合電極9aに接続される複数個の接合電極8c(以下、第1接合電極という。)やIC素子7の接続パッド7aに接続される複数個の電極パッド8b等がそれぞれ設けられ、これらのパッドは基板表面の配線パターンや基板内部に埋設されているビアホール導体等によって、対応するパッド同士、相互に電気的に接続されている。
【0027】
一方、前記容器体1の内部に収容される水晶振動素子5は、所定の結晶軸でカットした水晶片の両主面に一対の振動電極を被着・形成してなり、外部からの変動電圧が一対の振動電極を介して水晶片に印加されると、所定の周波数で厚みすべり振動を起こす。
【0028】
ここで容器体1の金属製蓋体4を容器体1や一対の脚部6a,6bの配線導体8,9を介して後述するグランド端子用の外部端子9bに接続させておけば、その使用時、蓋体4がアースされることによりシールド機能が付与されることとなるため、水晶振動素子5や後述するIC素子7を外部からの不要な電気的作用より良好に保護することができる。従って、容器体1の金属製蓋体4は容器体1や脚部6a,6bの配線導体8,9を介してグランド端子用の外部端子9bに接続させておくことが好ましい。
【0029】
そして、上述した容器体1の下面に取着される一対の脚部6a,6b及びIC素子7は、IC素子7が一対の脚部6a,6b間に位置するようにして並設されている。
【0030】
前記脚部6a,6bは、各々がガラス布基材エポキシ樹脂やポリカーボネイト,エポキシ樹脂,ポリイミド樹脂等の樹脂材料やガラス−セラミック等の低温焼成基板材料(LTCC)やアルミナセラミックス等のセラミック材料等によって矩形状をなすように形成されており、間にIC素子7を挟んで平行に配置される。
【0031】
また、これら脚部6a,6bの上面には容器体下面の対応する第1接合電極8cに電気的・機械的に接続される複数個の接合電極9a(以下、第2接合電極という。)が、また下面には4つの外部端子9b(電源電圧端子、グランド端子、発振出力端子、発振制御端子)が2個の脚部6a,6bに分かれて2個ずつ設けられており、これらの第2接合電極9bと外部端子9aとは各脚部6a,6bの端面等に設けられた溝部内面の導体膜等を介して電気的に接続されている。
【0032】
上述した4個の外部端子9bは、温度補償型水晶発振器をマザーボード等の外部電気回路に搭載する際、外部電気回路の回路配線と電気的に接続されるようになっており、これら4個の外部端子9bのうち、グランド端子と発振出力端子を一方の脚部6aに、電源電圧端子と発振制御端子を他方の脚部6bに設けておくようにすれば、発振出力端子がグランド電位に接続されるグランド端子に近接して配置されることから、発振出力端子より出力される発振信号にノイズが干渉するのを有効に防止することができる。従って、グランド端子と発振出力端子は共通の脚部(実装用基体)に隣接させて設けておくことが好ましい。
【0033】
また一方、一対の脚部6a,6b間に配置されるIC素子7としては、上面に前記容器体1の電極パッド8bに接続される複数個の接続パッド7aを有した矩形状のフリップチップ型ICが用いられ、その回路形成面には、周囲の温度状態を検知する感温素子(サーミスタ)、水晶振動素子5の温度特性を補償する温度補償データを有し、該温度補償データに基づいて前記水晶振動素子5の振動特性を温度変化に応じて補正する温度補償回路、該温度補償回路に接続されて所定の発振出力を生成する発振回路等が設けられている。このようなIC素子7の発振回路で生成された発振出力は、外部に出力された後、例えば、クロック信号等の基準信号として利用されることとなる。
【0034】
また更に上述したIC素子7は、4個の側面のうち平行に配置されている2個の側面が上述した脚部6a,6bの側面に対向して近接配置されるようになっており、この2個の側面と直交する残りの2個の側面を一対の脚部6a,6bの端面間より露出させている。ここで、前記IC素子7の側面と前記脚部6a,6bの側面との間にできる間隙の幅は、例えば10μm〜500μmに設定される。
【0035】
そして、前記IC素子7の2個の露出側面は、容器体1の外周部よりも若干内側、例えば、容器体1の外周より1μm〜500μmだけ内側に、容器体1の外周部に沿って配されている。
【0036】
このように、前記IC素子7の露出側面と直交する方向に係る容器体1や一対の脚部6a,6bの幅寸法はIC素子7の一辺の長さと略等しくなるように設計され、またIC素子7の露出側面と平行な方向に係る容器体1の幅寸法はIC素子7の一辺の長さと脚部6a,6bの幅との和と略等しくなるように設計されているため、温度補償型水晶発振器の全体構造を縦・横いずれの方向にも小型に構成することができる。
【0037】
しかもこの場合、IC素子7の2個の露出側面は一対の脚部6a,6bに遮られることなく露出させてあり、IC素子7と容器体1との接合部が直視できるようになっているため、製品の検査等に際してIC素子7の接合状態を目視等によって容易に確認することができ、これによって温度補償型水晶発振器の生産性を向上させることも可能となる。
【0038】
更に上述した温度補償型水晶発振器は、平行に配されているIC素子7の2個の側面を一対の脚部6a,6bの側面間より露出させるようにしたことで、IC素子7の搭載領域がその両端部で外部に開放された形となっている。このため、完成した温度補償型水晶発振器をマザーボード等の外部電気回路に搭載した後に行なわれる洗浄工程等においてIC素子7の表面や容器体1の下面に対して洗浄液を接触させる場合であっても、一対の脚部6a,6b間の領域への洗浄液の流入、及び流出は上述した搭載領域両側の開放端を介して極めてスムーズ、かつ良好になされるようになり、IC素子7の搭載領域に洗浄液が残留してしまうのを有効に防止して、上述の洗浄工程を効率良く行うことができる利点もある。
【0039】
次に上述した温度補償型水晶発振器の製造方法について図4乃至図6を用いて説明する。
【0040】
ここで、図4(a)〜(e)は本発明の製造方法を説明するための断面図、図5(a)は本発明の製造方法に用いられる母基板を一主面側より見た斜視図、図5(b)は母基板を他主面側より見た斜視図、図6(a)は母基板を一主面側より見た拡大平面図、図6(b)は母基板を他主面側より見た拡大平面図である。
尚、図4においては容器体1や一対の脚部6a,6b等に設けられる配線導体を省略して示すものとする。
【0041】
(工程A)
まず、図4(b)、図5及び図6に示す如く、窓部16を有する基板領域Aと、複数個の書込制御端子17を有する捨代領域Bとを相互に隣接させて、これらをマトリックス状に配置した母基板15を準備する。尚、図6(A)(B)に示す斜線部が基板領域Aである。
【0042】
このような母基板15は、上述した一対の脚部6a,6bと同じ材料、即ち、ガラス布基材エポキシ樹脂やポリカーボネイト,エポキシ樹脂,ポリイミド樹脂等の樹脂材料、或いは、ガラス−セラミック等の低温焼成基板材料,アルミナセラミックス等のセラミック材料等によって形成されており、例えば、ガラス布基材エポキシ樹脂で形成する場合、ガラス糸を編み込んで形成したガラス布基材にエポキシ樹脂の液状前駆体を含浸させるとともに、該前駆体を高温で重合させることによってベースが形成され、その表面に銅箔等の金属箔を貼着し、これを従来周知のフォトエッチング等を採用し、所定パターンに加工することによって書込制御端子17や第2接合電極9a,外部端子9b等を含む所定の配線パターンが形成される。
【0043】
また前記母基板15の基板領域Aに形成されている窓部16は矩形状をなし、かつ基板領域Aを縦断するように形成されており、上述のようにして製作した母基板15の各基板領域Aをパンチング等で矩形状に打ち抜くことによって所定の窓部16が穿設される。
【0044】
このような母基板15の一主面側には、基板領域Aに複数個の第2接合電極9aが設けられ、また他主面側には、基板領域Aに複数個の外部端子9bが、捨代領域Bに複数個の書込制御端子17がそれぞれ設けられている。
【0045】
尚、本実施形態においては、個々の基板領域A内に設けられる複数個の第2接合電極9aを母基板15の一主面側で間に窓部16を挟んで2列状に並べて配設するとともに、4個の外部端子9bを母基板15の他主面側で第2接合電極9aと同様に間に窓部16を挟んで2列状に並べて配設し、このような外部端子9bの配列に沿って捨代領域B内に設けられる複数個の書込制御端子17を平行に配列させてある。
【0046】
(工程B)
次に、図4(b)に示す如く、前記母基板15の各基板領域Aに、水晶振動素子5が収容されている容器体1を、前記窓部16を塞ぐようにして取着させ、しかる後、図4(c)に示す如く、母基板15を上下に裏返し、前記窓部16の内側に位置する容器体1の表面にIC素子7を搭載する。
【0047】
前記容器体1は、先に述べたように、基板2とシールリング3と蓋体4とで構成されており、その内部に水晶振動素子5を収容させている。
【0048】
例えば、基板2をセラミック材料により形成する場合は、セラミック材料粉末に適当な有機溶剤等を添加・混合して得たセラミックグリーンシートの表面等に配線導体8となる導体ペーストを所定パターンに印刷・塗布するとともに、これを複数枚積層してプレス成形した後、高温で焼成することによって基板2を製作し、得られた基板2の上面に水晶振動素子5を搭載する。このとき、水晶振動素子5の振動電極と基板上面の搭載パッド8aとは導電性接合材10を介して電気的・機械的に接続される。そして、基板2の上面に、水晶振動素子5を囲繞するようにしてシールリング3を載置・固定し、かかるシールリング3の上面に蓋体4を従来周知の抵抗溶接等によって接合することにより容器体1が組み立てられる。
【0049】
尚、シールリング3及び蓋体4は、従来周知の金属加工法を採用し、42アロイ等の金属を所定形状に成形することによって製作され、前記シールリング3は、基板2の上面に予め被着させておいた導体層にロウ付けすることによって基板2に固定される。また上述のように、シールリング3と蓋体4とを抵抗溶接によって接合する場合、シールリング3や蓋体4の表面には予めNiメッキ層やAuメッキ層等が被着される。
【0050】
このような容器体1は、その下面に複数個の第1接合電極8cと複数個の電極パッド8bとが設けられており、複数個の第1接合電極8cが母基板15の対応する第2接合電極9aに半田等の導電性接合材11を介して当接され、かつ複数個の電極パッド8bを窓部16の内側に位置させるようにして母基板15の各基板領域Aに一主面側より載置させ、しかる後、前記導電性接合材11を熱の印加等によって溶融させ、第1接合電極8c及び第2接合電極9aを導電性接合材11を介して接合することによって容器体1が母基板15に取着・搭載される。
【0051】
また一方、前記IC素子7としては、先に述べたように、容器体1と対向する面に複数個の接続パッド7aを有した矩形状のフリップチップ型ICが用いられる。
【0052】
前記IC素子7は、その一面に設けられている複数個の接続パッド7aが、母基板15の他主面側で窓部16内に露出する容器体1の対応する電極パッド8bに半田等の導電性接合材11を介して当接されるようにして容器体1上に載置され、しかる後、前記導電性接合材11を熱の印加等によって溶融させ、接合パッド7a及び電極パッド8bを導電性接合材11を介して接合することによってIC素子7が容器体1上に搭載される。
【0053】
かかる工程Bにおいては、母基板15の基板領域Aに容器体1を取着させるとともに、該容器体1にIC素子7を搭載することによって、IC素子7内の電子回路が容器体1の配線導体8や母基板の配線導体等を介して水晶振動素子5や外部端子9b等と電気的に接続され、また同時に、捨代領域Bの書込制御端子17とIC素子7とが容器体1及び母基板15の配線導体を介して電気的に接続されることとなる。
【0054】
ここで、母基板15と容器体1とは導電性接合材11を介して接合されており、両者の非接合部には所定の隙間が存在しているため、IC素子7を半田等の導電性接合材11を介して容器体1の下面に搭載する際、該接合に必要な熱を上述の隙間等から容器体1−IC素子7間の導電性接合材11に対して良好に伝達させることができ、IC素子7を効率良く、確実に搭載することが可能となる。これにより、温度補償型水晶発振器の信頼性及び生産性を向上させることができる。
【0055】
(工程C)
次に、図4(d)に示す如く、母基板15の捨代領域Bに設けた複数個の書込制御端子17を介して各基板領域A内のIC素子7に温度補償データを入力し、IC素子7内のメモリに温度補償データを格納する。
【0056】
このような温度補償データの書込作業は、温度補償データ書込装置のプローブ針20を書込制御端子17に当てて、水晶振動素子5の温度特性に応じて作成された温度補償データをIC素子7の温度補償回路内に設けられているメモリに入力し、これを記憶させることによって行なわれる。尚、ここでIC素子7に書き込まれる温度補償データは、水晶振動素子毎の温度特性バラツキを補正するためのものであり、その温度補償型水晶発振器に使用される水晶振動素子5の温度特性を事前に測定しておくことにより得られるものである。
【0057】
この場合、個々の温度補償型水晶発振器のIC素子7に温度補償データを書き込むためのソケット等の設備は一切不要であり、これによっても温度補償型水晶発振器の生産性向上に供することができる。
【0058】
またこの場合、複数個の外部端子9bと複数個の書込制御端子17とが母基板15の同一主面上に配設されているため、容器体1にIC素子7を搭載した後、母基板15を裏返すことなく、そのまま温度補償データ書込装置のプローブ針20を書込制御端子17に当てて温度補償データをIC素子7内のメモリに書き込む作業を行うことができ、温度補償型水晶発振器の製造プロセスを簡素に維持することができる。
【0059】
(工程D)
そして最後に、図4(e)に示す如く、前記母基板15を各基板領域Aの外周に沿って切断することにより、各基板領域Aを捨代領域Bより切り離す。
【0060】
前記母基板15の切断は従来周知のダイシング等によって行なわれ、かかる切断工程を経て母基板15が個々の基板領域毎に分割される。これにより、容器体1の下面に、基板領域Aに対応した実装用基体(一対の脚部6a,6b)とIC素子7とを取着させてなる複数個の温度補償型水晶発振器が同時に得られる。
【0061】
このとき、前記IC素子7は、容器体1や導電性接合材11を介して母基板15に搭載されており、母基板15には直接搭載されていないことから、母基板15の切断に際して母基板15に印加される衝撃は、導電性接合材11、容器体1等を介してIC素子7に伝導し、かかる伝導過程において十分に緩和されてからIC素子7へと印加されることとなる。従って、IC素子そのものやIC素子7と容器体1との接合部が母基板15を分割する際の衝撃によって破損してしまうことは殆どなく、これによっても温度補償型水晶発振器の生産性を高く維持することができる。
【0062】
またこの場合、母基板15はIC素子7を搭載した後で分割されるようになっており、IC素子7の搭載時、母基板自体がIC素子搭載用のキャリアとして機能することから、従来例の項で説明したようなIC素子搭載用のキャリアは不要であり、母基板15の分割によって得られた個々の子基板をキャリアに搭載するといった煩雑な作業も一切不要となる。これによっても、温度補償型水晶発振器の生産性が向上されるようになる。
【0063】
そして、上述した製造工程においては、書込制御端子17を母基板15の捨代領域Bに設けておき、温度補償データの書き込みを完了した後で個々の一対の脚部6a,6bより切り離すようにしたことから、一対の脚部6a,6bに書込制御端子17を配置させるための広いスペースは不要となり、温度補償型水晶発振器の全体構造を小型化することができる。
【0064】
また、上述の工程A〜Dを経て得られる温度補償型水晶発振器には、書込制御端子17が存在していないことから、温度補償型水晶発振器をマザーボード等の外部電気回路に搭載する際、両者の接合に用いられている導電性接合材の一部が書込制御端子に付着してショートを起こすといった不都合を発生することもなく、製品の取扱いを簡便になすことができる。
【0065】
更に本実施形態においては、容器体1を加工性や封止性に優れたセラミック材料で形成し、母基板15を切断時の作業性や取扱いの簡便性に優れた樹脂材料で形成しておくことにより、信頼性の高い温度補償型水晶発振器を極めて効率良く製作することができる。従って、前記容器体1をセラミック材料で形成し、前記母基板15を樹脂材料で形成しておくことが好ましい。
【0066】
尚、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
【0067】
例えば、上述した実施形態においては、工程B中、容器体1を母基板15に取着した後でIC素子7を容器体1に搭載するようにしたが、これに代えて、容器体1にIC素子7を搭載した後で容器体1を母基板15に取着させるようにしても構わない。
【0068】
また上述した実施形態においては、捨代領域Bの書込制御端子17を外部端子9bの形成面と同じ母基板15の他主面に設けるようにしたが、これに代えて、書込制御端子17を第2接合電極9aの形成面と同じ母基板15の一主面側に設けるようにしても構わない。
【0069】
更に上述した実施形態においては、捨代領域Bの書込制御端子17を外部端子9bの配列に沿って平行に配置させるようにしたが、これに代えて、捨代領域Bの書込制御端子17を外部端子9bの配列と直交する方向に配置させるようにしても構わない。
【0070】
また更に上述した実施形態においては、母基板15より切り出される実装用基体として一対の脚部6a,6bを用いるようにしたが、これに代えて、実装用基体として1個の枠状基体を用いるようにしても良いし、各脚部6a,6bをそれぞれ2個に分断して得た4個の脚部を用いたり、或いは、脚部6a,6bのうち一方のみを2つに分断して得た3個の脚部を用いるようにしても良い。例えば、実装用基体として1個の枠状基体を用いる場合には、窓部16が基板領域Aを縦断するように母基板15を孔明けするのではなく、窓部16の外周が基板領域Aの外周より内側に離間して配されるように母基板15に孔明けをする。
【0071】
更にまた上述した実施形態において、母基板15と容器体1、容器体1とIC素子7を異方性導電接着材を介して取着させるようにしても良く、この場合、母基板15と容器体1との電気的接続及び機械的接続、容器体1とIC素子7との電気的接続及び機械的接続が異方性導電接着材によって一括的になされることから、温度補償型水晶発振器の組み立て作業を大幅に簡略化することができる利点がある。
【0072】
また更に上述した実施形態において、容器体1とIC素子7との間にできる隙間や母基板15と容器体1との間にできる隙間に樹脂材を充填・形成し、該樹脂材で対向するパッド同士、電極同士を接合する導電性接合材を被覆するようになしておいても良く、その場合、IC素子の回路形成面を樹脂材でもって良好に保護することができるとともに、IC素子7や一対の脚部6a,6bの接合部が前記樹脂材でもって補強されるようになり、これによっても温度補償型水晶発振器の信頼性を向上させることができる。
【0073】
更にまた上述した実施形態においては、容器体1の蓋体4をシールリング3を介して基板2に接合させるようにしたが、これに代えて、基板2の上面に接合用のメタライズパターンを形成しておき、このメタライズパターンに対して蓋体4をダイレクトに溶接するようにしても構わない。
【0074】
また更に上述した実施形態においては、容器体1の基板上面に直接シールリング3を取着させるようにしたが、これに代えて、基板2の上面に基板2と同材質のセラミック材料等から成る枠体を一体的に取着させた上、該枠体の上面にシールリング3を取着させるようにしても構わない。
【0075】
更にまた上述した実施形態においては、蓋体4を容器体1の本体に対し溶接することによって蓋体4を接合するようにしたが、これに代えて、蓋体4をAu−Sn等のロウ材を介して容器体1の本体に接合するようにしても構わない。
【0076】
また更に上述した実施形態においては、脚部6a,6bの形状を矩形状となしたが、このような脚部6a,6bの内側面や外側面,角部等に切り欠きを設け、この切り欠きと接する脚部6a,6bの表面に導体パターンを被着させたり、或いは、切り欠きによってできたスペースにチップ状コンデンサ等の小さな電子部品素子を配置させるようにしても構わない。
【0077】
更にまた上述した実施形態において、IC素子7の側面と脚部6a,6bの側面との間にできる間隙に補強や封止等を目的として樹脂材等を充填するようにしても良いことは言うまでもない。
【0078】
【発明の効果】
本発明によれば、温度補償データをIC素子に書き込むのに使用される書込制御端子を母基板の捨代領域に設けておき、温度補償データの書き込みを完了した後で子基板(実装用基体)より切り離すようにしたことから、実装用基体に書込制御端子を配置させるための広いスペースは不要となり、温度補償型水晶発振器の全体構造を小型化することができる。
【0079】
しかもこの場合、温度補償型水晶発振器の製造プロセスは比較的簡素となる上に、個々の温度補償型水晶発振器に温度補償データを書き込むためのソケット等の設備は一切不要であり、これによって温度補償型水晶発振器の生産性を高く維持することもできる。
【0080】
また本発明の製造方法によって得られる温度補償型水晶発振器には、上述した如く書込制御端子が存在していないことから、温度補償型水晶発振器をマザーボード等の外部電気回路に搭載する際、両者の接合に用いられている導電性接合材の一部が書込制御端子に付着してショートを起こすといった不都合を発生することはなく、製品の取扱いを簡便になすことができる。
【0081】
更に本発明によれば、前記IC素子は、容器体や導電性接合材を介して母基板に搭載されており、母基板には直接搭載されていないことから、母基板より実装用基体を切り出す際、母基板に印加される衝撃は、導電性接合材、容器体等を介してIC素子に伝導し、かかる伝導過程において十分に緩和されてからIC素子へと印加される。従って、水晶振動素子が収容された容器体を母基板に取着させるとともに、前記容器体にIC素子を搭載した後で母基板を個々の基板領域毎に分割するようにしても、IC素子そのものやIC素子と容器体との接合部が母基板を分割する際の衝撃によって破損してしまうことは殆どなく、これによっても温度補償型水晶発振器の生産性を高く維持することができる。またこの場合、前記母基板はIC素子を搭載した後で分割されるようになっており、IC素子の搭載時、母基板自体がIC素子搭載用のキャリアとして機能することから、従来例の項で説明したようなIC素子搭載用のキャリアは不要であり、母基板の分割によって得られた個々の子基板をキャリアに搭載するといった煩雑な作業も一切不要となる。これによっても、温度補償型水晶発振器の生産性が向上されるようになる。
【0082】
また更に本発明によれば、母基板の同一主面上に複数個の外部端子と書込制御端子とを配設しておくことにより、容器体にIC素子を搭載した後、母基板を裏返すことなく、そのまま温度補償データ書込装置のプローブ針を書込制御端子に当てて温度補償データをIC素子内のメモリに書き込む作業を行うことができ、温度補償型水晶発振器の製造プロセスを簡素に維持することができる利点もある。
【0083】
更にまた本発明によれば、容器体を加工性や封止性に優れたセラミック材料で形成し、母基板を切断時の作業性や取扱いの簡便性に優れた樹脂材料で形成しておくことにより、信頼性の高い温度補償型水晶発振器を極めて効率良く製作することができる。
【図面の簡単な説明】
【図1】本発明の製造方法によって製作した温度補償型水晶発振器の斜視図である。
【図2】図1の温度補償型水晶発振器の断面図である。
【図3】図1の温度補償型水晶発振器を下方より見た平面図である。
【図4】(a)乃至(e)は本発明の製造方法を説明するための断面図である。
【図5】(a)は本発明の製造方法に用いられる母基板を一主面側より見た斜視図、(b)は(a)の母基板を他主面側より見た斜視図である。
【図6】(a)は図5に示す母基板を一主面側より見た拡大平面図、(b)は図5に示す母基板を他主面側より見た拡大平面図である。
【図7】(a)は従来の温度補償型水晶発振器の断面図、(b)は(a)の温度補償型水晶発振器を下方より見た平面図である。
【符号の説明】
1・・・容器体
2・・・基板
3・・・シールリング
4・・・蓋体
5・・・水晶振動素子
6a,6b・・・実装用基体(一対の脚部)
7・・・IC素子
7a・・・接続パッド
8・・・容器体の配線導体
8a・・・搭載パッド
8b・・・電極パッド
8c・・・第1接合電極
9・・・実装用基体の配線導体
9a・・・第2接合電極
9b・・・外部端子
10、11・・・導電性接合材
15・・・母基板
16・・・窓部
17・・・書込制御端子
20・・・書込装置のプローブ針
A・・・基板領域
B・・・捨代領域
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a temperature-compensated crystal oscillator used in electronic devices such as portable communication devices.
[0002]
[Prior art]
Conventionally, temperature-compensated crystal oscillators have been used in electronic devices such as portable communication devices.
[0003]
As such a conventional temperature-compensated crystal oscillator, for example, as shown in FIG. 7, a crystal vibrating element 24 is housed inside a frame-like base 21 having a plurality of external terminals 22 attached to the lower surface. An IC element 26 for attaching a container body 23 and controlling an oscillation output based on the vibration of the crystal resonator element 24 in a cavity 25 surrounded by the inner wall surface of the frame-shaped base 21 and the lower surface of the container body 23. An electronic component element 27 such as a capacitor and a capacitor is provided, and a structure in which the IC element 26 and the electronic component element 27 are mounted on the lower surface of the container body 23 is known (for example, see Patent Document 1). .
[0004]
Incidentally, the substrate of the container body 23 and the above-mentioned frame-shaped substrate 21 are usually integrally formed of a ceramic material such as glass-ceramic, and wiring conductors are formed inside and on the surface thereof. It is manufactured by employing a well-known ceramic green sheet laminating method or the like.
[0005]
Further, inside the IC element 26, there is provided a temperature compensation circuit for correcting the oscillation output of the crystal oscillator based on the temperature compensation data created according to the temperature characteristics of the crystal vibrating element 24. After assembling the compensated crystal oscillator, a write control terminal (for writing temperature compensation data) on the lower surface or the outer surface of the frame-shaped base 21 in order to store the above-mentioned temperature compensation data in the memory in the IC element 26. (Not shown) was generally provided.
[0006]
[Patent Document 1]
JP-A-2000-151283 (FIGS. 2 and 5)
[0007]
[Problems to be solved by the invention]
However, in the above-described conventional temperature-compensated crystal oscillator, write control terminals for writing temperature compensation data are provided on the lower surface, the outer surface, and the like of the frame-shaped base 21, and these write control terminals are arranged. Since a large space is required on the surface of the frame-shaped base 2 for the purpose, the area of the frame-shaped base 21 is increased in the plane direction or the thickness direction, and there is a disadvantage that the whole structure is not reduced in size. In addition, when the temperature-compensated crystal oscillator is mounted on an external electric circuit such as a motherboard, a part of the conductive bonding material used for joining the two adheres to the write control terminal and the temperature-compensated crystal oscillator This may cause a short circuit between the external terminal and the external terminal, and therefore, there is no flexibility in the shape of the electrode on the motherboard corresponding to the external terminal. If even there.
[0008]
When the above-mentioned write control terminal is arranged on the outer surface of the frame-shaped base 21, a through hole is formed in a ceramic base substrate used for manufacturing the frame-shaped base 21, and an electrode pattern is formed on the inner surface. And a complicated processing process such as attaching a probe needle is required, which leads to a decrease in productivity. In addition, a probe needle of a writing device is connected to a writing control terminal provided on the outer surface of the frame-shaped base 21. Since it is extremely difficult to perform the writing operation by directly applying the temperature compensation data, it is necessary to write the temperature compensation data by mounting each temperature-compensated crystal oscillator in a socket for writing the temperature compensation data. In this case, manufacturing facilities such as sockets are separately required, and complicated steps such as mounting individual temperature-compensated crystal oscillators in the sockets are required, which has a disadvantage that the manufacturing process is complicated.
[0009]
Further, in the above-described conventional temperature-compensated crystal oscillator, the container 23 and the frame-shaped substrate 21 are integrally formed by a ceramic green sheet laminating method or the like. Since the element 26 is mounted, in manufacturing the temperature-compensated crystal oscillator by the "multiple-piece" method, after mounting the IC element 26 on the mother board from which the container 23 and the frame-shaped base 21 are cut out. In the case where the mother board is divided, the impact accompanying the division is directly transmitted to the IC element 26, and the impact may damage the IC element 26 itself or the joint between the IC element 26 and the container 23. Disadvantages are induced. Therefore, in the conventional manufacturing process, usually, only the container body 23 and the frame-shaped substrate 21 are manufactured by a “multiple-piece” method, and the individual pieces obtained after the division are divided into the crystal vibrating element 24 and the IC element 26. Are individually mounted to assemble the product. In this case, it is necessary to mount and hold the individual pieces on a carrier and then perform the mounting work of the IC element 26 and the like. However, there are disadvantages that the number of manufacturing facilities increases and the manufacturing process becomes complicated.
[0010]
The present invention has been devised in view of the above-mentioned drawbacks, and has as its object to manufacture a temperature-compensated crystal oscillator capable of obtaining a small-sized temperature-compensated crystal oscillator that is easy to handle and excellent in productivity. It is to provide a method.
[0011]
[Means for Solving the Problems]
In the method for manufacturing a temperature compensated crystal oscillator according to the present invention, a step A of preparing a mother substrate in which a plurality of substrate regions each having a window region and a discard region having a write control terminal are arranged adjacent to each other. And, in each substrate region of the mother substrate, a container housing a crystal resonator element is attached so as to close the window, and on the surface of the container located inside the window. A step B of mounting an IC element for controlling an oscillation output based on temperature compensation data for compensating a temperature characteristic of the crystal vibrating element; And storing the temperature compensation data in a memory in the IC element, and cutting the mother board along the outer periphery of each board area, thereby separating each board area from the discarded area, Corresponds to the substrate area A step D for obtaining a plurality of temperature-compensated crystal oscillator simultaneously a base for mounting the IC element comprised by attaching a and is characterized in that it comprises a.
[0012]
Further, in the method of manufacturing a temperature-compensated crystal oscillator according to the present invention, a plurality of external terminals are formed in a substrate region of the mother substrate, and these external terminals and the write control terminal are on the same main surface of the mother substrate. It is characterized by being arranged in.
[0013]
Further, in the method of manufacturing a temperature-compensated crystal oscillator according to the present invention, the mother substrate is made of a resin material, and the substrate of the container body is made of a ceramic material.
[0014]
Still further, in the method of manufacturing a temperature-compensated crystal oscillator according to the present invention, in the step B, the container is attached to a substrate region of the mother substrate, and the IC element is mounted on the container. The write control terminal of the discarded area and the IC element are electrically connected to each other through a wiring conductor of the container and the mother board.
[0015]
Still further, in the method of manufacturing a temperature-compensated crystal oscillator according to the present invention, in the step B, the IC element is mounted on the container after the container is attached to the motherboard. Things.
[0016]
Still further, in the method of manufacturing a temperature-compensated crystal oscillator according to the present invention, in the step B, after mounting the IC element on the container, the container is attached to the motherboard. It is.
[0017]
According to the present invention, the write control terminal used to write the temperature compensation data to the IC element is provided in the discarded area of the mother board, and after the writing of the temperature compensation data is completed, the slave board (for mounting) is provided. Since it is separated from the substrate, a large space for disposing the write control terminal on the mounting substrate is not required, and the overall structure of the temperature-compensated crystal oscillator can be reduced in size.
[0018]
In addition, in this case, the manufacturing process of the temperature-compensated crystal oscillator is relatively simple, and no equipment such as a socket for writing temperature-compensated data to each temperature-compensated crystal oscillator is required. The productivity of the type crystal oscillator can be maintained high.
[0019]
Further, since the write control terminal does not exist in the temperature compensated crystal oscillator obtained by the manufacturing method of the present invention as described above, when mounting the temperature compensated crystal oscillator on an external electric circuit such as a motherboard, Therefore, there is no inconvenience that a part of the conductive bonding material used for the bonding is attached to the write control terminal to cause a short circuit, and the handling of the product can be simplified.
[0020]
Further, according to the present invention, since the IC element is mounted on the motherboard via the container or the conductive bonding material and is not directly mounted on the motherboard, the mounting base is cut out from the motherboard. At this time, the shock applied to the mother substrate is transmitted to the IC element via the conductive bonding material, the container, and the like, and is applied to the IC element after being sufficiently reduced in the conduction process. Therefore, even if the container body containing the crystal vibrating element is attached to the mother substrate and the mother substrate is divided into individual substrate regions after the IC element is mounted on the container body, the IC element itself can be used. Also, the joint between the IC element and the container is hardly damaged by the impact at the time of dividing the mother substrate, and the productivity of the temperature-compensated crystal oscillator can be maintained at a high level. In this case, the mother board is divided after the IC element is mounted. When the IC element is mounted, the mother board itself functions as a carrier for mounting the IC element. The carrier for mounting the IC element as described in (1) is not required, and the complicated work of mounting the individual sub-substrates obtained by dividing the mother board on the carrier is not required at all. This also improves the productivity of the temperature compensated crystal oscillator.
[0021]
Further, according to the present invention, a plurality of external terminals and a write control terminal are provided on the same main surface of the motherboard, so that the motherboard is turned over after the IC element is mounted on the container. Without touching the probe needle of the temperature compensation data writing device to the write control terminal, the operation of writing the temperature compensation data to the memory in the IC element can be performed, simplifying the manufacturing process of the temperature compensated crystal oscillator. There is also an advantage that can be maintained.
[0022]
Furthermore, according to the present invention, the container body is formed of a ceramic material having excellent workability and sealing property, and the mother board is formed of a resin material having excellent workability and easy handling during cutting. Accordingly, a highly reliable temperature-compensated crystal oscillator can be manufactured extremely efficiently.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
[0024]
FIG. 1 is a perspective view of a temperature-compensated crystal oscillator manufactured by the manufacturing method of the present invention, FIG. 2 is a cross-sectional view of the temperature-compensated crystal oscillator of FIG. 1, and FIG. The temperature-compensated crystal oscillators shown in these figures are mounted on a lower surface of a container 1 accommodating a crystal vibrating element 5 as a crystal vibrating element, and a mounting base (a pair of legs 6a, 6b) and the IC element 7 are attached.
[0025]
The container 1 is made of, for example, a substrate 2 made of a ceramic material such as glass-ceramic or alumina ceramics, a seal ring 3 made of a metal such as 42 alloy, Kovar, phosphor bronze, and a metal similar to the seal ring 3. The container 1 is constituted by attaching the seal ring 3 to the upper surface of the substrate 2 and mounting and fixing the lid 4 on the upper surface of the substrate 2, and is located inside the seal ring 3. The crystal resonator element 5 is mounted on the upper surface of the substrate 2.
[0026]
The container 1 accommodates the quartz vibrating element 5 in a space surrounded by the inside thereof, specifically, the upper surface of the substrate 2, the inner surface of the seal ring 3, and the lower surface of the lid 4, and hermetically seals it. On the upper surface of the substrate 2, a pair of mounting pads 8a and the like connected to the vibrating electrode of the crystal vibrating element 5 are connected, and on the lower surface of the substrate 2, a bonding electrode 9a of leg portions 6a and 6b described later is connected. A plurality of bonding electrodes 8c (hereinafter, referred to as first bonding electrodes), a plurality of electrode pads 8b connected to the connection pads 7a of the IC element 7, and the like are provided. The corresponding pads are electrically connected to each other by a via-hole conductor or the like buried inside the substrate.
[0027]
On the other hand, the crystal vibrating element 5 housed inside the container body 1 is formed by attaching and forming a pair of vibrating electrodes on both main surfaces of a crystal blank cut along a predetermined crystal axis, so that a fluctuating voltage from the outside is obtained. Is applied to the crystal blank through a pair of vibrating electrodes, causing thickness shear vibration at a predetermined frequency.
[0028]
Here, if the metal lid 4 of the container 1 is connected to an external terminal 9b for a ground terminal to be described later via the container 1 and the wiring conductors 8 and 9 of the pair of legs 6a and 6b, the At this time, since the cover 4 is grounded to provide a shielding function, the crystal vibrating element 5 and an IC element 7 described later can be better protected from unnecessary external electrical action. Therefore, it is preferable that the metal lid 4 of the container 1 is connected to the external terminal 9b for the ground terminal via the container 1 and the wiring conductors 8 and 9 of the legs 6a and 6b.
[0029]
The pair of legs 6a and 6b and the IC element 7 attached to the lower surface of the above-described container body 1 are juxtaposed such that the IC element 7 is located between the pair of legs 6a and 6b. .
[0030]
The legs 6a and 6b are made of a resin material such as a glass cloth base epoxy resin, polycarbonate, epoxy resin, or polyimide resin, a low-temperature fired board material (LTCC) such as glass-ceramic, or a ceramic material such as alumina ceramic. It is formed in a rectangular shape, and is arranged in parallel with the IC element 7 interposed therebetween.
[0031]
A plurality of bonding electrodes 9a (hereinafter, referred to as second bonding electrodes) electrically and mechanically connected to the corresponding first bonding electrodes 8c on the lower surface of the container body are provided on the upper surfaces of the legs 6a, 6b. Further, on the lower surface, four external terminals 9b (power supply voltage terminal, ground terminal, oscillation output terminal, oscillation control terminal) are provided for each of the two legs 6a and 6b, and two of them are provided. The bonding electrode 9b and the external terminal 9a are electrically connected via a conductor film or the like on the inner surface of the groove provided on the end face or the like of each leg 6a, 6b.
[0032]
The four external terminals 9b are electrically connected to circuit wiring of the external electric circuit when the temperature-compensated crystal oscillator is mounted on an external electric circuit such as a motherboard. If the ground terminal and the oscillation output terminal of the external terminal 9b are provided on one leg 6a and the power supply voltage terminal and the oscillation control terminal are provided on the other leg 6b, the oscillation output terminal is connected to the ground potential. Since it is arranged close to the ground terminal to be provided, it is possible to effectively prevent noise from interfering with the oscillation signal output from the oscillation output terminal. Therefore, it is preferable that the ground terminal and the oscillation output terminal are provided adjacent to the common leg (mounting base).
[0033]
On the other hand, as the IC element 7 disposed between the pair of legs 6a and 6b, a rectangular flip chip type having a plurality of connection pads 7a connected to the electrode pads 8b of the container body 1 on the upper surface is used. An IC is used, and a temperature sensing element (thermistor) for detecting an ambient temperature state and temperature compensation data for compensating for temperature characteristics of the crystal vibrating element 5 are provided on a circuit forming surface thereof, and based on the temperature compensation data. There are provided a temperature compensating circuit for correcting the vibration characteristic of the crystal vibrating element 5 according to a temperature change, an oscillation circuit connected to the temperature compensating circuit and generating a predetermined oscillation output, and the like. The oscillation output generated by the oscillation circuit of the IC element 7 is output to the outside and then used as a reference signal such as a clock signal.
[0034]
Further, in the above-described IC element 7, two side faces arranged in parallel among the four side faces are arranged close to the side faces of the leg portions 6a and 6b. The remaining two side surfaces orthogonal to the two side surfaces are exposed from between the end surfaces of the pair of leg portions 6a and 6b. Here, the width of the gap formed between the side surface of the IC element 7 and the side surfaces of the legs 6a and 6b is set to, for example, 10 μm to 500 μm.
[0035]
The two exposed side surfaces of the IC element 7 are arranged along the outer periphery of the container 1 slightly inside the outer periphery of the container 1, for example, 1 μm to 500 μm inside the outer periphery of the container 1. Have been.
[0036]
As described above, the width of the container 1 and the pair of legs 6a and 6b in the direction orthogonal to the exposed side surface of the IC element 7 is designed to be substantially equal to the length of one side of the IC element 7. Since the width dimension of the container 1 in a direction parallel to the exposed side surface of the element 7 is designed to be substantially equal to the sum of the length of one side of the IC element 7 and the widths of the legs 6a and 6b, temperature compensation is performed. The entire structure of the crystal oscillator can be made compact in both vertical and horizontal directions.
[0037]
Moreover, in this case, the two exposed side surfaces of the IC element 7 are exposed without being blocked by the pair of legs 6a and 6b, so that the joint between the IC element 7 and the container 1 can be directly viewed. Therefore, the bonding state of the IC element 7 can be easily checked visually or the like at the time of product inspection or the like, thereby improving the productivity of the temperature-compensated crystal oscillator.
[0038]
Further, in the above-described temperature-compensated crystal oscillator, the mounting area of the IC element 7 is configured by exposing two side surfaces of the IC element 7 arranged in parallel from between the side surfaces of the pair of legs 6a and 6b. Are open to the outside at both ends. For this reason, even when the cleaning liquid is brought into contact with the surface of the IC element 7 or the lower surface of the container 1 in a cleaning step or the like performed after the completed temperature-compensated crystal oscillator is mounted on an external electric circuit such as a motherboard. The inflow and outflow of the cleaning liquid into and out of the region between the pair of legs 6a and 6b can be performed extremely smoothly and favorably through the open ends on both sides of the mounting region. There is also an advantage that the above-described cleaning step can be performed efficiently by effectively preventing the cleaning liquid from remaining.
[0039]
Next, a method of manufacturing the above-described temperature-compensated crystal oscillator will be described with reference to FIGS.
[0040]
Here, FIGS. 4A to 4E are cross-sectional views for explaining the manufacturing method of the present invention, and FIG. 5A is a view of the mother substrate used in the manufacturing method of the present invention viewed from one principal surface side. 5B is a perspective view of the motherboard viewed from the other main surface side, FIG. 6A is an enlarged plan view of the motherboard viewed from one main surface side, and FIG. Is an enlarged plan view as viewed from the other main surface side.
In FIG. 4, wiring conductors provided on the container 1 and the pair of legs 6a and 6b are omitted.
[0041]
(Step A)
First, as shown in FIG. 4B, FIG. 5 and FIG. 6, a substrate area A having a window portion 16 and a discarded area B having a plurality of write control terminals 17 are arranged adjacent to each other. Are prepared in a matrix. The hatched area shown in FIGS. 6A and 6B is the substrate area A.
[0042]
Such a mother board 15 is made of the same material as the pair of legs 6a and 6b described above, that is, a resin material such as a glass cloth base epoxy resin, polycarbonate, epoxy resin, or polyimide resin, or a low temperature material such as glass-ceramic. It is formed of a fired substrate material, a ceramic material such as alumina ceramics or the like. For example, when formed of a glass cloth base epoxy resin, a liquid precursor of the epoxy resin is impregnated into a glass cloth base formed by weaving glass threads. At the same time, the base is formed by polymerizing the precursor at a high temperature, and a metal foil such as a copper foil is adhered to the surface of the base, and this is processed into a predetermined pattern by using a conventionally known photo etching or the like. Accordingly, a predetermined wiring pattern including the write control terminal 17, the second bonding electrode 9a, the external terminal 9b, and the like is formed.
[0043]
The window 16 formed in the substrate region A of the mother substrate 15 has a rectangular shape and is formed so as to extend longitudinally through the substrate region A. A predetermined window 16 is formed by punching the area A into a rectangular shape by punching or the like.
[0044]
On one main surface side of such a mother substrate 15, a plurality of second bonding electrodes 9a are provided in the substrate region A, and on the other main surface side, a plurality of external terminals 9b are provided in the substrate region A. A plurality of write control terminals 17 are provided in the discard area B, respectively.
[0045]
In the present embodiment, a plurality of second bonding electrodes 9a provided in the individual substrate regions A are arranged in two rows on one main surface side of the mother substrate 15 with the window 16 interposed therebetween. At the same time, four external terminals 9b are arranged in two rows on the other main surface side of the mother substrate 15 like the second bonding electrode 9a with the window 16 interposed therebetween. A plurality of write control terminals 17 provided in the discarded area B are arranged in parallel along the arrangement of.
[0046]
(Step B)
Next, as shown in FIG. 4B, the container body 1 containing the crystal resonator element 5 is attached to each substrate region A of the mother substrate 15 so as to close the window portion 16. Thereafter, as shown in FIG. 4C, the mother substrate 15 is turned upside down, and the IC element 7 is mounted on the surface of the container 1 located inside the window 16.
[0047]
As described above, the container body 1 includes the substrate 2, the seal ring 3, and the lid 4, and houses the crystal resonator element 5 therein.
[0048]
For example, when the substrate 2 is formed of a ceramic material, a conductor paste serving as the wiring conductor 8 is printed in a predetermined pattern on the surface of a ceramic green sheet obtained by adding and mixing an appropriate organic solvent or the like to the ceramic material powder. After coating and laminating a plurality of them, press-molding them, and firing them at a high temperature, the substrate 2 is manufactured, and the crystal resonator element 5 is mounted on the upper surface of the obtained substrate 2. At this time, the vibration electrode of the crystal vibrating element 5 and the mounting pad 8a on the upper surface of the substrate are electrically and mechanically connected via the conductive bonding material 10. Then, the seal ring 3 is placed and fixed on the upper surface of the substrate 2 so as to surround the quartz-crystal vibrating element 5, and the lid 4 is joined to the upper surface of the seal ring 3 by a conventionally known resistance welding or the like. The container body 1 is assembled.
[0049]
The seal ring 3 and the lid 4 are manufactured by molding a metal such as 42 alloy into a predetermined shape by using a conventionally known metal working method. The seal ring 3 is previously covered on the upper surface of the substrate 2. It is fixed to the substrate 2 by brazing to the conductor layer that has been attached. Further, as described above, when the seal ring 3 and the lid 4 are joined by resistance welding, a Ni plating layer, an Au plating layer, or the like is previously applied to the surfaces of the seal ring 3 and the lid 4.
[0050]
Such a container 1 is provided with a plurality of first bonding electrodes 8c and a plurality of electrode pads 8b on the lower surface thereof, and the plurality of first bonding electrodes 8c are One main surface is provided on each substrate region A of the mother substrate 15 so as to be in contact with the bonding electrode 9a via a conductive bonding material 11 such as solder and to position a plurality of electrode pads 8b inside the window portion 16. Then, the conductive bonding material 11 is melted by applying heat or the like, and the first bonding electrode 8c and the second bonding electrode 9a are bonded via the conductive bonding material 11 to form a container body. 1 is attached and mounted on the mother board 15.
[0051]
On the other hand, as described above, a rectangular flip-chip type IC having a plurality of connection pads 7a on the surface facing the container 1 is used as the IC element 7, as described above.
[0052]
In the IC element 7, a plurality of connection pads 7a provided on one surface of the IC element 7 are connected to corresponding electrode pads 8b of the container body 1 exposed in the window 16 on the other main surface side of the mother substrate 15, such as solder. The conductive bonding material 11 is placed on the container body 1 so as to be brought into contact with the conductive bonding material 11 via the conductive bonding material 11. Thereafter, the conductive bonding material 11 is melted by applying heat or the like, and the bonding pad 7 a and the electrode pad 8 b are separated. The IC element 7 is mounted on the container 1 by bonding via the conductive bonding material 11.
[0053]
In the step B, the container body 1 is attached to the substrate region A of the mother substrate 15 and the IC element 7 is mounted on the container body 1 so that the electronic circuit in the IC element 7 is connected to the wiring of the container body 1. It is electrically connected to the crystal vibrating element 5, the external terminal 9b, and the like via the conductor 8 and the wiring conductor of the mother board, and at the same time, the write control terminal 17 in the waste area B and the IC element 7 are connected to the container 1 And are electrically connected via the wiring conductor of the motherboard 15.
[0054]
Here, the mother substrate 15 and the container body 1 are bonded via the conductive bonding material 11, and a predetermined gap exists in a non-bonded portion between the two, so that the IC element 7 is connected to a conductive material such as solder. When mounted on the lower surface of the container 1 via the conductive bonding material 11, heat necessary for the bonding is satisfactorily transmitted to the conductive bonding material 11 between the container 1 and the IC element 7 from the above-described gap or the like. Thus, the IC element 7 can be efficiently and reliably mounted. Thereby, the reliability and productivity of the temperature compensated crystal oscillator can be improved.
[0055]
(Step C)
Next, as shown in FIG. 4D, temperature compensation data is input to the IC elements 7 in each substrate area A through a plurality of write control terminals 17 provided in the discarded area B of the mother board 15. , The temperature compensation data is stored in a memory in the IC element 7.
[0056]
To write such temperature compensation data, the probe needle 20 of the temperature compensation data writing device is applied to the write control terminal 17 and the temperature compensation data created in accordance with the temperature characteristics of the crystal vibrating element 5 is stored in an IC. This is performed by inputting the data to a memory provided in the temperature compensation circuit of the element 7 and storing the data. Here, the temperature compensation data written in the IC element 7 is for correcting a variation in the temperature characteristic of each crystal resonator element, and the temperature compensation data of the crystal resonator element 5 used in the temperature-compensated crystal oscillator is used. It is obtained by measuring in advance.
[0057]
In this case, there is no need for a facility such as a socket for writing temperature compensation data to the IC element 7 of each temperature-compensated crystal oscillator. This can also improve the productivity of the temperature-compensated crystal oscillator.
[0058]
Also, in this case, since the plurality of external terminals 9b and the plurality of write control terminals 17 are provided on the same main surface of the mother board 15, after the IC element 7 is mounted on the container 1, Without turning over the substrate 15, the probe needle 20 of the temperature compensation data writing device can be directly applied to the write control terminal 17 to write the temperature compensation data into the memory in the IC element 7, and the temperature compensation type crystal can be used. The manufacturing process of the oscillator can be kept simple.
[0059]
(Step D)
Finally, as shown in FIG. 4E, the motherboard 15 is cut along the outer periphery of each substrate region A, thereby separating each substrate region A from the discarded region B.
[0060]
The cutting of the mother substrate 15 is performed by a conventionally known dicing or the like, and the mother substrate 15 is divided into individual substrate regions through such a cutting process. As a result, a plurality of temperature-compensated crystal oscillators in which the mounting base (a pair of legs 6a and 6b) corresponding to the substrate area A and the IC element 7 are attached to the lower surface of the container 1 at the same time. Can be
[0061]
At this time, the IC element 7 is mounted on the mother board 15 via the container body 1 and the conductive bonding material 11 and is not directly mounted on the mother board 15. The impact applied to the substrate 15 is transmitted to the IC element 7 via the conductive bonding material 11, the container 1, and the like, and is applied to the IC element 7 after being sufficiently reduced in the conduction process. . Therefore, the IC element itself or the joint between the IC element 7 and the container 1 is hardly damaged by the impact when the mother substrate 15 is divided, which also increases the productivity of the temperature compensated crystal oscillator. Can be maintained.
[0062]
In this case, the mother board 15 is divided after the IC element 7 is mounted. When the IC element 7 is mounted, the mother board itself functions as a carrier for mounting the IC element. The carrier for mounting the IC element as described in the section is unnecessary, and a complicated operation such as mounting the individual sub-substrates obtained by dividing the mother substrate 15 on the carrier is not required at all. This also improves the productivity of the temperature compensated crystal oscillator.
[0063]
In the above-described manufacturing process, the write control terminal 17 is provided in the discarded area B of the mother board 15, and is separated from the pair of legs 6a and 6b after the writing of the temperature compensation data is completed. Therefore, a large space for disposing the write control terminal 17 on the pair of legs 6a and 6b is not required, and the overall structure of the temperature-compensated crystal oscillator can be reduced in size.
[0064]
In addition, since the write control terminal 17 does not exist in the temperature-compensated crystal oscillator obtained through the above-described steps A to D, when the temperature-compensated crystal oscillator is mounted on an external electric circuit such as a motherboard, The handling of the product can be simplified without the disadvantage that a part of the conductive bonding material used for bonding the two adheres to the write control terminal to cause a short circuit.
[0065]
Further, in the present embodiment, the container body 1 is formed of a ceramic material having excellent workability and sealing property, and the mother substrate 15 is formed of a resin material having excellent workability and easy handling in cutting. Thus, a highly reliable temperature-compensated crystal oscillator can be manufactured extremely efficiently. Therefore, it is preferable that the container body 1 is formed of a ceramic material and the mother substrate 15 is formed of a resin material.
[0066]
Note that the present invention is not limited to the above-described embodiment, and various changes, improvements, and the like can be made without departing from the gist of the present invention.
[0067]
For example, in the above-described embodiment, the IC element 7 is mounted on the container body 1 after the container body 1 is attached to the mother board 15 in the process B. The container 1 may be attached to the motherboard 15 after the IC element 7 is mounted.
[0068]
In the above-described embodiment, the write control terminal 17 of the discard area B is provided on the other main surface of the mother substrate 15 on the same surface as the formation surface of the external terminal 9b. 17 may be provided on one main surface side of the mother substrate 15 which is the same as the surface on which the second bonding electrode 9a is formed.
[0069]
Further, in the above-described embodiment, the write control terminals 17 of the discard area B are arranged in parallel along the arrangement of the external terminals 9b. 17 may be arranged in a direction orthogonal to the arrangement of the external terminals 9b.
[0070]
Further, in the above-described embodiment, the pair of legs 6a and 6b is used as the mounting base cut out from the motherboard 15, but one frame-shaped base is used as the mounting base instead. Alternatively, four legs obtained by dividing each leg 6a, 6b into two may be used, or only one of the legs 6a, 6b may be divided into two. The obtained three legs may be used. For example, when one frame-shaped base is used as the mounting base, the outer periphery of the window 16 is formed in the substrate area A instead of making the mother board 15 so that the window 16 traverses the substrate area A. Is drilled in the motherboard 15 so as to be spaced apart inward from the outer periphery of the motherboard 15.
[0071]
Further, in the above-described embodiment, the motherboard 15 and the container 1, and the container 1 and the IC element 7 may be attached via an anisotropic conductive adhesive. Since the electrical connection and the mechanical connection with the body 1 and the electrical connection and the mechanical connection between the container body 1 and the IC element 7 are made collectively by the anisotropic conductive adhesive, the temperature-compensated crystal oscillator There is an advantage that the assembling work can be greatly simplified.
[0072]
Further, in the above-described embodiment, a resin material is filled and formed in a gap formed between the container body 1 and the IC element 7 and a gap formed between the motherboard 15 and the container body 1 and opposed with the resin material. The conductive bonding material for bonding the pads and the electrodes may be coated. In this case, the circuit forming surface of the IC element can be well protected with a resin material, and the IC element 7 can be protected. The joint between the pair of legs 6a and 6b is reinforced with the resin material, thereby also improving the reliability of the temperature-compensated crystal oscillator.
[0073]
Furthermore, in the above-described embodiment, the lid 4 of the container 1 is joined to the substrate 2 via the seal ring 3, but instead, a metallized pattern for joining is formed on the upper surface of the substrate 2. In addition, the lid 4 may be directly welded to this metallized pattern.
[0074]
Furthermore, in the above-described embodiment, the seal ring 3 is directly attached to the upper surface of the substrate of the container body 1. However, instead of this, the upper surface of the substrate 2 is made of the same material as the substrate 2 made of a ceramic material or the like. The frame may be integrally attached, and the seal ring 3 may be attached to the upper surface of the frame.
[0075]
Furthermore, in the above-described embodiment, the lid 4 is joined to the main body of the container body 1 by welding the lid 4, but instead of this, the lid 4 is made of a brazing material such as Au-Sn. You may make it join to the main body of the container body 1 through a material.
[0076]
Further, in the above-described embodiment, the legs 6a and 6b are formed in a rectangular shape. However, cutouts are provided in the inner and outer surfaces, corners and the like of the legs 6a and 6b, and the cutouts are formed. A conductor pattern may be attached to the surfaces of the legs 6a and 6b that are in contact with the notch, or a small electronic component element such as a chip capacitor may be arranged in a space formed by the notch.
[0077]
Furthermore, in the above-described embodiment, it is needless to say that the gap between the side surface of the IC element 7 and the side surfaces of the leg portions 6a and 6b may be filled with a resin material or the like for the purpose of reinforcement, sealing, or the like. No.
[0078]
【The invention's effect】
According to the present invention, the write control terminal used to write the temperature compensation data to the IC element is provided in the discarded area of the mother board, and after the writing of the temperature compensation data is completed, the slave board (for mounting) is provided. Since it is separated from the substrate, a large space for disposing the write control terminal on the mounting substrate is not required, and the overall structure of the temperature-compensated crystal oscillator can be reduced in size.
[0079]
In addition, in this case, the manufacturing process of the temperature-compensated crystal oscillator is relatively simple, and no equipment such as a socket for writing temperature-compensated data to each temperature-compensated crystal oscillator is required. The productivity of the type crystal oscillator can be maintained high.
[0080]
Further, since the write control terminal does not exist in the temperature compensated crystal oscillator obtained by the manufacturing method of the present invention as described above, when mounting the temperature compensated crystal oscillator on an external electric circuit such as a motherboard, Therefore, there is no inconvenience that a part of the conductive bonding material used for the bonding is attached to the write control terminal to cause a short circuit, and the handling of the product can be simplified.
[0081]
Further, according to the present invention, since the IC element is mounted on the motherboard via the container or the conductive bonding material and is not directly mounted on the motherboard, the mounting base is cut out from the motherboard. At this time, the shock applied to the mother substrate is transmitted to the IC element via the conductive bonding material, the container, and the like, and is applied to the IC element after being sufficiently reduced in the conduction process. Therefore, even if the container body containing the crystal vibrating element is attached to the mother substrate and the mother substrate is divided into individual substrate regions after the IC element is mounted on the container body, the IC element itself can be used. Also, the joint between the IC element and the container is hardly damaged by the impact at the time of dividing the mother substrate, and the productivity of the temperature-compensated crystal oscillator can be maintained at a high level. In this case, the mother board is divided after the IC element is mounted. When the IC element is mounted, the mother board itself functions as a carrier for mounting the IC element. The carrier for mounting the IC element as described in (1) is not required, and the complicated work of mounting the individual sub-substrates obtained by dividing the mother board on the carrier is not required at all. This also improves the productivity of the temperature compensated crystal oscillator.
[0082]
Further, according to the present invention, a plurality of external terminals and a write control terminal are provided on the same main surface of the motherboard, so that the motherboard is turned over after the IC element is mounted on the container. Without touching the probe needle of the temperature compensation data writing device to the write control terminal, the operation of writing the temperature compensation data to the memory in the IC element can be performed, simplifying the manufacturing process of the temperature compensated crystal oscillator. There is also an advantage that can be maintained.
[0083]
Furthermore, according to the present invention, the container body is formed of a ceramic material having excellent workability and sealing property, and the mother board is formed of a resin material having excellent workability and easy handling during cutting. Accordingly, a highly reliable temperature-compensated crystal oscillator can be manufactured extremely efficiently.
[Brief description of the drawings]
FIG. 1 is a perspective view of a temperature-compensated crystal oscillator manufactured by a manufacturing method of the present invention.
FIG. 2 is a sectional view of the temperature-compensated crystal oscillator shown in FIG.
FIG. 3 is a plan view of the temperature-compensated crystal oscillator of FIG. 1 as viewed from below.
FIGS. 4A to 4E are cross-sectional views for explaining a manufacturing method of the present invention.
FIG. 5A is a perspective view of a mother substrate used in the manufacturing method of the present invention as viewed from one main surface side, and FIG. 5B is a perspective view of the mother substrate of FIG. is there.
6A is an enlarged plan view of the mother substrate shown in FIG. 5 as viewed from one main surface side, and FIG. 6B is an enlarged plan view of the mother substrate shown in FIG. 5 as viewed from another main surface side.
7A is a cross-sectional view of a conventional temperature-compensated crystal oscillator, and FIG. 7B is a plan view of the temperature-compensated crystal oscillator of FIG.
[Explanation of symbols]
1 ... container body
2 ... substrate
3 ... Seal ring
4 Lid
5 ... Crystal vibrating element
6a, 6b: mounting base (a pair of legs)
7 ... IC element
7a ... connection pad
8 ・ ・ ・ Wiring conductor of container
8a: Mounting pad
8b ... electrode pad
8c: First bonding electrode
9 Wiring conductor of mounting substrate
9a: Second bonding electrode
9b ... external terminal
10, 11 ... conductive bonding material
15 ... mother board
16 Windows
17 Write control terminal
20: Probe needle of writing device
A: Substrate area
B: Waste area

Claims (6)

窓部を有する基板領域と、複数個の書込制御端子を有する捨代領域とを相互に隣接させて複数個ずつ配置させてなる母基板を準備する工程Aと、
前記母基板の各基板領域に、水晶振動素子が収容されている容器体を、前記窓部を塞ぐようにして取着させるとともに、前記窓部の内側に位置する前記容器体の表面に、前記水晶振動素子の温度特性を補償する温度補償データに基づいて発振出力を制御するIC素子を搭載する工程Bと、
前記書込制御端子を介して各基板領域内のIC素子に温度補償データを入力し、IC素子内のメモリに温度補償データを格納する工程Cと、
前記母基板を各基板領域の外周に沿って切断することにより、各基板領域を捨代領域より切り離し、前記容器体に前記基板領域に対応した実装用基体とIC素子とを取着させてなる複数個の温度補償型水晶発振器を同時に得る工程Dと、を含む温度補償型水晶発振器の製造方法。
A step A of preparing a motherboard in which a plurality of substrate regions each having a window portion and a plurality of write control terminals are disposed adjacent to each other, and
In each substrate region of the mother substrate, a container housing a quartz crystal vibrating element is attached so as to close the window, and on the surface of the container located inside the window, A step B of mounting an IC element for controlling an oscillation output based on temperature compensation data for compensating a temperature characteristic of the crystal resonator element;
A step C of inputting temperature compensation data to the IC elements in each substrate area via the write control terminal and storing the temperature compensation data in a memory in the IC element;
By cutting the mother substrate along the outer periphery of each substrate region, each substrate region is separated from the waste region, and the mounting body and the IC element corresponding to the substrate region are attached to the container body. A method D for simultaneously obtaining a plurality of temperature-compensated crystal oscillators.
前記母基板の基板領域に複数個の外部端子が形成されており、これら外部端子と前記書込制御端子とが母基板の同一主面上に配設されていることを特徴とする請求項1に記載の温度補償型水晶発振器の製造方法。2. The semiconductor device according to claim 1, wherein a plurality of external terminals are formed in a substrate region of the mother substrate, and the external terminals and the write control terminal are arranged on the same main surface of the mother substrate. 3. The method for manufacturing a temperature-compensated crystal oscillator according to 1. 前記母基板が樹脂材料から成り、前記容器体の基板がセラミック材料から成ることを特徴とする請求項1または請求項2に記載の温度補償型水晶発振器の製造方法。3. The method according to claim 1, wherein the mother substrate is made of a resin material, and the substrate of the container body is made of a ceramic material. 前記工程Bにおいて、前記母基板の基板領域に前記容器体を取着させるとともに、該容器体に前記IC素子を搭載することによって、前記捨代領域の書込制御端子と前記IC素子とが容器体及び母基板の配線導体を介して電気的に接続されることを特徴とする請求項1乃至請求項3のいずれかに記載の温度補償型水晶発振器の製造方法。In the step (B), the container body is attached to the substrate region of the mother substrate, and the IC element is mounted on the container body. 4. The method for manufacturing a temperature-compensated crystal oscillator according to claim 1, wherein the crystal oscillator is electrically connected via a wiring conductor of the body and the mother board. 前記工程Bにおいて、前記容器体が前記母基板に取着された後、前記IC素子が前記容器体に搭載されることを特徴とする請求項1乃至請求項4のいずれかに記載の温度補償型水晶発振器の製造方法。The temperature compensation according to any one of claims 1 to 4, wherein in the step (B), the IC element is mounted on the container after the container is attached to the motherboard. Method of manufacturing a crystal oscillator. 前記工程Bにおいて、前記容器体に前記IC素子を搭載した後、前記容器体が前記母基板に取着されることを特徴とする請求項1乃至請求項4のいずれかに記載の温度補償型水晶発振器の製造方法。5. The temperature compensation type according to claim 1, wherein, in the step B, after mounting the IC element on the container, the container is attached to the mother substrate. 6. Manufacturing method of crystal oscillator.
JP2003151704A 2003-02-26 2003-05-28 Manufacturing method of temperature compensated crystal oscillator Expired - Lifetime JP4113459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151704A JP4113459B2 (en) 2003-02-26 2003-05-28 Manufacturing method of temperature compensated crystal oscillator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003050036 2003-02-26
JP2003151704A JP4113459B2 (en) 2003-02-26 2003-05-28 Manufacturing method of temperature compensated crystal oscillator

Publications (2)

Publication Number Publication Date
JP2004320700A true JP2004320700A (en) 2004-11-11
JP4113459B2 JP4113459B2 (en) 2008-07-09

Family

ID=33478040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151704A Expired - Lifetime JP4113459B2 (en) 2003-02-26 2003-05-28 Manufacturing method of temperature compensated crystal oscillator

Country Status (1)

Country Link
JP (1) JP4113459B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258946A (en) * 2009-04-28 2010-11-11 Kyocera Kinseki Corp Communication module
JP2010258944A (en) * 2009-04-28 2010-11-11 Kyocera Kinseki Corp Communication module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065767A (en) * 1992-06-23 1994-01-14 Nec Kyushu Ltd Lead frame for semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258946A (en) * 2009-04-28 2010-11-11 Kyocera Kinseki Corp Communication module
JP2010258944A (en) * 2009-04-28 2010-11-11 Kyocera Kinseki Corp Communication module

Also Published As

Publication number Publication date
JP4113459B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP2005244639A (en) Temperature compensated crystal oscillator
JP4167557B2 (en) Method for manufacturing piezoelectric oscillator
JP4113465B2 (en) Manufacturing method of temperature compensated crystal oscillator
JP4585908B2 (en) Method for manufacturing piezoelectric device
JP4113459B2 (en) Manufacturing method of temperature compensated crystal oscillator
JP2005268257A (en) Package for storing electronic component and electronic device
JP4578231B2 (en) Piezoelectric oscillator and manufacturing method thereof
JP4484545B2 (en) Piezoelectric oscillator
JP4384567B2 (en) Manufacturing method of temperature compensated crystal oscillator
JP4472445B2 (en) Method for manufacturing piezoelectric oscillator
JP4113460B2 (en) Manufacturing method of temperature compensated crystal oscillator
JP2004343681A (en) Manufacturing method for temperature compensated crystal oscillator
JP2004297209A (en) Surface mount piezoelectric vibrator
JP4472479B2 (en) Piezoelectric oscillator and manufacturing method thereof
JP2008187751A (en) Surface mount piezoelectric oscillator
JP2005244641A (en) Temperature compensated crystal oscillator
JP2008167124A (en) Piezoelectric oscillator, and manufacturing method thereof
JP2004297211A (en) Surface mount piezoelectric vibrator
JP2006101241A (en) Piezoelectric oscillator and manufacturing method thereof
JP2004297208A (en) Surface mount type piezoelectric vibrator
JP2005210673A (en) Surface-mounted crystal oscillator
JP2005244644A (en) Piezoelectric oscillator
JP2004260626A (en) Surface mount piezoelectric oscillator
JP2004297207A (en) Surface mount piezoelectric vibrator
JP2005244925A (en) Piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Effective date: 20071220

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Effective date: 20080411

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110418

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120418

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120418

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130418

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6