JP2004316073A - Joint structure of column and beam with floor slab composite function - Google Patents

Joint structure of column and beam with floor slab composite function Download PDF

Info

Publication number
JP2004316073A
JP2004316073A JP2003107012A JP2003107012A JP2004316073A JP 2004316073 A JP2004316073 A JP 2004316073A JP 2003107012 A JP2003107012 A JP 2003107012A JP 2003107012 A JP2003107012 A JP 2003107012A JP 2004316073 A JP2004316073 A JP 2004316073A
Authority
JP
Japan
Prior art keywords
column
floor slab
joint structure
steel
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003107012A
Other languages
Japanese (ja)
Other versions
JP4091870B2 (en
Inventor
Ichiro Takeuchi
一郎 竹内
Ryoichi Sugano
良一 菅野
Kazusada Suzuki
一弁 鈴木
Toru Takeuchi
徹 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003107012A priority Critical patent/JP4091870B2/en
Publication of JP2004316073A publication Critical patent/JP2004316073A/en
Application granted granted Critical
Publication of JP4091870B2 publication Critical patent/JP4091870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the rigid or semi-rigid joint structure of a column and beams considerably reducing time and labor for machining and construction and easily securing joint quality. <P>SOLUTION: This joint structure of the column and beams of a building is constructed by jointing the steel beams 2 to two facing side faces of the steel column 1 and constructing a concrete floor slab 10 on the beams. A beam upper flange 5 has nonslip members 14 with a function of transmitting beam axis direction stress applied to the beam upper flange 5, to the floor slab 10. Axial force transmission members 15 are arranged in the floor slab 10, straddling the steel beams 2 jointed to two facing side faces of the steel column 1, around the steel column 1, and tensile force applied to one beam upper flange 5 can be transmitted as compressive force to the other side of the steel column 1 through the floor slab 10 on the other beam upper face flange 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、床を有する建築物その他の構造物において、H型などの開断面や角形鋼管などの閉鎖断面を有する鋼部材もしくはコンクリート充填鋼管材(CFT)を柱材とし、この柱材の側面にH形鋼、I形鋼、C形鋼などからなる梁材を取り付ける床スラブ合成機能を有する柱・梁の接合構造に関するものである。
【0002】
【従来の技術】
建築物その他の構造物において、地震の水平力などにより梁に梁せん断力が作用したときに、柱・梁の接合部では、強力な曲げモーメントおよびせん断力が作用し、この接合部が損壊を受けやすいという問題があり、この損壊を防止するため、柱・梁の接合構造については従来種々の改良がなされている。
【0003】
さらに説明すると、鋼製柱と鋼製梁の接合構造には、▲1▼慣例的な従来技術として、通しダイアフラム形式の溶接方法があるが、この方法は、鋼製柱を切断してダイアフラムを溶接した後、再度溶接するもので加工数が多くなり、また品質確保の点で問題がある。▲2▼また、特開2002−266424では高力ボルトを主体とする接合構造とすることで接合品質の安定確保を図っているが、多大な接合金物が必要なため加工・施工工数が大きいことや接合金物重量増大などの問題がある。
【0004】
▲3▼実開昭62−12063号公報には、CFT柱と鋼製梁の接合構造と、梁上フランジ非接合の構造が示されている。ここに開示の技術は、鋼製柱がCFTで、柱にアンカーボルトまたはスラブ鉄筋貫通用の孔をあけることが前提であるが、梁上フランジの応力をスラブ鉄筋で柱に伝達させる場合、十分なスラブ鉄筋を配筋するためには、柱の孔径を大きくする必要があり、柱の強度が低下する。また、CFT内に充填されたコンクリートだけでは、スラブ鉄筋との付着長さが不十分である。
【0005】
図10によって、従来の柱・梁の接合構造の一例を説明する。図に示される鋼製柱1は角形鋼管で構成されているとともに、鋼製梁2はH形鋼で構成さている。鋼製柱1の相対する側面には上下一対のスプリットティ3、4のフランジ3a、4がボルト7で接合されているとともに、これら上下両スプリットティ3、4のウエブ3b、4bの間には前記H形鋼製の鋼製梁2の上下両フランジ3a、4aの端部がボルト7にて組みつけられている。
【0006】
そして、鋼製梁2の梁上フランジ5上面には、床面材としてのコンクリート床スラブ10が打設されていて、梁上フランジ5に溶接した頭付きスタッド(ずれ止め部材)14を介して鋼製梁2と床スラブ10とが一体化されている。床スラブ10内には複数のスラブ鉄筋が配設されているが図示を省略している。
【0007】
前記柱・梁の接合構造において、地震等により鋼製梁2に梁軸方向応力が作用したときに、柱を中心として水平力が作用する下流側において、鋼製柱1及び鋼製梁2の梁上フランジ5の端部5aでの上部スプリットティ3による接合部には強大な引張力が作用し、接合部が剛結合の場合損傷することがある。また、柱・梁の接合部の損壊を回避するため梁上フランジ5と鋼製柱1とを非接合とする場合があるが、その場合は鋼製梁上部と鋼製柱1との適切な応力の伝達機構が必要であるが、既存の床スラブ補強鉄筋に所期の伝達機能を期待するのは困難である。
【0008】
【特許文献1】
実開昭62−12063号公報
【0009】
【発明が解決しようとする課題】
鉄骨建築物における柱・梁の接合構造には、地震時などの水平力によって損壊しない構造とすることが求められるが、簡潔な構造により前記の要望を満たす柱・梁の接合構造が従来はなかった。
【0010】
本発明は、鋼製梁と一体化されるコンクリート床スラブと軸力伝達材を組合わせることにより、柱の相対する一側の柱・梁接合部に作用する引張力を柱の相対する他側の柱・梁接合部に圧縮力として伝達させることにより、前記従来の問題点を解決したものである。すなわち、本発明は、加工・施工手間が大幅に低減可能で、かつ接合品質確保の容易な剛または半剛の柱と梁の接合構造を実現することを目的とする。
【0011】
【課題を解決するための手段】
前記の目的を達成するため、本発明は次のように構成する。
【0012】
第1の発明は、柱の相対する2つの側面にそれぞれ梁を接合し、前記梁上にコンクリート床スラブを構築してなる建物の柱・梁の接合構造において、梁上フランジに作用する梁軸方向応力を前記床スラブへ伝達する機能を有する軸力伝達材を、前記柱の周辺で、かつ前記柱の相対する2つの側面に接合した梁に跨って床スラブ内に配置し、一方の梁フランジに作用する引張力を他方の梁上面の床スラブを介して柱に圧縮力として伝達可能に構成したことを特徴とする。
【0013】
第2の発明は、柱の相対する一方の側面に梁を接合し、前記梁上にコンクリート床スラブを構築してなる建物の柱・梁の接合構造において、梁上フランジに作用する梁軸方向応力を前記床スラブへ伝達する機能を有する軸力伝達材を当該床スラブ内に配置し、前記軸力伝達材に結合した接合部材を介して梁フランジに作用する引張力を柱に圧縮力として伝達可能に構成したことを特徴とする。
【0014】
第3の発明は、第1または第2の発明において、前記梁上フランジは、柱に対し非接合とされていることを特徴とする。
【0015】
第4の発明は、第1〜第3の何れかの発明において、梁上フランジ上面に梁フランジに作用する梁軸方向応力を前記床スラブヘ伝達するずれ止め部材を設け、前記軸力伝達材は、前記ずれ止め部材の上端より梁上フランジ上面寄りに配置されていることを特徴とする。
【0016】
第5の発明は、第4の発明において、前記ずれ止め部材が頭付きスタッドであることを特徴とする。
【0017】
第6の発明は、第4の発明において、前記ずれ止め部材がアングル材もしくはスプリットティーなど梁上フランジに接合されている金物であることを特徴とする。
【0018】
第7の発明は、第1〜第6の発明において、前記軸力伝達材は、鋼製梁と平行若しくは鋼製梁に対し所定の角度傾斜配置した異形鉄筋で構成したことを特徴とする。
【0019】
第8の発明は、第1〜第6の何れかの発明において、前記軸力伝達材は、鋼製梁と平行に配置したアンカー機能を有するボルトで構成したことを特徴とする。
【0020】
【作用】
地震の水平力などにより建物に梁軸方向応力が作用したときに、鋼製柱を中心に水平力が作用する下流側の鋼製柱と鋼製梁の接合部には引張力が作用し、この接合部が損壊を受けやすいが、本発明では、鋼製柱の周囲において床スラブ内に配置した軸力伝達材により柱・梁の下流側接合部に作用する引張力を、柱・梁の上流側接合部に圧縮力として伝達させるので、床スラブ合成効果により柱・梁の下流側接合部に作用する引張力低減でき、柱・梁の接合部の接合品質の確保が容易かつ確実にでき、しかも加工・施工手間を大幅に低減可能である。
【0021】
【発明の実施の形態】
以下、本発明の実施形態を図を参照して説明する。なお、従来と同一要素には同一符号を付して説明する。
【0022】
図1(a)は、実施形態1に係る柱・梁の接合構造の横断平面図、(b)は、縦断面図である。同図に示される鋼製柱1は角形鋼管で構成されているとともに、鋼製梁2はH形鋼で構成さている。鋼製柱1の相対する側面には下部スプリットティ4のフランジ4aがボルト7で接合されているとともに、下部スプリットティ4のウエブ4bの上面には前記H形鋼製の鋼製梁2の梁下フランジ6の端部がボルト7にて組みつけられている。また、鋼製柱1の相対する側面で下部スプリットティ7の上方部位には、中間部スプリットティ11のフランジ11aがボルト7で接合されているとともに、中間部スプリットティ11のウエブ11bの側面には前記H形鋼製の鋼製梁2のウエブ2aの端部がボルト7にて組みつけられている。したがって、鋼製梁2の梁上フランジ5の端部5aと鋼製柱1の間は非接合に設けられている。
【0023】
そして、鋼製梁2の梁上フランジ5上面には、床面材としてのコンクリート床スラブ10が打設されていて、梁上フランジ5に溶接した頭付きスタッド等のずれ止め部材14を介して鋼製梁2と床スラブ10とが一体化されている。床スラブ10内には複数のスラブ鉄筋を配設しているが図示を省略している。
【0024】
前記柱・梁の接合構造において、地震等により鋼製梁2に梁軸方向応力が作用したときに、柱を中心として水平力が作用する下流側において、鋼製柱1及び鋼製梁2の梁上フランジ5の端部5aの間に引張力が作用する。とくに実施形態1の場合、鋼製柱1と梁上フランジ5の端部5aの間は非接合であるから、非接合部に作用する引張力を鋼製柱1に伝達する機構が必要であり、このため実施形態1では、軸力伝達材15をコンクリート床スラブ10に配置している。
【0025】
軸力伝達材15は本発明の主要素であるので詳しく説明する。図1(a)に示すように軸力伝達材15は、鋼製柱1の周辺で、かつ鋼製柱1の相対する2つの側面に接合した鋼製梁2、2に跨って、これと平行に床スラブ内に配置している。軸力伝達材15はアンカーボルトまたは異形鉄筋などで構成するとともに所定の長さに設定し、この軸力伝達材15を1本または複数本所定の間隔をあけて配置する。さらに、軸力伝達材15は、床スラブ10内において、ずれ止め部材14の上端より梁上フランジ5の上面寄りに配置されている。
【0026】
実施形態1によると、建物に水平力が作用し、梁軸方向応力が発生した場合において、鋼製柱1を中心に水平力の柱・梁の下流側の接合部に作用する引張力を、軸力伝達材15及び鋼製梁2と一体化された床スラブ10を介して鋼製柱1の上流側の柱・梁の接合部に圧縮力として伝達させることができる。すなわち、図1(b)に矢印で示す水平力は、柱の下流側の水平力(B)を軸力伝達材15と床スラブ10を介して柱の上流側の水平力(A)に伝達でき、したがって、いわゆる床スラブ合成効果により、柱・梁の下流側の接合部に作用する引張力を低減でき、柱・梁の接合部の接合品質の確保が容易かつ確実にできる。軸力伝達材15は、梁上フランジ5の端部5aと柱を結合する従来のスプリットティなどに代わる接合機能を有するもので、床スラブ鉄筋(図示省略)とは別に設計に基づき柱の周辺に配置されるものである。なお軸力伝達材15の長さは、以下の条件を満たすように設定するのが望ましい。
L≧40×D
ここで、Lは軸力伝達材15のコンクリートへの付着長さで、Dは軸力伝達材の直径である。
【0027】
図3(a)は、実施形態2に係る柱・梁の接合構造の横断平面図、(b)は、縦断面図である。実施形態2では、実施形態1における下部スプリットティ4に代えて、下部外ダイアフラム16が鋼製柱1の外周に溶接されていて、この下部外ダイアフラム16の上面にH形鋼製の鋼製梁2の梁下フランジ6の端部が溶接17にて組みつけられている。他の構成は実施形態1と同じである。
【0028】
実施形態2によると、実施形態1と同様に柱の下流側の水平力を軸力伝達材15と床スラブ10を介して柱の上流側の水平力に伝達できる。したがって、柱・梁の下流側の接合部に作用する引張力を低減でき、柱・梁の接合部の接合品質の確保が容易かつ確実にできる。
【0029】
図4(a)は、実施形態3に係る柱・梁の接合構造の横断平面図、(b)は、縦断面図である。実施形態3では、下部通しダイアフラム18が鋼製柱1に設けられ、この下部通しダイアフラム18にH形鋼製の鋼製梁2の梁下フランジ6の端部が溶接17にて組みつけられている。また、H形鋼製の鋼製梁2の梁上フランジ5の端部5aにアングル材19が高力ボルトにて組みつけられ、このアングル材19の起立部に開口された孔20に軸力伝達材15が挿通支持されている。また、このアングル材19は高いずれ止め効果を有するずれ止め材であり、頭付きスタッドをずれ止め材として用いた場合に比べ、接合部をコンパクト化でき、コストも低減できる。他の構成は実施形態2と同じである。
【0030】
実施形態3によると、実施形態1、2と同様に柱の下流側の水平力を軸力伝達材15と床スラブ10を介して柱の上流側の水平力に伝達できる。したがって、柱・梁の下流側の接合部に作用する引張力を低減でき、柱・梁の接合部の接合品質の確保が容易かつ確実にできる。
【0031】
(a)は、実施形態4に係る柱・梁の接合構造の横断平面図、(b)は、縦断面図である。実施形態4では、鋼製柱1の相対する一方の側面にH形鋼製の鋼製梁2が接合されている。そして、下部外ダイアフラム16が鋼製柱1の外周に溶接されていて、この下部外ダイアフラム16の上面に鋼製梁2の梁下フランジ6の端部が溶接17にて組みつけられている。
【0032】
さらに実施形態4では、鋼製梁2は鋼製柱1の相対する一方の側面(図の右側)のみに接合されるており、軸力伝達材15も鋼製柱1の右側に伸長して、鋼製梁2と平行に配置されている。鋼製柱1の両側に配設される軸力伝達材15の他端(図の左側)は、鋼製柱1の側部に接して配設された所定長、所定幅の接合部材21に開設された孔20に挿通されていて、その端部にナット等の定着部材22が固着されている。その他の構成は、実施形態1〜3と同じである。
【0033】
実施形態4によると、柱に作用する水平力(梁軸方向応力)により柱・梁の下流側の接合部に作用する引張力を、床スラブ10と軸力伝達材15に結合した接合部材21を介して柱の上流側に圧縮力として伝達できる。したがって、柱・梁の下流側の接合部に作用する引張力を低減でき、柱・梁の接合部の接合品質の確保が容易かつ確実にできる。
【0034】
図6、図7は、実施形態5に係る柱・梁の接合構造の横断平面図と縦断面図である。実施形態5では、鋼製柱1の相対する四方の各側面にH形鋼製の鋼製梁2が接合されている。そして、下部通しダイアフラム18が鋼製柱1に設けられていて、この下部通しダイアフラム18に鋼製梁2の梁下フランジ6の端部が溶接17にて組みつけられている。
【0035】
さらに、実施形態5では、所定長の軸力伝達材15は、鋼製柱1を取り囲んでその周囲に平行に配設した複数本が一組となって井桁状に配設され、鋼製柱1の四方向に接合される鋼製梁2に対して所定の角度傾斜して配置されている。その他の構成は、実施形態1〜4と同じである。
【0036】
実施形態5によると、鋼製柱1の四方向に接合される鋼製梁2の接合構造において、柱に作用する水平力(梁軸方向応力)により柱・梁の下流側の接合部に作用する引張力を、井桁状に配置した軸力伝達材15と床スラブ10を介して柱の上流側に圧縮力として伝達できる。したがって、柱・梁の下流側の接合部に作用する引張力を低減でき、柱・梁の接合部の接合品質の確保が容易かつ確実にでき、さらに軸力伝達材15は柱梁接合部まわりの床スラブのひび割れ防止筋としての機能も付与できる。なお軸力伝達材15の長さは、以下の条件を満たすように設定するのが望ましい。
L≧40×D
ここで、Lは軸力伝達材15のコンクリートへの付着長さで、Dは軸力伝達材の直径である。
【0037】
図8(a)は、実施形態6に係る柱・梁の接合構造の横断平面図、(b)は、縦断面図である。実施形態6では、軸力伝達材15の配置形態が実施形態1と相異し、鋼製柱1の相対する側面にH形鋼製の鋼製梁2が接合されるとともに、鋼製梁2の梁下フランジ6および梁ウエブ2aの端部が、下部スプリットティ4と中間部スプリットティ11により鋼製柱1に接合される構成は実施形態1と同じである。
【0038】
実施形態6では、軸力伝達材15は、鋼製柱1の相対する両側面に接合される鋼製梁2の一方の鋼製梁2(図7の右側)と平行に配置されていて、この軸力伝達材15の一方の端部(図7の左側)の間は、他方の鋼製梁2(図7の左側)の上部において、軸力伝達材接合部15aによって接合されている。軸力伝達材15と軸力伝達材接合部15aは、長尺の異形鉄筋等を平面U字形に曲げ成形することで一体成形できる。
【0039】
実施形態6によると、柱に作用する水平力(梁軸方向応力)により柱・梁の下流側の接合部に作用する引張力を、軸力伝達材15及びこれと一体の軸力伝達材接合部15a並びに床スラブ10を介して柱の上流側に圧縮力として伝達できる。したがって、柱・梁の下流側の接合部に作用する引張力を低減でき、柱・梁の接合部の接合品質の確保が容易かつ確実にできる。
【0040】
図9、図10は、実施形態7に係る柱・梁の接合構造の横断平面図と縦断面図である。実施形態7では、鋼製柱1の相対する四方の各側面にH形鋼製の鋼製梁2が接合されている。また、所定長の軸力伝達材15は、鋼製柱1を取り囲んでその周囲に矩形状に曲げ配置され、したがって、鋼製柱1の四方向に接合される鋼製梁2に対して所定の角度傾斜して配置されている。その他の構成は、実施形態5と同じである。
【0041】
実施形態5によると、鋼製柱1の四方向に接合される鋼製梁2の接合構造において、柱に作用する水平力(梁軸方向応力)により柱・梁の下流側の接合部に作用する引張力を、矩形状に配置した軸力伝達材15と床スラブ10を介して柱の上流側に圧縮力として伝達できる。したがって、柱・梁の下流側の接合部に作用する引張力を低減でき、柱・梁の接合部の接合品質の確保が容易かつ確実にできる。
【0042】
本発明は、各実施形態で示した構成を適宜設計変更して実施することは構わない。
【0043】
【発明の効果】
本発明によると次の効果がある。すなわち、地震の水平力などにより建物に梁軸方向応力が作用したときに、鋼製柱を中心に水平力が作用する下流側の鋼製柱と鋼製梁の接合部には引張力が作用し、この接合部が損壊を受けやすいが、本発明では、鋼製柱の周囲において床スラブ内に配置した軸力伝達材により柱・梁の下流側接合部に作用する引張力を、柱・梁の上流側接合部に圧縮力として伝達させるので、床スラブ合成効果により柱・梁の下流側接合部に作用する引張力低減でき、柱・梁の接合部の接合品質の確保が容易かつ確実にでき、しかも加工・施工手間を大幅に低減可能である。
【図面の簡単な説明】
【図1】(a)は、実施形態1に係る柱・梁の接合構造の横断平面図、(b)は、縦断面図である。
【図2】(a)は、実施形態2に係る柱・梁の接合構造の横断平面図、(b)は、縦断面図である。
【図3】(a)は、実施形態3に係る柱・梁の接合構造の横断平面図、(b)は、縦断面図である。
【図4】(a)は、実施形態4に係る柱・梁の接合構造の横断平面図、(b)は、縦断面図である。
【図5】実施形態5に係る柱・梁の接合構造の横断平面図である。
【図6】図5の縦断面図である。
【図7】(a)は、実施形態7に係る柱・梁の接合構造の横断平面図、(b)は、縦断面図である。
【図8】実施形態8に係る柱・梁の接合構造の横断平面図である。
【図9】図8の縦断面図である。
【図10】(a)は、従来例に係る柱・梁の接合構造の横断平面図、(b)は、縦断面図である。
【符号の説明】
1 鋼製柱
2 鋼製梁
2a ウエブ
3 上部スプリットティ
4 下部スプリットティ
5 梁上フランジ
5a フランジの端部
6 梁下フランジ
7 ボルト
10 コンクリート床スラブ
11 中間部スプリットティ
14 ずれ止め部材
15 軸力伝達材
15a 軸力伝達接合部
16 下部外ダイアフラム
17 溶接
18 下部通しダイアフラム
19 アングル材
20 孔
21 接合部材
22 定着部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel member having an open section such as an H-shape or a closed section such as a square steel pipe or a concrete-filled steel pipe (CFT) as a column material in a building or other structure having a floor. The present invention relates to a column / beam joint structure having a floor slab synthesizing function for attaching a beam member made of an H-section steel, an I-section steel, a C-section steel, or the like.
[0002]
[Prior art]
In a building or other structure, when a beam shear force acts on a beam due to the horizontal force of an earthquake, etc., a strong bending moment and shear force act on a joint between a column and a beam, and this joint causes damage. In order to prevent this damage, various improvements have been made to the joint structure between the column and the beam.
[0003]
More specifically, in the joint structure between a steel column and a steel beam, there is a conventional diaphragm-type welding method as a conventional technique. This method cuts a steel column to form a diaphragm. After welding, it is welded again, so that the number of processes increases, and there is a problem in quality assurance. {Circle around (2)} In JP-A-2002-266424, a joint structure mainly composed of high-strength bolts is used to ensure stable joining quality. However, since a large amount of joint metal is required, the number of processing and construction steps is large. And the weight of the metal joint increases.
[0004]
{Circle around (3)} Japanese Utility Model Laid-Open Publication No. 62-12063 discloses a joint structure between a CFT column and a steel beam and a structure without a flange on the beam. The technology disclosed herein is based on the premise that a steel column is CFT and a hole is made in the column for anchor bolts or slab reinforcing bars. In order to arrange a suitable slab reinforcing bar, it is necessary to increase the hole diameter of the column, and the strength of the column is reduced. In addition, only the concrete filled in the CFT has an insufficient adhesion length with the slab reinforcing bar.
[0005]
An example of a conventional joint structure between a column and a beam will be described with reference to FIG. The steel column 1 shown in the figure is made of a square steel pipe, and the steel beam 2 is made of an H-shaped steel. On opposite sides of the steel column 1, flanges 3a, 4 of a pair of upper and lower split tees 3, 4 are joined by bolts 7, and between the webs 3b, 4b of the upper and lower split tees 3, 4. The ends of the upper and lower flanges 3 a, 4 a of the H-shaped steel beam 2 are assembled with bolts 7.
[0006]
A concrete floor slab 10 serving as a floor surface material is cast on the upper surface of the beam upper flange 5 of the steel beam 2, and a head stud (slip stopper member) 14 welded to the beam upper flange 5. The steel beam 2 and the floor slab 10 are integrated. A plurality of slab reinforcing bars are arranged in the floor slab 10, but are not shown.
[0007]
In the column / beam joint structure, when a beam axial direction stress is applied to the steel beam 2 due to an earthquake or the like, the steel column 1 and the steel beam 2 are disposed on the downstream side where the horizontal force acts on the column. A strong tensile force acts on the joint of the upper flange 5 at the end 5a of the upper split tee 3, and the joint may be damaged if the joint is a rigid connection. In addition, in order to avoid damage to the joint between the column and the beam, the upper flange 5 of the beam and the steel column 1 may not be joined. In such a case, an appropriate connection between the upper portion of the steel beam and the steel column 1 is made. Although a stress transmission mechanism is necessary, it is difficult to expect the existing floor slab reinforcement to have the expected transmission function.
[0008]
[Patent Document 1]
Japanese Utility Model Application Laid-Open No. 62-12063
[Problems to be solved by the invention]
The joint structure of columns and beams in a steel building is required to have a structure that is not damaged by horizontal forces such as during an earthquake, but there is no conventional joint structure of columns and beams that satisfies the above demands with a simple structure. Was.
[0010]
The present invention combines a concrete floor slab integrated with a steel beam and an axial force transmitting member to apply a tensile force acting on a column / beam joint on one side of a column to the other side of the column. The above-mentioned conventional problem is solved by transmitting a compressive force to the column / beam joint. That is, an object of the present invention is to realize a rigid or semi-rigid column and beam joint structure that can significantly reduce the processing and construction time and can easily secure joint quality.
[0011]
[Means for Solving the Problems]
To achieve the above object, the present invention is configured as follows.
[0012]
According to a first aspect of the present invention, a beam axis acting on a beam upper flange is provided in a column / beam joint structure of a building in which a beam is joined to two opposite side surfaces of a column and a concrete floor slab is constructed on the beam. An axial force transmitting member having a function of transmitting directional stress to the floor slab is disposed in the floor slab around the column and straddling a beam joined to two opposite side surfaces of the column. It is characterized in that a tensile force acting on the flange can be transmitted as a compressive force to the column via the floor slab on the other beam upper surface.
[0013]
According to a second aspect of the present invention, in a column / beam joint structure of a building in which a beam is joined to one opposite side surface of a column and a concrete floor slab is constructed on the beam, a beam axial direction acting on a beam upper flange is provided. An axial force transmitting material having a function of transmitting stress to the floor slab is arranged in the floor slab, and a tensile force acting on a beam flange via a joining member coupled to the axial force transmitting material is applied as a compressive force to a column. It is characterized by being able to transmit.
[0014]
A third invention is characterized in that in the first or second invention, the upper flange of the beam is not joined to the column.
[0015]
According to a fourth aspect of the present invention, in any one of the first to third aspects of the present invention, a stopper member for transmitting beam axial stress acting on the beam flange to the floor slab is provided on the upper surface of the upper flange of the beam. It is characterized by being arranged closer to the upper surface of the upper flange of the beam than the upper end of the stopper member.
[0016]
In a fifth aspect based on the fourth aspect, the slippage preventing member is a stud with a head.
[0017]
A sixth invention is characterized in that, in the fourth invention, the slip preventing member is a metal member such as an angle material or a split tee that is joined to a flange on the beam.
[0018]
A seventh invention is characterized in that, in the first to sixth inventions, the axial force transmitting member is formed of a deformed reinforcing bar parallel to a steel beam or inclined at a predetermined angle with respect to the steel beam.
[0019]
An eighth invention is characterized in that, in any one of the first to sixth inventions, the axial force transmitting member is constituted by a bolt having an anchor function and arranged in parallel with a steel beam.
[0020]
[Action]
When a beam's axial stress acts on a building due to the horizontal force of an earthquake, etc., tensile force acts on the joint between the steel column and the steel beam on the downstream side where the horizontal force acts on the steel column, Although this joint is susceptible to damage, in the present invention, the tensile force acting on the downstream joint of the column / beam by the axial force transmitting member arranged in the floor slab around the steel column causes the tensile force of the column / beam to be reduced. Since the compression is transmitted to the upstream joint, the tensile force acting on the downstream joint of the column and beam can be reduced by the combined effect of the floor slab, and the joint quality of the column and beam can be easily and reliably secured. Moreover, processing and construction time can be greatly reduced.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same elements as those in the related art will be described with the same reference numerals.
[0022]
FIG. 1A is a cross-sectional plan view of a joint structure between a column and a beam according to the first embodiment, and FIG. 1B is a longitudinal sectional view. The steel column 1 shown in the figure is made of a square steel pipe, and the steel beam 2 is made of an H-shaped steel. A flange 4a of a lower split tee 4 is joined to opposite sides of the steel column 1 with bolts 7, and a beam of the H-shaped steel beam 2 is provided on an upper surface of a web 4b of the lower split tee 4. An end of the lower flange 6 is assembled with a bolt 7. Further, a flange 11a of an intermediate portion split tee 11 is joined to the upper portion of the lower split tee 7 on the opposing side surface of the steel column 1 with a bolt 7, and a side surface of a web 11b of the intermediate portion split tee 11 is provided. The end of the web 2a of the H-shaped steel beam 2 is assembled with bolts 7. Therefore, the end 5a of the beam upper flange 5 of the steel beam 2 and the steel column 1 are provided in a non-joined manner.
[0023]
A concrete floor slab 10 as a floor material is cast on the upper surface of the upper beam flange 5 of the steel beam 2, and is fixed to the upper beam 5 via a slip prevention member 14 such as a headed stud welded to the upper beam flange 5. The steel beam 2 and the floor slab 10 are integrated. Although a plurality of slab reinforcing bars are arranged in the floor slab 10, they are not shown.
[0024]
In the column / beam joint structure, when a beam axial direction stress is applied to the steel beam 2 due to an earthquake or the like, the steel column 1 and the steel beam 2 are disposed on the downstream side where the horizontal force acts on the column. A tensile force acts between the ends 5a of the beam upper flange 5. In particular, in the case of the first embodiment, since the steel column 1 and the end 5a of the beam upper flange 5 are not joined, a mechanism for transmitting the tensile force acting on the non-joined portion to the steel column 1 is required. Therefore, in the first embodiment, the axial force transmitting member 15 is disposed on the concrete floor slab 10.
[0025]
Since the axial force transmitting member 15 is a main element of the present invention, it will be described in detail. As shown in FIG. 1 (a), the axial force transmitting member 15 extends over the steel beams 2, 2 joined to the periphery of the steel column 1 and to two opposite side surfaces of the steel column 1. It is arranged in parallel in the floor slab. The axial force transmitting member 15 is formed of an anchor bolt or deformed reinforcing bar and has a predetermined length, and one or a plurality of the axial force transmitting members 15 are arranged at predetermined intervals. Further, the axial force transmitting member 15 is disposed closer to the upper surface of the beam upper flange 5 than the upper end of the slip stopper 14 in the floor slab 10.
[0026]
According to the first embodiment, when a horizontal force acts on the building and a beam axial stress is generated, the tensile force acting on the downstream-side joint of the column and the beam with the horizontal force around the steel column 1 is calculated as follows: Through the floor slab 10 integrated with the axial force transmitting member 15 and the steel beam 2, it can be transmitted as a compressive force to the column / beam joint on the upstream side of the steel column 1. That is, the horizontal force indicated by the arrow in FIG. 1B transmits the horizontal force (B) on the downstream side of the column to the horizontal force (A) on the upstream side of the column via the axial force transmitting member 15 and the floor slab 10. Accordingly, the so-called floor slab synthesizing effect can reduce the tensile force acting on the joint on the downstream side of the column / beam, and the joint quality of the column / beam joint can be easily and reliably ensured. The axial force transmitting member 15 has a joining function in place of a conventional split tee or the like that joins the end 5a of the beam upper flange 5 and the column, and the periphery of the column is designed separately from the floor slab reinforcing bar (not shown). It is arranged in. Preferably, the length of the axial force transmitting member 15 is set so as to satisfy the following condition.
L ≧ 40 × D
Here, L is the length of attachment of the axial force transmitting member 15 to the concrete, and D is the diameter of the axial force transmitting member.
[0027]
FIG. 3A is a cross-sectional plan view of the column / beam joint structure according to the second embodiment, and FIG. 3B is a longitudinal sectional view. In the second embodiment, a lower outer diaphragm 16 is welded to the outer periphery of the steel column 1 instead of the lower split tee 4 in the first embodiment, and an H-shaped steel beam is provided on the upper surface of the lower outer diaphragm 16. The end of the second beam lower flange 6 is assembled by welding 17. Other configurations are the same as the first embodiment.
[0028]
According to the second embodiment, similarly to the first embodiment, the horizontal force on the downstream side of the column can be transmitted to the horizontal force on the upstream side of the column via the axial force transmitting member 15 and the floor slab 10. Therefore, the tensile force acting on the joint on the downstream side of the column / beam can be reduced, and the joining quality of the joint of the column / beam can be easily and reliably ensured.
[0029]
FIG. 4A is a cross-sectional plan view of the column / beam joint structure according to the third embodiment, and FIG. 4B is a longitudinal sectional view. In the third embodiment, the lower through diaphragm 18 is provided on the steel column 1, and the end of the beam lower flange 6 of the H-shaped steel beam 2 is assembled to the lower through diaphragm 18 by welding 17. I have. An angle member 19 is attached to the end portion 5a of the beam upper flange 5 of the H-shaped steel beam 2 with a high-strength bolt, and an axial force is applied to a hole 20 opened at a rising portion of the angle member 19. The transmission member 15 is inserted and supported. Further, the angle member 19 is a slip stopper having a high stopping effect, and the joint can be made more compact and the cost can be reduced as compared with the case where a headed stud is used as the slip stopper. Other configurations are the same as those of the second embodiment.
[0030]
According to the third embodiment, similarly to the first and second embodiments, the horizontal force on the downstream side of the column can be transmitted to the horizontal force on the upstream side of the column via the axial force transmitting member 15 and the floor slab 10. Therefore, the tensile force acting on the joint on the downstream side of the column / beam can be reduced, and the joining quality of the joint of the column / beam can be easily and reliably ensured.
[0031]
5 (a) is cross-sectional plan view of the joint structure of columns and beams according to the embodiment 4, (b) is a longitudinal sectional view. In the fourth embodiment, an H-shaped steel beam 2 is joined to one opposite side surface of a steel column 1. The lower outer diaphragm 16 is welded to the outer periphery of the steel column 1, and the end of the lower beam flange 6 of the steel beam 2 is attached to the upper surface of the lower outer diaphragm 16 by welding 17.
[0032]
Further, in the fourth embodiment, the steel beam 2 is joined to only one opposite side surface (the right side in the figure) of the steel column 1, and the axial force transmitting member 15 also extends to the right side of the steel column 1. , Are arranged in parallel with the steel beam 2. The other end (left side in the figure) of the axial force transmitting member 15 disposed on both sides of the steel column 1 is connected to a joining member 21 having a predetermined length and a predetermined width disposed in contact with a side portion of the steel column 1. The fixing member 22 such as a nut is fixed to an end of the hole 20 which is inserted into the opened hole 20. Other configurations are the same as those of the first to third embodiments.
[0033]
According to the fourth embodiment, the tensile force acting on the joint on the downstream side of the column / beam by the horizontal force (stress in the beam axial direction) acting on the column is applied to the joint member 21 which is coupled to the floor slab 10 and the axial force transmitting member 15. Can be transmitted as a compressive force to the upstream side of the column via the. Therefore, the tensile force acting on the joint on the downstream side of the column / beam can be reduced, and the joining quality of the joint of the column / beam can be easily and reliably ensured.
[0034]
6 and 7 are a cross-sectional plan view and a vertical cross-sectional view of the column / beam joint structure according to the fifth embodiment. In the fifth embodiment, an H-shaped steel beam 2 is joined to each of four opposite sides of a steel column 1. A lower through-diaphragm 18 is provided on the steel column 1, and the end of the lower beam flange 6 of the steel beam 2 is assembled to the lower through-diaphragm 18 by welding 17.
[0035]
Further, in the fifth embodiment, the axial force transmitting member 15 of a predetermined length surrounds the steel column 1 and is arranged in a parallel arrangement around the steel column 1 to form a pair, and the steel column 1 is arranged in a grid. The steel beams 2 which are joined in four directions are inclined at a predetermined angle. Other configurations are the same as those of the first to fourth embodiments.
[0036]
According to the fifth embodiment, in the joint structure of the steel beam 2 joined in four directions of the steel column 1, a horizontal force (stress in the beam axial direction) acting on the column acts on the joint on the downstream side of the column / beam. The tensile force to be transmitted can be transmitted as a compressive force to the upstream side of the column through the axial force transmitting member 15 and the floor slab 10 arranged in a grid pattern. Therefore, the tensile force acting on the joint on the downstream side of the column / beam can be reduced, and the joining quality of the joint of the column / beam can be easily and reliably ensured. Can also function as a crack prevention line for the floor slab. Preferably, the length of the axial force transmitting member 15 is set so as to satisfy the following condition.
L ≧ 40 × D
Here, L is the length of attachment of the axial force transmitting member 15 to the concrete, and D is the diameter of the axial force transmitting member.
[0037]
FIG. 8A is a cross-sectional plan view of a column / beam joint structure according to Embodiment 6, and FIG. 8B is a longitudinal sectional view. In the sixth embodiment, the arrangement of the axial force transmitting member 15 is different from that of the first embodiment, and the H-shaped steel beam 2 is joined to the opposite side surface of the steel column 1 and the steel beam 2 The configuration in which the lower end of the beam lower flange 6 and the end of the beam web 2a are joined to the steel column 1 by the lower split tee 4 and the intermediate split tee 11 is the same as in the first embodiment.
[0038]
In the sixth embodiment, the axial force transmitting member 15 is arranged in parallel with one steel beam 2 (the right side in FIG. 7) of the steel beam 2 joined to the opposite side surfaces of the steel column 1, One end (left side in FIG. 7) of the axial force transmitting member 15 is joined to an upper portion of the other steel beam 2 (left side in FIG. 7) by an axial force transmitting member joint 15a. The axial force transmitting member 15 and the axial force transmitting member joint 15a can be integrally formed by bending a long deformed reinforcing bar or the like into a flat U-shape.
[0039]
According to the sixth embodiment, the tensile force acting on the joint on the downstream side of the column / beam due to the horizontal force (axial stress in the beam) acting on the column is applied to the axial force transmitting member 15 and the axial force transmitting member integrated therewith. It can be transmitted as a compressive force to the upstream side of the column via the portion 15a and the floor slab 10. Therefore, the tensile force acting on the joint on the downstream side of the column / beam can be reduced, and the joining quality of the joint of the column / beam can be easily and reliably ensured.
[0040]
9 and 10 are a cross-sectional plan view and a vertical cross-sectional view of a column / beam joint structure according to the seventh embodiment. In the seventh embodiment, steel beams 2 made of H-shaped steel are joined to each of four opposite sides of the steel column 1. The axial force transmitting member 15 having a predetermined length surrounds the steel column 1 and is bent and disposed in a rectangular shape around the steel column 1. Therefore, the predetermined axial force transmitting member 15 is provided with respect to the steel beam 2 joined in four directions of the steel column 1. Are arranged at an angle. Other configurations are the same as those of the fifth embodiment.
[0041]
According to the fifth embodiment, in the joint structure of the steel beam 2 joined in four directions of the steel column 1, a horizontal force (stress in the beam axial direction) acting on the column acts on the joint on the downstream side of the column / beam. The tensile force to be transmitted can be transmitted as a compressive force to the upstream side of the column through the axial force transmitting member 15 and the floor slab 10 arranged in a rectangular shape. Therefore, the tensile force acting on the joint on the downstream side of the column / beam can be reduced, and the joining quality of the joint of the column / beam can be easily and reliably ensured.
[0042]
The present invention may be implemented by appropriately modifying the configuration shown in each embodiment.
[0043]
【The invention's effect】
According to the present invention, the following effects can be obtained. In other words, when beam axial stress acts on the building due to the horizontal force of an earthquake, etc., tensile force acts on the joint between the steel column and the steel beam on the downstream side where the horizontal force acts on the steel column. However, this joint is susceptible to damage. However, in the present invention, the tensile force acting on the downstream joint of the column / beam by the axial force transmitting member disposed in the floor slab around the steel column, Since the compressive force is transmitted to the upstream joint of the beam, the tensile force acting on the downstream joint of the column and beam can be reduced by the combined effect of the floor slab, and the joint quality of the column and beam joint can be easily and reliably secured. In addition, it is possible to greatly reduce processing and construction labor.
[Brief description of the drawings]
1A is a cross-sectional plan view of a column / beam joint structure according to a first embodiment, and FIG. 1B is a longitudinal sectional view.
2A is a cross-sectional plan view of a column / beam joint structure according to a second embodiment, and FIG. 2B is a longitudinal sectional view.
3A is a cross-sectional plan view of a column / beam joint structure according to a third embodiment, and FIG. 3B is a vertical cross-sectional view.
4A is a cross-sectional plan view of a column / beam joint structure according to a fourth embodiment, and FIG. 4B is a vertical cross-sectional view.
FIG. 5 is a cross-sectional plan view of a column / beam joint structure according to a fifth embodiment.
6 is a longitudinal sectional view of FIG.
7A is a cross-sectional plan view of a column / beam joint structure according to a seventh embodiment, and FIG. 7B is a longitudinal sectional view.
FIG. 8 is a cross-sectional plan view of a column / beam joint structure according to an eighth embodiment.
FIG. 9 is a longitudinal sectional view of FIG.
10A is a cross-sectional plan view of a column / beam joint structure according to a conventional example, and FIG. 10B is a longitudinal sectional view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steel pillar 2 Steel beam 2a Web 3 Upper split tee 4 Lower split tee 5 Upper beam flange 5a End of flange 6 Lower beam flange 7 Bolt 10 Concrete floor slab 11 Intermediate portion split tee 14 Detachment preventing member 15 Axial force transmission Material 15a Axial force transmitting joint 16 Lower outer diaphragm 17 Welding 18 Lower through diaphragm 19 Angle material 20 Hole 21 Joining member 22 Fixing member

Claims (8)

柱の相対する2つの側面にそれぞれ梁を接合し、前記梁上にコンクリート床スラブを構築してなる建物の柱・梁の接合構造において、梁上フランジに作用する梁軸方向応力を前記床スラブへ伝達する機能を有するずれ止め部材を梁上フランジに有しており、前記柱の周辺で、かつ前記柱の相対する2つの側面に接合した梁に跨って軸力伝達材を床スラブ内に配置し、一方の梁上フランジに作用する引張力を他方の梁上面の床スラブを介して柱に圧縮力として伝達可能に構成したことを特徴とする床スラブ合成機能を有する柱・梁の接合構造。In a column / beam joint structure of a building in which a beam is joined to two opposing side surfaces of a column and a concrete floor slab is constructed on the beam, beam axial stress acting on the beam flange is applied to the floor slab. The flange on the beam has a slip prevention member having a function of transmitting the axial force transmitting material into the floor slab around the column and across the beam joined to two opposite sides of the column. A beam / column joint having a composite function of floor slab, characterized in that it is arranged so that the tensile force acting on the flange on one beam can be transmitted as a compressive force to the column via the floor slab on the upper surface of the other beam. Construction. 柱の相対する一方の側面に梁を接合し、前記梁上にコンクリート床スラブを構築してなる建物の柱・梁の接合構造において、梁上フランジに作用する梁軸方向応力を前記床スラブへ伝達する機能を有するずれ止め部材を梁上フランジに有しており、前記柱の周辺でかつ前記梁を接合した側面から相対する側面に跨って軸力伝達材を当該床スラブ内に配置し、前記軸力伝達材に結合した接合部材を介して梁フランジに作用する引張力を柱に圧縮力として伝達可能に構成したことを特徴とする床スラブ合成機能を有する柱・梁の接合構造。In a column / beam joint structure of a building in which a beam is joined to one opposite side of a column and a concrete floor slab is constructed on the beam, beam axial stress acting on the beam upper flange is applied to the floor slab. A beam stopper having a function of transmitting is provided on the upper flange of the beam, and an axial force transmitting material is arranged in the floor slab around the column and across the side opposite to the side where the beam is joined, A column / beam joint structure having a floor slab combining function, wherein a tensile force acting on a beam flange can be transmitted as a compressive force to a column via a joint member coupled to the axial force transmitting member. 前記梁上フランジは、柱に対し非接合とされていることを特徴とする請求項1または2記載の床スラブ合成機能を有する柱・梁の接合構造。The joint structure of a column and a beam having a floor slab combining function according to claim 1 or 2, wherein the beam upper flange is not joined to the column. 梁上フランジ上面に梁フランジに作用する梁軸方向応力を前記床スラブヘ伝達するずれ止め部材を設け、前記軸力伝達材は、前記ずれ止め部材の上端より梁上フランジ上面寄りに配置されていることを特徴とする、請求項1〜3の何れか1項記載の床スラブ合成機能を有する柱・梁の接合構造。A displacement preventing member for transmitting beam axial stress acting on the beam flange to the floor slab is provided on the upper surface of the beam upper flange, and the axial force transmitting member is disposed closer to the upper surface of the beam upper flange than the upper end of the stopper member. The joint structure of columns and beams having a floor slab synthesizing function according to any one of claims 1 to 3, characterized in that: 前記ずれ止め部材が頭付きスタッドであることを特徴とする、請求項4記載の床スラブ合成機能を有する柱・梁の接合構造。The joint structure of a column and a beam having a floor slab synthesizing function according to claim 4, wherein the slip prevention member is a stud with a head. 前記ずれ止め部材がアングル材もしくはスプリットティーなど梁上フランジに接合されている金物であることを特徴とする、請求項4記載の床スラブ合成機能を有する柱・梁の接合構造。The joint structure of a column and a beam having a floor slab synthesizing function according to claim 4, wherein the stopper member is a metal joined to the upper flange of the beam, such as an angle material or a split tee. 前記軸力伝達材は、梁と平行若しくは梁に対し所定の角度傾斜配置した異形鉄筋で構成したことを特徴とする請求項1〜6の何れか1項記載の床スラブ合成機能を有する柱・梁の接合構造。The column having a floor slab synthesizing function according to any one of claims 1 to 6, wherein the axial force transmitting member is constituted by a deformed reinforcing bar arranged parallel to the beam or inclined at a predetermined angle with respect to the beam. Beam joint structure. 前記軸力伝達材は、鋼製梁と平行に配置したアンカー機能を有するボルトで構成したことを特徴とする請求項1〜6の何れか1項記載の床スラブ合成機能を有する柱・梁の接合構造。The pillar / beam having a composite function of a floor slab according to any one of claims 1 to 6, wherein the axial force transmitting member is constituted by a bolt having an anchor function arranged in parallel with a steel beam. Joint structure.
JP2003107012A 2003-04-10 2003-04-10 Column / beam joint structure with floor slab composition function Expired - Fee Related JP4091870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107012A JP4091870B2 (en) 2003-04-10 2003-04-10 Column / beam joint structure with floor slab composition function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107012A JP4091870B2 (en) 2003-04-10 2003-04-10 Column / beam joint structure with floor slab composition function

Publications (2)

Publication Number Publication Date
JP2004316073A true JP2004316073A (en) 2004-11-11
JP4091870B2 JP4091870B2 (en) 2008-05-28

Family

ID=33469009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107012A Expired - Fee Related JP4091870B2 (en) 2003-04-10 2003-04-10 Column / beam joint structure with floor slab composition function

Country Status (1)

Country Link
JP (1) JP4091870B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635160A (en) * 2012-01-06 2012-08-15 浙江大学 Component based method for acquiring initial rigidity of semi-rigid joints
JP2019206812A (en) * 2018-05-28 2019-12-05 株式会社錢高組 Slab support structure
JP2020051206A (en) * 2018-09-28 2020-04-02 国立大学法人京都大学 Composite stud, floor structure and construction method of floor structure
JP2020117966A (en) * 2019-01-25 2020-08-06 株式会社竹中工務店 Column-beam joint structure
JP2021123941A (en) * 2020-02-05 2021-08-30 株式会社熊谷組 Floor structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635160A (en) * 2012-01-06 2012-08-15 浙江大学 Component based method for acquiring initial rigidity of semi-rigid joints
CN102635160B (en) * 2012-01-06 2015-01-28 浙江大学 Component based method for acquiring initial rigidity of semi-rigid joints
JP2019206812A (en) * 2018-05-28 2019-12-05 株式会社錢高組 Slab support structure
JP7041588B2 (en) 2018-05-28 2022-03-24 株式会社錢高組 Slavic support structure
JP2020051206A (en) * 2018-09-28 2020-04-02 国立大学法人京都大学 Composite stud, floor structure and construction method of floor structure
JP7082413B2 (en) 2018-09-28 2022-06-08 国立大学法人京都大学 Composite studs, floor structures and floor structure construction methods
JP2020117966A (en) * 2019-01-25 2020-08-06 株式会社竹中工務店 Column-beam joint structure
JP7251038B2 (en) 2019-01-25 2023-04-04 株式会社竹中工務店 Column-beam connection structure
JP2021123941A (en) * 2020-02-05 2021-08-30 株式会社熊谷組 Floor structure
JP7366782B2 (en) 2020-02-05 2023-10-23 株式会社熊谷組 floor structure

Also Published As

Publication number Publication date
JP4091870B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
JP5443079B2 (en) Joint structure of precast composite slab
JP2000144905A (en) Mixed structural beam
JP2004308121A (en) Joint structure of steel and concrete
JP6769549B2 (en) Beam joining method, beam joining structure, and support members
JP2006144535A (en) Joint structure of column and beam
JP6346847B2 (en) Anchor cable fixing structure
KR101940876B1 (en) Composite girder and construction method thereof
KR101577327B1 (en) Hybrid composite girder
KR20130081605A (en) Corrugated steel plate web-psc composite beam structure which combined corrugated steel plate and concrete plate with l shape steel
JP2004316073A (en) Joint structure of column and beam with floor slab composite function
CN111173129A (en) Prestress assembling frame structure and construction method
JP4447632B2 (en) Beam and beam-column joint structure and method of joining the same
JP2009102878A (en) Beam-column connection structure
JP4110729B2 (en) Foundation pile head structure
JP3632760B2 (en) Corrugated steel web and PC deck bridges
JP7040716B2 (en) Steel beam slab construction method and steel beam
JP3129682B2 (en) Open section column and beam joining device
JP2002220812A (en) Bridge girder
KR101791177B1 (en) Corrugated Steel Plate Web-PSC Composite Beam Structure Which Combined Corrugated Steel Plate And Concrete Plate with Bolt
JP3950748B2 (en) Bridge girder
JP4045502B2 (en) Structure
JP7426253B2 (en) truss beam
JP2006002427A (en) JOINT STRUCTURE OF FULL PRECAST CONCRETE (PCa) FLOORBOARD
JP2001262707A (en) Junction structure for reinforced concrete column and steel beam
JPH0931974A (en) Mechanism of reinforcing adhesion of reinforcement of reinforced concrete member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080229

R151 Written notification of patent or utility model registration

Ref document number: 4091870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees