JP2004319822A - Packaging structure of semiconductor - Google Patents

Packaging structure of semiconductor Download PDF

Info

Publication number
JP2004319822A
JP2004319822A JP2003112738A JP2003112738A JP2004319822A JP 2004319822 A JP2004319822 A JP 2004319822A JP 2003112738 A JP2003112738 A JP 2003112738A JP 2003112738 A JP2003112738 A JP 2003112738A JP 2004319822 A JP2004319822 A JP 2004319822A
Authority
JP
Japan
Prior art keywords
radiator
semiconductor
mounting portion
mounting
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003112738A
Other languages
Japanese (ja)
Other versions
JP3935100B2 (en
Inventor
Yoshiaki Shimizu
義明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosel Co Ltd
Original Assignee
Cosel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosel Co Ltd filed Critical Cosel Co Ltd
Priority to JP2003112738A priority Critical patent/JP3935100B2/en
Publication of JP2004319822A publication Critical patent/JP2004319822A/en
Application granted granted Critical
Publication of JP3935100B2 publication Critical patent/JP3935100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a packaging structure having a large heat radiation effect, easy-to-assemble performance, space saving performance, and small resistance loss or the like. <P>SOLUTION: The packaging structure has a pair of heat radiators 12, 22 having attachments 14, 24 on one-end side of which the heat radiating fins 16, 24 are provided. One or a plurality of semiconductors 32, 36 for a power circuit or the like are installed on the other sides of the attachments 14, 24. The attachments 14, 24 are opposed at predetermined intervals by positioning the fins 16, 24 in an inverse direction, and connection fixed each other by projections 18, 28 for fixing projecting in a direction inverse to the fins 16, 26. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、電子機器に搭載される比較的発熱の大きい半導体の実装構造に関する。
【0002】
【従来の技術】
【特許文献1】特開平11−89248号公報
例えば、電源用の大電力の半導体は、大電流または高電圧がかかるため発熱し、高温となる。そこで、この熱を放散するために、この種の半導体には放熱器が取り付けられている。従来の放熱器は、断面形状が一定のアルミ押出し形材で形成され、例えば図5(a),(b)に示すような放熱器1があった。この放熱器1は、複数枚の放熱フィン2が一側面に設けられた板状の取付部3を備えている。そして取付部3には、複数個ここでは2個の半導体4が、ネジ5で取り付けられている。
【0003】
この他に、一対の取付部がコの字形に一体に形成された放熱器もある。この放熱器は互いに平行な取付部の外側面に、半導体が各々取り付けられているものである。この放熱器は、構造が簡単であるが、放熱フィンがないため放熱性が良くなかった。
【0004】
また、放熱性に優れ、占有スペースも小さいものとして、図6(a),(b)に示すように、放熱器1を一対設ける場合がある。一対の放熱器1は、放熱フィン2が互いに他方の放熱フィン2の隙間に挿入され、一端部でネジ6により固定されている。そして各放熱器1の取付部3に、半導体4が取り付けられている。この一対の放熱器1を組み合わせる構造によれば、占有スペースが小さくしかも放熱効果も高いものとすることができる。
【0005】
【発明が解決しようとする課題】
上記従来の技術の場合、図5に示す放熱器1は、表面積が広く放熱性が良好であるが、スペースを取り、たくさんの半導体4を取り付ける構造の場合、装置が大きくなるという問題がある。また、強度上プリント基板への機械的固定が難しかった。しかも、放熱フィン2の長さは、ある程度以上長くしても熱の伝速が悪くなり、放熱効果が低くなる。このため放熱効果に限界があった。
【0006】
また、図6に示すように一対の放熱器1を設けた場合は、取付用の床面を同じにする際、一対の放熱器1の放熱フィン2が互いにぶつからないように互い違いに設ける必要があり、異形状となる。このため、部品管理が面倒であり、コストがかかる。また、放熱フィン2が互いに重ねられている部分に発熱が集中するため、熱の伝速が悪くなり、放熱効果が低くなる。また、電源回路の各半導体4は短距離で接続することがのぞましいが、放熱性を考慮して放熱フィン2を長くすると、半導体4間の距離が長くなり、不要な寄生インダクタンスや漏れインダクタンスが大きくなり、また占有スペースも大きくなる。また半導体4からの出力電流経路も大きくなり、抵抗成分が増加する。
【0007】
この発明は、上記従来の問題点に鑑みてなされたものであり、組み立てが容易であり、放熱効果が大きく、省スペースであり、抵抗損失等も少ない半導体の実装構造を提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明は、放熱フィンが一側面に設けられた取付部を有するアルミ押出形材による一対の放熱器を有し、上記取付部の他方の側面に電源回路用等の半導体が各々一または複数取り付けられ、上記放熱フィンを互いに反対方向に位置させて上記取付部同士を所定間隔空けて対面させて互いに連結して成る半導体の実装構造である。
【0009】
また、上記一対の放熱器は、上記取付部の上記放熱フィンと反対の側面に上記放熱フィンとは反対方向に突出した固定用突起が形成され、上記固定用突起同士を重ねて連結手段で連結されている半導体の実装構造である。
【0010】
さらに、上記放熱器の上記取付部には、上記放熱フィンと反対の側面に断面L字形の銅板等の保持部材が取り付けられ、上記保持部材の折れ目から一方は上記取付部に重ねて取り付け固定される固定部であり、他方は上記取付部から略直角に立設される連結部であり、上記一対の保持部材の上記連結部同士が連結手段により連結されている半導体の実装構造である。
【0011】
【発明の実施の形態】
以下、この発明の実施形態について図面に基づいて説明する。図1(a),(b)、図2は、この発明の第一実施形態を示すものであり、この実施形態の半導体の実装構造10は、図1に示す第一放熱器12を備えている。第一放熱器12はアルミ押出形材であり、後述する第一半導体32が取り付けられる平坦な板状の取付部14が設けられている。取付部14の一方の側面14aには、取付部14に対してほぼ直角に側方へ突出する放熱フィン16が一体に設けられている。放熱フィン16は、複数枚、ここでは5枚設けられ、互いに平行に位置して設けられている。取付部14の放熱フィン16と反対側の側面14bには、第一放熱器12の上端部12aの延長上に、放熱フィン16とは反対側に突出する板状のネジ固定用突起18が設けられている。ネジ固定用突起18は、放熱フィン16とほぼ平行であり、中央に透孔20が形成されている。
【0012】
第一放熱器12に対向して第二放熱器22が設けられている。第二放熱器22は、図2に示すように、第一放熱器12と同様に取付部24と、取付部24の一方の面24aに対してほぼ直角に側方へ突出する放熱フィン26が設けられている。放熱フィン26は、複数枚、ここでは5枚設けられ、互いに平行に位置して設けられている。取付部24の放熱フィン26と反対側の側面24bには、取付部24の上端部22aより少し内側に、放熱フィン26とは反対側に突出する板状のネジ固定用突起28が設けられている。ネジ固定用突起28は、放熱フィン26とほぼ平行であり、中央に雌ねじのネジ穴30が形成されている。
【0013】
第一放熱器12の取付部14のほぼ中央部にはネジ穴15が形成され、側面14bには、第一半導体32がネジ穴15にネジ34で固定されている。第二放熱器22の取付部24のほぼ中央部にはネジ穴25が形成され、側面24bにも、第二半導体36がネジ穴25にネジ38で固定されている。
【0014】
この実施形態の半導体の実装構造10の組み立ては、先ず、第一放熱器12と第二放熱器22に、各第一半導体32と第二半導体36を、ネジ34,36で各々取り付ける。そして、第一放熱器12のネジ固定用突起18と、第二放熱器22のネジ固定用突起28を重ね、透孔20とネジ穴30を一致させる。このとき、第二放熱器22のネジ固定用突起28は、取付部24の上端部24aよりも内側に位置しているため、第一放熱器12と第二放熱器22の上端12a,22aは同じ高さに位置する。そして、第一放熱器12のネジ固定用突起18の外側に、銅板で作られた出力端子40が重ねられる。出力端子40には、ネジ用の透孔42が設けられ、透孔42にネジ44を入れて、さらに透孔20を経てネジ穴30にネジ44を螺合し固定される。
【0015】
この実施形態の半導体の実装構造10によれば、一対の放熱フィン16,26が設けられ表面積が広く、互いに外側を向いているため、効率よく放熱することができる。また、第一半導体32と第二半導体36の間隔が短く、漏れインダクタンス等を押さえ電源装置としての効率が良好となる。さらに、スペースを大きく取らずに、放熱性を向上させることができ、製品の小型化にも寄与する。また、組立や機械的固定が容易である。また、回路の電流経路が短くなり、電流ラインの等価直列抵抗による電力ロスを低減することができる。回路がスイッチ動作したとき、寄生インダクタンスによるサージ電圧・電流の発生を防ぎ、ノイズ、損失を低減することができる。
【0016】
次にこの発明の第二実施形態について図3に基づいて説明する。ここで、上記実施形態と同様の構成は同一符号を付して説明を省略する。この実施形態の半導体の実装構造46は、第一放熱器48、第二放熱器62を備えている。第一放熱器48は、アルミ押出し形材であり、第一半導体32が取り付けられる平坦な板状の取付部50が設けられている。取付部50の一方の側面50aには、板状の放熱フィン54が複数枚、ここでは5枚設けられ、互いに平行に位置して設けられている。取付部50の放熱フィン54が位置しない所定位置にはネジ穴52が設けられている。
【0017】
取付部50の、放熱フィン54と反対側の側面50bには、銅板をL字形に折り曲げた保持部材56が樹脂製の絶縁シート51を介して設けられている。保持部材56の折れ目から一方は、取付部50の側面50bに重ねて取り付けられる固定部56aである。固定部56aには、第一放熱器48の透孔52に一致する透孔58が形成されている。保持部材56の折れ目から他方は、取付部50の側面50bから略直角に立設される連結部56bである。連結面56bには、透孔60が形成されている。
【0018】
保持部材56の取付面56aの内側には第一半導体32が取り付けられている。このとき、第一半導体32にネジ61が挿し込まれてネジ61は透孔58を通過してネジ穴52に螺合され固定されている。このとき、保持部材56の連結部56bは、第一放熱器48の上端部48aよりも少し内側に位置している。
【0019】
さらに、第一放熱器48に対向して、第二放熱器62が設けられている。第二放熱器62は、第一放熱器48と同じ形状であり、取付部64と放熱フィン66が設けられている。取付部64の所定位置には、ネジ穴68が設けられている。
【0020】
取付部64の、放熱フィン66と反対側の側面64bには、銅板をL字形に折り曲げた保持部材70が樹脂製の絶縁シート71を介して設けられている。保持部材70の折れ目から一方は、取付部64の側面64bに重ねて取り付けられる固定部70aである。固定部70aには、第二放熱器62の透孔68に一致する透孔72が形成されている。保持部材70の折れ目から他方は、取付部64の側面64bから略直角に立設される連結部70bである。連結部70bには、透孔74が形成されている。
【0021】
保持部材70の固定部70aの内側には第二半導体36が取り付けられている。このとき、第二半導体36にネジ75が挿し込まれてネジ75は透孔72を通過してネジ穴68に螺合されている。このとき、保持部材70の固定部70aは、第二放熱器62の上端部46aのほぼ延長線上に設けられている。
【0022】
この実施形態の半導体の実装構造46の組み立ては、先ず、保持部材56,70に、各々第一半導体32と第二半導体36を、絶縁シート51,71を介してネジ61,75で各々取り付ける。この後、第一放熱器48の保持部材56の連結部56bと、第二放熱器62の保持部材70の連結部70bが重ねられ、透孔60,74を一致させる。このとき、第一放熱器48の保持部材56の連結部56bは、第二放熱器62の保持部材70の連結部70bよりも内側に位置しているため、第一放熱器48と第二放熱器62は同じ高さに位置する。なお、保持部材56,70を共通にしても良い。そして、第一放熱器48の保持部材56の連結部56bの内側には、銅板で作られた出力端子76が重ねられる。出力端子76には、透孔60,74に一致するネジ穴78が設けられ、透孔60,74にネジ80を入れて出力端子40のネジ穴78に螺合して、一体に固定する。
【0023】
この実施形態の半導体の実装構造46によれば、上記実施の形態と同様の効果を有するものである。第一放熱器48と第二放熱器62、及び保持部材56,70が同じ形状でも良いため、部品を共有することができ、部品管理が容易となる。また、組み立てにおいても、第一放熱器48、保持部材56及び第一半導体32を組み立て、さらに、第二放熱器62、保持部材70及び第二半導体36を組み立てた後、この組み立てたもの同士を連結部56b,70bを重ねてネジ80で固定するれば良く、機械的固定を比較的簡単に行うことができる。
【0024】
なお、この実施形態の半導体の実装構造46は、第一放熱器48、第二放熱器62と、それぞれに取り付けられる保持部56,70との各取り付け方向を、設置場所の高さの制限などに合わせて変更する事もできる。例えば、図4(a),(b)に示すように、保持部56,70の連結部56b,70bが、放熱フィン54,66の面に対してほぼ直角に位置する向きに取り付けても良い。これにより、高さを抑えた配置に組み上げることができる。
【0025】
また、この発明は上記各実施形態に限定されるものではなく、各放熱器に取り付けられる半導体の数や種類、出力端子の素材など自由に変更可能である。放熱器の放熱フィンの数や大きさ、厚みなど、自由に変更可能である。
【0026】
【発明の効果】
この発明の半導体の実装構造によれば、放熱効果が大きく、しかも装置の小型化に寄与し、各部材の組立が容易である。また、半導体同士の間隔を狭くすることができ、等価直列抵抗による電力ロスを抑えることができる。
【0027】
従って、この実装構造を電源装置に用いた場合、電源効率を高めることができる。さらに、電源回路の寄生インダクタンスやサージ電圧・電流の発生を抑え、ノイズや損失の低減にも寄与する。
【図面の簡単な説明】
【図1】この発明の第一実施形態の半導体の実装構造の正面図(a)と右側面図(b)である。
【図2】この実施形態の半導体の実装構造の放熱器の斜視図である。
【図3】この発明の第二実施形態の半導体の実装構造の正面図(a)と右側面図(b)である。
【図4】この実施形態の半導体の実装構造の変形例を示す上面図(a)と正面図(b)である。
【図5】従来の技術の半導体の実装構造の正面図(a)と右側面図(b)である。
【図6】従来の技術の半導体の実装構造の正面図(a)と右側面図(b)である。
【符号の説明】
10 半導体の実装構造
12 第一放熱器
14,24 取付部
16,26 放熱フィン
18,28 ネジ固定用突起
20 透孔
15,25,30 ネジ穴
22 第二放熱器
32 第一半導体
34,38,44 ネジ
36 第二半導体
40 出力端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mounting structure of a semiconductor which generates relatively large heat and is mounted on an electronic device.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. H11-89248 For example, a high-power semiconductor for a power supply generates heat due to a large current or a high voltage applied thereto, resulting in high temperature. In order to dissipate this heat, a radiator is attached to this type of semiconductor. A conventional radiator is formed of an extruded aluminum material having a constant cross-sectional shape. For example, there is a radiator 1 as shown in FIGS. 5 (a) and 5 (b). The radiator 1 includes a plate-shaped mounting portion 3 in which a plurality of radiating fins 2 are provided on one side. A plurality of semiconductors 4, here two semiconductors 4, are attached to the attachment portion 3 with screws 5.
[0003]
In addition, there is a radiator in which a pair of mounting portions are integrally formed in a U-shape. In this radiator, semiconductors are mounted on outer surfaces of mounting portions parallel to each other. Although this radiator has a simple structure, it does not have good heat radiation because of no radiating fins.
[0004]
Further, as shown in FIGS. 6A and 6B, a pair of radiators 1 may be provided, assuming that the radiator 1 is excellent in heat radiation and occupies a small space. In the pair of radiators 1, the radiating fins 2 are inserted into gaps between the other radiating fins 2, and are fixed at one end by screws 6. The semiconductor 4 is attached to the attachment portion 3 of each radiator 1. According to the structure in which the pair of radiators 1 are combined, the occupied space is small and the heat radiation effect is high.
[0005]
[Problems to be solved by the invention]
In the case of the above-mentioned conventional technique, the radiator 1 shown in FIG. 5 has a large surface area and good heat dissipation, but in the case of a structure in which space is taken and many semiconductors 4 are attached, there is a problem that the device becomes large. In addition, mechanical fixing to the printed circuit board was difficult due to its strength. Moreover, even if the length of the radiating fins 2 is increased to a certain extent or more, the heat transmission becomes poor, and the heat radiation effect is reduced. For this reason, the heat radiation effect has a limit.
[0006]
When a pair of radiators 1 are provided as shown in FIG. 6, when the mounting floor surfaces are the same, the radiator fins 2 of the pair of radiators 1 need to be provided alternately so as not to hit each other. Yes, it has a different shape. Therefore, parts management is troublesome and costly. In addition, since heat is concentrated on the portion where the radiating fins 2 are overlapped with each other, the heat transfer speed is deteriorated, and the heat radiation effect is reduced. It is desirable that the semiconductors 4 in the power supply circuit be connected in a short distance. However, if the heat radiation fins 2 are made longer in consideration of heat radiation, the distance between the semiconductors 4 becomes longer, and unnecessary parasitic inductance and leakage inductance increase. And the occupied space also increases. In addition, the output current path from the semiconductor 4 also increases, and the resistance component increases.
[0007]
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a semiconductor mounting structure that is easy to assemble, has a large heat dissipation effect, is space-saving, and has low resistance loss and the like. I do.
[0008]
[Means for Solving the Problems]
The present invention has a pair of radiators made of extruded aluminum having a mounting portion provided with a radiating fin on one side, and one or more semiconductors for a power supply circuit or the like are mounted on the other side of the mounting portion. A semiconductor mounting structure in which the radiating fins are located in opposite directions to each other and the mounting portions are opposed to each other with a predetermined space therebetween and connected to each other.
[0009]
Further, the pair of radiators are formed with fixing projections protruding in a direction opposite to the heat radiation fins on a side surface of the mounting portion opposite to the heat radiation fins, and the fixing protrusions are overlapped and connected by a connecting means. This is a semiconductor mounting structure.
[0010]
Further, a holding member such as a copper plate having an L-shaped cross section is attached to the mounting portion of the radiator on a side opposite to the radiation fin, and one of the holding members is attached to and fixed to the mounting portion from a fold of the holding member. The other is a connecting portion which stands upright at a substantially right angle from the mounting portion, and has a semiconductor mounting structure in which the connecting portions of the pair of holding members are connected by connecting means.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIGS. 1A, 1B and 2 show a first embodiment of the present invention. A semiconductor mounting structure 10 of this embodiment includes a first radiator 12 shown in FIG. I have. The first radiator 12 is an extruded aluminum member, and is provided with a flat plate-shaped mounting portion 14 to which a first semiconductor 32 described later is mounted. On one side surface 14a of the mounting portion 14, a radiating fin 16 that projects laterally at substantially right angles to the mounting portion 14 is integrally provided. A plurality of radiating fins 16, here five radiating fins 16, are provided in parallel with each other. On the side surface 14b of the mounting portion 14 opposite to the heat radiating fins 16, a plate-shaped screw fixing projection 18 protruding on the side opposite to the heat radiating fins 16 is provided on an extension of the upper end 12a of the first radiator 12. Have been. The screw fixing projection 18 is substantially parallel to the radiation fin 16 and has a through hole 20 formed at the center.
[0012]
A second radiator 22 is provided to face the first radiator 12. As shown in FIG. 2, the second radiator 22 includes a mounting portion 24 and radiating fins 26 projecting laterally at substantially right angles to one surface 24 a of the mounting portion 24, similarly to the first radiator 12. Is provided. A plurality of radiation fins 26, here five, are provided, and are provided in parallel with each other. On a side surface 24b of the mounting portion 24 opposite to the heat radiation fin 26, a plate-like screw fixing projection 28 is provided slightly inside the upper end portion 22a of the mounting portion 24 and protrudes to the side opposite to the heat radiation fin 26. I have. The screw fixing projection 28 is substantially parallel to the radiation fin 26, and has a female screw hole 30 formed in the center.
[0013]
A screw hole 15 is formed substantially at the center of the mounting portion 14 of the first radiator 12, and a first semiconductor 32 is fixed to the screw hole 15 with a screw 34 on the side surface 14b. A screw hole 25 is formed substantially at the center of the mounting portion 24 of the second radiator 22, and a second semiconductor 36 is also fixed to the screw hole 25 with a screw 38 on the side surface 24b.
[0014]
In assembling the semiconductor mounting structure 10 of this embodiment, first, the first semiconductor 32 and the second semiconductor 36 are attached to the first radiator 12 and the second radiator 22 by screws 34, 36, respectively. Then, the screw fixing projection 18 of the first radiator 12 and the screw fixing projection 28 of the second radiator 22 are overlapped, and the through hole 20 and the screw hole 30 are aligned. At this time, since the screw fixing protrusion 28 of the second radiator 22 is located inside the upper end 24a of the mounting portion 24, the upper ends 12a and 22a of the first radiator 12 and the second radiator 22 are connected. Located at the same height. Then, an output terminal 40 made of a copper plate is superimposed on the outside of the screw fixing projection 18 of the first radiator 12. The output terminal 40 is provided with a screw through-hole 42. A screw 44 is inserted into the through-hole 42, and the screw 44 is screwed into the screw hole 30 through the through-hole 20 and fixed.
[0015]
According to the semiconductor mounting structure 10 of this embodiment, since a pair of heat radiation fins 16 and 26 are provided and the surface area is large and they face each other, heat can be efficiently radiated. Further, the distance between the first semiconductor 32 and the second semiconductor 36 is short, and the leakage inductance and the like are suppressed, and the efficiency as the power supply device is improved. Furthermore, heat dissipation can be improved without taking up a large space, which contributes to downsizing of the product. Also, assembly and mechanical fixing are easy. Further, the current path of the circuit is shortened, and power loss due to the equivalent series resistance of the current line can be reduced. When the circuit operates as a switch, generation of surge voltage and current due to parasitic inductance can be prevented, and noise and loss can be reduced.
[0016]
Next, a second embodiment of the present invention will be described with reference to FIG. Here, the same components as those in the above embodiment are denoted by the same reference numerals, and description thereof is omitted. The semiconductor mounting structure 46 of this embodiment includes a first radiator 48 and a second radiator 62. The first radiator 48 is an extruded aluminum member, and is provided with a flat plate-shaped mounting portion 50 to which the first semiconductor 32 is mounted. On one side surface 50a of the mounting portion 50, a plurality of plate-shaped heat radiation fins 54, here five, are provided and provided in parallel with each other. A screw hole 52 is provided at a predetermined position of the mounting portion 50 where the radiation fin 54 is not located.
[0017]
A holding member 56 formed by bending a copper plate into an L-shape is provided on a side surface 50 b of the mounting portion 50 opposite to the heat radiation fin 54 via an insulating sheet 51 made of resin. One of the folds of the holding member 56 is a fixing portion 56a that is mounted on the side surface 50b of the mounting portion 50 so as to overlap. In the fixing portion 56a, a through hole 58 that matches the through hole 52 of the first radiator 48 is formed. The other from the fold of the holding member 56 is a connecting portion 56b that stands substantially perpendicularly from the side surface 50b of the mounting portion 50. A through hole 60 is formed in the connection surface 56b.
[0018]
The first semiconductor 32 is mounted inside the mounting surface 56 a of the holding member 56. At this time, the screw 61 is inserted into the first semiconductor 32, passes through the through hole 58, and is screwed and fixed to the screw hole 52. At this time, the connecting portion 56b of the holding member 56 is located slightly inside the upper end portion 48a of the first radiator 48.
[0019]
Further, a second radiator 62 is provided to face the first radiator 48. The second radiator 62 has the same shape as the first radiator 48, and is provided with a mounting portion 64 and a radiating fin 66. At a predetermined position of the mounting portion 64, a screw hole 68 is provided.
[0020]
A holding member 70 formed by bending a copper plate into an L-shape is provided on a side surface 64 b of the mounting portion 64 opposite to the heat radiation fin 66 via an insulating sheet 71 made of resin. One of the folds of the holding member 70 is a fixing portion 70a that is mounted on the side surface 64b of the mounting portion 64 so as to overlap. The fixing portion 70a has a through hole 72 that matches the through hole 68 of the second radiator 62. The other part from the fold of the holding member 70 is a connecting part 70 b that stands substantially perpendicularly from the side surface 64 b of the mounting part 64. A through hole 74 is formed in the connecting portion 70b.
[0021]
The second semiconductor 36 is mounted inside the fixing portion 70a of the holding member 70. At this time, the screw 75 is inserted into the second semiconductor 36, and the screw 75 passes through the through hole 72 and is screwed into the screw hole 68. At this time, the fixing portion 70a of the holding member 70 is provided substantially on the extension of the upper end 46a of the second radiator 62.
[0022]
In assembling the semiconductor mounting structure 46 of this embodiment, first, the first semiconductor 32 and the second semiconductor 36 are attached to the holding members 56 and 70 via the insulating sheets 51 and 71 with screws 61 and 75, respectively. Thereafter, the connecting portion 56b of the holding member 56 of the first radiator 48 and the connecting portion 70b of the holding member 70 of the second radiator 62 are overlapped, and the through holes 60 and 74 are aligned. At this time, since the connecting portion 56b of the holding member 56 of the first radiator 48 is located inside the connecting portion 70b of the holding member 70 of the second radiator 62, the first radiator 48 and the second radiator The vessel 62 is located at the same height. Note that the holding members 56 and 70 may be common. Then, an output terminal 76 made of a copper plate is superimposed on the inside of the connecting portion 56b of the holding member 56 of the first radiator 48. The output terminal 76 is provided with a screw hole 78 corresponding to the through holes 60 and 74, and a screw 80 is inserted into the through holes 60 and 74 and screwed into the screw hole 78 of the output terminal 40 to be integrally fixed.
[0023]
According to the semiconductor mounting structure 46 of this embodiment, the same effects as those of the above embodiment can be obtained. Since the first radiator 48, the second radiator 62, and the holding members 56 and 70 may have the same shape, components can be shared, and component management becomes easy. Also, in assembling, after assembling the first radiator 48, the holding member 56, and the first semiconductor 32, further assembling the second radiator 62, the holding member 70, and the second semiconductor 36, the assembled members are combined. It is sufficient that the connecting portions 56b and 70b are overlapped and fixed with the screw 80, and mechanical fixing can be performed relatively easily.
[0024]
In the semiconductor mounting structure 46 of this embodiment, the mounting directions of the first radiator 48, the second radiator 62, and the holding portions 56 and 70 attached to the first radiator 48 and the second radiator 62 are limited. It can be changed to match. For example, as shown in FIGS. 4 (a) and 4 (b), the connecting portions 56b and 70b of the holding portions 56 and 70 may be mounted in a direction substantially perpendicular to the surfaces of the radiation fins 54 and 66. . This makes it possible to assemble the arrangement with a reduced height.
[0025]
The present invention is not limited to the above embodiments, and the number and type of semiconductors attached to each radiator, the material of the output terminal, and the like can be freely changed. The number, size, thickness, etc. of the radiation fins of the radiator can be freely changed.
[0026]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the semiconductor mounting structure of this invention, the heat dissipation effect is large, it contributes to size reduction of an apparatus, and assembly of each member is easy. Further, the distance between semiconductors can be reduced, and power loss due to equivalent series resistance can be suppressed.
[0027]
Therefore, when this mounting structure is used in a power supply device, power supply efficiency can be improved. Furthermore, the generation of the parasitic inductance of the power supply circuit and the surge voltage / current is suppressed, which contributes to the reduction of noise and loss.
[Brief description of the drawings]
FIG. 1 is a front view (a) and a right side view (b) of a semiconductor mounting structure according to a first embodiment of the present invention.
FIG. 2 is a perspective view of a radiator having a semiconductor mounting structure of the embodiment.
3A and 3B are a front view and a right side view of a semiconductor mounting structure according to a second embodiment of the present invention.
FIGS. 4A and 4B are a top view and a front view, respectively, showing a modification of the semiconductor mounting structure of the embodiment.
5A and 5B are a front view and a right side view of a conventional semiconductor mounting structure.
FIG. 6 is a front view (a) and a right side view (b) of a conventional semiconductor mounting structure.
[Explanation of symbols]
Reference Signs List 10 semiconductor mounting structure 12 first radiators 14, 24 mounting portions 16, 26 radiating fins 18, 28 screw fixing projections 20 through holes 15, 25, 30 screw holes 22 second radiator 32 first semiconductors 34, 38, 44 screw 36 second semiconductor 40 output terminal

Claims (3)

放熱フィンが一側面に設けられた取付部を備えた一対の放熱器を有し、上記取付部の他方の側面に半導体が取り付けられ、上記放熱フィンを互いに反対方向に位置させて上記取付部同士を所定間隔空けて対面させて互いに連結して成ることを特徴とする半導体の実装構造。A pair of radiators having a mounting portion provided with a radiating fin on one side, a semiconductor mounted on the other side surface of the mounting portion, and the radiating fins positioned in opposite directions to each other to form the mounting portions; Characterized in that they are connected to each other by facing each other at predetermined intervals. 上記一対の放熱器は、上記取付部の上記放熱フィンと反対の側面に上記放熱フィンとは反対方向に突出した固定用突起が形成され、上記固定用突起同士を重ねて連結手段で連結されていることを特徴とする請求項1記載の半導体の実装構造。The pair of radiators are formed with fixing projections protruding in a direction opposite to the radiating fins on a side of the mounting portion opposite to the radiating fins, and the fixing projections are overlapped and connected by a connecting means. The semiconductor mounting structure according to claim 1, wherein: 上記放熱器の上記取付部には、上記放熱フィンと反対の側面に断面L字形の保持部材が取り付けられ、上記保持部材の折れ目から一方は上記取付部に重ねて取り付け固定される固定部であり、他方は上記取付部から略直角に立設される連結部であり、上記一対の保持部材の上記連結部同士が連結手段により連結されていることを特徴とする請求項1記載の半導体の実装構造。On the mounting portion of the radiator, a holding member having an L-shaped cross section is mounted on the side opposite to the heat radiation fin, and one of the folds of the holding member is a fixing portion that is mounted and fixed on the mounting portion. 2. The semiconductor device according to claim 1, wherein the other is a connecting portion that stands substantially at a right angle from the mounting portion, and the connecting portions of the pair of holding members are connected by connecting means. Mounting structure.
JP2003112738A 2003-04-17 2003-04-17 Semiconductor mounting structure Expired - Fee Related JP3935100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003112738A JP3935100B2 (en) 2003-04-17 2003-04-17 Semiconductor mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112738A JP3935100B2 (en) 2003-04-17 2003-04-17 Semiconductor mounting structure

Publications (2)

Publication Number Publication Date
JP2004319822A true JP2004319822A (en) 2004-11-11
JP3935100B2 JP3935100B2 (en) 2007-06-20

Family

ID=33472861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112738A Expired - Fee Related JP3935100B2 (en) 2003-04-17 2003-04-17 Semiconductor mounting structure

Country Status (1)

Country Link
JP (1) JP3935100B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029636A1 (en) * 2006-09-04 2008-03-13 Kabushiki Kaisha Yaskawa Denki Motor control device
JP2009171732A (en) * 2008-01-16 2009-07-30 Nissan Motor Co Ltd Power conversion apparatus
JPWO2008029637A1 (en) * 2006-09-06 2010-01-21 株式会社安川電機 Motor control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011101959B4 (en) 2010-06-07 2016-11-24 Mitsubishi Electric Corporation Heat sink and process for its production
CN205334044U (en) * 2015-10-29 2016-06-22 中兴通讯股份有限公司 Projector's radiator and projector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029636A1 (en) * 2006-09-04 2008-03-13 Kabushiki Kaisha Yaskawa Denki Motor control device
JPWO2008029636A1 (en) * 2006-09-04 2010-01-21 株式会社安川電機 Motor control device
US7898806B2 (en) 2006-09-04 2011-03-01 Kabushiki Kaisha Yaskawa Denki Motor controller
JPWO2008029637A1 (en) * 2006-09-06 2010-01-21 株式会社安川電機 Motor control device
US7957143B2 (en) 2006-09-06 2011-06-07 Kabushiki Kaisha Yaskawa Denki Motor controller
JP2009171732A (en) * 2008-01-16 2009-07-30 Nissan Motor Co Ltd Power conversion apparatus

Also Published As

Publication number Publication date
JP3935100B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP5157431B2 (en) Power converter
TW200820553A (en) Motor control device
US7957143B2 (en) Motor controller
JP7111010B2 (en) inverter
US6590771B2 (en) Heat sink assembly and method
KR20130058580A (en) Light module and light component thereof
JP2018190914A (en) Circuit structure and electric connection box
JP2006210516A (en) Cooling structure of electronic equipment
JP2006344968A (en) Heatsink and plasma display device
JP5670447B2 (en) Electronics
JP2008177324A (en) Semiconductor block
JP2004319822A (en) Packaging structure of semiconductor
JP6872976B2 (en) Power semiconductor device and power conversion device
JP2000332175A (en) Heat sink with fin
JP2002217574A (en) Power converter
JP2009017624A (en) Motor controller
JP7213498B2 (en) Electronic component module
JP2001244669A (en) Heat dissipating structure of electronic component
JP4362869B2 (en) Sheet metal wiring structure
JP2018098350A (en) Heat radiation structure
US20210274678A1 (en) Electric power converter
JP2008166531A (en) Heat-dissipation structure
CN107113999B (en) Ventilation pipe heat radiation structure and power conversion device comprising ventilation pipe with ventilation pipe heat radiation structure
WO2017098899A1 (en) Electrical junction box
JP2012064705A (en) Radiator attachment structure and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Ref document number: 3935100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees