JP2004317890A - トナーの製造方法およびトナー - Google Patents

トナーの製造方法およびトナー Download PDF

Info

Publication number
JP2004317890A
JP2004317890A JP2003113428A JP2003113428A JP2004317890A JP 2004317890 A JP2004317890 A JP 2004317890A JP 2003113428 A JP2003113428 A JP 2003113428A JP 2003113428 A JP2003113428 A JP 2003113428A JP 2004317890 A JP2004317890 A JP 2004317890A
Authority
JP
Japan
Prior art keywords
toner
dispersion
dispersoid
polyester
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003113428A
Other languages
English (en)
Inventor
Takashi Tejima
孝 手嶋
Wataru Iwanami
渉 岩波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003113428A priority Critical patent/JP2004317890A/ja
Publication of JP2004317890A publication Critical patent/JP2004317890A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

【課題】各粒子間での形状のバラツキが小さく、粒度分布の幅の小さいトナーを提供すること、また、このようなトナーを製造することができるトナーの製造方法を提供すること。
【解決手段】本発明のトナーの製造方法は、主成分としての樹脂と、着色剤とを含む原料を、混練機を用いて混練して、混練物を得る混練工程と、混練物を粉砕する粉砕工程と、粉砕工程で得られた粉砕物を分散媒中に分散して分散液を得る分散工程と、分散液を、少なくとも2つ以上のノズルから吐出させ、各ノズルから吐出された分散液同士を衝突させて、分散液中の分散質を微粒化する微粒化工程とを有することを特徴とする。少なくとも2つ以上のノズルのうち、各ノズルの先端が最も離れている2つのノズルから吐出された分散液同士の衝突角度が、90〜180°である。
【選択図】なし

Description

【0001】
【発明の属する技術分野】
本発明は、トナーの製造方法およびトナーに関するものである。
【0002】
【従来の技術】
電子写真法としては、多数の方法が知られているが、一般には、光導電性物質を利用し、種々の手段により感光体上に電気的潜像を形成する工程(露光工程)と、該潜像をトナーを用いて現像する現像工程と、紙等の転写材にトナー画像を転写する転写工程と、定着ローラを用いた加熱、加圧等により、前記トナー画像を定着する工程とを有している。
【0003】
また、トナーの製造方法としては、粉砕法、重合法が用いられている。
粉砕法は、主成分である樹脂(以下、単に「樹脂」ともいう。)と、着色剤とを含む原料を混練して混練物を得、その後、前記混練物を冷却、粉砕する方法である(例えば、非特許文献1参照)。このような粉砕法は、原料の選択の幅が広く、比較的容易にトナーを製造することができる点で優れている。しかしながら、粉砕法で得られるトナーは不定形で、各粒子間での形状のバラツキが大きく、その粒径分布も広くなりやすいという欠点を有している。その結果、各トナー粒子間での特性が大きく異なる結果となり、トナー全体としての転写効率が低下したり、帯電特性が低下する等の問題があった。
【0004】
重合法は、樹脂の構成成分である単量体を用いて、液相中等で、重合反応を行い、目的とする樹脂を生成することにより、トナー粒子を製造するものである(例えば、特許文献1参照)。このような重合法は、得られるトナー粒子の形状を、比較的真球度の高いもの(幾何学的に完全な球形に近い形状)にすることができるという点で優れている。しかしながら、重合法では、各粒子間で粒径のバラツキを十分に小さくすることができない場合がある。また、重合法では、樹脂材料の選択の幅が狭く、目的とする特性のトナーを得るのが困難となる場合がある。
【0005】
【非特許文献1】
電子写真学会監修「電子写真の基礎と応用」コロナ社発行、1988年、p482−486
【特許文献1】
特開平6−332257号公報(第2頁28〜35行目)
【0006】
【発明が解決しようとする課題】
本発明の目的は、各粒子間での形状のバラツキが小さく、粒度分布の幅の小さい球形のトナーを提供すること、また、このような球形のトナーを製造することができるトナーの製造方法を提供することにある。
【0007】
【課題を解決するための手段】
このような目的は、下記の本発明により達成される。
本発明のトナーの製造方法は、主成分としての樹脂と、着色剤とを含む原料を、混練機を用いて混練して、混練物を得る混練工程と、
前記混練物を粉砕する粉砕工程と、
前記粉砕工程で得られた粉砕物を分散媒中に分散して分散液を得る分散工程と、
前記分散液を、複数のノズルから吐出させ、前記各ノズルから吐出された前記分散液同士を衝突させて、前記分散液中の分散質を微粒化する微粒化工程とを有することを特徴とする。
これにより、最終的に得られるトナーは、各粒子間での形状のバラツキが小さく、粒度分布の幅の小さいものとなる。
【0008】
本発明のトナーの製造方法では、複数の前記ノズルのうち、少なくとも2つの前記ノズルから吐出された前記分散液同士の衝突角度が、90〜180°であることが好ましい。
これにより、2つの吐出流が衝突する際に、吐出流の持つ運動エネルギーを極力少ない損失で、分散質を微粒化するエネルギーとして用いることができ、効率よく分散質を微粒化することができる。
【0009】
本発明のトナーの製造方法では、前記微粒化工程は、繰り返し行われるものであることが好ましい。
これにより、各粒子間での形状のバラツキが小さく、粒度分布の幅の小さいトナー粒子を効率よく得ることができる。
本発明のトナーの製造方法では、前記分散質の平均粒径が、0.1〜15μmになるまで前記微粒化工程を繰り返すことが好ましい。
これにより、最終的に得られるトナーは、適度な円形度を有し、各粒子間での特性、形状の均一性に優れたものとなる。
【0010】
本発明のトナーの製造方法では、前記分散媒は、主として水および/または水との相溶性に優れる液体で構成されたものであることが好ましい。
これにより、例えば、分散媒中における分散質の分散性を高めることができる。
本発明のトナーの製造方法では、前記分散液は、分散剤を含むものであることが好ましい。
これにより、分散液中における分散質の分散性を向上させ、また、分散質の浮上、沈降、凝集、合一等を効果的に防止することができる。
【0011】
本発明のトナーの製造方法では、前記ノズルから前記分散液を吐出する圧力は、50〜300MPaであることが好ましい。
これにより、適度な平均粒径を有する微粒化された分散質を効率よく得ることができる。
本発明のトナーの製造方法では、前記微粒化工程において、前記分散液は加温されることが好ましい。
これにより、得られる微粒化された分散質の円形度を適度なものとすることができ、その結果、最終的に得られるトナーの円形度も適度なものとなる。
【0012】
本発明のトナーの製造方法では、前記ノズルより吐出する際の前記分散液の温度は、20〜200℃であることが好ましい。
これにより、得られる微粒化された分散質の円形度を適度なものとすることができ、その結果、最終的に得られるトナーの円形度も適度なものとなる。
本発明のトナーの製造方法では、前記原料は、ワックスを含むものであることが好ましい。
これにより、例えば、最終的に得られるトナー粒子の離型性を向上させることができる。
【0013】
本発明のトナーの製造方法では、前記微粒化工程の後に、微粒化した前記分散質を前記分散液より分離する分離工程と、前記分離工程で分離した前記分散質を乾燥する乾燥工程とを有することが好ましい。
これにより、より簡便に、効率よくトナーを製造することができる。
本発明のトナーの製造方法では、前記乾燥工程における乾燥温度が、40〜200℃であることが好ましい。
これにより、好適に分散液から分散媒を除去することができる。
【0014】
本発明のトナーの製造方法では、前記微粒化工程の後に、微粒化した前記分散質を含む前記分散液を噴霧し、固化部内を搬送しつつ前記分散媒を除去することが好ましい。
これにより、好適に分散液から分散媒を除去することができる。
本発明のトナーの製造方法では、前記固化部内の温度が、40〜160℃であることが好ましい。
これにより、得られるトナー粒子の円形度が特に高いものとなる。
【0015】
本発明のトナーの製造方法では、前記粉砕工程により得られる前記粉砕物の平均粒径は、15〜2000μmであることが好ましい。
これにより、分散媒への分散性が向上する。また、これにより、微粒化工程において、分散液に含まれる分散質を、効率よく、かつ、均一に微粒化し、微粒化された分散質を効率よく得ることができる。
【0016】
本発明のトナーの製造方法では、前記粉砕物の平均粒径をDf[μm]、製造されるトナー粒子の平均粒径をDt[μm]としたとき、1≦Df/Dt≦1000の関係を満足することが好ましい。
これにより、最終的に得られるトナー粒子間での、形状、大きさのバラツキを効果的に抑制することができる。
【0017】
本発明のトナーの製造方法では、前記微粒化工程前の前記分散液中における前記分散質の平均粒径は、15〜2000μmであることが好ましい。
これにより、微粒化工程において、分散液に含まれる分散質を、効率よく、かつ、均一に微粒化し、微粒化された分散質を効率よく得ることができる。
本発明のトナーの製造方法では、前記微粒化工程前の前記分散液中における前記分散質の平均粒径をD[μm]、前記微粒化工程後の前記分散液中における前記分散質の平均粒径をd[μm]としたとき、D/d≦1000の関係を満足することが好ましい。
これにより、最終的に得られるトナーの各粒子間での形状、大きさのバラツキを特に小さいものとすることができる。
【0018】
本発明のトナーの製造方法では、前記分散液中における前記分散質の含有量は、1〜95wt%であることが好ましい。
これにより、最終的に得られるトナーの各粒子間での形状、大きさのバラツキを特に小さいものとすることができる。
本発明のトナーの製造方法では、微粒化された前記分散質を含む前記分散液から、前記分散媒を除去することにより得られた粉末に外添剤を付与する外添工程を有することが好ましい。
これにより、最終的に得られるトナーは、トナーとして求められる各種特性のバランスが特に優れたものとなる。
本発明のトナーの製造方法では、前記分散質は、前記樹脂として、異なる2種以上のポリエステルを含むものであることが好ましい。
これにより、機械的強度(機械的ストレスに対する安定性)と、定着性(幅広い温度領域で十分な定着性)との両立を図ることができる。
【0019】
本発明のトナーの製造方法では、前記樹脂は、主としてブロック共重合体で構成されたブロックポリエステルと、前記ブロックポリエステルより結晶性の低い非晶性ポリエステルとを含み、
前記ブロックポリエステルは、アルコール成分とカルボン酸成分とを縮合してなる結晶性ブロックと、前記結晶性ブロックより結晶性の低い非晶性ブロックとを有するものであることが好ましい。
これにより、得られるトナーは、特に機械的ストレスに強く、かつ、幅広い温度領域で十分な定着性(定着強度)を示すものとなる。
【0020】
本発明のトナーの製造方法では、微粒化された前記分散質を含む前記分散液から、前記分散媒を除去することにより得られた粉末は、主として前記結晶性ブロックにより形成された結晶を含むものであることが好ましい。
これにより、トナーの物理的安定性が特に優れたものになる。また、これにより、外添剤をトナー粒子の表面付近に確実に担持することができるため、外添剤の含有量が比較的少ない場合であっても、外添剤としての機能を十分に発揮させることができる。
【0021】
本発明のトナーの製造方法では、前記結晶の平均長さが10〜1000nmであることが好ましい。
これにより、トナーの物理的安定性が特に優れたものになるとともに、外添剤をトナー母粒子の表面付近により確実に担持することが可能となる。
本発明のトナーの製造方法では、前記ブロックポリエステルと、前記非晶性ポリエステルとの配合比は、重量比で5:95〜45:55であることが好ましい。
これにより、得られるトナーは、特に機械的ストレスに強く、かつ、幅広い温度領域で十分な定着性(定着強度)を示すものとなる。
【0022】
本発明のトナーは、本発明の方法により製造されたことを特徴とする。
これにより、均一な形状を有し、粒度分布の幅の小さいトナーが得られる。
本発明のトナーでは、平均粒径が2〜15μmであることが好ましい。
これにより、トナーの各粒子間での帯電特性などのばらつきを十分に小さいものとしつつ、トナーにより形成される画像の解像度を十分に高いものとすることができる。
本発明のトナーでは、各粒子間での粒径の標準偏差が1.5μm以下であることが好ましい。
これにより、各粒子間での帯電特性、定着特性等のバラツキが特に小さくなり、トナー全体としての、信頼性がさらに向上する。
【0023】
本発明のトナーでは、下記式(I)で表される平均円形度Rが0.91〜0.99であることが好ましい。
R=L/L・・・(I)
(ただし、式中、L[μm]は、測定対象のトナー粒子の投影像の周囲長、L[μm]は、測定対象のトナー粒子の投影像の面積に等しい面積の真円の周囲長を表す。)
これにより、トナー粒子の粒径を十分に小さいものとしつつ、トナー粒子の転写効率、機械的強度を特に優れたものとすることができる。
本発明のトナーでは、各粒子間での平均円形度の標準偏差が0.02以下であることが好ましい。
これにより、トナー粒子間での帯電特性、定着特性等のバラツキが特に小さくなり、トナー全体としての、信頼性がさらに向上する。
【0024】
【発明の実施の形態】
以下、本発明のトナーの製造方法およびトナーの好適な実施形態について、添付図面を参照しつつ詳細に説明する。まず、本発明のトナーの製造方法について説明する。
図1は、分散液の調製に用いる混練物を製造するための混練機、冷却機の構成の一例を模式的に示す縦断面図、図2は、ブロックポリエステルについて示差走査熱量分析を行ったときに得られる、ブロックポリエステルの融点付近での示差走査熱量分析曲線のモデル図、図3は、軟化点解析用フローチャート、図4は、分散質を微粒化する装置の好適な実施形態を模式的に示す縦断面図、図5は、図4に示す微粒化装置のチャンバ付近の拡大断面図、図6は、トナー製造装置の好適な実施形態を模式的に示す縦断面図、図7は、図6に示すトナー製造装置のヘッド部付近の拡大断面図である。以下、図1中、左側を「基端」、右側を「先端」として説明する。
本発明のトナーは、分散媒中に分散質が分散した分散液を用いて製造するものである。特に、本発明では、このような分散液を、複数のノズルから吐出させ、各ノズルから吐出された分散液同士を衝突させて、分散液中の分散質を微粒化する微粒化工程とを有することを特徴とする。
【0025】
[分散液]
まず、本発明で用いる分散液3について説明する。本発明のトナーは、分散液3を用いて製造されるものである。分散液3は、分散媒32中に分散質(分散相)31が分散した構成となっている。
<分散媒>
分散媒32は、後述する分散質31を分散可能なものであればいかなるものであってもよいが、主として、一般に溶媒として用いられているような材料で構成されたものであるのが好ましい。
【0026】
このような材料としては、例えば、水、二硫化炭素、四塩化炭素等の無機溶媒や、メチルエチルケトン(MEK)、アセトン、ジエチルケトン、メチルイソブチルテトン(MIBK)、メチルイソプロピルケトン(MIPK)、シクロヘキサノン、3−ヘプタノン、4−ヘプタノン等のケトン系溶媒、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、i−ブタノール、t−ブタノール、3−メチル−1−ブタノール、1−ペンタノール、2−ペンタノール、n−ヘキサノール、シクロヘキサノール、1−ヘプタノール、1−オクタノール、2−オクタノール、2−メトキシエタノール、アリルアルコール、フルフリルアルコール、フェノール等のアルコール系溶媒、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、1,2−ジメトキシエタン(DME)、1,4−ジオキサン、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、アニソール、ジエチレングリコールジメチルエーテル(ジグリム)、2−メトキシエタノール等のエーテル系溶媒、メチルセロソルブ、エチルセロソルブ、フェニルセロソルブ等のセロソルブ系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、オクタン、ジデカン、メチルシクロヘキセン、イソプレン等の脂肪族炭化水素系溶媒、トルエン、キシレン、ベンゼン、エチルベンゼン、ナフタレン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、2−メチルピリジン、3−メチルピリジン、4−メチルピリジン、フルフリルアルコール等の芳香族複素環化合物系溶媒、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMA)等のアミド系溶媒、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、トリクロロエチレン、クロロベンゼン等のハロゲン化合物系溶媒、アセチルアセトン、酢酸エチル、酢酸メチル、酢酸イソプロピル、酢酸イソブチル、酢酸イソペンチル、クロロ酢酸エチル、クロロ酢酸ブチル、クロロ酢酸イソブチル、ギ酸エチル、ギ酸イソブチル、アクリル酸エチル、メタクリル酸メチル、安息香酸エチル等のエステル系溶媒、トリメチルアミン、ヘキシルアミン、トリエチルアミン、アニリン等のアミン系溶媒、アクリロニトリル、アセトニトリル等のニトリル系溶媒、ニトロメタン、ニトロエタン等のニトロ系溶媒、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ペンタナール、アクリルアルデヒド等のアルデヒド系溶媒等の有機溶媒等が挙げられ、これらから選択される1種または2種以上を混合したものを用いることができる。
上記の材料の中でも、分散媒32としては、主として水および/または水との相溶性に優れる液体(例えば、25℃における水100gに対する溶解度が30g以上の液体)で構成されたものであるのが好ましい。これにより、例えば、分散媒32中における分散質31の分散性を高めることができる。
【0027】
また、分散媒32の構成材料として複数の成分の混合物を用いる場合、分散媒の構成材料としては、前記混合物を構成する少なくとも2種の成分の間で、共沸混合物(最低沸点共沸混合物)を形成し得るものを用いるのが好ましい。これにより、後述するトナー製造装置の固化部等において、分散媒32を効率良く除去することが可能となる。また、後述するトナー製造装置の固化部等において、比較的低い温度で分散媒32を除去することが可能となり、得られるトナー粒子4の特性の劣化をより効果的に防止できる。例えば、水との間で、共沸混合物を形成し得る液体としては、二硫化炭素、四塩化炭素、メチルエチルケトン(MEK)、アセトン、シクロヘキサノン、3−ヘプタノン、4−ヘプタノン、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、i−ブタノール、t−ブタノール、3−メチル−1−ブタノール、1−ペンタノール、2−ペンタノール、n−ヘキサノール、シクロヘキサノール、1−ヘプタノール、1−オクタノール、2−オクタノール、2−メトキシエタノール、アリルアルコール、フルフリルアルコール、フェノール、ジプロピルエーテル、ジブチルエーテル、1,4−ジオキサン、アニソール、2−メトキシエタノール、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、オクタン、ジデカン、メチルシクロヘキセン、イソプレン、トルエン、ベンゼン、エチルベンゼン、ナフタレン、ピリジン、2−メチルピリジン、3−メチルピリジン、4−メチルピリジン、フルフリルアルコール、クロロホルム、1,2−ジクロロエタン、トリクロロエチレン、クロロベンゼン、アセチルアセトン、酢酸エチル、酢酸メチル、酢酸イソプロピル、酢酸イソブチル、酢酸イソペンチル、クロロ酢酸エチル、クロロ酢酸ブチル、クロロ酢酸イソブチル、ギ酸エチル、ギ酸イソブチル、アクリル酸エチル、メタクリル酸メチル、安息香酸エチル、トリメチルアミン、ヘキシルアミン、トリエチルアミン、アニリン、アクリロニトリル、アセトニトリル、ニトロメタン、ニトロエタン、アクリルアルデヒド等が挙げられる。
【0028】
また、分散媒32の沸点は、特に限定されないが、180℃以下であるのが好ましく、150℃以下であるのがより好ましく、35〜130℃であるのがさらに好ましい。このように、分散媒32の沸点が比較的低いものであると、後述するトナー製造装置の固化部等において、分散媒32を比較的容易に除去することが可能となる。また、分散媒32としてこのような材料を用いることにより、最終的に得られるトナー粒子4中における分散媒32の残留量を特に少ないものにすることができる。その結果トナーとしての信頼性がさらに高まる。
なお、分散媒32中には、上述した材料以外の成分が含まれていてもよい。例えば、分散媒32中には、後に分散質31の構成成分として例示する材料や、シリカ、酸化チタン、酸化鉄等の無機系微粉末、脂肪酸、脂肪酸金属塩、高分子重合微粉末等の有機系微粉末等の各種添加剤等が含まれていてもよい。
【0029】
<分散質>
分散質31は、通常、少なくとも、主成分としての樹脂を含む材料で構成されている。
以下、分散質31の構成材料について説明する。
1.樹脂(バインダー樹脂)
本発明においては、樹脂(バインダー樹脂)は、特に限定されず、例えば、ポリスチレン、ポリ−α−メチルスチレン、クロロポリスチレン、スチレン−クロロスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ブタジエン共重合体、スチレン−塩化ビニル共重合体、スチレン−酢酸ビニル共重合体、スチレン−マレイン酸共重合体、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸エステル共重合体、スチレン−アクリル酸エステル−メタクリル酸エステル共重合体、スチレン−α−クロルアクリル酸メチル共重合体、スチレン−アクリロニトリル−アクリル酸エステル共重合体、スチレン−ビニルメチルエーテル共重合体等のスチレン系樹脂でスチレンまたはスチレン置換体を含む単重合体または共重合体、ポリエステル系樹脂、エポキシ樹脂、ウレタン変性エポキシ樹脂、シリコーン変性エポキシ樹脂、塩化ビニル樹脂、ロジン変性マレイン酸樹脂、フェニール樹脂、ポリエチレン系樹脂、ポリプロピレン、アイオノマー樹脂、ポリウレタン樹脂、シリコーン樹脂、ケトン樹脂、エチレン−エチルアクリレート共重合体、キシレン樹脂、ポリビニルブチラール樹脂、テルペン樹脂、フェノール樹脂、脂肪族または脂環族炭化水素樹脂等が挙げられる。これらのうちの1種または2種以上を組み合わせて用いることができる。
【0030】
本発明では、上記樹脂の中でも、異なる2種以上のポリエステル系樹脂を含むものを用いるのが好ましい。これにより、機械的強度(機械的ストレスに対する安定性)と、定着性(幅広い温度領域で十分な定着性)との両立を図ることができる。例えば、ポリエステル系樹脂として、結晶性の異なる2種のポリエステルを含むものを用いたり、軟化点T1/2の異なる2種のポリエステルを含むものを用いたりすることができる。特に、本発明では、ポリエステル系樹脂として、少なくとも、以下で説明するようなブロックポリエステルと、非晶性ポリエステルとを含むものを用いるのが好ましい。これにより、後に詳述するような、特に優れた効果が得られる。以下、樹脂として、ブロックポリエステルと非晶性ポリエステルとを組み合わせて用いた場合について、代表的に説明する。
【0031】
1−1.ブロックポリエステル
ブロックポリエステルは、アルコール成分とカルボン酸成分とを縮合してなる結晶性ブロックと、前記結晶性ブロックより結晶性の低い非晶性ブロックとを有するブロック共重合体で構成されたものである。
▲1▼結晶性ブロック
結晶性ブロックは、非晶性ブロックや非晶性ポリエステルに比べて、高い結晶性を有している。すなわち、分子配列構造が、非晶性ブロックや非晶性ポリエステルに比べて強固で安定したものである。このため、結晶性ブロックは、トナー全体としての強度を向上させるのに寄与する。その結果、最終的に得られるトナーは、機械的ストレスに強く、耐久性、保存性に優れたものとなる。
【0032】
ところで、結晶性の高い樹脂は、一般に、結晶性の低い樹脂に比べて、いわゆるシャープメルト性を有している。すなわち、結晶性の高い樹脂は、示差走査熱量分析(DSC)による融点の吸熱ピークの測定を行ったとき、結晶性の低い樹脂に比べて、吸熱ピークがシャープな形状として現れる性質を有している。
一方、結晶性ブロックは、上述したように、結晶性の高いものである。したがって、結晶性ブロックは、ブロックポリエステルにシャープメルト性を付与する機能を有する。このため、本発明のトナーは、後述する非晶性ポリエステルが十分に軟化するような、比較的高い温度(ブロックポリエステルの融点付近の温度)においても、優れた形状の安定性(耐久性)を保持することができる。したがって、本発明のトナーは、幅広い温度領域で十分な定着性(定着強度)を発揮することができる。
また、このような結晶性ブロックを、ブロックポリエステルが有しているため、本発明においては、後述する熱球形化処理を効率良く(短時間で)行うことが可能となり、容易に、最終的に得られるトナー粒子の円形度を比較的高いものにすることができる。
【0033】
以下、結晶性ブロックを構成する成分について説明する。
結晶性ブロックを構成するアルコール成分としては、2個以上の水酸基を有するものを用いることができ、中でも水酸基を2個有するアルコール成分であるのが好ましい。このような水酸基を2個有するアルコール成分としては、例えば、芳香環構造を有する芳香族ジオールや、芳香環構造を有さない脂肪族ジオール等が挙げられる。芳香族ジオールとしては、例えば、ビスフェノールA、ビスフェノールAのアルキレンオキサイド付加物(例えば、ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(3.3)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシエチレン(2.0)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(2.0)−ポリオキシエチレン(2.0)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(6)−2,2−ビス(4−ヒドロキシフェニル)プロパン等)等が挙げられ、また、脂肪族ジオールとしては、例えば、エチレングリコール、1,3−プロパンジオール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、ジエチレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ジプロピレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−ブタンジオール、2,3−ブタンジオール、ネオペンチルグリコール(2,2−ジメチルプロパン−1,3−ジオール)、1,2−ヘキサンジオール、2,5−ヘキサンジオール、2−メチル−2,4−ペンタンジオール、3−メチル−1,3−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、2,4−ジエチル−1,5−ペンタンジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状ジオール類、または2,2−ビス(4−ヒドロキシシクロヘキシル)プロパン、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのアルキレンオキサイド付加物、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、水添ビスフェノールA、水添ビスフェノールAのアルキレンオキサイド付加物等の環状ジオール類等が挙げられる。
【0034】
なお、水酸基を3個以上有するアルコール成分としては、ソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセロール、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシメチルベンゼン等が挙げられる。
【0035】
このように、結晶性ブロックを構成するアルコール成分は、特に限定されないが、少なくともその一部が脂肪族ジオールであるのが好ましく、その80mol%以上が脂肪族ジオールであるのがより好ましく、その90mol%以上が脂肪族ジオールであるのがさらに好ましい。これにより、ブロックポリエステル(結晶性ブロック)の結晶性を特に高いものとすることができ、上述した効果がさらに顕著なものとなる。
【0036】
また、結晶性ブロックを構成するアルコール成分は、炭素数が3〜7の直鎖状の分子構造を有し、その両端に水酸基を有するもの(一般式:HO−(CH−OHで表されるジオール(ただし、n=3〜7))を含むのが好ましい。このようなアルコール成分が含まれることにより、結晶性が向上し、摩擦係数が低下するため、機械的ストレスに強く、耐久性や保存性に特に優れたものとなる。このようなジオールとしては、例えば、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール等が挙げられるが、この中でも1,4−ブタンジオールが好ましい。1,4−ブタンジオールを含むことにより、前述した効果は特に顕著なものとなる。
【0037】
結晶性ブロックを構成するアルコール成分として1,4−ブタンジオールを含む場合、結晶性ブロックを構成するアルコール成分の50mol%以上が1,4−ブタンジオールであるのがより好ましく、その80mol%以上が1,4−ブタンジオールであるのがさらに好ましい。これにより、前述した効果はさらに顕著なものとなる。
【0038】
結晶性ブロックを構成するカルボン酸成分としては、2価以上のカルボン酸またはその誘導体(例えば、酸無水物、低級アルキルエステル等)等を用いることができるが、2価のカルボン酸またはその誘導体等を用いるのが好ましい。このような2価のカルボン酸成分としては、例えば、o−フタル酸(フタル酸)、テレフタル酸、イソフタル酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、オクチルコハク酸、シクロヘキサンジカルボン酸、フマル酸、マレイン酸、イタコン酸およびこれらの誘導体(例えば、無水物、低級アルキルエステル等)等が挙げられる。
なお、3価以上のカルボン酸成分としては、トリメリット酸、ピロメリット酸およびこれらの誘導体(例えば、無水物、低級アルキルエステル等)等が挙げられる。
【0039】
このように、結晶性ブロックを構成するカルボン酸成分は、特に限定されないが、少なくともその一部がテレフタル酸骨格を有するものであるのが好ましく、その50mol%以上がテレフタル酸骨格を有するものであるのがより好ましく、その80mol%以上がテレフタル酸骨格を有するものであるのがさらに好ましい。これにより、最終的に得られるトナーは、トナーとして求められる各種特性のバランスが特に優れたものとなる。ただし、ここでの「カルボン酸成分」は、ブロックポリエステルとしたときのカルボン酸成分のことを指し、ブロックポリエステルを調整する(結晶性ブロックを形成する)際には、当該カルボン酸成分そのものや、その酸無水物、低級アルキルエステル等の誘導体を用いることができるものとする。
【0040】
ブロックポリエステル中における結晶性ブロックの含有率は、特に限定されないが、5〜60mol%であるのが好ましく、10〜40mol%であるのがより好ましい。結晶性ブロックの含有率が前記下限値未満であると、ブロックポリエステルの含有量等によっては、上述したような結晶性ブロックを有することによる効果が十分に発揮されない可能性がある。一方、結晶性ブロックの含有率が前記上限値を超えると、相対的に非晶性ブロックの含有率が低下するため、ブロックポリエステルと、後述する非晶性ポリエステルとの親和性(相溶性)が低下する可能性がある。
【0041】
ところで、このような結晶ブロックポリエステルがあると、分散質31やトナー粒子4中において、主として結晶ブロック構成された結晶が存在するものとなる。このような比較的硬い結晶が存在すると、後に詳述するような微粒化工程において、過度の微粒化を効果的に防止することができ、最終的に得られるトナーの粒度分布をよりシャープなものとすることができる。
なお、結晶性ブロックは、上記のようなアルコール成分、カルボン酸成分以外の成分を含むものであってもよい。
【0042】
▲2▼非晶性ブロック
非晶性ブロックは、前述した結晶性ブロックに比べて結晶性が低い。また、後述する非晶性ポリエステルも、結晶性ブロックに比べて結晶性が低い。すなわち、非晶性ブロックは、後述する非晶性ポリエステルと同様に、結晶性ブロックに比べて結晶性が低い。
ところで、ブレンド樹脂においては、一般に、結晶性が大きく異なる樹脂同士は相溶し難く、結晶性の差が小さい樹脂同士は相溶し易い。したがって、ブロックポリエステルが非晶性ブロックを有することにより、ブロックポリエステルと、後述する非晶性ポリエステルとの相溶性(分散性)が高まる。その結果、最終的に得られるトナーにおいて、ブロックポリエステルと非晶性ポリエステルとが、相分離(特に、マクロ相分離)するのを効果的に防止することができ、ブロックポリエステルの利点と非晶性ポリエステルの利点とを十分かつ安定的に発揮させることができる。
【0043】
以下、非晶性ブロックを構成する成分について説明する。
非晶性ブロックを構成するアルコール成分としては、2個以上の水酸基を有するものを用いることができ、中でも水酸基を2個有するアルコール成分であるのが好ましい。このような水酸基を2個有するアルコール成分としては、例えば、芳香環構造を有する芳香族ジオールや、芳香環構造を有さない脂肪族ジオール等が挙げられる。芳香族ジオールとしては、例えば、ビスフェノールA、ビスフェノールAのアルキレンオキサイド付加物(例えば、ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(3.3)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシエチレン(2.0)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(2.0)−ポリオキシエチレン(2.0)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(6)−2,2−ビス(4−ヒドロキシフェニル)プロパン等)等が挙げられ、また、脂肪族ジオールとしては、例えば、エチレングリコール、1,3−プロパンジオール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、ジエチレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ジプロピレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−ブタンジオール、2,3−ブタンジオール、ネオペンチルグリコール(2,2−ジメチルプロパン−1,3−ジオール)、1,2−ヘキサンジオール、2,5−ヘキサンジオール、2−メチル−2,4−ペンタンジオール、3−メチル−1,3−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、2,4−ジエチル−1,5−ペンタンジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状ジオール類、または2,2−ビス(4−ヒドロキシシクロヘキシル)プロパン、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのアルキレンオキサイド付加物、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、水添ビスフェノールA、水添ビスフェノールAのアルキレンオキサイド付加物等の環状ジオール類等が挙げられる。
【0044】
なお、水酸基を3個以上有するアルコール成分としては、ソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセロール、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシメチルベンゼン等が挙げられる。
【0045】
このように、非晶性ブロックを構成するアルコール成分は、特に限定されないが、少なくともその一部が脂肪族ジオールであるのが好ましく、その50mol%以上が脂肪族ジオールであるのがより好ましい。これにより、より靱性に優れた(耐折り曲げ性に優れた)定着画像が得られるという効果が得られる。
また、非晶性ブロックを構成するアルコール成分は、少なくともその一部が分岐鎖(側鎖)を有するものであるのが好ましく、その30mol%以上が分岐鎖を有するものであるのがより好ましい。これにより、規則配列を抑制し、結晶性を低下させ、透明性も向上するという効果が得られる。
【0046】
非晶性ブロックを構成するカルボン酸成分としては、2価以上のカルボン酸またはその誘導体(例えば、酸無水物、低級アルキルエステル等)等を用いることができるが、2価のカルボン酸またはその誘導体等を用いるのが好ましい。このような2価のカルボン酸成分としては、例えば、o−フタル酸(フタル酸)、テレフタル酸、イソフタル酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、オクチルコハク酸、シクロヘキサンジカルボン酸、フマル酸、マレイン酸、イタコン酸およびこれらの誘導体(例えば、無水物、低級アルキルエステル等)等が挙げられる。
なお、3価以上のカルボン酸成分としては、トリメリット酸、ピロメリット酸およびこれらの誘導体(例えば、無水物、低級アルキルエステル等)等が挙げられる。
【0047】
このように、非晶性ブロックを構成するカルボン酸成分は、特に限定されないが、少なくともその一部がテレフタル酸骨格を有するものであるのが好ましく、その80mol%以上がテレフタル酸骨格を有するものであるのがより好ましい。これにより、最終的に得られるトナーは、トナーとして求められる各種特性のバランスが特に優れたものとなる。ただし、ここでの「カルボン酸成分」は、ブロックポリエステルとしたときのカルボン酸成分のことを指し、ブロックポリエステルを調整する(非晶性ブロックを形成する)際には、当該カルボン酸成分そのものや、その酸無水物、低級アルキルエステル等の誘導体を用いることができるものとする。
なお、非晶性ブロックは、上記のようなアルコール成分、カルボン酸成分以外の成分を含むものであってもよい。
【0048】
上記のような結晶性ブロック、非晶性ブロックを有するブロックポリエステルの平均分子量(重量平均分子量)Mwは、特に限定されないが、1×10〜3×10であるのが好ましく、1.2×10〜1.5×10であるのがより好ましい。平均分子量Mwが前記下限値未満であると、最終的に得られるトナーの機械的強度が低下し、十分な耐久性(保存性)が得られない可能性がある。また、平均分子量Mwが小さすぎると、トナーの定着時に凝集破壊を起こし易くなり、耐オフセット性が低下する傾向を示す。一方、平均分子量Mwが前記上限値を超えると、トナーの定着時に粒界破壊を起こし易くなり、紙等の転写材(記録媒体)への濡れ性も低下し、定着に要する熱量も大きくなる。
【0049】
ブロックポリエステルのガラス転移点Tは、特に限定されないが、50〜75℃であるのが好ましく、55〜70℃であるのがより好ましい。ガラス転移点が前記下限値未満であると、トナーの保存性(耐熱性)が低下し、使用環境等によっては、トナー粒子間での融着が発生する場合がある。一方、ガラス転移点が前記上限値を超えると、低温定着性や透明性が低下する。また、ガラス転移点が高すぎると、後述するような熱球形化処理の効果が十分に発揮されない可能性がある。なお、ガラス転移点は、JIS K 7121に準拠して測定することができる。
【0050】
ブロックポリエステルの軟化点T1/2は、特に限定されないが、90〜160℃であるのが好ましく、100〜150℃であるのがより好ましい。軟化点が前記下限値未満であると、トナーとしての保存性が低下し、十分な耐久性が得られない可能性がある。また、軟化点が低すぎると、トナーの定着時に凝集破壊を起こし易くなり、耐オフセット性が低下する傾向を示す。一方、軟化点が前記上限値を超えると、トナーの定着時に粒界破壊を起こし易くなり、紙等の転写材(記録媒体)への濡れ性も低下し、定着に要する熱量も大きくなる。なお、軟化点T1/2は、例えば、フローテスタを用い、サンプル量:1g、ダイ孔径:1mm、ダイ長さ:1mm、荷重:20kgf、予熱時間:300秒、測定開始温度:50℃、昇温速度:5℃/分という条件で測定したときに得られる、図3に示すような解析用フローチャートのh/2に相当するフロー曲線上の点の温度として求めることができる。
【0051】
ブロックポリエステルの融点T(後述する示差走査熱量分析による融点の吸熱ピークの測定を行ったときのピークの中心値Tmp)は、特に限定されないが、190℃以上であるのが好ましく、190〜230℃であるのがより好ましい。融点が190℃未満であると、耐オフセット性の向上等の効果が十分に得られない可能性がある。また、融点が高すぎると、後述する混練工程等において、材料温度を比較的高い温度にしなければならなくなる。その結果、樹脂材料のエステル交換反応が進行しやすくなり、樹脂設計を最終的に得られるトナーに十分に反映させることが困難になる場合がある。なお、融点は、例えば、示差走査熱量分析(DSC)による吸熱ピークの測定により求めることができる。
【0052】
また、最終的に得られるトナーが、後述するような定着ローラを有する定着装置で用いられるものである場合、ブロックポリエステルの融点をT(B)[℃]、定着ローラの表面の標準設定温度をTfix[℃]としたとき、Tfix≦T(B)≦(Tfix+100)の関係を満足するのが好ましく、(Tfix+10)≦T(B)≦(Tfix+70)の関係を満足するのがより好ましい。このような関係を満足することにより、トナーの定着時にトナー中の結晶成分が溶融しないため、トナー粘度が一定以下に低下せず、定着ローラとの離型性が確保される。
【0053】
また、ブロックポリエステルの融点は、後述する非晶性ポリエステルの軟化点より高いのが好ましい。これにより、最終的に得られるトナーの形状の安定性が向上し、機械的ストレスに対し、特に優れた安定性(耐久性)を示すものとなる。また、ブロックポリエステルの融点が後述する非晶性ポリエステルの軟化点より高いと、例えば、後述する熱球形化処理を施す場合には、ブロックポリエステルにより、トナー製造用粉末の形状の安定性をある程度確保しつつ、非晶性ポリエステルを十分に軟化させることができる。その結果、熱球形化処理を効率良く行うことができ、比較的容易に、最終的に得られるトナーの円形度を比較的高いものとすることができる。
【0054】
ところで、前述したように、ブロックポリエステルは、結晶性の高い結晶性ブロックを有しているため、比較的結晶性の低い樹脂材料(例えば、後述する非晶性ポリエステル等)に比べて、いわゆるシャープメルト性を有している。
結晶性を表す指標としては、例えば、示差走査熱量分析(DSC)による融点の吸熱ピークの測定を行ったときのピークの中心値をTmp[℃]、ショルダーピーク値をTms[℃]としたときに、ΔT=Tmp−Tmsで表されるΔT値等が挙げられる(図2参照)。このΔT値が小さいほど結晶性が高い。
ブロックポリエステルのΔT値は、50℃以下であるのが好ましく、20℃以下であるのがより好ましい。Tmp[℃]、Tms[℃]の測定条件は特に限定されないが、例えば、試料となるブロックポリエステルを、昇温速度:10℃/分で200℃まで昇温し、さらに、降温速度:10℃/分で降温した後、昇温速度:10℃/分で昇温して測定することができる。
また、ブロックポリエステルは、後述する非晶性ポリエステルより結晶性が高い。したがって、非晶性ポリエステルのΔT値をΔT[℃]、ブロックポリエステルのΔT値をΔT[℃]としたとき、ΔT>ΔTの関係を満足する。特に、本発明では、ΔT−ΔT>10の関係を満足するのが好ましく、ΔT−ΔT>30の関係を満足するのがより好ましい。このような関係を満足することにより、上述した効果はより顕著なものとなる。ただし、非晶性ポリエステルの結晶性が特に低い場合、TmpまたはTmsの少なくとも一方が測定困難(判別困難)であることがある。このような場合、ΔTは∞[℃]とする。
【0055】
ブロックポリエステルは示差走査熱量分析による融点の吸熱ピークの測定を行ったときに求められる融解熱Eが5mJ/mg以上であるのが好ましく、15mJ/mg以上であるのがより好ましい。融解熱Eが5mJ/mg未満であると、結晶性ブロックを有することによる前述したような効果が十分に発揮されない可能性がある。ただし、融解熱としては、ガラス転移点の吸熱ピークの熱量は含まないものとする(図2参照)。融点の吸熱ピークの測定条件は特に限定されないが、例えば、試料となるブロックポリエステルを、昇温速度:10℃/分で200℃まで昇温し、さらに、降温速度:10℃/分で降温した後、昇温速度:10℃/分で昇温したときに測定される値を融解熱として求めることことができる。
【0056】
また、ブロックポリエステルは、リニア型ポリマー(架橋構造を有さないポリマー)であるのが好ましい。リニア型ポリマーは、架橋型のものに比べて、摩擦係数が小さい。これにより、特に優れた離型性が得られ、トナーの転写効率がさらに向上する。
なお、ブロックポリエステルは、前述した結晶性ブロック、非晶性ブロック以外のブロックを有するものであってもよい。
【0057】
1−2.非晶性ポリエステル
非晶性ポリエステルは、前述したブロックポリエステルより低い結晶性を有するものである。
非晶性ポリエステルは、主として、トナーを構成する各成分(例えば、後述するような着色剤、ワックス、帯電防止剤等)の分散性や、トナー製造時における混練物の粉砕性、トナーの定着性(特に、低温定着性)、透明性、機械的特性(例えば、弾性、機械的強度等)、帯電性、耐湿性等の機能を向上させるのに寄与する成分である。言い換えると、以下で詳述するような非晶性ポリエステルがトナー中に含まれないと、前記のようなトナーとして求められる特性を十分に発揮するのが困難となる。
【0058】
以下、非晶性ポリエステルを構成する成分について説明する。
非晶性ポリエステルを構成するアルコール成分としては、2個以上の水酸基を有するものを用いることができ、中でも水酸基を2個有するアルコール成分であるのが好ましい。このような水酸基を2個有するアルコール成分としては、例えば、芳香環構造を有する芳香族ジオールや、芳香環構造を有さない脂肪族ジオール等が挙げられる。芳香族ジオールとしては、例えば、ビスフェノールA、ビスフェノールAのアルキレンオキサイド付加物(例えば、ポリオキシプロピレン(2.2)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(3.3)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシエチレン(2.0)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(2.0)−ポリオキシエチレン(2.0)−2,2−ビス(4−ヒドロキシフェニル)プロパン、ポリオキシプロピレン(6)−2,2−ビス(4−ヒドロキシフェニル)プロパン等)等が挙げられ、また、脂肪族ジオールとしては、例えば、エチレングリコール、1,3−プロパンジオール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、ジエチレングリコール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ジプロピレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−ブタンジオール、2,3−ブタンジオール、ネオペンチルグリコール(2,2−ジメチルプロパン−1,3−ジオール)、1,2−ヘキサンジオール、2,5−ヘキサンジオール、2−メチル−2,4−ペンタンジオール、3−メチル−1,3−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、2,4−ジエチル−1,5−ペンタンジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状ジオール類、または2,2−ビス(4−ヒドロキシシクロヘキシル)プロパン、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのアルキレンオキサイド付加物、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール、水添ビスフェノールA、水添ビスフェノールAのアルキレンオキサイド付加物等の環状ジオール類等が挙げられる。
【0059】
なお、水酸基を3個以上有するアルコール成分としては、ソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタントリオール、グリセロール、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシメチルベンゼン等が挙げられる。
【0060】
非晶性ポリエステルを構成するカルボン酸成分としては、2価以上のカルボン酸またはその誘導体(例えば、酸無水物、低級アルキルエステル等)等を用いることができるが、2価のカルボン酸またはその誘導体等を用いるのが好ましい。このような2価のカルボン酸成分としては、例えば、o−フタル酸(フタル酸)、テレフタル酸、イソフタル酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、オクチルコハク酸、シクロヘキサンジカルボン酸、フマル酸、マレイン酸、イタコン酸およびこれらの誘導体(例えば、無水物、低級アルキルエステル等)等が挙げられる。
なお、3価以上のカルボン酸成分としては、トリメリット酸、ピロメリット酸およびこれらの誘導体(例えば、無水物、低級アルキルエステル等)等が挙げられる。
【0061】
このように、非晶性ポリエステルを構成するカルボン酸成分は、特に限定されないが、少なくともその一部がテレフタル酸骨格を有するものであるのが好ましく、その80mol%以上がテレフタル酸骨格を有するものであるのがより好ましく、その90mol%以上がテレフタル酸骨格を有するものであるのがさらに好ましい。これにより、最終的に得られるトナーは、トナーとして求められる各種特性のバランスが特に優れたものとなる。ただし、ここでの「カルボン酸成分」は、非晶性ポリエステルとしたときのカルボン酸成分のことを指し、非晶性ポリエステルを調整する際には、当該カルボン酸成分そのものや、その酸無水物、低級アルキルエステル等の誘導体を用いることができるものとする。
【0062】
また、非晶性ポリエステルを構成するモノマー成分は、その50mol%以上(より好ましくは、80mol%以上)が、前述した非晶性ブロックを構成するモノマー成分と同一であるのが好ましい。すなわち、非晶性ポリエステルは、非晶性ブロックと同様のモノマー成分で構成されたものであるのが好ましい。これにより、非晶性ポリエステルとブロックポリエステルとの親和性(相溶性)が、特に優れたものとなる。ただし、ここでの「モノマー成分」は、非晶性ポリエステル、ブロックポリエステルの製造に用いるモノマーを指すものではなく、非晶性ポリエステル、ブロックポリエステル中に含まれるモノマー成分のことを指す。
なお、非晶性ポリエステルは、上記のようなアルコール成分、カルボン酸成分以外の成分を含むものであってもよい。
【0063】
非晶性ポリエステルの平均分子量(重量平均分子量)Mw(A)は、特に限定されないが、5×10〜4×10であるのが好ましく、8×10〜2.5×10であるのがより好ましい。平均分子量Mw(A)が前記下限値未満であると、最終的に得られるトナーの機械的強度が低下し、十分な耐久性(保存性)が得られない可能性がある。また、平均分子量Mw(A)が小さすぎると、トナーの定着時に凝集破壊を起こし易くなり、耐オフセット性が低下する傾向を示す。一方、平均分子量Mwが前記上限値を超えると、トナーの定着時に粒界破壊を起こし易くなり、紙等の転写材(記録媒体)への濡れ性も低下し、定着に要する熱量も大きくなる。
【0064】
非晶性ポリエステルのガラス転移点Tは、特に限定されないが、50〜75℃であるのが好ましく、55〜70℃であるのがより好ましい。ガラス転移点が前記下限値未満であると、トナーの保存性(耐熱性)が低下し、使用環境等によっては、トナー粒子間での融着が発生する場合がある。一方、ガラス転移点が前記上限値を超えると、低温定着性や透明性が低下する。また、ガラス転移点が高すぎると、後述するような熱球形化処理を施す場合、その効果が十分に発揮されない可能性がある。なお、ガラス転移点は、JIS K 7121に準拠して測定することができる。
【0065】
非晶性ポリエステルの軟化点T1/2は、特に限定されないが、90〜160℃であるのが好ましく、100〜150℃であるのがより好ましく、100〜130℃であるのがさらに好ましい。軟化点が前記下限値未満であると、トナーとしての保存性が低下し、十分な耐久性が得られない可能性がある。また、軟化点が低すぎると、トナーの定着時に凝集破壊を起こし易くなり、耐オフセット性が低下する傾向を示す。一方、軟化点が前記上限値を超えると、トナーの定着時に粒界破壊を起こし易くなり、紙等の転写材(記録媒体)への濡れ性も低下し、定着に要する熱量も大きくなる。
【0066】
また、非晶性ポリエステルの軟化点をT1/2(A)[℃]、前述したブロックポリエステルの融点をT(B)としたとき、T(B)>(T1/2(A)+60)の関係を満足するのが好ましく、(T1/2(A)+60)<T(B)<(T1/2(A)+150)の関係を満足するのがより好ましい。このような関係を満足することにより、例えば、比較的高い温度において、ブロックポリエステルがトナー粒子の形状の安定性をある程度確保しつつ、非晶性ポリエステルが十分に軟化することができる。これにより、トナーの形状の安定性を十分に確保しつつ、幅広い温度領域での定着性(特に低温領域での定着性)を優れたものとすることができる。また、上記のような関係を満足することにより、例えば、後述する熱球形化処理をより効率良く行うことができ、得られるトナー(粒子)の円形度をさらに向上させることができる。また、上記のような関係を満足することにより、トナーはより幅広い温度領域において、優れた定着性を発揮することができる。
【0067】
なお、軟化点T1/2は、例えば、フローテスタを用い、サンプル量:1g、ダイ孔径:1mm、ダイ長さ:1mm、荷重:20kgf、予熱時間:300秒、測定開始温度:50℃、昇温速度:5℃/分という条件で測定したときに得られる、図3に示すような解析用フローチャートのh/2に相当するフロー曲線上の点の温度として求めることができる。
また、非晶性ポリエステルは、リニア型ポリマー(架橋構造を有さないポリマー)であるのが好ましい。リニア型ポリマーは、架橋型のものに比べて、摩擦係数が小さい。これにより、特に優れた離型性が得られ、トナーの転写効率がさらに向上する。
【0068】
以上説明したように、ブロックポリエステルと、非晶性ポリエステルとを併用した場合、前述したような、ブロックポリエステルが有する特長と、非晶性ポリエステルが有する特長とを両立することができる。これにより、最終的に得られるトナーは、機械的ストレスに強く(十分な物理的安定性を有し)、かつ、幅広い温度領域で十分な定着性(定着強度)を発揮することが可能なものとなる。
【0069】
ブロックポリエステルと、非晶性ポリエステルとの配合比は、重量比で5:95〜45:55であるのが好ましく、10:90〜30:70であるのがより好ましい。ブロックポリエステルの配合比が低くなりすぎると、トナーの耐オフセット性を十分に向上させるのが困難になる可能性がある。一方、非晶性ポリエステルの配合比が低くなりすぎると、十分な低温定着性や透明性が得られない可能性がある。また、非晶性ポリエステルの配合比が低くなりすぎると、例えば、後述するようなトナーの製造方法の粉砕工程において、混練物K7を効率良く、粉砕するのが困難となる。
【0070】
分散質31中におけるポリエステル系樹脂の含有量は、特に限定されないが、2〜98wt%であるのが好ましく、5〜95wt%であるのがより好ましい。
また、樹脂(バインダー樹脂)は、前述したブロックポリエステルおよび非晶性ポリエステル以外の成分(第3の樹脂成分)を含むものであってもよい。
ブロックポリエステル(第1のポリエステル)および非晶性ポリエステル(第2のポリエステル)以外の樹脂成分(第3の樹脂成分)としては、例えば、ポリスチレン、ポリ−α−メチルスチレン、クロロポリスチレン、スチレン−クロロスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ブタジエン共重合体、スチレン−塩化ビニル共重合体、スチレン−酢酸ビニル共重合体、スチレン−マレイン酸共重合体、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸エステル共重合体、スチレン−アクリル酸エステル−メタクリル酸エステル共重合体、スチレン−α−クロルアクリル酸メチル共重合体、スチレン−アクリロニトリル−アクリル酸エステル共重合体、スチレン−ビニルメチルエーテル共重合体等のスチレン系樹脂でスチレンまたはスチレン置換体を含む単重合体または共重合体、ポリエステル樹脂(前述したブロックポリエステル、非晶性ポリエステルとは異なるもの)、エポキシ樹脂、ウレタン変性エポキシ樹脂、シリコーン変性エポキシ樹脂、塩化ビニル樹脂、ロジン変性マレイン酸樹脂、フェニール樹脂、ポリエチレン、ポリプロピレン、アイオノマー樹脂、ポリウレタン樹脂、シリコーン樹脂、ケトン樹脂、エチレン−エチルアクリレート共重合体、キシレン樹脂、ポリビニルブチラール樹脂、テルペン樹脂、フェノール樹脂、脂肪族または脂環族炭化水素樹脂等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
【0071】
2.溶媒
分散質31中には、その成分の少なくとも一部を溶解する溶媒が含まれていてもよい。これにより、例えば、分散液3中における分散質31の流動性を高めることができる。その結果、得られるトナー粒子4は、粒子間での大きさ、形状のバラツキが小さく、円形度が比較的大きいものとなる。
【0072】
溶媒としては、分散質31を構成する成分の少なくとも一部を溶解するものであればいかなるものであってもよいが、後述するようなトナー製造装置の固化部等において、容易に除去されるものであるのが好ましい。
また、溶媒は、前述した分散媒32との相溶性が低いもの(例えば、25℃における分散媒100gに対する溶解度が30g以下のもの)であるのが好ましい。これにより、分散液3中において、分散質31を安定した状態で分散させることができる。
また、溶媒の組成は、例えば、前述した樹脂の組成(例えば、ブロックポリエステルと非晶性ポリエステルとの配合比率、ブロックポリエステルおよび非晶性ポリエステルの平均分子量、構成モノマー等)や、着色剤の組成、分散媒の組成等に応じて適宜選択することができる。
【0073】
例えば、溶媒としては、水、二硫化炭素、四塩化炭素等の無機溶媒や、メチルエチルケトン(MEK)、アセトン、ジエチルケトン、メチルイソブチルテトン(MIBK)、メチルイソプロピルケトン(MIPK)、シクロヘキサノン、3−ヘプタノン、4−ヘプタノン等のケトン系溶媒、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、i−ブタノール、t−ブタノール、3−メチル−1−ブタノール、1−ペンタノール、2−ペンタノール、n−ヘキサノール、シクロヘキサノール、1−ヘプタノール、1−オクタノール、2−オクタノール、2−メトキシエタノール、アリルアルコール、フルフリルアルコール、フェノール等のアルコール系溶媒、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、1,2−ジメトキシエタン(DME)、1,4−ジオキサン、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、アニソール、ジエチレングリコールジメチルエーテル(ジグリム)、2−メトキシエタノール等のエーテル系溶媒、メチルセロソルブ、エチルセロソルブ、フェニルセロソルブ等のセロソルブ系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、オクタン、ジデカン、メチルシクロヘキセン、イソプレン等の脂肪族炭化水素系溶媒、トルエン、キシレン、ベンゼン、エチルベンゼン、ナフタレン等の芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、2−メチルピリジン、3−メチルピリジン、4−メチルピリジン、フルフリルアルコール等の芳香族複素環化合物系溶媒、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMA)等のアミド系溶媒、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、トリクロロエチレン、クロロベンゼン等のハロゲン化合物系溶媒、アセチルアセトン、酢酸エチル、酢酸メチル、酢酸イソプロピル、酢酸イソブチル、酢酸イソペンチル、クロロ酢酸エチル、クロロ酢酸ブチル、クロロ酢酸イソブチル、ギ酸エチル、ギ酸イソブチル、アクリル酸エチル、メタクリル酸メチル、安息香酸エチル等のエステル系溶媒、トリメチルアミン、ヘキシルアミン、トリエチルアミン、アニリン等のアミン系溶媒、アクリロニトリル、アセトニトリル等のニトリル系溶媒、ニトロメタン、ニトロエタン等のニトロ系溶媒、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ペンタナール、アクリルアルデヒド等のアルデヒド系溶媒等の有機溶媒等が挙げられ、これらから選択される1種または2種以上を混合したものを用いることができる。この中でも特に、有機溶媒を含むものであるのが好ましく、エーテル系溶媒、セロソルブ系溶媒、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒、芳香族複素環化合物系溶媒、アミド系溶媒、ハロゲン化合物系溶媒、エステル系溶媒、アミン系溶媒、ニトリル系溶媒、ニトロ系溶媒、アルデヒド系溶媒等から選択される1種または2種以上を含むものであるのがより好ましい。このような溶媒を用いることにより、分散質31中において、比較的容易に、前述したような各成分を十分均一に分散させることができる。
【0074】
また、分散液3中には、通常、着色剤が含まれている。着色剤としては、例えば、顔料、染料等を使用することができる。このような顔料、染料としては、例えば、カーボンブラック、スピリットブラック、ランプブラック(C.I.No.77266)、マグネタイト、チタンブラック、黄鉛、カドミウムイエロー、ミネラルファストイエロー、ネーブルイエロー、ナフトールイエローS、ハンザイエローG、パーマネントイエローNCG、クロムイエロー、ベンジジンイエロー、キノリンイエロー、タートラジンレーキ、赤口黄鉛、モリブデンオレンジ、パーマネントオレンジGTR、ピラゾロンオレンジ、ベンジジンオレンジG、カドミウムレッド、パーマネントレッド4R、ウオッチングレッドカルシウム塩、エオシンレーキ、ブリリアントカーミン3B、マンガン紫、ファストバイオレットB、メチルバイオレットレーキ、紺青、コバルトブルー、アルカリブルーレーキ、ビクトリアブルーレーキ、ファーストスカイブルー、インダンスレンブルーBC、群青、アニリンブルー、フタロシアニンブルー、カルコオイルブルー、クロムグリーン、酸化クロム、ピグメントグリーンB、マラカイトグリーンレーキ、フタロシアニングリーン、ファイナルイエローグリーンG、ローダミン6G、キナクリドン、ローズベンガル(C.I.No.45432)、C.I.ダイレクトレッド1、C.I.ダイレクトレッド4、C.I.アシッドレッド1、C.I.ベーシックレッド1、C.I.モーダントレッド30、C.I.ピグメントレッド48:1、C.I.ピグメントレッド57:1、C.I.ピグメントレッド122、C.I.ピグメントレッド184、C.I.ダイレクトブルー1、C.I.ダイレクトブルー2、C.I.アシッドブルー9、C.I.アシッドブルー15、C.I.ベーシックブルー3、C.I.ベーシックブルー5、C.I.モーダントブルー7、C.I.ピグメントブルー15:1、C.I.ピグメントブルー15:3、C.I.ピグメントブルー5:1、C.I.ダイレクトグリーン6、C.I.ベーシックグリーン4、C.I.ベーシックグリーン6、C.I.ピグメントイエロー17、C.I.ピグメントイエロー93、C.I.ピグメントイエロー97、C.I.ピグメントイエロー12、C.I.ピグメントイエロー180、C.I.ピグメントイエロー162、ニグロシン染料(C.I.No.50415B)、金属錯塩染料、シリカ、酸化アルミニウム、マグネタイト、マグヘマイト、各種フェライト類、酸化第二銅、酸化ニッケル、酸化亜鉛、酸化ジルコニウム、酸化チタン、酸化マグネシウム等の金属酸化物や、Fe、Co、Niのような磁性金属を含む磁性材料等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。このような着色剤は、通常、分散液3においては、分散質31中に含まれる。
【0075】
分散液3中における着色剤の含有量は、特に限定されないが、0.1〜10wt%であるのが好ましく、0.3〜3.0wt%であるのがより好ましい。着色剤の含有量が前記下限値未満であると、着色剤の種類によっては、十分な濃度の可視像を形成するのが困難になる可能性がある。一方、着色剤の含有量が前記上限値を超えると、最終的に得られるトナーの定着特性や帯電特性が低下する可能性がある。
【0076】
また、分散液3(分散質31)中には、ワックスが含まれているのが好ましい。ワックスは、通常、離型性を向上させる目的で用いられるものである。
ワックスとしては、例えば、オゾケライト、セルシン、パラフィンワックス、マイクロワックス、マイクロクリスタリンワックス、ペトロラタム、フィッシャー・トロプシュワックス等の炭化水素系ワックス、カルナウバワックス、ライスワックス、ラウリン酸メチル、ミリスチン酸メチル、パルミチン酸メチル、ステアリン酸メチル、ステアリン酸ブチル、キャンデリラワックス、綿ロウ、木ロウ、ミツロウ、ラノリン、モンタンワックス、脂肪酸エステル等のエステル系ワックス、ポリエチレンワックス、ポリプロピレンワックス、酸化型ポリエチレンワックス、酸化型ポリプロピレンワックス等のオレフィン系ワックス、12−ヒドロキシステアリン酸アミド、ステアリン酸アミド、無水フタル酸イミド等のアミド系ワックス、ラウロン、ステアロン等のケトン系ワックス、エーテル系ワックス等が挙げられ、これらのうち1種または2種以上を組み合わせて用いることができる。
【0077】
前記材料の中でも、特にエステル系ワックス(例えばカルナウバワックスやライスワックス等)を用いた場合には、下記のような効果が得られる。
エステル系ワックスは、前述したポリエステル系樹脂と同様に、分子内にエステル構造を有しており、ポリエステル系樹脂との相溶性に優れる。このため、最終的に得られるトナー粒子中における遊離ワックスの発生、粗大化を防止することができる(トナー中でのワックスの微分散やミクロ相分離を容易に達成できる)。その結果、最終的に得られるトナーは、定着ローラとの離型性が特に優れたものとなる。
【0078】
ワックスの融点Tは、特に限定されないが、30〜160℃であるのが好ましく、50〜100℃であるのがより好ましい。なお、例えば、示差走査熱量分析(DSC)により、昇温速度:10℃/分で200℃まで昇温し、さらに降温速度:10℃/分で降温した後、昇温速度:10℃/分で昇温する条件での測定から、融点Tと融解熱とを求めることができる。
【0079】
ところで、ワックスは、通常、他の原料との相溶性が悪く、従来の方法では、ワックスが原料に含まれる場合、十分に微分散させるのが困難であった。
本発明によれば、ワックスのように比較的分散性の悪いものが、原料中に含まれる場合であっても、微分散させることができるため、ワックスとしての機能を十分に発揮させることができる。
【0080】
また、例えば、前述したワックス以外にも、ワックス効果を付与できる成分として低融点のポリエステル(以下、「低融点ポリエステル」とも言う)を用いることができる。低融点とは、例えば、融点Tが70〜90℃程度のものが好ましい。また、低融点ポリエステルの重量平均分子量Mwは、3500〜6500程度であるのが好ましい。また、低融点ポリエステルは、脂肪族モノマーの重合体であるのが好ましい。低融点ポリエステルが、このような条件(少なくとも1つ、好ましくは2つ以上)を満足するものであると、前述したポリエステル系樹脂との相溶性が特に優れたものになるとともに、トナーの耐久性を阻害せずにトナーの離型性を付与することができる。また、融点が比較的低いことにより、低温定着性を向上させることができる。
【0081】
分散液3中におけるワックスの含有量は、特に限定されないが、3.0wt%以下であるのが好ましく、2.0wt%以下であるのがより好ましい。ワックスの含有量が多すぎると、最終的に得られるトナー粒子中において、ワックスが遊離、粗大化して、トナー粒子表面へのワックスのしみ出し等が顕著に起こり、トナーの転写効率が低下する傾向を示す。
【0082】
また、分散液3中には、分散剤が含まれているのが好ましい。これにより、分散液3中における分散質31の分散性を向上させ、また、分散質31の浮上、沈降、凝集、合一等を効果的に防止することができる。その結果、後述するような微粒化工程において、分散質31を効率よく、かつ、均一に微粒化させることができる。これにより、最終的に得られるトナーの粒度分布を特にシャープなものとすることができる。
【0083】
このような分散剤としては、例えば、燐酸三カルシウム等の無機系分散剤、ポリビニルアルコール、カルボキシメチルセルロース、ポリエチレングリコール等の非イオン性有機分散剤、トリステアリン酸金属塩(例えば、アルミニウム塩等)、ジステアリン酸金属塩(例えば、アルミニウム塩、バリウム塩等)、ステアリン酸金属塩(例えば、カルシウム塩、鉛塩、亜鉛塩等)、リノレン酸金属塩(例えば、コバルト塩、マンガン塩、鉛塩、亜鉛塩等)、オクタン酸金属塩(例えば、アルミニウム塩、カルシウム塩、コバルト塩等)、オレイン酸金属塩(例えば、カルシウム塩、コバルト塩等)、パルミチン酸金属塩(例えば、亜鉛塩等)、ナフテン酸金属塩(例えば、カルシウム塩、コバルト塩、マンガン塩、鉛塩、亜鉛塩等)、レジン酸金属塩(例えば、カルシウム塩、コバルト塩、マンガン鉛塩、亜鉛塩等)、ポリアクリル酸金属塩(例えば、ナトリウム塩等)、ポリメタクリル酸金属塩(例えば、ナトリウム塩等)、ポリマレイン酸金属塩(例えば、ナトリウム塩等)、アクリル酸−マレイン酸共重合体金属塩(例えば、ナトリウム塩等)、ポリスチレンスルホン酸金属塩(例えば、ナトリウム塩等)等のアニオン性有機分散剤、4級アンモニウム塩等のカチオン性有機分散剤等が挙げられる。この中でも、非イオン性有機分散剤またはアニオン性有機分散剤が特に好ましい。
【0084】
分散液3中における分散剤の含有量は、特に限定されないが、3.0wt%以下であるのが好ましく、0.01〜1.0wt%であるのがより好ましい。
また、前記分散液は、前記分散剤の他に、分散助剤を含んでいてもよい。
また、分散助剤としては、例えば、アニオン、カチオン、非イオン性界面活性剤等が挙げられる。
【0085】
分散助剤は、分散剤と併用するものであるのが好ましい。分散液3が分散剤を含むものである場合、分散液3中における分散助剤の含有量は、特に限定されないが、2.0wt%以下であるのが好ましく、0.005〜0.5wt%であるのがより好ましい。
また、分散液3中には、これら以外の成分が含まれていてもよい。このような成分としては、例えば、帯電制御剤、磁性粉末等が挙げられる。
【0086】
前記帯電制御剤としては、例えば、安息香酸の金属塩、サリチル酸の金属塩、アルキルサリチル酸の金属塩、カテコールの金属塩、含金属ビスアゾ染料、ニグロシン染料、テトラフェニルボレート誘導体、第四級アンモニウム塩、アルキルピリジニウム塩、塩素化ポリエステル、ニトロフニン酸等が挙げられる。
前記磁性粉末としては、例えば、マグネタイト、マグヘマイト、各種フェライト類、酸化第二銅、酸化ニッケル、酸化亜鉛、酸化ジルコニウム、酸化チタン、酸化マグネシウム等の金属酸化物や、Fe、Co、Niのような磁性金属を含む磁性材料で構成されたもの等が挙げられる。
【0087】
また、分散液3中には、上記のような材料のほかに、例えば、ステアリン酸亜鉛、酸化亜鉛、酸化セリウム等が添加されていてもよい。
また、分散液3中には、分散質31以外の成分が、不溶分として分散していてもよい。例えば、分散液3中には、シリカ、酸化チタン、酸化鉄等の無機系微粉末、脂肪酸、脂肪酸金属塩等の有機系微粉末等が分散していてもよい。
【0088】
分散液3中における分散質31の平均粒径dは、特に限定されないが、0.1〜15μmであるのが好ましく、0.2〜10μmであるのがより好ましい。分散質31の平均粒径がこのような範囲の値であると、最終的に得られるトナー粒子4は、適度な円形度を有し、各粒子間での特性、形状の均一性に優れたものとなる。
【0089】
分散液3中における分散質31の含有量は、特に限定されないが、1〜95wt%であるのが好ましく、5〜95wt%であるのがより好ましい。分散質31の含有量が前記下限値未満であると、得られるトナー粒子4の円形度が低下する傾向を示す。一方、分散質31の含有量が前記上限値を超えると、分散媒32の組成等によっては、分散液3の粘性が高くなり、得られるトナー粒子4の形状、大きさのバラツキが大きくなる傾向を示す。
また、分散媒32中に分散している分散質31は、例えば、各粒子間で、異なる組成を有するものであってもよいが、ほぼ同一の組成を有するものであるのが好ましい。
【0090】
このような分散液3は、分散質31が固体、すなわち、サスペンションであるのが好ましい。これにより、分散質内部(トナー母粒子内部)に分散媒が残留するのを効果的に防止することができ、結果として、トナーの保存性等が向上し、また定着後の異臭等の発生も防止できる。また、このように分散液3がサスペンションであると、後に詳述するような微粒化工程において、分散質31を効率よく微粒化することができる。
【0091】
後述する微粒化工程に供される分散液3中における分散質31の平均粒径Dは、15〜2000μmであるのが好ましく、20〜1000μmであるのがより好ましい。これにより、後述する微粒化工程において、分散液3に含まれる分散質31を、効率よく、かつ、均一に微粒化し、微粒化された分散質31(微分散質33)を効率よく得ることができる。これにより、最終的に得られるトナーの粒度分布を特にシャープなものとすることができる。これに対して、平均粒径Dが前記下限値未満であると、後述する微粒化工程で得られる粒子の平均粒径が小さくなりすぎる場合がある。一方、平均粒径Dが前記上限値を超えると、分散媒への分散性が十分に得られない場合がある。また、後述する微粒化工程で得られる微分散質33の形状や粒径のバラツキを十分小さくすることができる。
【0092】
また、分散液3中における分散質31の平均粒径をD[μm]、後述する微粒化工程で得られる微粒化された分散質31(微分散質33)の平均粒径をd[μm]としたとき、D/d≦1000の関係を満足するのが好ましく、2≦D/d≦500の関係を満足するのがより好ましい。このような関係を満足することにより、最終的に得られるトナーの各粒子間での形状、大きさのバラツキを特に小さいものとすることができる。これに対して、D/dが前記上限値を超えると、上記のような効果が得られない。すなわち、dに対するDの割合が比較的大きな場合、後述するような微粒化工程において、分散液3を吐出するノズルが目詰まりを起こす可能性があり、また、目詰まりを防止するためにノズルの径を大きくすると、微粒化のためのノズルからの吐出圧力が十分に分散液3に加わらない可能性がある。その結果、微粒化するために繰り返し衝突させなければならず、トナーの生産性が低下する可能性があり、また、トナー粒子の粒度分布の幅や形状のバラツキ等を十分小さいものとするのが困難となる場合がある。また、dが相対的に小さな場合、それに伴い、後述する微粒化工程での吐出圧を比較的大きなものとしなければならない場合がある。また、微粒化した分散質31の付着性が高くなり、十分に凝集等を防止することができない可能性がある。その結果、トナー粒子間での形状および大きさのバラツキを十分に小さくするのが困難となる場合がある。
【0093】
また、分散液3中における分散質31の平均粒径をD[μm]、得られるトナー粒子4の平均粒径をDt[μm]としたとき、D/Dt≦1000の関係を満足するのが好ましく、2≦D/Dt≦500の関係を満足するのがより好ましい。このような関係を満足することにより、各粒子間での、形状、大きさのバラツキが特に小さいトナーを得ることができる。これに対して、D/Dtが前記上限値を超えると、上記のような効果が得られない。すなわち、Dtに対するDの割合が比較的大きな場合、後述するような微粒化工程において、分散液3を吐出するノズルが目詰まりを起こす可能性があり、また、目詰まりを防止するためにノズルの径を大きくすると、微粒化のためのノズルからの吐出圧力が十分に分散液3に加わらない可能性がある。その結果、微粒化するために繰り返し衝突させなければならず、トナーの生産性が低下する可能性があり、また、トナー粒子の粒度分布の幅や形状のバラツキ等を十分小さいものとするのが困難となる場合がある。また、Dtが相対的に小さな場合、トナー粒子間での去就が生じる可能性がある。その結果、トナー粒子の粒度分布の幅を十分に小さいものとすることが困難となる場合がある。
なお、上述したような分散質31は、少なくともその一部が軟化した状態のものであってもよい。
【0094】
ところで、従来の混練粉砕法では、各トナー粒子間での形状のバラツキが大きく、その粒度分布も広くなりやすかった。また、このような粒度分布の広がりは、分級処理により、ある程度、シャープなものとすることができるが、この場合、元々の粉砕物の粒度分布が広いものであるから、最終的に得られるトナーの収率が低くなる傾向がある。特に、異なる2種以上の樹脂成分を含む場合には、得られるトナー中における、構成成分の均一性を十分に高めることが困難であったため、そのような傾向が比較的顕著なものであった。
これに対し、本発明では、前記のような分散液を複数個のノズルから吐出し、各ノズルから吐出された分散液同士を衝突させて、分散質を微粒化する点に特徴を有する。これにより、得られるトナーは、各粒子間での形状のバラツキが小さく、粒度分布の幅の小さいものとなる。
以上説明したような分散液3は、例えば、後述するような混練工程で得られる混練物を粉砕して得られる粉砕物を、分散媒32に分散することにより得られる。これにより、分散液3における分散質31の分散性を特に優れたものとすることができる。
【0095】
以下、トナーの構成材料の少なくとも一部を含む原料K5を用いて、混練物K7を得る方法の一例について説明する。
混練物K7は、例えば、図1に示すような装置を用いて製造することができる。
【0096】
[混練工程]
混練に供される原料K5は、前述した各成分が予め混合されたものであるのが好ましい。
本実施形態では、混練機として、2軸混練押出機を用いる構成について説明する。
【0097】
混練機K1は、原料K5を搬送しつつ混練するプロセス部K2と、混練された原料(混練物K7)を所定の断面形状に形成して押し出すヘッド部K3と、プロセス部K2内に原料K5を供給するフィーダーK4とを有している。
プロセス部K2は、バレルK21と、バレルK21内に挿入されたスクリューK22、スクリューK23と、バレルK21の先端にヘッド部K3を固定するための固定部材K24とを有している。
プロセス部K2では、スクリューK22、スクリューK23が、回転することにより、フィーダーK4から供給された原料K5に剪断力が加えられ、均一な混練物K7、特に、ブロックポリエステルと非晶性ポリエステルとが十分に相溶化した混練物K7が得られる。
【0098】
プロセス部K2の全長は、50〜300cmであるのが好ましく、100〜250cmであるのがより好ましい。プロセス部K2の全長が下限値未満であると、ブロックポリエステルと非晶性ポリエステルとを十分に相溶化させることが困難となる場合がある。一方、プロセス部K2の全長が上限値を超えると、プロセス部K2内の温度、スクリューK22、スクリューK23の回転数等によっては、熱による原料K5の変性が起こり易くなり、最終的に得られるトナーの物性を十分に制御するのが困難になる可能性がある。
【0099】
また、プロセス部K2は、長手方向に所定の長さを有する第1の領域K25と、該第1の領域K25よりヘッド部K3側に設けられた第2の領域K26とを有する。すなわち、原料K5は、第1の領域K25を通過した後に、第2の領域K26に送り込まれる。
第1の領域K25の内部温度は、第2の領域K26より高く設定されている。すなわち、言い換えると、プロセス部K2の内部を搬送される原料K5は、第1の領域K25を通過するときの温度のほうが、第2の領域K26を通過するときの温度よりも高くなっている。
このように、第1の領域K25において、比較的高い温度で原料K5を混練することにより、ブロックポリエステルと非晶性ポリエステルとを十分に相溶化させることができる。
【0100】
第1の領域K25内での原料温度(第1の領域K25の内部温度)T[℃]は、ブロックポリエステルの融点をT(B)[℃]としたとき、T(B)≦Tの関係を満足するのが好ましく、(T(B)+10℃)≦T≦(T(B)+60℃)の関係を満足するのがより好ましい。原料温度Tが、T(B)[℃]未満であると、ブロックポリエステルと非晶性ポリエステルとを十分に相溶化させることが困難となる場合がある。
【0101】
第1の領域K25内での原料温度Tの具体的な値は、樹脂の組成等により異なるが、190〜300℃であるのが好ましく、200〜250℃であるのがより好ましい。
また、第1の領域K25内で、原料温度Tは、均一であっても、部位により異なるものであってもよい。後者の場合、第1の領域K25における原料K5の最高温度が、前記下限値よりも高いことが好ましく、さらに、第1の領域K25における原料K5の最低温度と最高温度とが、上記範囲内にあることがより好ましい。
【0102】
また、原料K5の第1の領域K25での滞留時間(通過に要する時間)は、0.5〜12分であるのが好ましく、0.5〜7分であるのがより好ましい。第1の領域K25での滞留時間が、前記下限値未満であると、ブロックポリエステルと非晶性ポリエステルとを十分に相溶化させることが困難となる場合がある。一方、第1の領域K25での滞留時間が、前記上限値を超えると、生産効率が低下し、また、プロセス部K2内の温度、スクリューK22、スクリューK23の回転数等によっては、熱による原料K5の変性が起こり易くなり、最終的に得られるトナーの物性を十分に制御するのが困難になる可能性がある。
【0103】
また、第1の領域K25の長さは、10〜200cmであるのが好ましく、20〜150cmであるのがより好ましい。第1の領域K25の長さが前記下限値未満であると、ブロックポリエステルと非晶性ポリエステルとを十分に相溶化させることが困難となる場合がある。一方、第1の領域K25の長さが、前記上限値を超えると、生産効率が低下し、また、プロセス部K2内の温度、スクリューK22、スクリューK23の回転数等によっては、熱による原料K5の変性が起こり易くなり、最終的に得られるトナーの物性を十分に制御するのが困難になる可能性がある。
【0104】
ところで、第1の領域K25では、比較的高い温度で混練することにより、ブロックポリエステルと非晶性ポリエステルとを十分に相溶化させる。しかしながら、ブロックポリエステルと非晶性ポリエステルとは、互いに、分子構造が大きく異なる樹脂であるため、一旦、ブロックポリエステルと非晶性ポリエステルとが十分に相溶化した場合であっても、混練物の冷却条件等によっては、ブロックポリエステルと非晶性ポリエステルとが相分離を起こす可能性がある。
【0105】
そこで、本実施形態では、図示の構成のように、第2の領域K26を設け、第1の領域K25よりも比較的低い温度で混練することにした。これにより、混練物K7の各構成成分の分散不良や相分離の発生を効果的に防止することができる。また、原料K5中にワックス(特に樹脂との相溶性が低いワックス)が含まれる場合には、混練物K7中におけるワックスの粗大化等を防止することができ、ワックスを適切な粒径に微分散させることができる。その結果、得られる混練物K7においては、粉砕性の低下を効果的に抑制することができ、分散液3における分散質31の分散性を特に優れたものとすることができる。また、最終的に得られるトナーにおいては、透明性、耐久性の低下やオフセットの発生等を抑制することができる。また、そのトナーについては、混練物K7中の各構成成分が均一に分散しているので、トナーの各粒子間での特性のバラツキが小さく、全体としての特性に優れたものとすることができる。従って、各構成成分の効果を十分に発揮させることができる。
また、特に、第1の領域K25と第2の領域K26とを上述のように設けることにより、第2の領域K26において、相分離を十分防止しつつ、ブロックポリエステルの結晶化を効率よく進行させることができるので、最終的に得られるトナーは、機械的ストレスに強いものとなる。
【0106】
第2の領域K26内での原料温度(第2の領域K26の内部温度)T[℃]は、非晶性ポリエステルの軟化点をT1/2(A)[℃]としたとき、(T1/2(A)−20)≦T≦(T1/2(A)+20)の関係を満足するのが好ましく、(T1/2(A)−10)≦T≦(T1/2(A)+10)の関係を満足するのがより好ましい。原料温度Tが、前記下限値未満であると、混練物K7中における相分離等が発生し易くなるとともに、ブロックポリエステルと非晶性ポリエステルの流動性が低下し、トナーの生産性が低下する場合がある。一方、原料温度Tが、前記上限値を超えると、第2の領域K26を設けることによる前述の効果が十分に得られない場合がある。
【0107】
第2の領域K26内での原料温度Tの具体的な値は、樹脂の組成により異なるが、80〜150℃であるのが好ましく、90〜140℃であるのがより好ましい。
また、第2の領域K26内で、原料温度Tは、均一であっても、部位により異なるものであってもよい。後者の場合、第1の領域K25における原料K5の最低温度が、上記範囲内にあることが好ましい。
なお、図示の構成では、第1の領域K25と第2の領域K26との間に、原料温度がTからTへ移行する温度移行領域K28が設けられている。
【0108】
また、原料K5の第2の領域K26での滞留時間は、0.5〜12分であるのが好ましく、1〜7分であるのがより好ましい。第2の領域K26での滞留時間が、前記下限値未満であると、第2の領域K26を設けることによる前述の効果が十分に得られない場合がある。一方、第2の領域K26での滞留時間が、前記上限値を超えると、生産効率が低下し、また、プロセス部K2内の温度、スクリューK22、スクリューK23の回転数等によっては、熱による原料K5の変性が起こり易くなり、最終的に得られるトナーの物性を十分に制御するのが困難になる可能性がある。
【0109】
また、第2の領域K26の長さは、20〜200cmであるのが好ましく、40〜150cmであるのがより好ましい。第2の領域K26の長さが前記下限値未満であると、第2の領域K26を設けることによる前述の効果が十分に得られない場合がある。一方、第2の領域K26の長さが、前記上限値を超えると、生産効率が低下し、また、プロセス部K2内の温度、スクリューK22、スクリューK23の回転数等によっては、熱による原料K5の変性が起こり易くなり、最終的に得られるトナーの物性を十分に制御するのが困難になる可能性がある。
【0110】
また、第1の領域K25内での原料温度Tと第2の領域K26内での原料温度Tとは、(T−T)≧80[℃]の関係を満足するのが好ましく、80≦(T−T)≦160[℃]の関係を満足するのがより好ましい。(T−T)が前記下限値未満であると、後述する冷却工程において、相分離を十分に防止、抑制するのが困難な場合がある。
【0111】
スクリューK22、スクリューK23の回転数は、ブロックポリエステルと非晶性ポリエステルとの配合比や、これらの組成、分子量等により異なるが、50〜600rpmであるのが好ましい。スクリューK22、スクリューK23の回転数が、前記下限値未満であると、例えば、第1の領域K25で、ブロックポリエステルと非晶性ポリエステルとを十分に相溶化させることが困難となる場合があり、また、第2の領域K26では、相分離を十分に防止することが困難となる場合がある。一方、スクリューK22、スクリューK23の回転数が、前記上限値を超えると、剪断により、ポリエステルの分子が切断され、樹脂の特性が劣化する場合がある。
また、図示の構成では、第1の領域K25、第2の領域K26とは異なる第3の領域K27が、第1の領域K25のフィーダーK4側(第2の領域K26とは反対側)に設けられている。このようにプロセス部K2は、第1の領域K25と第2の領域K26以外の領域を有するものであってもよい。
【0112】
第3の領域K27内での原料温度T[℃]は、第2の領域K26内での原料温度Tとの間で、(T−40)≦T≦(T+40)の関係を満足するのが好ましく、(T−20)≦T≦(T+20)の関係を満足するのがより好ましい。原料温度Tが、前記下限値未満であると樹脂が溶融され難く、混練トルクが高くなりすぎる場合がある。一方、原料温度Tが、前記上限値を超えると、原料投入口の温度が高くなりフィーダーK4も加熱され、樹脂がフィーダーK4に溶融固着してしまう場合がある。
なお、図示の構成では、第3の領域K27と第1の領域K25との間に、原料温度がTからTへ移行する温度移行領域K29が設けられている。
【0113】
また、図示の構成では、第1の領域K25と、第2の領域K26と、第3の領域K27とが設けられている構成について説明したが、これ以外の領域が設けられている構成であってもよい。例えば、このような領域は、第1の領域K25と第2の領域K26との間にあってもよいし、第2の領域K26よりもヘッド部K3側にあってもよい。
【0114】
[押出工程]
プロセス部K2で混練された混練物K7は、スクリューK22とスクリューK23との回転により、ヘッド部K3を介して、混練機K1の外部に押し出される。
ヘッド部K3は、プロセス部K2から混練物K7が送り込まれる内部空間K31と、混練物K7が押し出される押出口K32とを有している。
内部空間K31内での混練物K7の温度(少なくとも押出口K32付近での温度)T[℃]は、Tより10℃程度、高い温度であるのが好ましい。混練物K7の温度Tが、このような温度であると、混練物K7が内部空間K31で固化せず、押出口K32から押し出しやすくなる。
【0115】
図示の構成では、内部空間K31は、押出口K32の方向に向って、その横断面積が漸減する横断面積漸減部K33を有している。
このような横断面積漸減部K33を有することにより、押出口K32から押し出される混練物K7の押出量が安定し、また、後述する冷却工程における混練物K7の冷却速度が安定する。その結果、これを用いて製造されるトナーは、各トナー粒子間での特性のバラツキが小さいものとなり、全体としての特性に優れたものになる。
【0116】
[冷却工程]
ヘッド部K3の押出口K32から押し出された軟化した状態の混練物K7は、冷却機K6により冷却され、固化する。
冷却機K6は、ロールK61、K62、K63、K64と、ベルトK65、66とを有している。
【0117】
ベルトK65は、ロールK61とロールK62とに巻掛けられている。同様に、ベルトK66は、ロールK63とロールK64とに巻掛けられている。
ロールK61、62、63、64は、それぞれ、回転軸K611、K621、K631、K641を中心として、図中e、f、g、hで示す方向に回転する。これにより、混練機K1の押出口K32から押し出された混練物K7は、ベルトK65−ベルトK66間に導入される。ベルトK65−ベルトK66間に導入された混練物K7は、ほぼ均一な厚さの板状となるように成形されつつ、冷却される。冷却された混練物K7は、排出部K67から排出される。ベルトK65、K66は、例えば、水冷、空冷等の方法により、冷却されている。冷却機として、このようなベルト式のものを用いると、混練機から押し出された混練物と、冷却体(ベルト)との接触時間を長くすることができ、混練物の冷却の効率を特に優れたものとすることができる。
【0118】
ところで、混練工程では、原料K5に剪断力が加わっているため、相分離等が十分防止されているが、混練工程を終えた混練物K7は、剪断力が加わらなくなるので、長期間放置しておくと、再び相分離等を起こしてしまう可能性がある。従って、上記のようにして得られた混練物K7は、できるだけ早く冷却するのが好ましい。具体的には、混練物K7の冷却速度(例えば、混練物K7が60℃程度まで冷却される際の冷却速度)は、−3℃/秒以上であるが好ましく、−5〜−100℃/秒であるのがより好ましい。また、混練工程の終了時(剪断力が加わらなくなった時点)から冷却工程が完了するまでに要する時間(例えば、混練物K7の温度を60℃以下に冷却するのに要する時間)は、20秒以下であるのが好ましく、3〜12秒であるのがより好ましい。
【0119】
前述した実施形態では、混練機として、連続式の2軸混練押出機を用いる構成について説明したが、原料の混練に用いる混練機はこれに限定されない。原料の混練には、例えば、ニーダーやバッチ式の三軸ロール、連続2軸ロール、ホイールミキサー、ブレード型ミキサー等の各種混練機を用いることができる。
また、図示の構成では、スクリューを2本有する構成の混練機について説明したが、スクリューは1本であってもよいし、3本以上であってもよい。また、混練装置にディスク(ニーディングディスク)部があってもよい。
【0120】
また、本実施形態では、1つの混練機を用いる構成について説明したが、2つの混練機を用いて混練してもよい。この場合、一方の混練機のプロセス部を第1の領域K25、他方の混練機のプロセス部を第2の領域K26として用いてもよい。
また、前述した実施形態では、冷却機として、ベルト式のものを用いた構成について説明したが、例えば、ロール式(冷却ロール式)の冷却機を用いてもよい。また、混練機の押出口K32から押し出された混練物の冷却は、前記のような冷却機を用いたものに限定されず、例えば、空冷等により行うものであってもよい。
【0121】
[粉砕工程]
次に、上述したような冷却工程を経た混練物K7を粉砕し、粉砕物K8を得る。このように、混練物K7を粉砕することにより、分散液3における分散質31の分散性を特に優れたものとすることができる。したがって、最終的に得られるトナーにおいても、各粒子間での組成、特性のバラツキが小さくなる。その結果、得られるトナーは、全体としての特性が特に優れたものとなる。
【0122】
粉砕の方法は、特に限定されず、例えばボールミル、振動ミル、ジェットミル、ピンミル等の各種粉砕装置、破砕装置を用いて行うことができる。
粉砕の工程は、複数回(例えば、粗粉砕工程と微粉砕工程との2段階)に分けて行ってもよい。
また、このような粉砕工程の後、必要に応じて、分級処理等の処理を行ってもよい。
分級処理には、例えば、ふるい、気流式分級機等を用いることができる。
【0123】
このようにして得られた粉砕物K8の平均粒径Dfは、15〜2000μmであるのが好ましく、20〜1500μmであるのがより好ましい。これにより、分散媒への分散性が向上する。また、これにより、後述する微粒化工程において、分散液3に含まれる分散質31を、効率よく、かつ、均一に微粒化し、微粒化された分散質31(微分散質33)を効率よく得ることができる。これにより、最終的に得られるトナーの粒度分布を特にシャープなものとすることができる。これに対して、平均粒径Dfが前記下限値未満であると、分散媒への分散性が十分に得られない場合がある。また、後述する微粒化工程で得られる粒子(微分散質33)の平均粒径が小さくなりすぎる場合がある。一方、平均粒径Dfが前記上限値を超えると、後述するような微粒化工程において、分散液を吐出するためのノズルの径を大きくする必要が生じ、分散質31に吐出圧が加わりにくくなるため、微粒化速度が遅くなる可能性がある。また、後述する微粒化工程で得られる微分散質33の形状や粒径のバラツキを小さくすることができない可能性がある。
【0124】
また、粉砕物K8の平均粒径をDf[μm]、最終的に得られるトナー粒子4の平均粒径をDt[μm]としたとき、1≦Df/Dt≦1000の関係を満足するのが好ましく、2≦Df/Dt≦500の関係を満足するのがより好ましい。このような関係を満足することにより、最終的に得られるトナー粒子間での、形状、大きさのバラツキを効果的に抑制することができる。これに対して、Df/Dtが前記下限値未満であると、前述のような効果が十分に得られない場合がある。一方、Df/Dtが前記上限値を超えると、得られるトナー粒子4の粒度分布の幅を十分に小さいものとすることができない可能性がある。
【0125】
以上のようにして得られた粉砕物K8を、前述したように分散媒32に分散し、分散液3を調製する。このとき、前述したような分散剤や分散助剤等を、適宜、添加することができる。
また、このような分散液3の調製は、一般に、乳化機、分散機として市販されている装置を用いて行うことができる。このような装置としては、例えば、ホモジナイザー、TKオートホモミキサー等のバッチ式乳化機、TKパイプラインホモミキサー、コロイドミル、スラッシャー、トリゴナル湿式微粉砕機、ファインフローミル等の連続式乳化機、膜乳化機、振動式乳化機、超音波ホモジナイザー等の超音波乳化機等が挙げられる。
【0126】
次に、上述したような分散液3に含まれる分散質31を微粒化する装置(微粒化装置B1)の好適な実施形態について説明する。
[微粒化工程(微粒化処理)]
微粒化工程では、分散液3を、少なくとも2つ以上のノズルより吐出させ、各ノズルから吐出された分散液3同士を衝突させて、分散質31を微粒化し微分散質33を得る。
【0127】
このように、本発明では、上述のようにして得られた分散液3を、少なくとも2つ以上のノズルより吐出させ、各ノズルから吐出された分散液3同士を衝突させて、分散質31を微粒化する微粒化工程を有することを特徴とする。これにより、最終的に得られるトナーは、各粒子間での形状のバラツキが小さく、粒度分布の幅の小さいものとなる。また、このようにして微粒化を行うことにより、混練物K7(粉砕物K8)中のワックス等の添加剤の分散状態を維持しつつ微粒化することができる。これにより、得られるトナーは、耐久性、保存性、帯電特性等の特性に優れたものとなる。
【0128】
以下、一例として、2つのノズルを有する微粒化装置(微粒化装置B1)を用いた場合について説明する。
図4に示すように、微粒化装置B1(以下、装置B1ともいう。)は、上述したような分散液3を吐出するノズルB21とノズルB22と、分散液3を供給する分散液供給部B3と、ノズルB21およびノズルB22から吐出された分散液3を衝突させるチャンバ部B4を有するハウジング部B5と、微粒化された分散質31(微分散質33)を含む分散質3を回収する回収部B6とを有している。また、図4に示すように、微粒化装置B1は、分散液供給部B3と各ノズルとの間に、分散液供給部B3より供給された分散液3を加圧(加速)する超高圧発生ポンプB7と、超高圧発生ポンプB7で加圧(加速)された分散液3を各ノズルへと分岐する分岐部B8を有している。
【0129】
分散液供給部B3は、超高圧発生ポンプB7に分散液3を供給する機能を有するものであればよいが、図示のように、分散液3を攪拌する攪拌手段B31を有するものであってもよい。これにより、例えば、分散質31が分散媒中に分散しにくいものであっても、分散質31が十分均一に分散した状態の分散液3を、超高圧発生ポンプB7に供給することができる。
【0130】
また、ノズルB21とノズルB22とは、図5に示すように、各ノズルより吐出される分散液3が、チャンバB4の中止軸上において所定の角度θで衝突するように配置されている。この衝突角θは、特に限定されないが、90〜180°であるのが好ましく、120〜180°であるのがより好ましい。衝突角θをこのような範囲のものとすることにより、2つの吐出流が衝突する際に、吐出流の持つ運動エネルギーを極力少ない損失で、分散質31を微粒化するエネルギー(衝突エネルギー)として用いることができ、効率よく分散質31を微粒化することができる。これ対して、衝突角θが前記下限値未満であると、吐出流の持つ運動エネルギーの損失が大きくなり、分散質31が十分に微粒化できない場合がある。なお、この衝突する角度というのは、図5に示すように、2つの直線がなす角のことを指すものであるから、180°以下となる。
【0131】
分散液3中の分散質31は、装置B1により、以下のように微粒化される。
分散液供給部B3より、装置B1内へ供給された分散液3は、超高圧発生ポンプB7により加圧(加速)され、分岐部B8により分岐される。分岐された各分散液3は、それぞれ、ノズルB21とノズルB22とに搬送され、各ノズルの先端より吐出され、衝突する。衝突により微粒化された分散質31(微分散質33)を含む分散液3は、ハウジング部B5内を下降し、回収部B6で回収される。
【0132】
ノズルB21およびノズルB22から分散液3を吐出する圧力(吐出圧)は、50〜300MPaであるのが好ましく、70〜250MPaであるのがより好ましい。吐出圧をこのような範囲のものとすることにより、適度な平均粒径を有する微分散質33を効率よく得ることができる。これに対して、吐出圧が低すぎると、分散質31が十分に微粒化されない場合がある。一方、吐出圧が高すぎると、分散質31が過度に微分散され、適度な粒径のトナー粒子が得られない場合がある。なお、ノズルB21およびノズルB22における吐出圧は、同じであってもよいし、異なっていてもよい。
【0133】
ところで、分散質31を構成する樹脂として、前述したようなブロックポリエステルと非晶性ポリエステルとを含むものを用いた場合、その分散質31中に、後述するように、通常、主としてブロックポリエステルの結晶性ブロックにより構成された結晶が存在する。分散質31中に、このような比較的硬い結晶が存在すると、吐出圧を比較的高いものとした場合であっても、過度の微粒化を効果的に防止することができ、得られる微分散質33の粒度分布をよりシャープなものとすることができる。
【0134】
また、分散液3は、このような微粒化工程において、加温されるのが好ましい。これにより、得られる微分散質33の円形度を適度なものとすることができ、その結果、最終的に得られるトナーの円形度も適度なものとなる。すなわち、このように加温することによって、分散液3中の分散質31の微粒化処理を行いつつ、熱球形化処理を行うことができる。
また、各ノズルより吐出される分散液3の温度は、20〜200℃であるのが好ましく、40〜160℃であるのがより好ましい。これにより、前述の効果がより顕著なものとなる。
【0135】
また、ノズルB21およびノズルB22から吐出される分散液3の粘度は、特に限定されないが、例えば、5〜2000cpsであるのが好ましく、10〜1000cpsであるのがより好ましい。分散液3の粘度が前記下限値未満であると、分散液3中の分散質31の分散性が低下し、各ノズルから吐出される分散液3が不均一なものとなり、分散質31が十分に微粒化されない場合がある。一方、分散液3の粘度が前記上限値を超えると、分散液3の流動性が低下し、回収が困難となる場合がある。また、ノズル先端への付着が激しくなり連続運転が困難となり、また、分散液3がノズルに供給されにくくなる。
【0136】
また、微粒化装置B1は、回収部B6から分散液供給部B3へ微分散液34を搬送する手段を有している。すなわち、図4に示すように、回収部B6の微分散液34は、搬送ポンプB9により搬送パイプB10を介して、分散液供給部B3へ搬送される。
このように、微粒化処理は、繰り返し行われるのが好ましい。これにより、各粒子間での形状のバラツキが小さく、粒度分布の幅の小さい粒子(微分散質33)を効率よく得ることができる。また、この繰り返しは、得られる微分散質33(微粒化された分散質31)の平均粒径が、0.1〜15μmの範囲のものとなるまで行われるのが好ましい。これにより、前述の効果がより顕著なものとなる。
【0137】
以上、分散質31を微粒化する装置(微粒化装置B1)の好適な実施形態について説明したが、微粒化装置の構成はこれに限定されない。例えば、微粒化装置を構成する各部は、同様の機能を発揮する任意のものと置換、または、その他の構成を追加することもできる。
例えば、前述した実施形態では、2つのノズルを用いた装置について説明したが、これに限定されず、3つのノズルを用いたものであってもよいし、4つ以上のノズルを用いたものであってもよい。このように3つ以上のノズルを用いたものである場合、ノズルの先端が最も離れている2つのノズルから吐出される分散液3の衝突角θが、前述した範囲のものであればよい。
【0138】
このようにして得られた微分散液34を用いて、本発明のトナーを製造する。すなわち、得られた微分散液34より、分散媒32を除去する工程を経て、本発明のトナーが得られる。分散媒32を除去する方法は、特に限定されないが、後述するような分離工程、乾燥工程を有するような方法や、図6に示すようなトナー製造装置を用いて除去することもできる。
【0139】
まず、分離工程、乾燥工程を有する方法について説明する。
[分離工程(分離処理)]
分離工程では、微粒化した分散質31(微分散質33)を、分散液3より分離(粗分離)する。これにより、分散液3より分散媒32の大部分を除去することができる。
【0140】
このような分離処理(粗分離処理)の方法は、特に限定されず、例えば、濾過、遠心分離等の方法が挙げられる。中でも、濾過によって分離するのが好ましい。これにより、簡便に微分散質33を分離することができる。
また、濾過によって分離する場合、分離した微分散質33を、分散媒32と同じ組成の洗浄液で洗浄するのが好ましい。これにより、微分散質33の集合体中に微量に残存する分散剤、分散助剤等を好適に除去することができる。
【0141】
[乾燥工程]
次に、粗分離した微分散質33を乾燥させる。その結果、ほぼ完全に分散媒32を除去することができる。これにより、トナー粒子4が得られる。
このような分散媒32の除去の方法は、特に限定されず、例えば、加熱乾燥、減圧乾燥、噴霧乾燥、流動床乾燥等が挙げられる。
【0142】
加熱乾燥を行う場合の乾燥温度は、分散媒32の組成にもよるが、40〜200℃であるのが好ましく、45〜160℃であるのがより好ましい。これにより、好適に分散媒32を除去することができる。
また、このような加熱乾燥を行う場合、減圧しつつ行うのが好ましい。これにより、乾燥温度を比較的低くすることができ、微分散質33の溶融や凝集等を防止することができる。
また、このような乾燥工程の後、必要に応じて、分級処理等の処理を行ってもよい。分級処理には、例えば、ふるい、気流式分級機等を用いることができる。
このように濾過して乾燥する方法であると、微分散液34が比較的多量の場合であっても、簡便に、効率よくトナーを製造することができる。
【0143】
次に、図6に示すようなトナー製造装置を用いて、分散媒32を除去する方法について説明する。
以下、上述したような微分散質33を含む分散液3(微分散液34)を用いて、トナー粒子4を製造する装置(トナー製造装置M1)の好適な実施形態について説明する。
【0144】
[トナー製造装置]
図6に示すように、トナー製造装置M1は、上述したような微分散液34を吐出するヘッド部M2と、ヘッド部M2に微分散液34を供給する分散液供給部M4と、ヘッド部M2から吐出された微分散液34が搬送される固化部M3と、製造されたトナー粒子4を回収する回収部M5とを有している。
【0145】
分散液供給部M4には、上述したような微分散液34が蓄えられており、当該微分散液34は、ヘッド部M2に送り込まれる。
分散液供給部M4は、ヘッド部M2に微分散液34を供給する機能を有するものであればよいが、図示のように、微分散液34を攪拌する攪拌手段M41を有するものであってもよい。これにより、例えば、微分散質33が分散媒32中に分散しにくいものであっても、微分散質33が十分均一に分散した状態の微分散液34を、ヘッド部M2内に供給することができる。
【0146】
ヘッド部M2は、分散液貯留部M21と、圧電素子M22と、吐出部M23とを有している。
分散液貯留部M21には、上述したような微分散液34が貯留されている。
分散液貯留部M21に貯留された微分散液34は、圧電素子M22の圧力パルスにより、吐出部M23から固化部M3に吐出される。
【0147】
吐出部M23の形状は、特に限定されないが、略円形状であるのが好ましい。これにより、吐出される微分散液34、形成されるトナー粒子4の真球度を高めることができる。
吐出部M23が略円形状のものである場合、その直径(ノズル径)は、例えば、5〜500μmであるのが好ましく、10〜200μmであるのがより好ましい。吐出部M23の直径が前記下限値未満であると、目詰まりが発生し易くなり、吐出される微分散液34の大きさのバラツキが大きくなる場合がある。一方、吐出部M23の直径が前記上限値を超えると、分散液貯留部M21の負圧と、ノズルの表面張力との力関係によっては、吐出される微分散液34が気泡を抱き込んでしまう可能性がある。
【0148】
図7に示すように、圧電素子M22は、下部電極(第1の電極)M221、圧電体M222および上部電極(第2の電極)M223が、この順で積層されて構成されている。換言すれば、圧電素子M22は、上部電極M223と下部電極M221との間に、圧電体M222が介挿された構成とされている。
この圧電素子M22は、振動源として機能するものであり、振動板M24は、圧電素子(振動源)M22の振動により振動し、分散液貯留部M21の内部圧力を瞬間的に高める機能を有するものである。
【0149】
ヘッド部M2は、圧電素子駆動回路(図示せず)から所定の吐出信号が入力されていない状態、すなわち、圧電素子M22の下部電極M221と上部電極M223との間に電圧が印加されていない状態では、圧電体M222に変形が生じない。このため、振動板M24にも変形が生じず、分散液貯留部M21には容積変化が生じない。したがって、吐出部M23から微分散液34は吐出されない。
【0150】
一方、圧電素子駆動回路から所定の吐出信号が入力された状態、すなわち、圧電素子M22の下部電極M221と上部電極M223との間に所定の電圧が印加された状態では、圧電体M222に変形が生じる。これにより、振動板M24が大きくたわみ(図2中下方にたわみ)、分散液貯留部M21の容積の減少(変化)が生じる。このとき、分散液貯留部M21内の圧力が瞬間的に高まり、吐出部M23から粒状の微分散液34が吐出される。
【0151】
1回の微分散液34の吐出が終了すると、圧電素子駆動回路は、下部電極M221と上部電極M223との間への電圧の印加を停止する。これにより、圧電素子M222は、ほぼ元の形状に戻り、分散液貯留部M21の容積が増大する。なお、このとき、微分散液34には、分散液供給部M4から吐出部M23へ向かう圧力(正方向への圧力)が作用している。このため、空気が吐出部M23から分散液貯留部M21へ入り込むことが防止され、微分散液34の吐出量に見合った量の微分散液34が分散液供給部M4から分散液貯留部M21へ供給される。
【0152】
上記のような電圧の印加を所定の周期で行うことにより、圧電素子M22が振動し、粒状の微分散液34が繰り返し吐出される。
このように、本実施形態では、流動性を有する分散液を、圧電体の振動により、粒状に吐出し、これを固化させることによりトナーを得ることができる。
また、本実施形態では、圧電体の振動を用いるため、分散液を所定間隔で吐出することができる。このため、吐出される粒状の分散液同士が、衝突、凝集するのを効果的に防止することができる。
【0153】
本実施形態では、ヘッド部M2から固化部M3に吐出される微分散液34の初速度は、例えば、0.1〜10m/秒であるのが好ましく、2〜8m/秒であるのがより好ましい。これにより、トナーの生産性が向上する。
また、ヘッド部M2から吐出される微分散液34は、予め加温されたものであってもよい。このように微分散液34を加温することにより、得られるトナー粒子4の円形度が特に高いものとなる。
予め加温された微分散液34の温度は、40〜160℃であるのが好ましく、60〜140℃であるのがより好ましい。
【0154】
また、微分散液34の一滴分の吐出量は、微分散液34中に占める微分散質33の含有率等により若干異なるが、0.05〜500plであるのが好ましく、0.5〜5plであるのがより好ましい。微分散液34の一滴分の吐出量をこのような範囲の値にすることにより、トナー粒子4を適度な粒径のものにすることができる。
【0155】
圧電素子M22の振動数は、特に限定されないが、10kHz〜500MHzであるのが好ましく、20kHz〜200MHzであるのがより好ましい。圧電素子M22の振動数が前記下限値未満であると、トナーの生産性が低下する。一方、圧電素子M22の振動数が前記上限値を超えると、粒状の微分散液34の吐出が追随できなくなり、微分散液34が適度に吐出されなくなる可能性がある。
【0156】
図示の構成のトナー製造装置M1は、ヘッド部M2を複数個有している。そして、これらのヘッド部M2から、それぞれ、粒状の微分散液34が固化部M3に吐出される。
各ヘッド部M2は、ほぼ同時に微分散液34を吐出するものであってもよいが、少なくとも隣り合う2つのヘッド部で、微分散液34の吐出タイミングが異なるように制御されたものであるのが好ましい。これにより、隣接するヘッド部M2から吐出された粒状の微分散液34が固化する前に、粒状の分散液3が衝突し、凝集するのをより効果的に防止することができる。
【0157】
また、図6に示すように、トナー製造装置M1は、ガス流供給手段M10を有しており、このガス流供給手段M10から供給されたガスが、ダクトM101を介して、ヘッド部M2−ヘッド部M2間に設けられた各ガス噴射口M7から、ほぼ均一の圧力で噴射される構成となっている。これにより、吐出部M23から間欠的に吐出された粒状の微分散液34の間隔を保ちつつ、微分散液34を搬送し、固化させることができる。その結果、吐出される粒状の微分散液34同士の衝突、凝集がより効果的に防止される。
【0158】
また、ガス流供給手段M10から供給されたガスをガス噴射口M7から噴射することにより、固化部M3において、ほぼ一方向(図中、下方向)に流れるガス流を形成することができる。このようなガス流が形成されると、固化部M3内の粒状の微分散液34(トナー粒子4)をより効率良く搬送することができる。
また、ガス噴射口M7からガスが噴射されることにより、各ヘッド部M2から吐出される粒子の間に気流カーテンが形成され、例えば、隣り合うヘッド部M2から吐出された各粒子間での衝突、凝集をより効果的に防止することが可能となる。
【0159】
また、ガス流供給手段M10には、熱交換器M11が取り付けられている。これにより、ガス噴射口M7から噴射されるガスの温度を好ましい値に設定することができ、固化部M3に吐出された微分散液34から、効率良く分散媒32を除去することができる。
また、このようなガス流供給手段M10を有すると、ガス流の供給量を調整すること等により、吐出部M23から吐出された微分散液34の固化速度等を容易にコントロールすることも可能となる。
【0160】
ガス噴射口M7から噴射されるガスの温度は、微分散液34中に含まれる微分散質33、分散媒32の組成等により異なるが、通常、100〜250℃であるのが好ましく、150〜200℃であるのがより好ましい。ガス噴射口M7から噴射されるガスの温度がこのような範囲の値であると、得られるトナー粒子4の形状の均一性を保ちつつ、微分散液34中に含まれる分散媒32を効率良く除去することができ、トナーの生産性を特に優れたものとすることができる。
【0161】
また、ガス噴射口M7から噴射されるガスの湿度は、例えば、50%RH以下であるのが好ましく、30%RH以下であるのがより好ましく、20%RH以下であるのがさらに好ましい。ガス噴射口M7から噴射されるガスの湿度が50%RH以下であると、後述する固化部M3において、微分散液34に含まれる分散媒32を効率良く除去することが可能となり、トナーの生産性がさらに向上する。
【0162】
ヘッド部M2から吐出された微分散液34(微分散質33)は、固化部M3を搬送されつつ分散媒32が除去されることにより、トナー粒子4となる。
また、トナー粒子4は、例えば、吐出された微分散液34中の分散媒32が除去されるのに伴い、微分散液34中に含まれる比較的粒径の小さい微分散質33が凝集することにより得られるものであってもよい。この場合、得られるトナー粒子4は、微分散質33の凝集体として得られる。例えば、微分散質33の粒径が比較的小さいものである場合、このように凝集させることにより、各トナー粒子間での形状、組成等のバラツキを小さくすることができる。
【0163】
固化部M3は、筒状のハウジングM31で構成されている。
トナーの製造時において、ハウジングM31内は、所定範囲の温度に保たれているのが好ましい。これにより、製造条件の差による各トナー粒子4間での特性のバラツキを少なくすることができ、トナー全体としての信頼性が向上する。
このように、ハウジングM31内の温度を所定の範囲に保つ目的で、例えば、ハウジングM31の内側または外側に熱源、冷却源を設置したり、ハウジングM31を、熱媒体または冷却媒体の流路が形成されたジャケットとしてもよい。
【0164】
また、図示の構成では、ハウジングM31内の圧力は、圧力調整手段M12により調整される構成となっている。このように、ハウジングM31内の圧力を調整することにより、吐出された微分散液34(微分散質33)中の分散媒32を効率良く除去することが可能となり、トナーの生産性が向上する。なお、図示の構成では、圧力調整手段M12は、接続管M121でハウジングM31に接続されている。また、接続管M121のハウジングM31と接続する端部付近には、その内径が拡大した拡径部M122が形成されており、さらに、トナー粒子4等の吸い込みを防止するためのフィルターM123が設けられている。
【0165】
ハウジングM31内の圧力は、特に限定されないが、0.15MPa以下であるのが好ましく、0.005〜0.15MPaであるのがより好ましく、0.109〜0.110MPaであるのがさらに好ましい。
また、ハウジングM31には、電圧を印加するための電圧印加手段M8が接続されている。電圧印加手段M8で、ハウジングM31の内面側に、微分散質33(トナー粒子4)と同じ極性の電圧を印加することにより、以下のような効果が得られる。
【0166】
通常、トナー粒子は、正または負に帯電している。このため、トナー粒子と異なる極性に帯電した帯電物があると、トナー粒子は、当該帯電物に、静電的に引き付けられ付着するという現象が起こる。一方、トナー粒子と同じ極性に帯電した帯電物があると、当該帯電物とトナー粒子とは、互いに反発しあい、前記帯電物表面にトナーが付着するという現象を効果的に防止することができる。したがって、ハウジングM31の内面側に、微分散質33(トナー粒子4)と同じ極性の電圧を印加することにより、ハウジングM31の内面に微分散液34(トナー粒子4)が付着するのを効果的に防止することができる。これにより、異形状のトナー粉末の発生をより効果的に防止することができるとともに、トナー粒子4の回収効率も向上する。
【0167】
ハウジングM31は、回収部M5付近に、図5中の下方向に向けて、その内径が小さくなる縮径部M311を有している。このような縮径部M311が形成されることにより、トナー粒子4を効率良く回収することができる。なお、前述したように、吐出部M23から吐出された微分散液34(微分散質33)は、固化部M3において分散媒32が除去されるが、回収部M5付近においてはこのような固化はほぼ完全に完了しており、縮径部M311付近では、各粒子が接触しても凝集等の問題はほとんど発生しない。
【0168】
微分散質33から分散媒32を除去することにより得られたトナー粒子4は、回収部M5に回収される。
このような装置を用いてトナーを製造した場合、微分散質33の不本意な変形や凝集等が起こりにくいため、最終的に得られるトナー粒子もより形状の整ったものとすることができる。
【0169】
以上の説明では、図7に示すようなノズルを用いて、圧電パルスによりヘッド部から分散液を間欠的に吐出(噴射)する方法について説明したが、分散液を吐出(噴射)することが可能であればいかなる方法でもよい。
例えば、スプレードライ法のように、「高圧のガスを用いて、液体(分散液)を噴霧させる方法」でもよいし、「気体の体積変化によりヘッド部から分散液を間欠的に吐出する方法」(特願2002−169348号明細書に記載された方法等)であってもよいし、「分散液を、ガス流で平滑面に押し付けて薄く引き伸ばして薄層流とし、当該薄層流を前記平滑面から離して噴射する方法」(特願2002−321889号明細書に記載された方法等)であってもよい。
【0170】
以上のようにして得られたトナーに対しては、必要に応じて、分級処理、外添処理等の各種処理を施してもよい。
分級処理には、例えば、ふるい、気流式分級機等を用いることができる。
また、外添処理に用いられる外添剤としては、例えば、酸化チタン、シリカ(正帯電性シリカ、負帯電性シリカ等)、酸化アルミニウム、チタン酸ストロンチウム、酸化セリウム、酸化マグネシウム、酸化クロム、酸化亜鉛、アルミナ、マグネタイト等の金属酸化物、窒化珪素等の窒化物、炭化珪素等の炭化物、硫酸カルシウム、炭酸カルシウム、脂肪族金属塩等の金属塩等の無機材料で構成された微粒子、アクリル樹脂、フッ素樹脂、ポリスチレン樹脂、ポリエステル樹脂、脂肪族金属塩(例えば、ステアリン酸マグネシウム)等の有機材料で構成されたもの等が挙げられる。
【0171】
上記外添剤の中でも、外添剤として用いることができる酸化チタンとしては、例えば、ルチル型の酸化チタン、アナターゼ型の酸化チタン、ルチルアナターゼ型の酸化チタン等が挙げられる。
ルチルアナターゼ型の酸化チタンは、結晶構造がルチル型の酸化チタン(二酸化チタン)と、結晶構造がアナターゼ型の酸化チタン(二酸化チタン)とを同一粒子内に有するものである。すなわち、ルチルアナターゼ型の酸化チタンは、ルチル型の結晶とアナターゼ型の結晶との混晶型の酸化チタン(二酸化チタン)を有するものである。
ルチル型の酸化チタンは、通常、紡錘形状の結晶になり易い性質を有している。また、アナターゼ型の酸化チタンは、微小な結晶を析出し易く、疎水化処理等に用いられるシランカップリング剤等との親和性に優れるという性質を有している。
【0172】
そして、ルチルアナターゼ型の酸化チタンは、ルチル型の結晶とアナターゼ型の結晶との混晶型の酸化チタンを有するものであるため、ルチル型の酸化チタンの利点と、アナターゼ型の酸化チタンの利点とを併有している。すなわち、ルチルアナターゼ型の酸化チタンでは、ルチル型結晶の間(ルチル型結晶の内部)に、微小なアナターゼ型結晶が混在し、全体としては、略紡錘形状を有するものとなることにより、トナーの母粒子中に埋没し難くなり、また、ルチルアナターゼ型の酸化チタン全体としての、シランカップリング剤等との親和性が優れたものとなるため、ルチルアナターゼ型の酸化チタン粉末の表面に均一で安定した疎水性被膜(シランカップリング被膜)が形成され易くなる。したがって、ルチルアナターゼ型の酸化チタンを含むことにより、得られるトナーは、帯電分布が均一(トナー粒子の帯電分布がシャープ)で、安定した帯電特性を有し、環境特性(特に耐湿性)、流動性、耐ケーキング性等に優れたものとなる。
特に、ルチルアナターゼ型の酸化チタンは、前述したようなポリエステル系樹脂と併用した場合、以下のような相乗効果を発揮する。
【0173】
すなわち、トナーを構成する樹脂として、前述したような結晶性の高い結晶性ブロックを有するブロックポリエステルを含むものを用いた場合、トナー粒子中において、主として結晶性ブロックにより形成された所定の大きさの結晶を有するものとすることができる。このような結晶を有することにより、ルチルアナターゼ型の酸化チタンは、トナーの母粒子中に埋没しにくいものとなる。すなわち、前記結晶のような硬い成分を含むことにより、ルチルアナターゼ型の酸化チタンは、トナーの母粒子の表面付近に確実に担持(付着)されたものとなる。これにより、ルチルアナターゼ型の酸化チタンの機能(特に、優れた流動性、帯電性の付与等の効果)を十分に発揮させることができる。このように、前述したポリエステル系樹脂と併用することにより、ルチルアナターゼ型の酸化チタンの機能を十分に発揮させることができるため、用いる外添剤の量を抑制することができる。その結果、外添剤を多量に添加することによる不都合(例えば、紙等の転写材(記録媒体)への定着性の低下等)の発生を効果的に防止することができる。
【0174】
ルチルアナターゼ型の酸化チタン中におけるルチル型の酸化チタンとアナターゼ型の酸化チタンとの存在比率は、特に限定されないが、重量比で、5:95〜95:5であるのが好ましく、50:50〜90:10であるのがより好ましい。このようなルチルアナターゼ型の酸化チタンを用いることにより、前述したルチルアナターゼ型の酸化チタンを用いることによる効果は、さらに顕著なものとなる。
また、ルチルアナターゼ型の酸化チタンは、300〜350nmの波長領域の光を吸収するものであるのが好ましい。これにより、トナーは、特に耐光性(特に、記録媒体への定着後における耐光性)に優れたものとなる。
【0175】
本発明で用いられるルチルアナターゼ型の酸化チタンの形状は、特に限定されないが、通常、略紡錘形状である。
ルチルアナターゼ型の酸化チタンが略紡錘形状を有するものである場合、その平均長軸径は、10〜100nmであるのが好ましく、20〜50nmであるのがより好ましい。平均長軸径がこのような範囲の値であると、ルチルアナターゼ型の酸化チタンは、上述したような機能を十分に発揮することができ、また、トナーの母粒子中に埋没し難く、かつ遊離しにくいものとなる。その結果、トナーの機械的ストレスに対する安定性は、さらに優れたものとなる。
【0176】
トナー中におけるルチルアナターゼ型の酸化チタンの含有量は、特に限定されないが、0.1〜2.0wt%であるのが好ましく、0.5〜1.0wt%であるのがより好ましい。ルチルアナターゼ型の酸化チタンの含有量が前記下限値未満であると、前述したような、ルチルアナターゼ型の酸化チタンを用いることによる効果が十分に発揮されない可能性がある。一方、ルチルアナターゼ型の酸化チタンの含有量が前記上限値を越えると、トナーの定着性が低下する傾向を示す。
【0177】
このようなルチルアナターゼ型の酸化チタンは、いかなる方法で調製されたものであってもよいが、例えば、アナターゼ型の酸化チタンを焼成することにより得ることができる。このような方法を用いることにより、ルチルアナターゼ型の酸化チタン中におけるルチル型の酸化チタンとアナターゼ型の酸化チタンとの存在比率を、比較的容易かつ確実に制御することができる。このような方法でルチルアナターゼ型の酸化チタンを得る場合、焼成温度は、700〜1000℃程度であるのが好ましい。焼成温度をこのような範囲の値にすることにより、ルチルアナターゼ型の酸化チタン中におけるルチル型の酸化チタンとアナターゼ型の酸化チタンとの存在比率を、さらに容易かつ確実に制御することが可能になる。
【0178】
また、ルチルアナターゼ型の酸化チタンは、疎水化処理が施されたものであるのが好ましい。疎水化処理を施すことにより、帯電が湿度によって大きく左右されなくなるという効果が得られる。疎水化処理としては、例えば、HMDS、シラン系カップリング剤(例えば、アミノ基等の官能基を有するものでもよい)、チタネート系カップリング剤、フッ素含有シラン系カップリング剤、シリコーンオイル等を用いた、ルチルアナターゼ型の酸化チタンの粉末(粒子)への表面処理等が挙げられる。
【0179】
また、前述した外添剤の中でも、外添剤として用いることができるシリカとしては、例えば、正帯電性シリカ、負帯電性シリカ等が挙げられる。正帯電性シリカは、例えば、負帯電性シリカに、アミノ基等の官能基を有するシラン系カップリング剤で、表面処理を施すことにより得ることができる。
外添剤として負帯電性シリカを用いた場合、トナー粒子の帯電量(絶対値)を大きくすることができる。その結果、安定した負帯電性トナーが得られ、画像形成装置のトナー制御が容易になるという効果が得られる。
【0180】
また、負帯電性シリカを前述したルチルアナターゼ型の酸化チタンと併用した場合、特に優れた効果が得られる。すなわち、負帯電性シリカとルチルアナターゼ型の酸化チタンとを併用することにより、トナーの流動性、環境特性(特に耐湿性)をさらに高めたり、より安定した摩擦帯電性を発揮することができるとともに、いわゆるカブリの発生をより効果的に防止することができる。また、負帯電性シリカとルチルアナターゼ型の酸化チタンとを併用することにより、得られるトナーを、帯電量(絶対値)が大きく、かつ帯電分布がよりシャープなものとすることができる。
略紡錘形状のルチルアナターゼ型の酸化チタンの平均長軸径をD[nm]、負帯電性シリカの平均粒径をD[nm]としたとき、0.2≦D/D≦15の関係を満足するのが好ましく、0.4≦D/D≦5の関係を満足するのがより好ましい。このような関係を満足することにより、負帯電性シリカとルチルアナターゼ型の酸化チタンとを併用することによる効果はさらに顕著なものとなる。なお、本明細書では、「平均粒径」とは、重量基準の平均粒径のことを指すものとする。
【0181】
また、外添剤として、正帯電性シリカを用いた場合、例えば、正帯電性シリカをマイクロキャリアとして機能させることができ、トナー粒子自体の帯電性をさらに向上させることができる。特に、正帯電性シリカと、前述したルチルアナターゼ型の酸化チタンとを併用することにより、得られるトナーを、帯電量(絶対値)が大きく、かつ帯電分布がよりシャープなものとすることができる。
正帯電性シリカを含む場合、その平均粒径は、30〜100nmであるのが好ましく、40〜50nmであるのがより好ましい。正帯電性シリカの平均粒径がこのような範囲の値であると、前述した効果はより顕著なものとなる。
【0182】
また、外添剤としては、上記のような材料で構成された微粒子の表面に、HMDS、シラン系カップリング剤(例えば、アミノ基等の官能基を有するものでもよい)、チタネート系カップリング剤、フッ素含有シラン系カップリング剤、シリコーンオイル等により表面処理を施したものを用いてもよい。
このような外添剤は、例えば、ヘンシェルミキサー等を用いて、トナー粒子と混合すること等により添加することができるが、例えば、前述したようなトナー製造装置M1の固化部M3内に、外添剤を噴射および/または対流させ、当該外添剤を微分散質33に付着させてもよい。これにより、外添剤を強固に付着させることができる。また、これにより、外添工程を省略することができ、生産性が向上する。
【0183】
また、このようにして得られるトナー粉末は、外添剤の被覆率(トナー粒子の表面積のうち外添剤が被覆する面積割合であり、外添剤の平均粒径相当の球がトナー平均粒径相当の球を6方細密充填で被覆するとしたときの計算上の被覆率)が100〜300%であるのが好ましく、120〜220%であるのがより好ましい。外添剤の被覆率が前記下限値未満であると、前述したような外添剤の効果が十分に発揮されない可能性がある。一方、外添剤の被覆率が前記上限値を超えると、トナーの定着性が低下する傾向を示す。
【0184】
また、外添剤は、トナー中において、実質的に、その全てがトナー粒子(母粒子)に付着した状態になっていてもよいし、その一部がトナー粒子の表面から遊離していてもよい。すなわち、トナー中には、トナー粒子から遊離した外添剤が含まれていてもよい。
このように、トナー中に、母粒子から遊離した外添剤(以下、「遊離外添剤」とも言う)が含まれると、このような遊離外添剤を、例えば、トナー粒子とは反対の極性に帯電するマイクロキャリアとして機能させることができる。このようなマイクロキャリアとして機能する遊離外添剤がトナー中に含まれると、現像時等に逆帯電性のトナー粒子(トナー粒子が帯電時に本来示すべき極性とは反対の極性に帯電するトナー粒子)が発生するのを効果的に防止、抑制することができる。その結果、トナーは、いわゆるカブリ等の不都合を生じ難いものとなる。
【0185】
トナー粒子から遊離した外添剤の量は、例えば、電子写真学会年次大会(通算95回)“Japan Hardcopy’97”論文集、「新しい外添評価方法−パーティクルアナライザによるトナー分析−」(鈴木俊之、高原寿雄、電子写真学会主催、1997年7月9〜11日)に開示されている方法を適用して、測定することができる。以下、外添剤として(ルチルアナターゼ型の)酸化チタンを用いた場合のパーティクルアナライザ(PT1000)による遊離外添剤量の測定方法の一例について説明する。
【0186】
この測定方法は、樹脂(C)からなる母粒子の表面に酸化チタン(TiO)からなる外添剤を付着させて形成されたトナーTの粒子をプラズマ中に導入することにより、トナー粒子を励起させ、この励起に伴う発光スペクトルを得、元素分析を行うことにより測定する方法である。
まず、トナー母粒子に外添剤(TiO)が付着したトナー粒子がプラズマに導入されると、母粒子(C)および外添剤(TiO)がともに発光する。このとき、母粒子(C)と外添剤(TiO)とが同時にプラズマに導入されることから、母粒子(C)と外添剤(TiO)とは同時に発光するようになる。このように、母粒子(C)と外添剤(TiO)とが同時に発光する状態の場合は、母粒子(C)と外添剤(TiO)とが同期しているという。換言すれば、母粒子(C)と外添剤(TiO)とが同期した状態は、外添剤(TiO)が母粒子(C)に付着している状態を表すことになる。
【0187】
また、外添剤(TiO)が付着していない母粒子(C)や母粒子(C)から遊離した外添剤(TiO)がプラズマに導入される場合は、前述と同様に母粒子(C)および外添剤(TiO)はいずれも発光するが、このとき、母粒子(C)と外添剤(TiO)とが異なる時間にプラズマに導入されることから、母粒子(C)と外添剤(TiO)とは異なる時間に発光するようになる(例えば、母粒子が外添剤より先にプラズマに導入されると、先に母粒子が発光し、その後遅れて外添剤が発光する)。
【0188】
このように、母粒子(C)と外添剤(TiO)とが互いに異なる時間に発光する状態の場合は、母粒子(C)と外添剤(TiO)とが同期していない(つまり、非同期である)という。換言すれば、母粒子(C)と外添剤(TiO)とが非同期である状態は、外添剤(TiO)が母粒子(C)に付着していない状態を表すことになる。
【0189】
更に、上記のようにして得られる発光スペクトルにおいて発光信号の高さは、その発光の強さを表しているが、この発光の強さは粒子の大きさや形ではなく、粒子内に含まれているその元素(C、TiO)の原子数に比例している。そこで、元素の発光強度を粒子の大きさとして表すために、母粒子(C)および外添剤(TiO)の発光が得られたとき、これらの母粒子(C)および外添剤(TiO)だけでできた真球の粒子を仮定し、このときの真球の粒子を等価粒子と呼び、これらの粒径を等価粒径と呼ぶ。そして、外添剤は非常に小さいことから、これらの粒子を1個ずつ検出することができないので、検出された外添剤の発光信号を足し合わせて1つの等価粒子に換算して分析する。
このように母粒子および外添剤の各発光スペクトルによって得られた等価粒子の等価粒径を、トナーの各粒子毎にプロットすると、図21に示すようなトナー粒子の等価粒径分布図が得られる。
【0190】
図21において、横軸は母粒子(C)の等価粒径を表し、縦軸は外添剤(TiO)の等価粒径を表している。そして、横軸上の等価粒子は、外添剤(TiO)が付着されていない非同期の母粒子(C)を表しているとともに、縦軸上の等価粒子は、母粒子(C)から遊離した非同期の外添剤(TiO)を表している。また、横軸および縦軸上にない等価粒子は、母粒子(C)に外添剤(TiO)が付着されている同期のトナーを表している。このようにして、トナーの母粒子(C)に対する外添剤(TiO)の付着状態が分析される。
【0191】
このようにして測定することができる、トナー粒子から遊離したルチルアナターゼ型の酸化チタンの量(トナー中に含まれるルチルアナターゼ型の酸化チタンのうち、遊離外添剤となっているものの割合)は、0.1〜5.0wt%であるのが好ましく、0.5〜3.0wt%であるのがより好ましい。遊離外添剤の割合が少な過ぎると前述したマイクロキャリアとしての機能が十分に発揮されない場合がある。一方、遊離外添剤の割合が前記上限値を超えると、遊離外添剤がトナー接触部材に付着してフィルミングが発生しやすくなる。
【0192】
以上のようにして製造される本発明のトナーは、均一な形状を有し、粒度分布のシャープな(幅の小さい)ものである。特に、本発明では、円形度が比較的高い形状のトナー粒子が得られる。
具体的には、本発明のトナー(トナー粒子)は、下記式(I)で表される平均円形度Rが0.91〜0.99であるのが好ましく、0.93〜0.99であるのがより好ましい。平均円形度Rが0.91未満であると、個々のトナー粉末間での帯電特性の差を十分に小さくするのが困難となり、感光体上への現像性が低下する傾向を示す。また、平均円形度Rが小さすぎると、感光体上へのトナーの付着(フィルミング)が発生しやすくなり、トナーの転写効率が低下する場合がある。一方、平均円形度Rが0.99を超えると、転写効率や機械的強度は増す反面、造粒(粒子同士の接合)が促進されることで平均粒子径が大きくなる等の問題がある。また、平均円形度Rが0.99を超えると、例えば、感光体等に付着したトナーをクリーニングにより除去するのが困難となる。
【0193】
R=L/L・・・(I)
(ただし、式中、L[μm]は、測定対象のトナー粒子の投影像の周囲長、L[μm]は、測定対象のトナー粒子の投影像の面積に等しい面積の真円(完全な幾何学的円)の周囲長を表す。)
また、トナーは、各粒子間での平均円形度の標準偏差が0.03以下であるのが好ましく、0.02以下であるのがより好ましく、0.015以下であるのがさらに好ましい。各粒子間での平均円形度の標準偏差が0.03以下であると、帯電特性、定着特性等のバラツキが特に小さくなり、トナー全体としての、信頼性がさらに向上する。
【0194】
また、トナーの平均粒径は、2〜15μmであるのが好ましく、3〜8μmであるのがより好ましい。トナーの平均粒径が前記下限値未満であると、均一に帯電させるのが困難になるとともに、静電潜像担持体(例えば、感光体等)表面への付着力が大きくなり、結果として、転写残トナーの増加を招く場合がある。一方、トナーの平均粒径が前記上限値を超えると、トナーを用いて形成される画像の輪郭部分、特に文字画像やライトパターンの現像での再現性が低下する。その結果、解像力が低下する。
【0195】
また、トナーは、各粒子間での粒径の標準偏差が1.5μm以下であるのが好ましく、1.3μm以下であるのがより好ましく、1.0μm以下であるのがさらに好ましい。各粒子間での粒径の標準偏差が1.5μm以下であると、帯電特性、定着特性等のバラツキが特に小さくなり、トナー全体としての、信頼性がさらに向上する。
【0196】
また、トナー中のポリエステル系樹脂の含有量は、50〜98wt%であるのが好ましく、85〜97wt%であるのがより好ましい。ポリエステル系樹脂の含有量が前記下限値未満であると、本発明の効果が十分に得られない可能性がある。一方、ポリエステル系樹脂の含有量が前記上限値を超えると、着色剤等の成分含有量が相対的に低下し、発色性等の特性発揮が困難となる場合がある。
【0197】
また、トナー中に含まれるブロックポリエステルの組成(構成モノマー、結晶性ブロックの存在比等)、平均重量分子量Mw、ガラス転移点、軟化点、融点等、非晶性ポリエステルの組成(構成モノマー等)、平均重量分子量Mw、ガラス転移点、軟化点等は、分散質の構成材料の項目で説明したのと同様の条件、範囲であるのが好ましいが、製造工程中に変化したものであってもよい。
【0198】
また、トナー中にワックスが含まれる場合、その含有量は、特に限定されないが、5wt%以下であるのが好ましく、3wt%以下であるのがより好ましく、0.5〜3wt%であるのがさらに好ましい。ワックスの含有量が多すぎると、ワックスが遊離、粗大化し、トナー表面へのワックスのしみ出し等が顕著に起こり、トナーの帯電性が低下するとともに、転写効率を十分に高めるのが困難になる可能性がある。
トナーの物性としての酸価は、トナーの環境特性(特に、耐湿性)を左右する要因の一つである。トナーの酸価は、8KOHmg/g以下であるのが好ましく、1KOHmg/g以下であるのがより好ましい。トナーの酸価が8KOHmg/g以下であると、トナーの環境特性(特に耐湿性)は特に優れたものとなる。
【0199】
また、本発明のトナーは、後述するようなニップ部を有する定着装置で用いられる場合、トナー粒子の前記ニップ部の通過時間Δt[秒]における、緩和弾性率G(t)の変化量が、500[Pa]以下であるのが好ましく、100[Pa]以下であるのがより好ましい。このような条件を満足することにより、オフセット等の不都合をより生じ難いものとなる。
【0200】
また、本発明のトナーは、後述するような定着ニップ部を有する定着装置で用いた場合において、トナー粒子が定着ニップ部を通過するのに要する時間をΔt[秒]、トナーの0.01秒での緩和弾性率を初期緩和弾性率G(0.01)とし、さらに、トナーのΔt秒での緩和弾性率をG(Δt)としたとき、G(0.01)/G(Δt)≦10の関係を満足するのが好ましく、1≦G(0.01)/G(Δt)≦8の関係を満足するのがより好ましく、1≦G(0.01)/G(Δt)≦6の関係を満足するのがさらに好ましい。このような関係を満足することにより、トナー粒子の弾性率低下による定着工程での溶融トナーの紙および定着ローラへの分割、すなわち高温オフセットが特に発生し難くなる。これに対し、G(0.01)/G(Δt)が10を超えると、溶融トナーの分割、すなわち高温オフセットが発生し易くなる。トナーの緩和弾性率は、例えば、トナーの構成材料の組成(例えば、ブロックポリエステル、非晶性ポリエステルの分子量、モノマー成分、ランダム性や、ワックス、外添剤の組成、各構成成分の含有量等)や、トナーの製造条件(例えば、分散液の噴射速度、噴射させる分散液の温度、粘度、固化部における雰囲気温度、雰囲気圧力、分散液の搬送速度、混練工程における原料温度、混練時間や、冷却工程における混練物の冷却速度等)により、調節することができる。
【0201】
また、樹脂として、ブロックポリエステルと非晶性ポリエステルとを含むものを用いる場合、通常、主としてブロックポリエステルの結晶性ブロックにより構成された結晶が存在する。
このような結晶は、その平均長さ(長手方向の平均長さ)が10〜1000nmであるのが好ましく、50〜700nmであるのがより好ましい。結晶の長さがこのような範囲の値であると、トナーの形状の安定性が特に優れたものとなり、機械的ストレスに対し、特に優れた安定性を示すものとなる。特に、トナー粒子の表面付近に、外添剤がより確実に保持されることとなり(外添剤が母粒子中に埋没するのを効果的に防止することができ)、トナー粒子は、現像装置等における安定性に特に優れたものとなり、また、フィルミング等の発生を生じ難いものとなる。なお、前記結晶の大きさは、例えば、原料成分として用いるブロックポリエステルの製造条件等を制御することによりブロックポリエステルの分子量やランダム性を変更したり、ブロックポリエステルと非晶性ポリエステルとの配合比を変更したり、前述した混練工程、冷却工程の条件を変更すること等により、適宜調整することができる。
【0202】
特に、トナーがルチルアナターゼ型の酸化チタンを含むものである場合、次の関係を満足するのが好ましい。すなわち、略紡錘形状のルチルアナターゼ型の酸化チタンの平均長軸径をD[nm]、結晶の平均長さをL[nm]としたとき、0.01≦D/L≦2の関係を満足するのが好ましく、0.02≦D/L≦1の関係を満足するのがより好ましい。このような関係を満足することにより、ルチルアナターゼ型の酸化チタンは、前述したような効果を十分に発揮しつつ、母粒子中に埋没し難いものとなる。その結果、トナーは、前述した機能を十分に保持し、かつ、機械的ストレスに対する安定性が特に優れたものになる。
なお、結晶の平均長さは、透過型電子顕微鏡(TEM)、小角X線散乱測定等により測定することができる。
【0203】
また、本発明のトナーは、樹脂成分として複数の樹脂を含むものを用いた場合、各樹脂ができるだけ相溶しているものであるのが好ましい。これにより、各トナー粒子間での特性のばらつきが小さく、トナー全体としての特性がより安定したものとなり、本発明の効果がより顕著なものとなる。
また、本発明のトナーは、非磁性一成分系のトナーに適用されるものであるのが好ましい。非磁性一成分系のトナーは、一般に、後述するような規制ブレードを有する画像形成装置に適用される。したがって、機械的ストレスに強い本発明のトナーは、非磁性一成分系のトナーとして用いたときに、前述したような効果をより顕著に発揮することができる。
【0204】
また、本発明のトナーが用いられる定着装置は、特に限定されないが、後述するような接触型の定着装置に用いられるものであるのが好ましい。これにより、ブロックポリエステルの結晶による定着ローラとの高い離型性と、低粘度の非晶性ポリエステルによる定着性(定着強度)向上効果の、双方の利点が十分に発揮され、幅広い定着良好域が確保される。
【0205】
次に、本発明のトナーが適用される定着装置、画像形成装置の好適な実施形態について説明する。
図8は、本発明のトナーが適用される画像形成装置の好適な実施形態を示す全体構成図、図9は、図8の画像形成装置が有する現像装置の断面図、図10は、図8の画像形成装置に用いられる本発明の定着装置の詳細構造を示し、一部破断面を示す斜視図、図11は、図10の定着装置の要部断面図、図12は、図10の定着装置を構成する剥離部材の斜視図、図13は、図10の定着装置を構成する剥離部材の取付状態を示す側面図、図14は、図10の定着装置を上面から見た正面図、図15は、ニップ部の出口における接線に対する、剥離部材の配置角度を説明するための模式図、図16は、定着ローラ、加圧ローラの形状と、ニップ部の形状を模式的に示す図、図17は、図16(a)のX−X線における断面図、図18は、定着ローラ、加圧ローラの形状と、ニップ部の形状を模式的に示す図、図19は、図18(a)のY−Y線における断面図、図20は、定着ローラと、剥離部材とのギャップを説明するための断面図である。
【0206】
画像形成装置1000の装置本体29内には、感光体ドラムからなる像担持体30が配設され、図示しない駆動手段によって図示矢印方向に回転駆動される。この像担持体30の周囲には、その回転方向に沿って、像担持体(感光体)30を一様に帯電するための帯電装置40、像担持体30上に静電潜像を形成するための露光装置50、静電潜像を現像するためのロータリー現像装置60、像担持体30上に形成された単色のトナー像を一次転写するための中間転写装置70が配設されている。
【0207】
ロータリー現像装置60は、イエロー用現像装置60Y、マゼンタ用現像装置60M、シアン用現像装置60Cおよびブラック用現像装置60Kが支持フレーム600に装着され、支持フレーム600は図示しない駆動モータにより回転駆動される構成になっている。これらの複数の現像装置60Y、60C、60M、60Kは、像担持体30の1回転毎に選択的に一つの現像装置の現像ローラ604が像担持体30に対向するように回転移動するようにされている。なお、各現像装置60Y、60C、60M、60Kには、各色のトナーが収納されたトナー収納部が形成されている。
現像装置60Y、60C、60M、60Kは、いずれも同一の構造を有している。したがって、ここでは現像装置60Yの構造について説明するが、現像装置60C、60M、60Kについても、構造、機能は同様である。
【0208】
図9に示すように現像装置60Yでは、その内部にトナーTを収容するハウジング601に供給ローラ603および現像ローラ604が軸着されており、当該現像装置60Yが上記した現像位置に位置決めされると、「トナー担持体」として機能する現像ローラ604が像担持体(感光体)30と当接してまたは所定のギャップを隔てて対向位置決めされるとともに、これらのローラ603、604が本体側に設けられた回転駆動部(図示省略)と係合されて所定の方向に回転するように構成されている。この現像ローラ604は、現像バイアスを印加されるべく銅、ステンレス、アルミニウム等の金属または合金により円筒状に形成されている。
【0209】
また、現像装置60Yでは現像ローラ604の表面に形成されるトナー層の厚みを所定厚みに規制するための規制ブレード605が配置されている。この規制ブレード605は、ステンレスやリン青銅などの板状部材605aと、板状部材605aの先端部に取り付けられたゴムや樹脂部材などの弾性部材605bとで構成されている。この板状部材605aの後端部はハウジング601に固着されており、現像ローラ604の回転方向D3において、板状部材605aの先端部に取り付けられた弾性部材605bが板状部材605aの後端部よりも上流側に位置するように配設されている。
【0210】
中間転写装置70は、駆動ローラ90および従動ローラ100と、両ローラにより図示矢印方向に駆動される中間転写ベルト110と、中間転写ベルト110の裏面で像担持体30に対向して配設された一次転写ローラ120と、中間転写ベルト110上の残留トナーを除去する転写ベルトクリーナ130と、駆動ローラ90に対向して配設され、中間転写ベルト110に形成された4色フルカラー像を記録媒体(紙等)上に転写するための二次転写ローラ140とからなっている。
装置本体29の底部には給紙カセット150が配設され、給紙カセット150内の記録媒体は、ピックアップローラ160、記録媒体搬送路170、二次転写ローラ140、定着装置190を経て排紙トレイ200に搬送されるように構成されている。なお、230は両面印刷用搬送路である。
【0211】
上記構成からなる画像形成装置1000の作用について説明する。図示しないコンピュータからの画像形成信号が入力されると、像担持体30、現像装置60の現像ローラ604および中間転写ベルト110が回転駆動し、先ず、像担持体30の外周面が帯電装置40によって一様に帯電され、一様に帯電された像担持体30の外周面に、露光装置50によって第1色目(例えばイエロー)の画像情報に応じた選択的な露光がなされ、イエローの静電潜像が形成される。
【0212】
一方、現像装置60Yでは、2つのローラ603、604が接触しながら回転することで、イエロートナーが現像ローラ604の表面に擦り付けられて所定の厚みのトナー層が現像ローラ604の表面に形成される。そして、規制ブレード605の弾性部材605bが現像ローラ604の表面に弾性的に当接して、現像ローラ604の表面上のトナー層を、所定の厚みに規制する。
【0213】
像担持体30上に形成された潜像位置には、イエロー用現像装置60Yが回動してその現像ローラ604が当接し、これによってイエローの静電潜像のトナー像が像担持体30上に形成され、次に、像担持体30上に形成されたトナー像は一次転写ローラ120により中間転写ベルト110上に転写される。このとき、二次転写ローラ140は中間転写ベルト110から離間されている。
【0214】
上記の処理が画像形成信号の第2色目、第3色目、第4色目に対して、像担持体30と中間転写ベルト110の1回転による潜像形成、現像、転写が繰り返され、画像形成信号の内容に応じた4色のトナー像が中間転写ベルト110上において重ねられて転写される。そして、このフルカラー画像が二次転写ローラ140に達するタイミングで、記録媒体が搬送路170から二次転写ローラ140に供給され、このとき、二次転写ローラ140が中間転写ベルト110に押圧されるとともに二次転写電圧が印加され、中間転写ベルト110上のフルカラートナー像が記録媒体上に転写される。そして、この記録媒体上に転写されたトナー像は定着装置190により加熱加圧され定着される。中間転写ベルト110上に残留しているトナーは転写ベルトクリーナ130によって除去される。
【0215】
なお、両面印刷の場合には、定着装置190を出た記録媒体は、その後端が先端となるようにスイッチバックされ、両面印刷用搬送路230を経て、二次転写ローラ140に供給され、中間転写ベルト110上のフルカラートナー像が記録媒体上に転写され、再び定着装置190により加熱加圧され定着される。
図8において、本発明に係わる定着装置190は、熱源を有する定着ローラ210とこれに圧接される加圧ローラ220とから構成され、定着ローラ210と加圧ローラ220の軸を結ぶ線は水平線からθの角度を有するように配置されている。なお、0°≦θ≦30°である。
【0216】
次に定着装置190について、詳細に説明する。
図10および図14において、ハウジング240内には定着ローラ210が回動自在に装着され、定着ローラ210の一端には駆動ギヤ28が連結されている。そして、定着ローラ210に対向して加圧ローラ220が回動自在に装着されている。加圧ローラ220の軸方向長さは定着ローラ210のそれよりも短く、その空いたスペースに軸受250が設けられて、加圧ローラ220の両端は軸受250により支持されている。軸受250には加圧レバー260が回動可能に設けられ、加圧レバー260の一端とハウジング240間には加圧スプリング270が配設され、これにより加圧ローラ220と定着ローラ210が加圧されるように構成されている。
【0217】
図11において、定着ローラ210は、内部にハロゲンランプ等の熱源210aを有する金属製の筒体210b、筒体210bの外周に設けられたシリコンゴム等からなる弾性層210cと、弾性層210cの表面に被覆されたフッ素ゴム、フッ素樹脂(例えばパーテトラフロロエチレン(PTFE))よりなる表層(図示せず)と、筒体210bに固定された回転軸210dとから構成されている。
【0218】
加圧ローラ220は、金属製の筒体220bと、筒体220bに固定された回転軸220dと、回転軸220dを軸支持する軸受250と、定着ローラ210と同様に、筒体220bの外周に設けられた弾性層220cと、弾性層220cの表面に被覆されたフッ素ゴム、フッ素樹脂よりなる表層(図示せず)とから構成されている。定着ローラ210の弾性層210cの厚みは、加圧ローラ220の弾性層220cの厚みより極端に小さくし、これにより加圧ローラ220側が凹状にへこむような定着ニップ部340が形成されている。
【0219】
図10および図11に示すように、ハウジング240の両側面には、支持軸290、300が設けられており、この支持軸290、300にそれぞれ定着ローラ210側の剥離部材310と加圧ローラ220側の剥離部材320が回動自在に装着されている。これにより、定着ローラ210と加圧ローラ220の軸方向で定着ニップ部340の記録媒体搬送方向下流側に剥離部材310、320が配設されることになる。
【0220】
定着ローラ210側の剥離部材310は、図12および図13に示すように、樹脂シートまたは金属シートを基材とし、該基材表面にフッ素系樹脂層を形成している。剥離部材310は、プレート状の剥離部(基材)310aと、剥離部310aの後方で定着ローラ210側にL字状に折曲された折曲部310bと、剥離部310aの両側端で下方向に折曲された支持片310cと、支持片310cに形成された嵌合穴310dと、剥離部310aの両側端前方に延設されたガイド部310eとから構成されている。
【0221】
剥離部310aは、定着ニップ部340の出口(ニップ出口341)に向けて傾斜するように配置され、剥離部310aの先端は定着ローラ210に非接触でかつ近接されている。支持片310cの嵌合穴310dには、図11で説明した支持軸290が嵌合されている。ガイド部310eは、スプリング33によりハウジング240に付勢され、これによりガイド部310eの先端は定着ローラ210に当接されており、その結果、剥離部310aの先端と定着ローラ210表面との間のギャップが常時一定になるようにされている。
【0222】
加圧ローラ220側の剥離部材320は、定着ローラ210側の剥離部材と同様の形状であるが、図10および図11に示すように、剥離部320aの先端は剥離部310aの先端よりも記録媒体搬送方向下流側に配置されている。また、ガイド部320eの先端は加圧ローラ220の軸受250の周面にP点で当接されており、これにより、剥離部320aの先端と加圧ローラ220表面との間のギャップが常時一定になるようにされている。
【0223】
本実施形態では、図10および図11に示すように、定着ローラ210と加圧ローラ220の軸方向でニップ部340の記録媒体搬送方向下流側に剥離部材310、320を配設している。定着ローラ210側の剥離部材310の先端は、ニップ部340の出口に向けて傾斜するように配置され、定着ローラ210に非接触でかつ近接されている。加圧ローラ220側の剥離部材320の先端は、定着ローラ210側の剥離部材310の先端よりも記録媒体搬送方向下流側に配置されている。
【0224】
図13に示すように、定着ローラ210側の剥離部材310は、そのガイド部310eが、スプリング33によりハウジング240に付勢され、これによりガイド部310eの先端は定着ローラ210に当接されており、その結果、剥離部310aの先端と定着ローラ210表面との間のギャップが常時一定になるように位置決めを行っている。
【0225】
加圧ローラ220側の剥離部材320は、定着ローラ210側の剥離部材と同様の形状であり、図10および図11に示すように、剥離部320aの先端は剥離部310aの先端よりも記録媒体搬送方向下流側に配置され、また、ガイド部320eの先端は加圧ローラ220の軸受250の表面にP点で当接されており、これにより剥離部320aの先端と加圧ローラ220表面との間のギャップが常時一定になるように位置決めを行っている。そのために、図14に示すように、加圧ローラ220の軸方向長さは定着ローラ210のそれよりも短く、その空いたスペースに軸受250が設けられ、加圧ローラ220の両端は軸受250により支持されている。
【0226】
両面印刷の場合、片面に印刷された記録媒体は定着ローラ210側の剥離部材310により剥離された後、記録媒体の後端が先端となるようにスイッチバックされ、両面印刷用搬送路230を経て二次転写ローラ140に供給され、中間転写ベルト110上のフルカラートナー像が記録媒体上に転写され、再び定着ローラ210により加熱加圧され定着され、このとき、加圧ローラ220に付着し巻き付いてしまう記録媒体は、加圧ローラ220側の剥離部材320により剥離されることになる。
【0227】
上記のように、本実施形態の定着装置では、定着ローラおよび加圧ローラの軸方向かつ定着ニップ部の記録媒体搬送方向下流側に、定着ローラおよび加圧ローラに近接して配設される剥離部材を備え、前記定着ローラ側の剥離部材の位置決めは定着ローラ表面で行ない、前記加圧ローラ側の剥離部材の位置決めは加圧ローラの軸受表面で行うので、定着ローラおよび加圧ローラからの記録媒体の剥離性を向上させることができる。
【0228】
また、本実施形態では、図15に示すように、定着ローラ210と加圧ローラ220とを略水平状態に配置し、記録媒体500を定着ニップ部340から上方に排出する方式を採用しているが、定着ニップ部340のニップ出口341の接線Sに対する、剥離部材310の配置角度θを、−5〜25°の範囲に設定するのが好ましい。定着ニップ部340のニップ出口341の接線Sに対する、剥離部材310の配置角度θをこのような範囲の値に設定することにより、画像にすじが発生し難くなり、また、剥離性が良好になる。なお、配置角度θは、定着ローラ210側を「+」、加圧ローラ側を「−」とする。
【0229】
また、定着ローラ210、加圧ローラ220は、例えば、それぞれの軸方向において外径寸法がほぼ一定のもの(略円筒形状を有するものであってもよいが、外径寸法が両端部付近で小さく中央部付近で大きい、いわゆるクラウン形状や、外径寸法が両端部付近で大きく中央部付近で小さい、いわゆる逆クラウン形状等を有するものであってもよい。
【0230】
例えば、定着ローラ210、加圧ローラ220が図16に示すように、逆クラウン形状を有するものである場合、剥離部材310の断面形状は、図17に示すようなものであるのが好ましい。また、定着ローラ210、加圧ローラ220が図18に示すように、クラウン形状を有するものである場合、剥離部材310の断面形状は、図19に示すようなものであるのが好ましい。
【0231】
このように、定着ローラ210に沿って配設された剥離部材310がニップ部340のニップ出口341の形状に沿う形状を有するものであると、剥離の際に、剥離部材310の定着ローラ210側の側縁と、記録媒体との接点が増え、両者の接触圧力が一部に集中することに起因する弊害、例えば、記録媒体の巻きこみや形成された画像における乱れ、すじの発生等を効果的に防止、抑制することができる。
【0232】
また、図20に示すように、定着装置190では、定着ローラ210の軸方向の端部付近における、定着ローラ210と剥離部材310とのギャップG2[μm]が、定着ローラ210の軸方向の中央部付近における、定着ローラ210と剥離部材310とのギャップG1[μm]より大きくなっているのが好ましい。このような関係を満足することにより、以下のような効果が得られる。
【0233】
すなわち、剥離部材310は、その長さ方向の中央部付近で、定着ローラ210とのギャップが小さいため、剥離性を大きく損なうことなく、ギャップ管理を簡便にでき、また、定着装置190の製造も容易になる。また、異物の侵入や紙詰まりが発生した場合であっても、これらによる剥離部材310や定着ローラ210へのダメージを生じ難く、剥離部材310、定着ローラの耐久性、信頼性が向上し、定着装置190、画像形成装置1000としての耐久性、信頼性も向上する。なお、上記のようなG1とG2との関係は、例えば、剥離部材310を弓型形状にしたり、剥離部材310の先端部310fを弓型形状にしたり、定着ローラ210をクラウン形状にすることにより満足させることができる。
【0234】
上記のような定着装置においては、定着ニップ部340の長さは、トナー粒子が前記定着ニップ部340を通過するのに要する時間が0.02〜0.2秒となるようなものであるのが好ましく、0.03〜0.1秒であるのがより好ましい。トナー粒子が前記定着ニップ部340を通過するのに要する時間がこのような範囲の値であると、トナーが溶融温度まで昇温され、かつ溶融しすぎず定着ローラへの離型性が十分に確保される。
【0235】
また、定着装置190は、高速印刷(高速定着、高速画像形成)に適したものであり、具体的には、記録媒体500の送り速度(繰り出し速度)が0.05〜1.0m/秒であるのが好ましく、0.2〜0.5m/秒であるのがより好ましい。このように、本発明では、比較的高速で記録媒体500にトナーを定着した場合であっても、画像にすじや乱れが発生するのを防止することができ、また、記録媒体500の巻きこみ等の剥離不良を発生し難い。
【0236】
また、運転時における、定着ニップ部340の温度は、100〜220℃であるのが好ましく、120〜200℃であるのがより好ましい。定着ニップ部340の温度がこのような範囲の値であると、紙通過時の温度低下(温度ドロップ)によるトナーの定着強度の低下を十分に防止することができる。
また、運転時における、定着設定温度(定着ローラ210表面の設定温度)は、110〜220℃であるのが好ましく、130〜200℃であるのがより好ましい。定着ローラ210の設定温度がこのような範囲の値であると、トナーの定着強度確保と昇温時間(ウォームアップタイム)の短縮が両立できる。
【0237】
以上説明したような定着装置190は、上述したように、高速印刷(高速定着、高速画像形成)に適している。しかしながら、このような定着装置では、トナーの定着した記録媒体が剥離部材に接触する際にもトナーが高温状態になっているため、従来のトナーを用いた場合には、剥離部材との接触により、定着画像に乱れやすじを生じる可能性がある。また、定着したトナーが溶融した状態(低粘度の状態)で剥離部材と接触すると、記録媒体を確実に剥離するのが困難になる可能性もある。
【0238】
これに対して、本発明のトナーでは、前述の問題を解決することができる。特に、結着樹脂として、ブロックポリエステルと非晶性ポリエステルとを含むものを用いた場合、前述の効果が顕著なものとなる。すなわち、トナー中に、軟化点の比較的低い非晶性ポリエステルが含まれるため、定着ニップ部340を通過する際に記録媒体に確実に定着されるものであるとともに、結晶性ブロックを有するブロックポリエステルも含まれるため、その内部に、高硬度で適度な大きさを有する結晶が析出したものになり易い。このような結晶が存在することにより、定着時のように比較的高い温度となる場合においても、トナーの溶融粘度を所定値より低くさせないようにすることができ、定着時等においても部分的に硬いサイトが存在することになる。その結果、トナーの定着画像が、剥離部材と接触した場合においても、形成された画像に乱れやすじを生じ難い。また、本発明のトナーが定着された記録媒体では、剥離不良が特に起こり難く、剥離部材により定着ローラから確実に剥離される。
【0239】
以上、本発明のトナーの製造方法およびトナーについて、好適な実施形態に基づいて説明したが、本発明はこれに限定されるものではない。
例えば、前述では、樹脂として、ブロックポリエステルと非晶性ポリエステルとを組み合わせて用いた例について説明したが、これに限定されるものではない。
【0240】
また、本発明のトナーの製造に用いるトナー製造装置を構成する各部は、同様の機能を発揮する任意のものと置換、または、その他の構成を追加することもできる。例えば、前述した実施形態では、分散液3を鉛直下方に向けて吐出する構成について説明したが、分散液3の吐出方向は、鉛直上方、水平方向等、いかなる方向であってもよい。また、分散液3の吐出方向と、ガス噴射口M7から噴射されるガスの噴射方向とが、ほぼ垂直となる構成のものであってもよい。この場合、吐出された分散液3は、ガス流によりその進行方向が変わり、吐出部M23からの吐出方向に対してほぼ直角に搬送されることになる。
【0241】
また、本発明のトナーは、前述したような方法で製造されたものに限定されない。例えば、前述した実施形態では、分散液から分散媒を除去することにより得られた粉末に外添処理を施すことにより得られるものとして説明したが、外添処理を施さずに、分散液から分散媒を除去することにより得られた粉末をそのままトナーとして用いてもよい。
また、前述した実施形態では、ルチルアナターゼ型酸化チタンは、外添剤として添加されるものとして説明したが、例えば、ルチルアナターゼ型酸化チタンを混練工程に供される原料の一成分として用いることにより、トナーの内部に含まれるものとしてもよい。
【0242】
また、前述した実施形態では、結晶性を示す指標として示差走査熱量分析(DSC)による融点の吸熱ピークの測定で得られるΔTについて説明したが、結晶性を示す指標は、これに限定されない。例えば、結晶性を表す指標としては、密度法、X線法、赤外線法、核磁気共鳴吸収法等により測定される結晶化度等を用いてもよい。
【0243】
また、分散液から分散媒を除去することにより得られた粉末を加熱して球形化する熱球形化処理を施してもよい。これにより、得られるトナー粒子の円形度のさらなる向上を図ることができる。特に、樹脂として結晶性ブロックを有するブロックポリエステルを含むものを用いた場合、熱球形化処理時において、粉末(トナー粉末)の形状の安定性をある程度確保しつつ、非晶性ポリエステルを十分に軟化させることができる。したがって、ブロックポリエステルを含まない原料を用いた場合に比べて、熱球形化処理を効率良く行うことができ、比較的容易に、最終的に得られるトナー(トナー粒子)の円形度を比較的高いものとすることができる。また、その結果、上述した熱球形化処理による効果をより効果的に発揮させることができる。熱球形化処理は、分散液3から分散媒を除去することにより得られた粉末を、例えば、圧縮空気等を用いて、加熱雰囲気下に噴射することにより行うことができる。また、熱球形化処理は液体中で行っても良い。
【0244】
また、前述した実施形態では、混練機として、連続式の2軸スクリュー押出機を用いる構成について説明したが、原料の混練に用いる混練機はこれに限定されない。原料の混練には、例えば、ニーダーやバッチ式の三軸ロール、連続2軸ロール、ホイールミキサー、ブレード型ミキサー等の各種混練機を用いることができる。
また、図示の構成では、スクリューを2本有する構成の混練機について説明したが、スクリューは1本であってもよいし、3本以上であってもよい。
また、前述した実施形態では、冷却機として、ベルト式のものを用いた構成について説明したが、例えば、ロール式(冷却ロール式)の冷却機を用いてもよい。また、混練機の押出口から押し出された混練物の冷却は、前記のような冷却機を用いたものに限定されず、例えば、空冷等により行うものであってもよい。
【0245】
また、本発明の定着装置、画像形成装置は、前述した実施形態のようなものに限定されず、定着装置、画像形成装置を構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。
例えば、前述した実施形態では、接触型の定着装置について説明したが、本発明では、このような接触型の定着装置に限定されず、非接触型の定着装置に適用されるものであってもよい。
【0246】
【実施例】
[1]ポリエステルの製造
トナーの製造に先立ち、以下に示す3種のポリエステルA、A’、B、C、Dを製造した。
【0247】
[1.1]ポリエステルA(非晶性ポリエステル)の製造
まず、ネオペンチルグリコール:36モル部、エチレングリコール:36モル部、1,4−シクロヘキサンジオール:48モル部、テレフタル酸ジメチル:90モル部、無水フタル酸:10モル部の混合物を用意した。
【0248】
2リットル4つ口フラスコに、還流冷却器、蒸留塔、水分離装置、窒素ガス導入管、温度計、攪拌装置を常法に従い設置し、前記のジオール成分とジカルボン酸成分との混合物:1000gと、エステル化縮合触媒(チタンテトラブトキシド(PPB)):1gとを、前記2リットル4つ口フラスコ内に入れた。その後、材料温度:180℃で、生成する水、メタノールを蒸留塔より流出させながら、エステル化反応を進行させた。蒸留塔から水、メタノールが流出しなくなった時点で、2リットル4つ口フラスコから蒸留塔を取り外すとともに、真空ポンプに接続した。系内の圧力を5mmHg以下に減圧した状態で、温度を200℃とし、攪拌回転数:150rpm攪拌することにより、縮合反応で発生した遊離ジオールを系外に排出し、その結果得られた反応物をポリエステルA(PES−A)とした。
【0249】
得られたポリエステルAについて、示差走査熱量分析装置による融点の吸熱ピークの測定を試みた。その結果、融点の吸収ピークであると判断できるようなシャープなピークは、確認することができなかった。また、ポリエステルAの軟化点T1/2は、111℃、ガラス転移点Tは、60℃、重量平均分子量Mwは、1.3×10であった。
【0250】
[1.2]ポリエステルA’(非晶性ポリエステル)の製造
まず、ネオペンチルグリコール:96モル部、エチレングリコール:12モル部、1,4−シクロヘキサンジオール:12モル部、テレフタル酸ジメチル:100モル部の混合物を用意した。
2リットル4つ口フラスコに、還流冷却器、蒸留塔、水分離装置、窒素ガス導入管、温度計、攪拌装置を常法に従い設置し、前記のジオール成分とジカルボン酸成分との混合物:1000gと、エステル化縮合触媒(チタンテトラブトキシド(PPB)):1gとを、前記2リットル4つ口フラスコ内に入れた。その後、材料温度:180℃で、生成する水、メタノールを蒸留塔より流出させながら、エステル化反応を進行させた。蒸留塔から水、メタノールが流出しなくなった時点で、2リットル4つ口フラスコから蒸留塔を取り外すとともに、真空ポンプに接続した。系内の圧力を5mmHg以下に減圧した状態で、温度を200℃とし、攪拌回転数:150rpm攪拌することにより、縮合反応で発生した遊離ジオールを系外に排出し、その結果得られた反応物をポリエステルA’(PES−A’)とした。
【0251】
得られたポリエステルA’について、示差走査熱量分析装置による融点の吸熱ピークの測定を試みた。その結果、融点の吸収ピークであると判断できるようなシャープなピークは、確認することができなかった。また、ポリエステルA’の軟化点T1/2は、106℃、ガラス転移点Tは、58℃、重量平均分子量Mwは、1.5×10であった。
【0252】
[1.3]ポリエステルB(ブロックポリエステル)の製造
2リットル4つ口フラスコに、還流冷却器、蒸留塔、水分離装置、窒素ガス導入管、温度計、攪拌装置を常法に従い設置し、上記[1.1]で得られたポリエステルA:70モル部とジオール成分としての1,4−ブタンジオール:15モル部とジカルボン酸成分としてのテレフタル酸ジメチル:15モル部との混合物:1000gと、エステル化縮合触媒(チタンテトラブトキシド(PPB)):1gとを、前記2リットル4つ口フラスコ内に入れた。その後、材料温度:200℃で、生成する水、メタノールを蒸留塔より流出させながら、エステル化反応を進行させた。蒸留塔から水、メタノールが流出しなくなった時点で、2リットル4つ口フラスコから蒸留塔を取り外すとともに、真空ポンプに接続した。系内の圧力を5mmHg以下に減圧した状態で、温度を220℃とし、攪拌回転数:150rpm攪拌することにより、縮合反応で発生した遊離ジオールを系外に排出し、その結果得られた反応物をポリエステルB(PES−B)とした。
【0253】
示差走査熱量分析装置を用いた測定での、ポリエステルBの融点の吸熱ピークの中心値Tmpは、218℃、ショルダーピーク値Tmsは、205℃であった。また、測定で得られた示差走査熱量分析曲線から、求められたポリエステルBの融解熱Eは、18mJ/mgであった。また、ポリエステルBの軟化点T1/2は、149℃、ガラス転移点Tは、64℃、重量平均分子量Mwは、2.8×10であった。
【0254】
[1.4]ポリエステルC(ブロックポリエステル)の製造
2リットル4つ口フラスコに、還流冷却器、蒸留塔、水分離装置、窒素ガス導入管、温度計、攪拌装置を常法に従い設置し、上記[1.1]で得られたポリエステルA:90モル部とジオール成分としての1,4−ブタンジオール:5モル部とジカルボン酸成分としてのテレフタル酸ジメチル:5モル部との混合物:1000gと、エステル化縮合触媒(チタンテトラブトキシド(PPB)):1gとを、前記2リットル4つ口フラスコ内に入れた。その後、材料温度:180℃で、生成する水、メタノールを蒸留塔より流出させながら、エステル化反応を進行させた。蒸留塔から水、メタノールが流出しなくなった時点で、2リットル4つ口フラスコから蒸留塔を取り外すとともに、真空ポンプに接続した。系内の圧力を5mmHg以下に減圧した状態で、温度を200℃とし、攪拌回転数:150rpm攪拌することにより、縮合反応で発生した遊離ジオールを系外に排出し、その結果得られた反応物をポリエステルC(PES−C)とした。
【0255】
示差走査熱量分析装置を用いた測定での、ポリエステルCの融点の吸熱ピークの中心値Tmpは、195℃、ショルダーピーク値Tmsは、182℃であった。また、測定で得られた示差走査熱量分析曲線から、求められたポリエステルCの融解熱Eは、8mJ/mgであった。また、ポリエステルCの軟化点T1/2は、122℃、ガラス転移点Tは、63℃、重量平均分子量Mwは、2.5×10であった。
【0256】
[1.5]ポリエステルD(ブロックポリエステルではなく、結晶性の高いポリエステル)の製造
2リットル4つ口フラスコに、還流冷却器、蒸留塔、水分離装置、窒素ガス導入管、温度計、攪拌装置を常法に従い設置し、ジオール成分としての1,4−ブタンジオール:50モル部とジカルボン酸成分としてのテレフタル酸ジメチル:60モル部との混合物:1000gと、エステル化縮合触媒(チタンテトラブトキシド(PPB)):1gとを、前記2リットル4つ口フラスコ内に入れた。その後、材料温度:260℃で、生成する水、メタノールを蒸留塔より流出させながら、エステル化反応を進行させた。蒸留塔から水、メタノールが流出しなくなった時点で、2リットル4つ口フラスコから蒸留塔を取り外すとともに、真空ポンプに接続した。系内の圧力を5mmHg以下に減圧した状態で、温度を280℃とし、攪拌回転数:150rpm攪拌することにより、縮合反応で発生した遊離ジオールを系外に排出し、その結果得られた反応物をポリエステルD(PES−D)とした。
【0257】
示差走査熱量分析装置を用いた測定での、ポリエステルDの融点の吸熱ピークの中心値Tmpは、228℃、ショルダーピーク値Tmsは、215℃であった。また、測定で得られた示差走査熱量分析曲線から、求められたポリエステルDの融解熱Eは、35mJ/mgであった。また、ポリエステルDの軟化点T1/2は、180℃、ガラス転移点Tは、70℃、重量平均分子量Mwは、2.0×10であった。
なお、上記の各樹脂材料についての融点、軟化点、ガラス転移点、重量平均分子量の測定は、以下のようにして行った。
【0258】
融点Tの測定は示差走査熱量計DSC(セイコー電子工業社製、DSC220型)を用いて、次のようにして行った。まず、樹脂サンプルを、昇温速度:10℃/分で200℃まで昇温した後、降温速度:10℃/分で0℃まで降温した。その後、昇温速度:10℃/分で昇温し、その際の結晶融解による吸熱の最大ピーク温度(2ndラン時)を、融点Tとして求めた。
【0259】
軟化点T1/2の測定は、細管式レオメータ(島津製作所社製、フローテスタCFT−500型)を用いて行った。サンプル量:1g、ダイ孔径:1mm、ダイ長さ:1mm、荷重:20kgf、予熱時間:300秒、測定開始温度:50℃、昇温速度:5℃/分という条件で、サンプルを押出し、流出開始時点と、流出終了時点との間のピストンストロークの変動幅が1/2の時点での温度(1/2法温度)を軟化点T1/2として求めた(図3参照)。
【0260】
ガラス転移点Tの測定は、示差走査熱量計DSC(セイコー電子工業社製、DSC220型)を用いて、上記の融点の測定と同時に行った。上記融点の測定方法で説明した2ndラン時の、ガラス転移前後のベースライン指定点の2点間の微分値最大値(DSCデータの最大傾斜点)の接線と、ガラス転移前のベースラインの延長線との交点を、ガラス転移点Tとして求めた。
【0261】
重量平均分子量Mwの測定は、ゲル浸透クロマトグラフィーGPC(東ソー社製、HLC−8220型)を用いて以下のようにして行った。
まず、樹脂サンプル1gをTHF(テトラヒドロフラン)に溶解させ、1mLのTHF溶液(不溶分を含む)を得た。このTHF溶液を遠心分離専用のサンプル瓶に注入し、遠心分離機で、2000rpm、5分間の条件で遠心分離を行い、その上澄み液サンプレップLCR13−LH(孔径:0.5μm)でろ過し、ろ液を得た。
このようにして得られたろ液を、カラム:TSKgel SuperHZ4000+SuperHZ4000(東ソー社製)、流速:0.5mL/分、温度:25℃、溶媒:THFという条件で、ゲル浸透クロマトグラフィーGPC(東ソー社製、HLC−8220型)を用いて分離し、その結果として得られたチャートに基づき、樹脂サンプルの重量平均分子量Mwを求めた。なお、標準試料としては、単分散ポリスチレンを用いた。
【0262】
[2]トナーの製造
以下のようにして、トナーを製造した。
(実施例1)
まず、非晶性ポリエステルとしてポリエステルA:80重量部、ブロックポリエステルとしてポリエステルB:20重量部、着色剤として銅フタロシアニン顔料(ピグメントブルー15:3):5重量部、帯電制御剤としてサリチル酸クロム錯体(ボントロンE−81):1重量部、ワックスとしてカルナウバワックス:2重量部を用意した。
【0263】
これらの各成分を20L型のヘンシェルミキサーを用いて混合し、トナー製造用の原料を得た。
【0264】
次に、この原料(混合物)を、図1に示すような2軸混練押出機(東芝機械社製、TEM−41型)を用いて、混練した。
2軸混練押出機のプロセス部の全長は160cm、第1の領域の長さは32cm、第2の領域の長さは80cm、第3の領域の長さは16cmとした。
また、プロセス部における原料の温度が、第1の領域において240℃、第2の領域において100℃、第3の領域において100℃となるように設定した。
また、スクリューの回転速度は120rpmとし、原料の投入速度は20kg/時間とした。
このような条件から求められる、原料が第1の領域を通過するのに要する時間は約1.5分間、第2の領域を通過するのに要する時間は約3分間である。
【0265】
プロセス部で混練された原料(混練物)は、ヘッド部を介して2軸混練押出機の外部に押し出した。ヘッド部内における混練物の温度は、110℃となるように調節した。
このようにして2軸混練押出機の押出口から押し出された混練物を、図1中に示すような冷却機を用いて、冷却した。冷却工程直後の混練物の温度は、約46℃であった。
混練物の冷却速度は、−7℃/秒であった。また、混練工程の終了時から冷却工程が終了するのに要した時間は、10秒であった。
上記のようにして冷却された混練物を粗粉砕し、平均粒径:1mmの粉末(粉砕物)とした。混練物の粗粉砕にはハンマーミルを用いた。
【0266】
粉末状の混練物(粉砕物)300gを10wt%カルボキシメチルセルロース水溶液1Lに添加し、超音波ホモジナイザー(出力:400μA)を用いて、1時間処理することにより、混練物の各成分が分散した分散液を得た。
また、分散液中に分散している分散質(固形微粒子)の平均粒径は、0.96mmであった。なお、分散質の平均粒径の測定は、レーザ回折/散乱式粒度分布測定装置(堀場製作所社製、LA−920)を用いて行った。
【0267】
上記のようにして得られた分散液を、微粒化装置の分散液供給部内に投入した。分散液供給部内の分散液を攪拌手段で攪拌しつつ、超高圧発生ポンプにより、2つのノズルに供給し、各ノズルから分散液を吐出させ、衝突させた。なお、各ノズルから噴射される分散液の衝突角θは、約165℃に調整した。また、各ノズルから吐出する際の分散液の温度(吐出温度)が約80℃となるように、分散液を加温しつつ衝突させた。
【0268】
分散液の各ノズルからの吐出は、吐出速度:毎分500mL、吐出圧:200MPaで10分間行った。これにより、得られた微分散液中の微分散質の平均粒径は、6.1μmであった。
得られた微分散液を濾過し、微分散質を濾別した。濾別した微分散質を45℃、100Paの条件で減圧乾燥し、トナー粒子を得た。得られたトナーの粉砕物に対する収率は、96wt%であった。また、得られたトナー粒子の重量基準の平均粒径は、6.2μmであった。また、得られたトナー粒子は、平均円形度Rが0.976、円形度標準偏差が0.016であった。重量基準の粒径標準偏差は1.01であった。なお、円形度の測定は、フロー式粒子像解析装置(東亜医用電子社製、FPIA−2000)を用いて、水分散系で行った。ただし、円形度Rは、下記式(I)で表されるものとする。
【0269】
R=L/L・・・(I)
(ただし、式中、L[μm]は、測定対象の粒子の投影像の周囲長、L[μm]は、測定対象の粒子の投影像の面積に等しい面積の真円の周囲長を表す。)
得られたトナー粒子100重量部に、外添剤:2.5重量部を添加し、最終的なトナーを得た。最終的に得られたトナーの重量基準の平均粒径は、6.2μmであった。外添剤の付与は、20L型のヘンシェルミキサーを用いて行った。外添剤としては、負帯電性小粒径シリカ(平均粒径:12nm):1重量部と、負帯電性大粒径シリカ(平均粒径:40nm):0.5重量部と、ルチルアナターゼ型の酸化チタン(略紡錘形状、平均長軸径:30nm):1重量部とを用いた。なお、負帯電性シリカ(負帯電性小粒径シリカ、負帯電性大粒径シリカ)としては、ヘキサメチルジシラザンで表面処理(疎水化処理)を施したものを用いた。また、ルチルアナターゼ型の酸化チタンとしては、結晶構造がルチル型の酸化チタンと、結晶構造がアナターゼ型の酸化チタンとの比率が、90:10で、300〜350nmの波長領域の光を吸収するものを用いた。
ただし、上記のようなトナーの製造は、製造前後での、各樹脂材料の重量平均分子量の変化率が±10%以内、融点、軟化点、ガラス転移点の変化量が±10℃以内となるような条件で行った。
【0270】
最終的に得られたトナーの酸価は、0.8KOHmg/gであった。また、トナー中における結晶の平均長さは、400nmであった。また、得られたトナーにおける外添剤の被覆率は、160%であった。
なお、トナー中における結晶の平均長さは、透過型電子顕微鏡(TEM)による測定の結果から求めた。
【0271】
(実施例2)
ブロックポリエステルとしてポリエステルCを用いた以外は、前記実施例1と同様にしてトナーを製造した。
(実施例3〜5)
ポリエステルAの代わりに、ポリエステルA’を用い、混練工程に供する原料中におけるポリエステルA’の含有量、ポリエステルBの含有量を表1に示すようにした以外は、前記実施例1と同様にして、トナーを製造した。
【0272】
(実施例6)
分散媒の除去を図6、図7に示すような装置を用いて行った以外は、前記実施例1と同様にしてトナーを製造した。なお、微分散液中の分散媒の除去は、以下の通りに行った。
微分散液供給部内の微分散液を攪拌手段で攪拌しつつ、定量ポンプによりヘッド部の分散液貯留部に供給し、吐出部から固化部に吐出させた。吐出部は、直径:25μmの円形状をなすものとした。
【0273】
分散液の吐出は、ヘッド部内における微分散液温度を25℃、圧電体の振動数を30kHz、吐出部から吐出される分散液の初速度を4.2m/秒、ヘッド部から吐出される分散液の一滴分の吐出量を2plに調整した状態で行った。また、分散液の吐出は、複数個のヘッド部のうち少なくとも隣接しあうヘッド部で、分散液の吐出タイミングがずれるようにして行った。
【0274】
また、分散液の吐出時には、ガス噴射口から温度:160℃、湿度:27%RH、流速:4m/秒の空気を鉛直下方に噴射し、また、ハウジング内の圧力は、0.109〜0.110MPaとなるように調節した。また、固化部のハウジングには、その内表面側の電位が−200Vとなるように電圧を印加し、内壁に分散液(トナー粒子)が付着するのを防止するようにした。
固化部内において、吐出した微分散液から分散媒が除去され、トナー粒子が形成された。
【0275】
(実施例7〜11)
混練工程に供する原料中におけるポリエステルAの含有量、ポリエステルBの含有量を表1に示すようにし、外添剤として、表1に示すようなものを用い、微粒化工程における各条件を表2に示すようにした以外は、前記実施例1と同様にして、トナーを製造した。
(実施例12)
ポリエステルBの代わりに、ポリエステルDを用いた以外は、前記実施例1と同様にしてトナーを製造した。
【0276】
(比較例1)
まず、前記実施例12と同様にして粗粉砕された混練物を得た。
次に、この粗粉砕された混練物を微粉砕した。混練物の微粉砕にはジェットミル(ホソカワミクロン社製、200AFG)を用いた。なお、微粉砕は、粉砕エア圧:500[kPa]、ロータ回転数:7000[rpm]で行った。
【0277】
このようにして得られた粉砕物を気流分流機(ホソカワミクロン社製、100ATP)で分級した。
その後、分級した粉砕物(トナー製造用粉末)に、熱球形化処理を施した。熱球形化処理は、熱球形化装置(日本ニューマチック社製、SFS3型)を用いて行った。熱球形化処理時における雰囲気の温度は、270℃とした。
その後、熱球形化処理を施した粉末に対し、前記実施例1と同様の条件で外添剤を付与することによりトナーを得た。
【0278】
(比較例2)
分級処理を行わなかった以外は、前記比較例1と同様にしてトナーを製造した。
前記実施例1〜12のトナーの製造においては、混練物の粉砕する工程で、優れた粉砕性(単位時間当たりの粉砕量:約4〜6[kg/時間])を示した。
【0279】
前記各実施例および各比較例のトナーについて、構成成分を表1に示し、粉砕工程後の粉砕物の平均粒径、分散液の中の分散質の平均粒径D、微粒化装置を用いて製造された微分散質の平均粒径d、トナー粒子(シリカを添加する前のトナー粒子)の平均円形度R、円形度標準偏差、重量基準の平均粒径Dt、粒径標準偏差および最終的に得られたトナーの平均粒径を、微粒化装置の分散質の吐出条件とともに表2に示し、トナーの酸価、トナー中における結晶の平均長さ、および外添剤の被覆率を表3にまとめて示した。なお、表中、ポリエステルA、ポリエステルA’、ポリエステルB、ポリエステルC、ポリエステルDは、それぞれ、PES−A、PES−A’、PES−B、PES−C、PES−Dで示し、帯電制御剤は、CCAで示した。
【0280】
また、各実施例および各比較例のトナーについて、Δt=0.05[秒]、トナーの0.01秒での緩和弾性率Gを初期緩和弾性率G(0.01)[Pa]とし、さらに、トナーのΔt秒での緩和弾性率G(Δt)[Pa]としたときの、G(0.01)[Pa]とG(Δt)[Pa]との比、G(0.01)/G(Δt)を以下のようにして求めた。
まず、トナー約1gをパラレルプレートにはさみ、過熱溶融させ、高さ1.0〜2.0mmに調製した。このようにして得られたサンプルを、ARES粘弾性測定装置(レオメトリック・サイエンティフィック・エフ・イー社製)を用いて、応力緩和測定モードにより、下記測定条件で粘弾性測定を行った。
・測定温度:150℃、
・歪印加量:線径領域における最大歪み
・ジオメトリー:パラレルプレート(25mm径)
上記のような測定により、初期緩和弾性率(0.01秒での緩和弾性率):G(0.01)[Pa]、Δt=0.05秒での緩和弾性率:G(Δt)[Pa]を求めた。これらの結果から得られるG(0.01)/G(Δt)の値を表3にあわせて示す。
【0281】
【表1】
Figure 2004317890
【0282】
【表2】
Figure 2004317890
【0283】
【表3】
Figure 2004317890
【0284】
[3]評価
以上のようにして得られた各トナーについて、定着良好域、現像耐久性、保存性、転写効率、帯電特性の評価を行った。
[3.1]定着良好域
まず、前述した図10〜図17、図20に示すような定着装置を作製した。この定着装置では、トナーがニップ部を通過するのに要する時間Δtを0.05秒に設定した。この定着装置を用いて図8、図9に示すような画像形成装置(カラープリンタ)を作製した。この画像形成装置を用いて、未定着の画像サンプルを採取し、当該画像形成装置の定着装置で、以下のような試験を実施した。なお、採取するサンプルのベタは付着量を0.40〜0.50mg/cmに調整した。
画像形成装置を構成する定着装置の定着ローラの表面温度を所定温度に設定した状態で、未定着のトナー像が転写された用紙(セイコーエプソン社製、上質普通紙)を、定着装置の内部に導入することにより、トナー像を用紙に定着させ、定着後におけるオフセットの発生の有無を目視で確認した。
【0285】
同様に、定着ローラの表面の設定温度を100〜250℃の範囲で順次変更していき、各温度でのオフセットの発生の有無を確認し、オフセットが発生しなかった温度範囲を、「定着良好域」として求め、以下の4段階の基準に従い評価した。
◎:定着良好域の幅が60℃以上である。
○:定着良好域の幅が45℃以上60℃未満である。
△:定着良好域の幅が30℃以上45℃未満である。
×:定着良好域の幅が30℃未満である。
【0286】
[3.2]現像耐久性
前記[3.1]で用いた画像形成装置の現像装置にトナーを30gセットした後、無補給でエージングを行い、現像ローラへのフィルミングが発生するまでの時間を測定し、以下の4段階の基準に従い評価した。
◎:エージング開始後、120分以上経過しても、フィルミングの発生は認められなかった。
○:エージング開始後、80〜120分でフィルミングが発生。
△:エージング開始後、50〜80分でフィルミングが発生。
×:エージング開始後、50分未満でフィルミングが発生。
【0287】
[3.3]保存性
各実施例および各比較例のトナーを、それぞれ10gずつサンプル瓶に入れ、50℃の恒温槽内に48時間放置した後、固まり(凝集)の有無を目視で確認し、以下の4段階の基準に従い評価した。
◎:固まり(凝集)の存在が全く認められなかった。
○:小さい固まり(凝集)がわずかに認められた。
△:小さい固まり(凝集)が相当数認められた。
×:固まり(凝集)がはっきりと認められた。
【0288】
[3.4]転写効率
前記[3.1]で用いた画像形成装置を用いて、以下のように評価した。
感光体(像担持体)への現像工程直後(転写前)の感光体上のトナーと、転写後(印刷後)の感光体上のトナーとを、別々のテープを用いて採取し、それぞれの重量を測定した。転写前の感光体上のトナー重量をW[g]、転写後の感光体上のトナー重量をW[g]としたとき、(W−W)×100/Wとして求められる値を、転写効率とし、以下の3段階の基準に従い評価した。
◎:97%以上
○:95%以上
×:95%未満
【0289】
[3.5]帯電特性
前記[3.1]で用いた画像形成装置において、印字途中で画像形成装置を停止させ、カートリッジを取り外し、粉黛帯電量分布測定装置(ホソカワミクロン社製、E−spart analyzer)を用いて、帯電量分布を測定し、その結果から、帯電量および逆帯電量としてプラス帯電量を求めた。
【0290】
帯電量については、初期帯電量と、1K後(1000枚印字後)の帯電量について求めた。
1K後の帯電量については、以下の4段階の基準に従い評価した。
◎:初期帯電量からの変化量(絶対値)が0.5μC/g未満。
○:初期帯電量からの変化量(絶対値)が0.5μC/g以上1μC/g未満。
△:初期帯電量からの変化量(絶対値)が1μC/g以上3μC/g未満。
×:初期帯電量からの変化量(絶対値)が3μC/g以上。
【0291】
また、逆帯電性のトナーについては、全トナー量に対する存在比率を求め、逆帯電性のトナーの存在比率が3wt%未満の場合は○、逆帯電性のトナーの存在比率が3wt%以上の場合は×とした。
これらの結果を、外添剤添加前のトナー粒子の粒径標準偏差と、粉砕物に対するトナー粒子の収率と合わせて、表4にまとめて示した。
【0292】
【表4】
Figure 2004317890
【0293】
表4から明らかなように、本発明の方法によれば、各粒子間での形状のバラツキが小さく、粒度分布の幅の小さいトナーが、収率よく得られた。なおかつ、本発明のトナーは、いずれも、現像耐久性に優れ、幅広い温度領域で、優れた定着性を発揮するものであった。また、本発明のトナーは、保存性にも優れていた。特に、好ましい組成のポリエステル系樹脂や、より適切な外添剤を含むトナーでは、極めて良好な結果が得られた。
【0294】
これに対して、比較例では、粒径標準偏差、収率に劣っていた。
特に、比較例1では、収率が特に劣っていた。また、比較例2では、粒径標準偏差が特に劣っていた。
また、比較例のトナーは、定着良好域、帯電特性および保存性等の特性が劣っていた。
【0295】
また、前記各トナーについて、上記の定着装置のニップ部を通過させ、トナー粒子の前記ニップ部の通過時間Δt[秒]における、緩和弾性率G(t)の変化量を測定したところ、実施例1〜13の各トナーでは、緩和弾性率G(t)の変化量は、いずれも100[Pa]以下であった。なお、トナー粒子が通過する際における、ニップ部の温度は、180℃であった。
【0296】
また、着色剤として、銅フタロシアニン顔料に代わり、キナクリドン(P.R.122)、ピグメントレッド57:1、C.I.ピグメントイエロー93、カーボンブラックを用いた以外は、前記各実施例および前記各比較例と同様にして、トナーを作製し、これらの各トナーについても前記と同様の評価を行った。その結果、前記各実施例および前記各比較例と同様の結果が得られた。
【図面の簡単な説明】
【図1】分散液の調製に用いる混練物を製造するための混練機、冷却機の構成の一例を模式的に示す縦断面図である。
【図2】ブロックポリエステルについて示差走査熱量分析を行ったときに得られる、ブロックポリエステルの融点付近での示差走査熱量分析曲線のモデル図である。
【図3】軟化点解析用フローチャートである。
【図4】分散質を微粒化する装置の好適な実施形態を模式的に示す縦断面図である。
【図5】図4に示す微粒化装置のチャンバ付近の拡大断面図である。
【図6】トナー製造装置の好適な実施形態を模式的に示す縦断面図である。
【図7】図6に示すトナー製造装置のヘッド部付近の拡大断面図である。
【図8】本発明のトナーが適用される画像形成装置の好適な実施形態を示す全体構成図である。
【図9】図8の画像形成装置が有する現像装置の断面図である。
【図10】図8の画像形成装置に用いられる本発明の定着装置の詳細構造を示し、一部破断面を示す斜視図である。
【図11】図10の定着装置の要部断面図である。
【図12】図10の定着装置を構成する剥離部材の斜視図である。
【図13】図10の定着装置を構成する剥離部材の取付状態を示す側面図である。
【図14】図10の定着装置を上面から見た正面図である。
【図15】ニップ部の出口における接線に対する、剥離部材の配置角度を説明するための模式図である。
【図16】定着ローラ、加圧ローラの形状と、ニップ部の形状を模式的に示す図である。
【図17】図16(a)のX−X線における断面図である。
【図18】定着ローラ、加圧ローラの形状と、ニップ部の形状を模式的に示す図である。
【図19】図18(a)のY−Y線における断面図である。
【図20】定着ローラと、剥離部材とのギャップを説明するための断面図である。
【図21】トナー中に含まれるトナー粒子から遊離したルチルアナターゼ型の酸化チタンの量を測定する方法を説明するための図である。
【符号の説明】
3……分散液 31……分散質 32……分散媒 33……微分散質 34……微分散液 4……トナー粒子 K1……混練機 K2……プロセス部 K21……バレル K22、K23……スクリュー K24……固定部材 K25……第1の領域 K26……第2の領域 K27……第3の領域 K28、K29……温度移行領域 K3……ヘッド部 K31……内部空間 K32……押出口 K33……横断面積漸減部 K4……フィーダー K5……原料 K6……冷却機 K61、K62、K63、K64……ロール K611、K621、K631、K641……回転軸 K65、K66……ベルト K67……排出部 K7……混練物 B1……微粒化装置 B21、B22……ノズル B3……分散液供給部 B31……攪拌手段 B4……チャンバ B5……ハウジング部 B6……回収部 B7……超高圧発生ポンプ B8……分岐部 B9……搬送ポンプB10……搬送パイプ M1……トナー製造装置 M2……ヘッド部 M21……分散液貯留部 M22……圧電素子 M221……下部電極 M222……圧電体 M223……上部電極 M23……吐出部 M24……振動板 M3……固化部 M31……ハウジング M311……縮径部 M4……分散液供給部M41……攪拌手段 M5……回収部 M7……ガス噴射口 M8……電圧印加手段 M10……ガス流供給手段 M101……ダクト M11……熱交換器M12……圧力調整手段 M121……接続管 M122……拡径部 M123……フィルター M13……絞り部材 1000……画像形成装置 29……装置本体 30……像担持体 40……帯電装置 50……露光装置 60……ロータリー現像装置 600……支持フレーム 601……ハウジング 603……供給ローラ 604……現像ローラ 605……規制ブレード 605a……板状部材 605b……弾性部材 60Y……イエロー用現像装置 60M……マゼンタ用現像装置 60C……シアン用現像装置 60K……ブラック用現像装置 70……中間転写装置 90……駆動ローラ 100……従動ローラ 110……中間転写ベルト 120……一次転写ローラ 130……転写ベルトクリーナ 140……二次転写ローラ 150……給紙カセット 160……ピックアップローラ 170……記録媒体搬送経路 190……定着装置 200……排紙トレイ 210……定着ローラ(加熱定着部材) 210a……熱源 210b……筒体 210c……弾性層 210d……回転軸 220……加圧ローラ(加圧部材) 220b……筒体 220c……弾性層 220d……回転軸 230……両面印刷用搬送路 240……ハウジング 250……軸受 260……加圧レバー 270……加圧スプリング 280……駆動ギヤ 290……支持軸 300……支持軸 310……剥離部材 310a……剥離部 310b……折曲部 310c……支持片 310d……嵌合穴 310e……ガイド部 310f……先端部 320……剥離部材 320a……剥離部 320e……ガイド部 330……スプリング 340……定着ニップ部 341……ニップ出口 500……記録媒体 T……トナー S……接線 G1……ギャップ G2……ギャップ

Claims (30)

  1. 主成分としての樹脂と、着色剤とを含む原料を、混練機を用いて混練して、混練物を得る混練工程と、
    前記混練物を粉砕する粉砕工程と、
    前記粉砕工程で得られた粉砕物を分散媒中に分散して分散液を得る分散工程と、
    前記分散液を、複数のノズルから吐出させ、前記各ノズルから吐出された前記分散液同士を衝突させて、前記分散液中の分散質を微粒化する微粒化工程とを有することを特徴とするトナーの製造方法。
  2. 複数の前記ノズルのうち、少なくとも2つの前記ノズルから吐出された前記分散液同士の衝突角度が、90〜180°である請求項1に記載のトナーの製造方法。
  3. 前記微粒化工程は、繰り返し行われるものである請求項1または2に記載のトナーの製造方法。
  4. 前記分散質の平均粒径が、0.1〜15μmになるまで前記微粒化工程を繰り返す請求項1ないし3のいずれかに記載のトナーの製造方法。
  5. 前記分散媒は、主として水および/または水との相溶性に優れる液体で構成されたものである請求項1ないし4のいずれかに記載のトナーの製造方法。
  6. 前記分散液は、分散剤を含むものである請求項1ないし5のいずれかに記載のトナーの製造方法。
  7. 前記ノズルから前記分散液を吐出する圧力は、50〜300MPaである請求項1ないし6のいずれかに記載のトナーの製造方法。
  8. 前記微粒化工程において、前記分散液は加温される請求項1ないし7のいずれかに記載のトナーの製造方法。
  9. 前記ノズルより吐出する際の前記分散液の温度は、20〜200℃である請求項1ないし8のいずれかに記載のトナーの製造方法。
  10. 前記原料は、ワックスを含むものである請求項1ないし9のいずれかに記載のトナーの製造方法。
  11. 前記微粒化工程の後に、微粒化した前記分散質を前記分散液より分離する分離工程と、前記分離工程で分離した前記分散質を乾燥する乾燥工程とを有する請求項1ないし10のいずれかに記載のトナーの製造方法。
  12. 前記乾燥工程における乾燥温度が、40〜200℃である請求項11に記載のトナーの製造方法。
  13. 前記微粒化工程の後に、微粒化した前記分散質を含む前記分散液を噴霧し、固化部内を搬送しつつ前記分散媒を除去する請求項1ないし10のいずれかに記載のトナーの製造方法。
  14. 前記固化部内の温度が、40〜160℃である請求項13に記載のトナーの製造方法。
  15. 前記粉砕工程により得られる前記粉砕物の平均粒径は、15〜2000μmである請求項1ないし14のいずれかに記載のトナーの製造方法。
  16. 前記粉砕物の平均粒径をDf[μm]、製造されるトナー粒子の平均粒径をDt[μm]としたとき、1≦Df/Dt≦1000の関係を満足する請求項1ないし15のいずれかに記載のトナーの製造方法。
  17. 前記微粒化工程前の前記分散液中における前記分散質の平均粒径は、15〜2000μmである請求項1ないし16のいずれかに記載のトナーの製造方法。
  18. 前記微粒化工程前の前記分散液中における前記分散質の平均粒径をD[μm]、前記微粒化工程後の前記分散液中における前記分散質の平均粒径をd[μm]としたとき、D/d≦1000の関係を満足する請求項1ないし17のいずれかに記載のトナーの製造方法。
  19. 前記分散液中における前記分散質の含有量は、1〜95wt%である請求項1ないし18のいずれかに記載のトナーの製造方法。
  20. 微粒化された前記分散質を含む前記分散液から、前記分散媒を除去することにより得られた粉末に外添剤を付与する外添工程を有する請求項1ないし19のいずれかに記載のトナーの製造方法。
  21. 前記分散質は、前記樹脂として、異なる2種以上のポリエステルを含むものである請求項1ないし20のいずれかに記載のトナーの製造方法。
  22. 前記樹脂は、主としてブロック共重合体で構成されたブロックポリエステルと、前記ブロックポリエステルより結晶性の低い非晶性ポリエステルとを含み、
    前記ブロックポリエステルは、アルコール成分とカルボン酸成分とを縮合してなる結晶性ブロックと、前記結晶性ブロックより結晶性の低い非晶性ブロックとを有するものである請求項1ないし21のいずれかに記載のトナーの製造方法。
  23. 微粒化された前記分散質を含む前記分散液から、前記分散媒を除去することにより得られた粉末は、主として前記結晶性ブロックにより形成された結晶を含むものである請求項22に記載のトナーの製造方法。
  24. 前記結晶の平均長さが10〜1000nmである請求項23に記載のトナーの製造方法。
  25. 前記ブロックポリエステルと、前記非晶性ポリエステルとの配合比は、重量比で5:95〜45:55である請求項21ないし24のいずれかに記載のトナーの製造方法。
  26. 請求項1ないし25のいずれかに記載の方法により製造されたことを特徴とするトナー。
  27. 平均粒径が2〜15μmである請求項26に記載のトナー。
  28. 各粒子間での粒径の標準偏差が1.5μm以下である請求項26または27に記載のトナー。
  29. 下記式(I)で表される平均円形度Rが0.91〜0.99である請求項26ないし28のいずれかに記載のトナー。
    R=L/L・・・(I)
    (ただし、式中、L[μm]は、測定対象のトナー粒子の投影像の周囲長、L[μm]は、測定対象のトナー粒子の投影像の面積に等しい面積の真円の周囲長を表す。)
  30. 各粒子間での平均円形度の標準偏差が0.02以下である請求項26ないし29のいずれかに記載のトナー。
JP2003113428A 2003-04-17 2003-04-17 トナーの製造方法およびトナー Pending JP2004317890A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113428A JP2004317890A (ja) 2003-04-17 2003-04-17 トナーの製造方法およびトナー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113428A JP2004317890A (ja) 2003-04-17 2003-04-17 トナーの製造方法およびトナー

Publications (1)

Publication Number Publication Date
JP2004317890A true JP2004317890A (ja) 2004-11-11

Family

ID=33473373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113428A Pending JP2004317890A (ja) 2003-04-17 2003-04-17 トナーの製造方法およびトナー

Country Status (1)

Country Link
JP (1) JP2004317890A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129186A (zh) * 2010-01-20 2011-07-20 夏普株式会社 胶囊调色剂的制造方法及胶囊调色剂
WO2014203790A1 (en) * 2013-06-19 2014-12-24 Ricoh Company, Ltd. Toner and toner producing method, and developer
JP2018004961A (ja) * 2016-07-01 2018-01-11 富士ゼロックス株式会社 画像形成装置
JP2018004960A (ja) * 2016-07-01 2018-01-11 富士ゼロックス株式会社 画像形成装置
JP2018004959A (ja) * 2016-07-01 2018-01-11 富士ゼロックス株式会社 画像形成装置
CN114990457A (zh) * 2021-12-31 2022-09-02 苏州市博旺金属工艺制品有限公司 一种铁基复合材料及其制备方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102129186A (zh) * 2010-01-20 2011-07-20 夏普株式会社 胶囊调色剂的制造方法及胶囊调色剂
CN102129186B (zh) * 2010-01-20 2013-05-15 夏普株式会社 胶囊调色剂的制造方法及胶囊调色剂
WO2014203790A1 (en) * 2013-06-19 2014-12-24 Ricoh Company, Ltd. Toner and toner producing method, and developer
JP2015026053A (ja) * 2013-06-19 2015-02-05 株式会社リコー トナー及びトナーの製造方法
CN105324723A (zh) * 2013-06-19 2016-02-10 株式会社理光 调色剂和调色剂制造方法以及显影剂
AU2014282373B2 (en) * 2013-06-19 2016-12-15 Ricoh Company, Ltd. Toner and toner producing method, and developer
RU2638576C2 (ru) * 2013-06-19 2017-12-14 Рикох Компани, Лтд. Тонер, способ получения тонера и проявитель
JP2018004961A (ja) * 2016-07-01 2018-01-11 富士ゼロックス株式会社 画像形成装置
JP2018004960A (ja) * 2016-07-01 2018-01-11 富士ゼロックス株式会社 画像形成装置
JP2018004959A (ja) * 2016-07-01 2018-01-11 富士ゼロックス株式会社 画像形成装置
CN114990457A (zh) * 2021-12-31 2022-09-02 苏州市博旺金属工艺制品有限公司 一种铁基复合材料及其制备方法

Similar Documents

Publication Publication Date Title
JP4120357B2 (ja) トナーの製造方法、トナー、定着装置および画像形成装置
JP2004191921A (ja) トナー、定着装置および画像形成装置
JP2004191922A (ja) トナー、定着装置および画像形成装置
JP4175122B2 (ja) トナーの製造方法およびトナー
JP2008152306A (ja) トナーの製造方法およびトナー
JP2004191923A (ja) トナー、定着装置および画像形成装置
JP2004294736A (ja) トナーおよびトナーの製造方法
JP2004317890A (ja) トナーの製造方法およびトナー
JP4228803B2 (ja) トナーの製造装置およびトナー
JP2004287313A (ja) トナーの製造方法およびトナー
JP4218303B2 (ja) 画像形成方法および画像形成装置
JP2004294734A (ja) トナーの製造方法およびトナー
JP4259209B2 (ja) トナーの製造方法およびトナーの製造装置
JP2004138923A (ja) トナーの製造方法、トナー、定着装置および画像形成装置
JP2004138920A (ja) トナー、定着装置および画像形成装置
JP4244641B2 (ja) トナー、および画像形成方法
JP4183018B2 (ja) 画像形成方法
JP4103651B2 (ja) トナーの製造方法
JP2005024863A (ja) トナーの製造方法およびトナー
JP2004249173A (ja) 粉体処理装置、粉体処理方法、トナーの製造方法およびトナー
JP2004264615A (ja) トナー
JP2004240071A (ja) トナーの製造方法およびトナー
JP2005024862A (ja) トナーの製造方法およびトナー
JP2004252226A (ja) トナー
JP2004252227A (ja) トナーの製造方法およびトナー