JP6769549B2 - Beam joining method, beam joining structure, and support members - Google Patents

Beam joining method, beam joining structure, and support members Download PDF

Info

Publication number
JP6769549B2
JP6769549B2 JP2019520657A JP2019520657A JP6769549B2 JP 6769549 B2 JP6769549 B2 JP 6769549B2 JP 2019520657 A JP2019520657 A JP 2019520657A JP 2019520657 A JP2019520657 A JP 2019520657A JP 6769549 B2 JP6769549 B2 JP 6769549B2
Authority
JP
Japan
Prior art keywords
wedge member
lower flange
gap
inclined surface
wedge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019520657A
Other languages
Japanese (ja)
Other versions
JPWO2019077916A1 (en
Inventor
政樹 有田
政樹 有田
大祐 錦織
大祐 錦織
聡 北岡
聡 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2019077916A1 publication Critical patent/JPWO2019077916A1/en
Application granted granted Critical
Publication of JP6769549B2 publication Critical patent/JP6769549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)

Description

本開示は、小梁接合方法、小梁接合構造、及び、支持部材に関する。 The present disclosure relates to a beam joining method, a beam joining structure, and a support member.

ビル等の建物には、建物の骨格を形成する建物構造が適用されている。一般に、建物構造は、大梁、柱、又は、壁等の構造部材と、小梁とを備えている。小梁は、H形鋼によって構成されており、構造部材に接合されている。ここで、小梁とは、長さ方向の2つの端部のうち少なくとも一方を構造部材に接合されており、建物の自重や積載荷重による鉛直方向の力を支えて構造部材に伝えるための梁部材のことをいう。一方、大梁は、地震や風によって建物に作用する水平力に抵抗する梁部材のことをいう。また、小梁に接合され、小梁同様に鉛直方向の力を支える部材を一般に孫梁というが、本発明における小梁は孫梁を含み、本発明の適用対象が孫梁の場合は、構造部材に小梁を含むこととする。 A building structure that forms the skeleton of a building is applied to a building such as a building. Generally, a building structure includes structural members such as girders, columns, or walls, and girders. The beam is made of H-section steel and is joined to the structural member. Here, the beam is a beam in which at least one of the two ends in the length direction is joined to the structural member, and the vertical force due to the weight of the building or the load is supported and transmitted to the structural member. It refers to a member. On the other hand, a girder is a beam member that resists the horizontal force acting on a building due to an earthquake or wind. Further, a member joined to a girder and supporting a force in the vertical direction like the girder is generally called a girder, but the girder in the present invention includes a girder, and when the object of application of the present invention is a girder, the structure The member shall include a beam.

小梁と構造部材との接合部には、加工が少なく、現場の施工も簡易であるウェブボルト接合が用いられる。ウェブボルト接合とは、小梁のウェブのみをボルトで構造部材に接合し、小梁の上側フランジ及び下側フランジを構造部材と接合しない接合のことである。ウェブボルト接合は、小梁のせん断力のみを構造部材に伝え、小梁と構造部材との接合部が曲げモーメント抵抗を持たないピン接合とされる。 Web bolt joints, which require less processing and are easy to construct on-site, are used for the joints between the beams and structural members. Web bolt joining is a joining in which only the web of the beam is joined to the structural member with bolts, and the upper and lower flanges of the beam are not joined to the structural member. Web bolt joints are pin joints in which only the shearing force of the beam is transmitted to the structural member, and the joint between the beam and the structural member does not have bending moment resistance.

ここで、図23には、小梁が構造部材にピン接合された小梁接合構造が模式的に示されており、図24には、小梁が構造部材に半剛接合された小梁接合構造が模式的に示されており、図25には、小梁が構造部材に剛接合された小梁接合構造が模式的に示されている。図23〜図25において、符号210は、小梁を示しており、符号220は、構造部材を示しており、符号230は、スラブを示している。また、記号δは、小梁のたわみ量を示しており、記号Mは、小梁の曲げモーメントの大きさを示している。 Here, FIG. 23 schematically shows a beam joining structure in which the beam is pin-joined to the structural member, and FIG. 24 shows a beam joining in which the beam is semi-rigidly joined to the structural member. The structure is schematically shown, and FIG. 25 schematically shows a beam joining structure in which the beam is rigidly joined to the structural member. In FIGS. 23 to 25, reference numeral 210 indicates a beam, reference numeral 220 indicates a structural member, and reference numeral 230 indicates a slab. Further, the symbol δ indicates the amount of deflection of the beam, and the symbol M indicates the magnitude of the bending moment of the beam.

図23に示されるピン接合で支持された小梁は、図24、図25に示される曲げモーメント抵抗を持つ半剛接合や剛接合で支持された小梁に比べ、小梁の中央部のたわみや曲げモーメントが大きくなる。したがって、たわみの抑制のために小梁の断面を大きくして小梁の剛性を増したり、曲げモーメントに耐えるために断面の大きい小梁や高強度の小梁が必要になったりする。このため、小梁の重量や重量あたりの単価が増加し、結果として、建物の施工コストを押し上げる要因になる。 The beam supported by the pin joint shown in FIG. 23 has a deflection at the center of the beam as compared with the semi-rigid joint or the beam supported by the rigid joint having the bending moment resistance shown in FIGS. 24 and 25. And the bending moment becomes large. Therefore, the cross section of the beam is increased to suppress the deflection to increase the rigidity of the beam, and the beam having a large cross section or the beam having high strength is required to withstand the bending moment. For this reason, the weight of the beam and the unit price per weight increase, and as a result, it becomes a factor that pushes up the construction cost of the building.

一方、例えば、大きな空間を有する物流倉庫や、間仕切りのないオフィスを有するビル等では、柱の本数を減らして空間を広く利用するために、10mを超える長いスパンの小梁が用いられることがある。このような長いスパンの小梁が用いられる場合に、小梁の中央部のたわみを抑制するためには、小梁と構造部材との接合部に、小梁のウェブを溶接やボルトで構造部材に接合すると共に小梁の上側フランジ及び下側フランジを溶接やボルトで構造部材に接合する剛接合が用いられる。 On the other hand, for example, in a distribution warehouse having a large space or a building having an office without a partition, a beam having a long span of more than 10 m may be used in order to reduce the number of pillars and use the space widely. .. When such a long-span beam is used, in order to suppress the deflection of the central part of the beam, the web of the beam is welded or bolted to the structural member at the joint between the beam and the structural member. Rigid joints are used in which the upper and lower flanges of the beam are joined to the structural member by welding or bolts.

このような剛接合では、小梁の上側フランジ及び下側フランジを構造部材に接合する分、使用するボルトの本数が増えたり、溶接する際の溶接作業員の足場の設置、溶接作業、及び、溶接部の超音波探傷等の追加の工程が必要になったりする。このため、建物の施工コストの増大や、工期が長くなる要因になる。 In such rigid joining, the number of bolts used increases by the amount of joining the upper and lower flanges of the beam to the structural member, and the installation of scaffolds for welding workers during welding, welding work, and Additional steps such as ultrasonic flaw detection of welds may be required. For this reason, it becomes a factor that the construction cost of the building increases and the construction period becomes long.

そこで、上記課題を解決するために、非特許文献1に開示の小梁接合構造では、小梁の下側フランジと構造部材(柱)との間に、コンタクトプレートが挿入されている。また、小梁の上側フランジと、構造部材の周囲に設けられたスラブとがシアコネクタで接合されている。そして、小梁の圧縮力がコンタクトプレートを介して構造部材に伝達されると共に、小梁の上側フランジからの引張力がスラブに配した鉄筋を介して構造部材に伝達されるようにすることで、小梁と構造部材との接合部に曲げモーメント抵抗が付与されるようになっている。これは、小梁が鉛直方向の力を支える部材であり、小梁と柱や他の梁との接合部が回転抵抗を持つ場合には、接合部近傍は小梁の上側フランジに引張力、下フランジに圧縮力が作用している条件のもとで成立している。 Therefore, in order to solve the above problems, in the beam joining structure disclosed in Non-Patent Document 1, a contact plate is inserted between the lower flange of the beam and the structural member (column). Further, the upper flange of the beam and the slab provided around the structural member are joined by a shear connector. Then, the compressive force of the beam is transmitted to the structural member via the contact plate, and the tensile force from the upper flange of the beam is transmitted to the structural member via the reinforcing bar arranged on the slab. , Bending moment resistance is applied to the joint between the beam and the structural member. This is a member in which the beam supports the force in the vertical direction, and when the joint between the beam and the column or other beam has rotational resistance, the tensile force is applied to the upper flange of the beam near the joint. It is established under the condition that a compressive force acts on the lower flange.

この小梁接合構造によれば、小梁のウェブのみをボルトで構造部材に接合するピン接合に比べて、小梁の中央部のたわみと曲げモーメントを抑制できる。しかも、小梁のウェブを溶接やボルトで構造部材に接合すると共に小梁の上側フランジ及び下側フランジを溶接やボルトで構造部材に接合する剛接合に比べて、小梁と構造部材との接合部の補強が簡易で済むので、工程やコストの増大を最小限に抑えることができる。 According to this beam joining structure, the deflection and bending moment of the central portion of the beam can be suppressed as compared with the pin joining in which only the web of the beam is joined to the structural member with bolts. Moreover, compared to rigid joining in which the web of the beam is welded or bolted to the structural member and the upper and lower flanges of the beam are welded or bolted to the structural member, the beam and the structural member are joined. Since the reinforcement of the part can be easily performed, the increase in the process and cost can be minimized.

なお、特許文献1には、梁と鋼管柱との接合方法に関する技術が開示されている。 In addition, Patent Document 1 discloses a technique relating to a method of joining a beam and a steel pipe column.

「Eurocode 4:Design of composite steel and concrete structures -Part 1-1: General rules and rules for buildings」EUROPEAN COMMITTEE FOR STANDARDIZATION、2004年12月、p.90"Eurocode 4: Design of composite steel and concrete structures -Part 1-1: General rules and rules for buildings" EUROPEAN COMMITTEE FOR STANDARDIZATION, December 2004, p.90 特開平7−11706号公報Japanese Patent Application Laid-Open No. 7-11706

小梁が構造部材に接合された小梁接合構造では、小梁と構造部材との建付けのばらつきにより、小梁の下側フランジと構造部材との間の隙間の幅がばらつくことが考えられる。そのため、非特許文献1に記載された小梁接合構造では、小梁の下側フランジと構造部材との間の隙間よりもコンタクトプレートの幅が狭い場合に、コンタクトプレートを隙間に圧入できず、小梁の下側フランジからの圧縮力を構造部材に伝達できないという問題がある。 In the beam joint structure in which the beam is joined to the structural member, it is considered that the width of the gap between the lower flange of the beam and the structural member varies due to the variation in the installation of the beam and the structural member. .. Therefore, in the beam joining structure described in Non-Patent Document 1, when the width of the contact plate is narrower than the gap between the lower flange of the beam and the structural member, the contact plate cannot be press-fitted into the gap. There is a problem that the compressive force from the lower flange of the beam cannot be transmitted to the structural member.

ここで、小梁の下側フランジと構造部材との間の隙間の幅がばらついても、小梁の下側フランジからの圧縮力を構造部材に伝達できるようにするためには、隙間の幅のばらつきを考慮した異なる幅のコンタクトプレートを複数用意することが考えられる。しかしながら、この場合には、材料のロスや施工手間によりコストが増大するという問題がある。 Here, even if the width of the gap between the lower flange of the beam and the structural member varies, the width of the gap is required so that the compressive force from the lower flange of the beam can be transmitted to the structural member. It is conceivable to prepare a plurality of contact plates having different widths in consideration of the variation in the above. However, in this case, there is a problem that the cost increases due to material loss and construction labor.

本開示は、上記課題に鑑みて成されたものであり、小梁の下側フランジと構造部材との間の隙間の幅がばらついても、コストの増大を抑えつつ、小梁の下側フランジからの圧縮力を構造部材に伝達できるようにすることを目的とする。 The present disclosure has been made in view of the above problems, and even if the width of the gap between the lower flange of the beam and the structural member varies, the lower flange of the beam can be suppressed while suppressing an increase in cost. The purpose is to enable the compression force from the beam to be transmitted to the structural member.

本開示の第一態様に係る小梁接合方法は、水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合工程と、前記構造部材と水平方向に対向する斜め上向きの第一傾斜面を有する第一楔部材を前記隙間に挿入して前記下側フランジに固定する固定工程と、第二楔部材における斜め下向きの第二傾斜面を前記第一傾斜面に摺接させながら前記第二楔部材を下側に移動させて、前記第二楔部材を前記構造部材と前記第一楔部材との間に圧入する圧入工程と、を備える。 In the beam joining method according to the first aspect of the present disclosure, the gap is formed in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. A joining step of joining the beam to the structural member on the upper side, and a first wedge member having an obliquely upward first inclined surface facing the structural member in the horizontal direction are inserted into the gap to the lower side. In the fixing step of fixing to the flange, the second wedge member is moved downward while sliding the diagonally downward second inclined surface of the second wedge member with the first inclined surface to move the second wedge member downward. A press-fitting step of press-fitting between the structural member and the first wedge member is provided.

本開示の第一態様に係る小梁接合方法によれば、第二楔部材の第二傾斜面が第一楔部材の第一傾斜面に摺接しながら第二楔部材が下側に移動すると、第二傾斜面と第一傾斜面との接触領域が下側に拡がる。これにより、第二楔部材が徐々に構造部材側に移動し、第一楔部材及び第二楔部材の幅が拡大する。したがって、小梁の下側フランジと構造部材との間の隙間の幅がばらついても、この隙間の幅に第一楔部材及び第二楔部材の幅を合わせることができるので、隙間の幅に合わせた幅で第一楔部材及び第二楔部材を小梁の下側フランジと構造部材との間に配置できる。これにより、小梁の下側フランジと構造部材との間の隙間の幅がばらついても、小梁の下側フランジからの圧縮力を第一楔部材及び第二楔部材を介して構造部材に伝達できる。また、隙間の幅のばらつきを考慮した異なる幅の第一楔部材及び第二楔部材を複数用意する必要がないので、コストの増大を抑えることができる。 According to the beam joining method according to the first aspect of the present disclosure, when the second wedge member moves downward while the second inclined surface of the second wedge member is in sliding contact with the first inclined surface of the first wedge member. The contact area between the second inclined surface and the first inclined surface expands downward. As a result, the second wedge member gradually moves toward the structural member side, and the widths of the first wedge member and the second wedge member are expanded. Therefore, even if the width of the gap between the lower flange of the beam and the structural member varies, the width of the first wedge member and the second wedge member can be adjusted to the width of this gap, so that the width of the gap can be adjusted. The first wedge member and the second wedge member can be arranged between the lower flange of the beam and the structural member with the combined width. As a result, even if the width of the gap between the lower flange of the beam and the structural member varies, the compressive force from the lower flange of the beam is applied to the structural member via the first wedge member and the second wedge member. Can be communicated. Further, since it is not necessary to prepare a plurality of first wedge members and second wedge members having different widths in consideration of the variation in the width of the gap, it is possible to suppress an increase in cost.

本開示の第二態様に係る小梁接合方法は、水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合工程と、前記下側フランジと対向する斜め上向きの第一傾斜面を有する第一楔部材を前記隙間に挿入して前記構造部材に固定する固定工程と、第二楔部材における斜め下向きの第二傾斜面を前記第一傾斜面に摺接させながら前記第二楔部材を下側に移動させて、前記第二楔部材を前記下側フランジと前記第一楔部材との間に圧入する圧入工程と、を備える。 In the beam joining method according to the second aspect of the present disclosure, the gap is formed in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. A joining step of joining the beam to the structural member on the upper side, and a first wedge member having an obliquely upward first inclined surface facing the lower flange are inserted into the gap and fixed to the structural member. The second wedge member is moved downward while sliding the diagonally downward second inclined surface of the second wedge member with the first inclined surface, and the second wedge member is moved to the lower side. A press-fitting step of press-fitting between the flange and the first wedge member is provided.

本開示の第二態様に係る小梁接合方法によれば、第二楔部材の第二傾斜面が第一楔部材の第一傾斜面に摺接しながら第二楔部材が下側に移動すると、第二傾斜面と第一傾斜面との接触領域が下側に拡がる。これにより、第二楔部材が徐々に小梁側に移動し、第一楔部材及び第二楔部材の幅が拡大する。したがって、小梁の下側フランジと構造部材との間の隙間の幅がばらついても、この隙間の幅に第一楔部材及び第二楔部材の幅を合わせることができるので、隙間の幅に合わせた幅で第一楔部材及び第二楔部材を小梁の下側フランジと構造部材との間に配置できる。これにより、小梁の下側フランジと構造部材との間の隙間の幅がばらついても、小梁の下側フランジからの圧縮力を第一楔部材及び第二楔部材を介して構造部材に伝達できる。また、隙間の幅のばらつきを考慮した異なる幅の第一楔部材及び第二楔部材を複数用意する必要がないので、コストの増大を抑えることができる。 According to the beam joining method according to the second aspect of the present disclosure, when the second wedge member moves downward while the second inclined surface of the second wedge member is in sliding contact with the first inclined surface of the first wedge member. The contact area between the second inclined surface and the first inclined surface expands downward. As a result, the second wedge member gradually moves toward the beam side, and the widths of the first wedge member and the second wedge member are expanded. Therefore, even if the width of the gap between the lower flange of the beam and the structural member varies, the width of the first wedge member and the second wedge member can be adjusted to the width of this gap, so that the width of the gap can be adjusted. The first wedge member and the second wedge member can be arranged between the lower flange of the beam and the structural member with the combined width. As a result, even if the width of the gap between the lower flange of the beam and the structural member varies, the compressive force from the lower flange of the beam is applied to the structural member via the first wedge member and the second wedge member. Can be communicated. Further, since it is not necessary to prepare a plurality of first wedge members and second wedge members having different widths in consideration of the variation in the width of the gap, it is possible to suppress an increase in cost.

本開示の第三態様に係る小梁接合構造は、水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部と、前記隙間に挿入されて前記下側フランジに固定されると共に、前記構造部材と水平方向に対向する斜め上向きの第一傾斜面を有する第一楔部材と、前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記構造部材と前記第一楔部材との間に圧入された第二楔部材と、を備える。 In the beam joining structure according to the third aspect of the present disclosure, the gap is formed in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. A joint portion that joins the beam to the structural member on the upper side, and an obliquely upward first inclined surface that is inserted into the gap and fixed to the lower flange and that faces the structural member in the horizontal direction. A second wedge member having an obliquely downward second inclined surface in contact with the first inclined surface, and a second wedge member press-fitted between the structural member and the first wedge member. Be prepared.

本開示の第三態様に係る小梁接合構造によれば、第二楔部材の第二傾斜面が第一楔部材の第一傾斜面に摺接しながら第二楔部材が下側に移動すると、第二傾斜面と第一傾斜面との接触領域が下側に拡がる。これにより、第二楔部材が徐々に構造部材側に移動し、第一楔部材及び第二楔部材の幅が拡大する。したがって、小梁の下側フランジと構造部材との間の隙間の幅がばらついても、この隙間の幅に第一楔部材及び第二楔部材の幅を合わせることができるので、隙間の幅に合わせた幅で第一楔部材及び第二楔部材を小梁の下側フランジと構造部材との間に配置できる。これにより、小梁の下側フランジと構造部材との間の隙間の幅がばらついても、小梁の下側フランジからの圧縮力を第一楔部材及び第二楔部材を介して構造部材に伝達できる。また、隙間の幅のばらつきを考慮した異なる幅の第一楔部材及び第二楔部材を複数用意する必要がないので、コストの増大を抑えることができる。 According to the beam joining structure according to the third aspect of the present disclosure, when the second wedge member moves downward while the second inclined surface of the second wedge member is in sliding contact with the first inclined surface of the first wedge member. The contact area between the second inclined surface and the first inclined surface expands downward. As a result, the second wedge member gradually moves toward the structural member side, and the widths of the first wedge member and the second wedge member are expanded. Therefore, even if the width of the gap between the lower flange of the beam and the structural member varies, the width of the first wedge member and the second wedge member can be adjusted to the width of this gap, so that the width of the gap can be adjusted. The first wedge member and the second wedge member can be arranged between the lower flange of the beam and the structural member with the combined width. As a result, even if the width of the gap between the lower flange of the beam and the structural member varies, the compressive force from the lower flange of the beam is applied to the structural member via the first wedge member and the second wedge member. Can be communicated. Further, since it is not necessary to prepare a plurality of first wedge members and second wedge members having different widths in consideration of the variation in the width of the gap, it is possible to suppress an increase in cost.

本開示の第四態様に係る小梁接合構造は、水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部と、前記隙間に挿入されて前記構造部材に固定されると共に、前記下側フランジと対向する斜め上向きの第一傾斜面を有する第一楔部材と、前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記下側フランジと前記第一楔部材との間に圧入された第二楔部材と、を備える。 In the beam joining structure according to the fourth aspect of the present disclosure, the gap is formed in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. A second having a joint portion for joining the beam to the structural member on the upper side, an obliquely upward first inclined surface that is inserted into the gap and fixed to the structural member, and faces the lower flange. It includes a one-wedge member, a second inclined surface that is obliquely downward in contact with the first inclined surface, and a second wedge member that is press-fitted between the lower flange and the first wedge member.

本開示の第四態様に係る小梁接合構造によれば、第二楔部材の第二傾斜面が第一楔部材の第一傾斜面に摺接しながら第二楔部材が下側に移動すると、第二傾斜面と第一傾斜面との接触領域が下側に拡がる。これにより、第二楔部材が徐々に小梁側に移動し、第一楔部材及び第二楔部材の幅が拡大する。したがって、小梁の下側フランジと構造部材との間の隙間の幅がばらついても、この隙間の幅に第一楔部材及び第二楔部材の幅を合わせることができるので、隙間の幅に合わせた幅で第一楔部材及び第二楔部材を小梁の下側フランジと構造部材との間に配置できる。これにより、小梁の下側フランジと構造部材との間の隙間の幅がばらついても、小梁の下側フランジからの圧縮力を第一楔部材及び第二楔部材を介して構造部材に伝達できる。また、隙間の幅のばらつきを考慮した異なる幅の第一楔部材及び第二楔部材を複数用意する必要がないので、コストの増大を抑えることができる。 According to the beam joining structure according to the fourth aspect of the present disclosure, when the second wedge member moves downward while the second inclined surface of the second wedge member is in sliding contact with the first inclined surface of the first wedge member. The contact area between the second inclined surface and the first inclined surface expands downward. As a result, the second wedge member gradually moves toward the beam side, and the widths of the first wedge member and the second wedge member are expanded. Therefore, even if the width of the gap between the lower flange of the beam and the structural member varies, the width of the first wedge member and the second wedge member can be adjusted to the width of this gap, so that the width of the gap can be adjusted. The first wedge member and the second wedge member can be arranged between the lower flange of the beam and the structural member with the combined width. As a result, even if the width of the gap between the lower flange of the beam and the structural member varies, the compressive force from the lower flange of the beam is applied to the structural member via the first wedge member and the second wedge member. Can be communicated. Further, since it is not necessary to prepare a plurality of first wedge members and second wedge members having different widths in consideration of the variation in the width of the gap, it is possible to suppress an increase in cost.

本開示の第五態様に係る支持部材は、水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部を有する小梁接合構造に用いられる支持部材であって、前記隙間に挿入されて前記下側フランジに固定されると共に、前記構造部材と水平方向に対向する斜め上向きの第一傾斜面を有する第一楔部材と、前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記構造部材と前記第一楔部材との間に圧入される第二楔部材と、を備える。 The support member according to the fifth aspect of the present disclosure is larger than the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. A support member used in a beam joining structure having a joint portion for joining the beam to the structural member on the upper side, which is inserted into the gap and fixed to the lower flange and horizontal to the structural member. Between the first wedge member having a first inclined surface facing diagonally upward and the second inclined surface diagonally downward in contact with the first inclined surface, and between the structural member and the first wedge member. It is provided with a second wedge member that is press-fitted into.

本開示の第五態様に係る支持部材によれば、第二楔部材の第二傾斜面が第一楔部材の第一傾斜面に摺接しながら第二楔部材が下側に移動すると、第二傾斜面と第一傾斜面との接触領域が下側に拡がる。これにより、第二楔部材が徐々に構造部材側に移動し、第一楔部材及び第二楔部材の幅が拡大する。したがって、小梁の下側フランジと構造部材との間の隙間の幅がばらついても、この隙間の幅に第一楔部材及び第二楔部材の幅を合わせることができるので、隙間の幅に合わせた幅で第一楔部材及び第二楔部材を小梁の下側フランジと構造部材との間に配置できる。これにより、小梁の下側フランジと構造部材との間の隙間の幅がばらついても、小梁の下側フランジからの圧縮力を第一楔部材及び第二楔部材を介して構造部材に伝達できる。また、隙間の幅のばらつきを考慮した異なる幅の第一楔部材及び第二楔部材を複数用意する必要がないので、コストの増大を抑えることができる。 According to the support member according to the fifth aspect of the present disclosure, when the second inclined surface of the second wedge member slides in contact with the first inclined surface of the first wedge member and the second wedge member moves downward, the second The contact area between the inclined surface and the first inclined surface expands downward. As a result, the second wedge member gradually moves toward the structural member side, and the widths of the first wedge member and the second wedge member are expanded. Therefore, even if the width of the gap between the lower flange of the beam and the structural member varies, the width of the first wedge member and the second wedge member can be adjusted to the width of this gap, so that the width of the gap can be adjusted. The first wedge member and the second wedge member can be arranged between the lower flange of the beam and the structural member with the combined width. As a result, even if the width of the gap between the lower flange of the beam and the structural member varies, the compressive force from the lower flange of the beam is applied to the structural member via the first wedge member and the second wedge member. Can be communicated. Further, since it is not necessary to prepare a plurality of first wedge members and second wedge members having different widths in consideration of the variation in the width of the gap, it is possible to suppress an increase in cost.

本開示の第六態様に係る支持部材は、水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部を有する小梁接合構造に用いられる支持部材であって、前記隙間に挿入されて前記構造部材に固定されると共に、前記下側フランジと対向する斜め上向きの第一傾斜面を有する第一楔部材と、前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記下側フランジと前記第一楔部材との間に圧入される第二楔部材と、を備える。 The support member according to the sixth aspect of the present disclosure is larger than the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. A support member used in a beam joining structure having a joint portion for joining the beam to the structural member on the upper side, which is inserted into the gap and fixed to the structural member, and faces the lower flange. A first wedge member having an obliquely upward first inclined surface and an obliquely downward second inclined surface in contact with the first inclined surface are press-fitted between the lower flange and the first wedge member. It is provided with a second wedge member to be formed.

本開示の第六態様に係る支持部材によれば、第二楔部材の第二傾斜面が第一楔部材の第一傾斜面に摺接しながら第二楔部材が下側に移動すると、第二傾斜面と第一傾斜面との接触領域が下側に拡がる。これにより、第二楔部材が徐々に小梁側に移動し、第一楔部材及び第二楔部材の幅が拡大する。したがって、小梁の下側フランジと構造部材との間の隙間の幅がばらついても、この隙間の幅に第一楔部材及び第二楔部材の幅を合わせることができるので、隙間の幅に合わせた幅で第一楔部材及び第二楔部材を小梁の下側フランジと構造部材との間に配置できる。これにより、小梁の下側フランジと構造部材との間の隙間の幅がばらついても、小梁の下側フランジからの圧縮力を第一楔部材及び第二楔部材を介して構造部材に伝達できる。また、隙間の幅のばらつきを考慮した異なる幅の第一楔部材及び第二楔部材を複数用意する必要がないので、コストの増大を抑えることができる。 According to the support member according to the sixth aspect of the present disclosure, when the second inclined surface of the second wedge member slides in contact with the first inclined surface of the first wedge member and the second wedge member moves downward, the second The contact area between the inclined surface and the first inclined surface expands downward. As a result, the second wedge member gradually moves toward the beam side, and the widths of the first wedge member and the second wedge member are expanded. Therefore, even if the width of the gap between the lower flange of the beam and the structural member varies, the width of the first wedge member and the second wedge member can be adjusted to the width of this gap, so that the width of the gap can be adjusted. The first wedge member and the second wedge member can be arranged between the lower flange of the beam and the structural member with the combined width. As a result, even if the width of the gap between the lower flange of the beam and the structural member varies, the compressive force from the lower flange of the beam is applied to the structural member via the first wedge member and the second wedge member. Can be communicated. Further, since it is not necessary to prepare a plurality of first wedge members and second wedge members having different widths in consideration of the variation in the width of the gap, it is possible to suppress an increase in cost.

以上詳述した通り、本開示によれば、小梁の下側フランジと構造部材との間の隙間の幅がばらついても、コストの増大を抑えつつ、小梁の下側フランジからの圧縮力を構造部材に伝達できる。 As described in detail above, according to the present disclosure, even if the width of the gap between the lower flange of the beam and the structural member varies, the compressive force from the lower flange of the beam can be suppressed while suppressing the increase in cost. Can be transmitted to the structural member.

第一実施形態に係る小梁接合構造を示す正面断面図である。It is a front sectional view which shows the beam joining structure which concerns on 1st Embodiment. 図1の支持部材及びその周辺部を拡大して示す図である。It is an enlarged view which shows the support member of FIG. 1 and the peripheral part thereof. 図1の支持部材の分解斜視図である。It is an exploded perspective view of the support member of FIG. 図1のF4−F4線断面図である。It is a cross-sectional view of F4-F4 line of FIG. 第一実施形態に係る小梁接合方法を説明する図である。It is a figure explaining the beam joining method which concerns on 1st Embodiment. 図5の圧入工程における第二楔部材の挿入方向を説明する図である。It is a figure explaining the insertion direction of the 2nd wedge member in the press-fitting process of FIG. 図5の圧入工程において第二楔部材が圧入される様子を示す図である。It is a figure which shows the state that the 2nd wedge member is press-fitted in the press-fitting process of FIG. 第二実施形態に係る支持部材と圧入工程を示す図である。It is a figure which shows the support member and the press-fitting process which concerns on 2nd Embodiment. 図8の支持部材の分解斜視図である。It is an exploded perspective view of the support member of FIG. 第三実施形態に係る支持部材と圧入工程及び溶接工程を示す図である。It is a figure which shows the support member which concerns on 3rd Embodiment, the press-fitting process, and welding process. 第四実施形態に係る支持部材と固定工程及び圧入工程を示す図である。It is a figure which shows the support member which concerns on 4th Embodiment, the fixing process, and the press-fitting process. 第五実施形態に係る支持部材と圧入工程を示す図である。It is a figure which shows the support member and press-fitting process which concerns on 5th Embodiment. 第六実施形態に係る支持部材と圧入工程を示す図である。It is a figure which shows the support member and the press-fitting process which concerns on 6th Embodiment. 第七実施形態に係る支持部材と圧入工程を示す図である。It is a figure which shows the support member and the press-fitting process which concerns on 7th Embodiment. 第八実施形態に係る小梁接合構造を示す正面断面図である。It is a front sectional view which shows the beam joining structure which concerns on 8th Embodiment. 第九実施形態に係る小梁接合構造を示す正面断面図である。It is a front sectional view which shows the beam joining structure which concerns on 9th Embodiment. 第十実施形態に係る小梁接合構造を示す斜視図である。It is a perspective view which shows the beam joining structure which concerns on tenth embodiment. 図17のF18−F18線断面図である。It is a cross-sectional view of F18-F18 line of FIG. 第十一実施形態に係る小梁接合構造を示す斜視図である。It is a perspective view which shows the beam joint structure which concerns on eleventh embodiment. 第十二実施形態に係る小梁接合構造を示す正面断面図である。It is a front sectional view which shows the beam joining structure which concerns on 12th Embodiment. 第十三実施形態に係る小梁接合構造を示す正面断面図である。It is a front sectional view which shows the beam joining structure which concerns on 13th Embodiment. 第十四実施形態に係る小梁接合構造を示す正面断面図である。It is a front sectional view which shows the beam joining structure which concerns on 14th Embodiment. 小梁が構造部材にピン接合された小梁接合構造を模式的に示す図である。It is a figure which shows typically the beam joint structure in which a beam is pin-joined to a structural member. 小梁が構造部材に半剛接合された小梁接合構造を模式的に示す図である。It is a figure which shows typically the beam joint structure which the beam is semi-rigidly joined to the structural member. 小梁が構造部材に剛接合された小梁接合構造を模式的に示す図である。It is a figure which shows typically the beam-beam joint structure in which a beam is rigidly joined to a structural member.

はじめに、本開示の第一実施形態を説明する。 First, the first embodiment of the present disclosure will be described.

図1に示される建物構造Sは、例えば、ビル等の建物に適用されるものであり、大梁20と、小梁30とを備える。各図に示される矢印X方向、矢印Y方向、及び、矢印Z方向は、互いに直交する。矢印X方向及び矢印Y方向は、それぞれ水平方向と平行な方向である。矢印Z方向は、鉛直方向に相当し、矢印Zが指し示す側は、鉛直方向上側に相当する。 The building structure S shown in FIG. 1 is applied to a building such as a building, and includes a girder 20 and a girder 30. The arrow X direction, arrow Y direction, and arrow Z direction shown in each figure are orthogonal to each other. The arrow X direction and the arrow Y direction are parallel to the horizontal direction, respectively. The arrow Z direction corresponds to the vertical direction, and the side pointed to by the arrow Z corresponds to the upper side in the vertical direction.

大梁20は、「構造部材」の一例である。この大梁20は、矢印Y方向に延びている。大梁20は、上側フランジ21、下側フランジ22、及び、ウェブ23を有するH形鋼によって構成されている。矢印Y方向に沿って大梁20を見た場合に、上側フランジ21及び下側フランジ22は、矢印X方向に延びており、ウェブ23は、矢印Z方向に延びている。ウェブ23は、上側フランジ21における矢印X方向の中央部と下側フランジ22における矢印X方向の中央部とを連結している。 The girder 20 is an example of a “structural member”. The girder 20 extends in the Y direction of the arrow. The girder 20 is composed of an H-section steel having an upper flange 21, a lower flange 22, and a web 23. When the girder 20 is viewed along the arrow Y direction, the upper flange 21 and the lower flange 22 extend in the arrow X direction, and the web 23 extends in the arrow Z direction. The web 23 connects the central portion of the upper flange 21 in the arrow X direction and the central portion of the lower flange 22 in the arrow X direction.

小梁30は、矢印X方向に延びている。小梁30は、上側フランジ31、下側フランジ32、及び、ウェブ33を有するH形鋼によって構成されている。矢印X方向に沿って小梁30を見た場合に、上側フランジ31及び下側フランジ32は、矢印Y方向に延びており、ウェブ33は、矢印Z方向に延びている。ウェブ33は、上側フランジ31における矢印Y方向の中央部と下側フランジ32における矢印Y方向の中央部とを連結している。小梁30の高さ寸法H2は、大梁20の高さ寸法H1と略同一とされており、小梁30は、矢印X方向に大梁20に近接して配置されている。 The beam 30 extends in the direction of arrow X. The beam 30 is composed of an H-section steel having an upper flange 31, a lower flange 32, and a web 33. When the beam 30 is viewed along the arrow X direction, the upper flange 31 and the lower flange 32 extend in the arrow Y direction, and the web 33 extends in the arrow Z direction. The web 33 connects the central portion of the upper flange 31 in the arrow Y direction and the central portion of the lower flange 32 in the arrow Y direction. The height dimension H2 of the girder 30 is substantially the same as the height dimension H1 of the girder 20, and the girder 30 is arranged close to the girder 20 in the arrow X direction.

小梁30と大梁20との接合には、小梁接合構造10(接合部構造)が適用されている。すなわち、大梁20は、シアプレート24を備える。シアプレート24は、矢印Y方向を板厚方向とする矩形状に形成されている。シアプレート24は、大梁20のウェブ23から小梁30に向けて延びている。シアプレート24における小梁30側の部位は、シアプレート24の先端部24Aであり、シアプレート24におけるウェブ23側の部位は、シアプレート24の基端部24Bである。シアプレート24の基端部24Bは、大梁20の上側フランジ21、下側フランジ22、及び、ウェブ23にそれぞれ溶接により接合されている。 A beam joining structure 10 (joint structure) is applied to join the beam 30 and the beam 20. That is, the girder 20 includes a shear plate 24. The shear plate 24 is formed in a rectangular shape with the arrow Y direction as the plate thickness direction. The shear plate 24 extends from the web 23 of the girder 20 toward the girder 30. The portion of the shear plate 24 on the beam 30 side is the tip portion 24A of the shear plate 24, and the portion of the shear plate 24 on the web 23 side is the base end portion 24B of the shear plate 24. The base end portion 24B of the shear plate 24 is joined to the upper flange 21, the lower flange 22, and the web 23 of the girder 20 by welding, respectively.

シアプレート24の先端部24Aは、大梁20の上側フランジ21及び下側フランジ22よりも小梁30側に突出している。シアプレート24の先端部24Aは、小梁30の上側フランジ31と下側フランジ32との間に配置されており、小梁30のウェブ33における大梁20側の部位33Aに矢印Y方向に重ね合わされている。シアプレート24の先端部24Aには、矢印Y方向に貫通する複数の貫通孔25が形成されている。複数の貫通孔25は、矢印Z方向に並んでいる。小梁30のウェブ33における大梁20側の部位33Aには、矢印Y方向に貫通する複数の貫通孔35が形成されている。複数の貫通孔35は、シアプレート24に形成された複数の貫通孔25と整合する位置に形成されている。 The tip portion 24A of the shear plate 24 projects toward the beam 30 side from the upper flange 21 and the lower flange 22 of the girder 20. The tip portion 24A of the shear plate 24 is arranged between the upper flange 31 and the lower flange 32 of the beam 30, and is superimposed on the portion 33A on the girder 20 side of the web 33 of the beam 30 in the arrow Y direction. ing. A plurality of through holes 25 penetrating in the arrow Y direction are formed in the tip portion 24A of the shear plate 24. The plurality of through holes 25 are arranged in the Z direction of the arrow. A plurality of through holes 35 penetrating in the arrow Y direction are formed in the portion 33A on the girder 20 side of the web 33 of the girder 30. The plurality of through holes 35 are formed at positions consistent with the plurality of through holes 25 formed in the shear plate 24.

シアプレート24と小梁30のウェブ33との接合には、ボルト及びナットを有する締結部材11が用いられる。つまり、各貫通孔25、35に締結部材11のボルトが挿入されると共に、このボルトの先端部に締結部材11のナットが螺合されることにより、シアプレート24及びウェブ33が接合される。このシアプレート24及びウェブ33の接合部分は、接合部12である。 A fastening member 11 having bolts and nuts is used for joining the shear plate 24 and the web 33 of the beam 30. That is, the shear plate 24 and the web 33 are joined by inserting the bolt of the fastening member 11 into the through holes 25 and 35 and screwing the nut of the fastening member 11 into the tip of the bolt. The joint portion between the shear plate 24 and the web 33 is a joint portion 12.

シアプレート24及びウェブ33が接合部12で接合された状態において、上側フランジ21と上側フランジ31とは、矢印X方向の隙間41を有した状態で矢印X方向に対向している。同様に、下側フランジ22と下側フランジ32とは、矢印X方向の隙間42を有した状態で矢印X方向に対向している。このように矢印X方向の隙間41、42が生じるように、シアプレート24の矢印X方向の長さ、及び、複数の貫通孔25、35の矢印X方向の位置が設定されている。シアプレート24とウェブ33との接合部12は、上側の隙間41よりも下側で、下側の隙間42よりも上側に位置している。 In a state where the shear plate 24 and the web 33 are joined at the joint portion 12, the upper flange 21 and the upper flange 31 face each other in the arrow X direction with a gap 41 in the arrow X direction. Similarly, the lower flange 22 and the lower flange 32 face each other in the arrow X direction with a gap 42 in the arrow X direction. The length of the shear plate 24 in the arrow X direction and the positions of the plurality of through holes 25 and 35 in the arrow X direction are set so that the gaps 41 and 42 in the arrow X direction are formed in this way. The joint portion 12 between the shear plate 24 and the web 33 is located below the upper gap 41 and above the lower gap 42.

なお、大梁20の上側フランジ21及び小梁30の上側フランジ31の上には、スラブ(例えば、コンクリート床スラブ)が設けられる。図1では、スラブの図示が省略されている。このスラブは、大梁20の上側フランジ21及び小梁30の上側フランジ31に設けられたシアコネクタによって大梁20及び小梁30に接合される。大梁20の上側フランジ21及び小梁30の上側フランジ31の上にスラブが設けられる例は、後述する第八及び第九実施形態(図15、図16参照)で説明されている。 A slab (for example, a concrete floor slab) is provided on the upper flange 21 of the girder 20 and the upper flange 31 of the girder 30. In FIG. 1, the illustration of the slab is omitted. This slab is joined to the girder 20 and the girder 30 by a shear connector provided on the upper flange 21 of the girder 20 and the upper flange 31 of the girder 30. An example in which the slab is provided on the upper flange 21 of the girder 20 and the upper flange 31 of the girder 30 is described in the eighth and ninth embodiments (see FIGS. 15 and 16) described later.

下側フランジ22と下側フランジ32との間の隙間42には、支持部材50(補強部材)が配置されている。支持部材50は、第一楔部材60と、第二楔部材70とを備える。第一楔部材60及び第二楔部材70は、例えば、鋼材又は炭素繊維強化プラスチック等によって構成される。第一楔部材60は、隙間42に挿入されており、下側フランジ32に固定されている。第二楔部材70は、下側フランジ22と第一楔部材60との間に圧入されている。 A support member 50 (reinforcing member) is arranged in the gap 42 between the lower flange 22 and the lower flange 32. The support member 50 includes a first wedge member 60 and a second wedge member 70. The first wedge member 60 and the second wedge member 70 are made of, for example, a steel material or a carbon fiber reinforced plastic. The first wedge member 60 is inserted into the gap 42 and is fixed to the lower flange 32. The second wedge member 70 is press-fitted between the lower flange 22 and the first wedge member 60.

図2に拡大して示されるように、第一楔部材60には、矢印Y方向に延びる溝61が形成されている。この溝61は、第一楔部材60における下側フランジ32側の面62に開口すると共に、第一楔部材60における矢印Y方向両側の側面63に開放されている。この溝61に下側フランジ32の端部32Aが挿入されることにより、第一楔部材60は、下側フランジ32に固定されている。第一楔部材60における第二楔部材70側には、斜め上向きの第一傾斜面64が形成されている。この第一傾斜面64は、第二楔部材70を介して下側フランジ22の端面22A1と矢印X方向に対向している。 As shown enlarged in FIG. 2, the first wedge member 60 is formed with a groove 61 extending in the Y direction of the arrow. The groove 61 is open to the surface 62 on the lower flange 32 side of the first wedge member 60 and is open to the side surfaces 63 on both sides of the first wedge member 60 in the arrow Y direction. The first wedge member 60 is fixed to the lower flange 32 by inserting the end 32A of the lower flange 32 into the groove 61. On the side of the second wedge member 70 of the first wedge member 60, an obliquely upward first inclined surface 64 is formed. The first inclined surface 64 faces the end surface 22A1 of the lower flange 22 in the direction of arrow X via the second wedge member 70.

第一傾斜面64には、下向きの第一段差面65が形成されている。この第一段差面65は、「第一ガイド面」の一例である。第一段差面65の矢印X方向の長さ(幅)は、例えば、5〜20mmである。第一傾斜面64における第一段差面65よりも上側は、上側傾斜面64Aとして形成されており、第一傾斜面64における第一段差面65よりも下側は、下側傾斜面64Bとして形成されている。上側傾斜面64A及び下側傾斜面64Bの矢印Z方向に対する傾斜角度θは同じである。この傾斜角度θは、例えば、5〜30°であり、望ましくは、10〜15°である。A downward first stepped surface 65 is formed on the first inclined surface 64. The first step surface 65 is an example of the "first guide surface". The length (width) of the first stepped surface 65 in the arrow X direction is, for example, 5 to 20 mm. The upper side of the first inclined surface 64 above the first stepped surface 65 is formed as an upper inclined surface 64A, and the lower side of the first inclined surface 64 below the first stepped surface 65 is formed as a lower inclined surface 64B. Has been done. The inclination angle theta Z for the Z-direction of the upper inclined surface 64A and the lower inclined surface 64B are the same. The inclination angle θ Z is, for example, 5 to 30 °, preferably 10 to 15 °.

第二楔部材70における下側フランジ22側の面72は、溝等を有しない平面であり、矢印Z方向に延びている。第二楔部材70における第一楔部材60側には、斜め下向きの第二傾斜面74が形成されている。第二傾斜面74には、上向きの第二段差面75が形成されている。この第二段差面75は、「第二ガイド面」の一例である。第二段差面75は、第一段差面65に下側から係止されており、これにより、第二楔部材70は、抜け止めされている。 The surface 72 on the lower flange 22 side of the second wedge member 70 is a flat surface having no groove or the like, and extends in the direction of arrow Z. On the side of the first wedge member 60 of the second wedge member 70, a second inclined surface 74 facing diagonally downward is formed. An upward second stepped surface 75 is formed on the second inclined surface 74. The second stepped surface 75 is an example of a “second guide surface”. The second step surface 75 is locked to the first step surface 65 from below, whereby the second wedge member 70 is prevented from coming off.

第二傾斜面74における第二段差面75よりも上側は、上側傾斜面74Aとして形成されており、第二傾斜面74における第二段差面75よりも下側は、下側傾斜面74Bとして形成されている。上側傾斜面74A及び下側傾斜面74Bの矢印Z方向に対する傾斜角度は同じである。また、上側傾斜面74A及び下側傾斜面74Bの矢印Z方向に対する傾斜角度は、上述の第一楔部材60の上側傾斜面64A及び下側傾斜面64Bの矢印Z方向に対する傾斜角度θと同じである。The upper side of the second inclined surface 74 above the second step surface 75 is formed as the upper inclined surface 74A, and the lower side of the second inclined surface 74 below the second step surface 75 is formed as the lower inclined surface 74B. Has been done. The inclination angles of the upper inclined surface 74A and the lower inclined surface 74B with respect to the arrow Z direction are the same. Further, the inclination angles of the upper inclined surface 74A and the lower inclined surface 74B with respect to the arrow Z direction are the same as the inclination angles θ Z of the upper inclined surface 64A and the lower inclined surface 64B of the first wedge member 60 with respect to the arrow Z direction. Is.

第二楔部材70は、上述の通り、大梁20の下側フランジ22と第一楔部材60との間に圧入されている。これにより、第一楔部材60は、第二楔部材70によって下側フランジ32側に押圧され、溝61の底面61Aは、下側フランジ32の端面32A1に押圧状態で接触している。また、第二傾斜面74の上側傾斜面74A及び下側傾斜面74Bは、第一傾斜面64の上側傾斜面64A及び下側傾斜面64Bにそれぞれ押圧状態で接触し、第二楔部材70における下側フランジ22側の面72は、下側フランジ22の端面22A1に押圧状態で接触している。 As described above, the second wedge member 70 is press-fitted between the lower flange 22 of the girder 20 and the first wedge member 60. As a result, the first wedge member 60 is pressed toward the lower flange 32 by the second wedge member 70, and the bottom surface 61A of the groove 61 is in contact with the end surface 32A1 of the lower flange 32 in a pressed state. Further, the upper inclined surface 74A and the lower inclined surface 74B of the second inclined surface 74 are in contact with the upper inclined surface 64A and the lower inclined surface 64B of the first inclined surface 64 in a pressed state, respectively, in the second wedge member 70. The surface 72 on the lower flange 22 side is in contact with the end surface 22A1 of the lower flange 22 in a pressed state.

図3に示されるように、第一段差面65及び第二段差面75は、矢印Y方向に延びている。第一段差面65及び第二段差面75は、矢印Yが指し示す側に向かうに従って下側に向かうように矢印Y方向に対して傾斜している。第一段差面65及び第二段差面75の矢印Y方向に対する傾斜角度θは同じである。図3において、矢印Y方向は、小梁30(図1、図2参照)の幅方向に相当し、矢印Yが指し示す側と反対側は、小梁30の幅方向一方側に相当し、矢印Yが指し示す側は、小梁30の幅方向他方側に相当する。As shown in FIG. 3, the first step surface 65 and the second step surface 75 extend in the Y direction of the arrow. The first stepped surface 65 and the second stepped surface 75 are inclined in the direction of the arrow Y so as to go downward as the arrow Y points to the side. The inclination angles θ Y of the first step surface 65 and the second step surface 75 with respect to the arrow Y direction are the same. In FIG. 3, the arrow Y direction corresponds to the width direction of the beam 30 (see FIGS. 1 and 2), and the side opposite to the side pointed by the arrow Y corresponds to one side in the width direction of the beam 30. The side pointed to by Y corresponds to the other side in the width direction of the beam 30.

なお、図4に示されるように、下側フランジ22と下側フランジ32との間の隙間42には、一対の支持部材50A、50Bが配置されている。この一対の支持部材50A、50Bは、シアプレート24及びウェブ33を挟んだ矢印Y方向の両側にそれぞれ配置されている。一対の支持部材50A、50Bは、矢印Y方向に対称に形成されている。上記説明(図1〜図3参照)は、一方の支持部材50Aについての説明である。 As shown in FIG. 4, a pair of support members 50A and 50B are arranged in the gap 42 between the lower flange 22 and the lower flange 32. The pair of support members 50A and 50B are arranged on both sides in the arrow Y direction sandwiching the shear plate 24 and the web 33, respectively. The pair of support members 50A and 50B are formed symmetrically in the arrow Y direction. The above description (see FIGS. 1 to 3) is a description of one support member 50A.

続いて、第一実施形態に係る小梁接合方法を説明する。 Subsequently, the beam joining method according to the first embodiment will be described.

図5に示されるように、第一実施形態に係る小梁接合方法は、接合工程Aと、固定工程Bと、圧入工程Cとを備える。 As shown in FIG. 5, the beam joining method according to the first embodiment includes a joining step A, a fixing step B, and a press-fitting step C.

接合工程Aでは、小梁30が矢印X方向に大梁20に近接して配置される。このとき、シアプレート24の先端部24Aは、小梁30の上側フランジ31と下側フランジ32との間に配置され、小梁30のウェブ33における大梁20側の部位33Aに矢印Y方向に重ね合わされる。また、シアプレート24に形成された複数の貫通孔25が小梁30のウェブ33に形成された複数の貫通孔35と整合される。そして、シアプレート24及びウェブ33がボルト及びナットを有する締結部材11によって接合される。つまり、各貫通孔25、35に締結部材11のボルトが挿入されると共に、このボルトの先端部に締結部材11のナットが螺合されることにより、シアプレート24及びウェブ33が接合部12で接合される。 In the joining step A, the beam 30 is arranged close to the beam 20 in the direction of arrow X. At this time, the tip portion 24A of the shear plate 24 is arranged between the upper flange 31 and the lower flange 32 of the beam 30, and overlaps the portion 33A on the girder 20 side of the web 33 of the beam 30 in the arrow Y direction. Will be done. Further, the plurality of through holes 25 formed in the shear plate 24 are aligned with the plurality of through holes 35 formed in the web 33 of the beam 30. Then, the shear plate 24 and the web 33 are joined by a fastening member 11 having bolts and nuts. That is, the bolt of the fastening member 11 is inserted into the through holes 25 and 35, and the nut of the fastening member 11 is screwed into the tip of the bolt, so that the shear plate 24 and the web 33 are joined at the joint portion 12. Be joined.

このようにシアプレート24及びウェブ33が接合部12で接合された状態において、上側フランジ21と上側フランジ31との間には、矢印X方向の隙間41が生じ、下側フランジ22と下側フランジ32との間には、矢印X方向の隙間42が生じる。このように、接合工程Aでは、小梁30の下側フランジ32と大梁20の下側フランジ22との間に矢印X方向の隙間42を生じさせた状態で、小梁30が隙間42よりも上側の接合部12において大梁20に接合される。 In the state where the shear plate 24 and the web 33 are joined at the joint portion 12 in this way, a gap 41 in the arrow X direction is formed between the upper flange 21 and the upper flange 31, and the lower flange 22 and the lower flange are formed. A gap 42 in the direction of arrow X is formed between the 32 and the 32. As described above, in the joining step A, the beam 30 is larger than the gap 42 in a state where the gap 42 in the arrow X direction is generated between the lower flange 32 of the beam 30 and the lower flange 22 of the girder 20. It is joined to the girder 20 at the upper joint portion 12.

固定工程Bでは、第一楔部材60が隙間42に挿入されると共に、この第一楔部材60の溝61に小梁30に形成された下側フランジ32の端部32Aが挿入されることにより、第一楔部材60が下側フランジ32に固定される。この状態では、斜め上向きの第一傾斜面64が大梁20に形成された下側フランジ22の端面22A1と矢印X方向に隙間を有して対向する。 In the fixing step B, the first wedge member 60 is inserted into the gap 42, and the end portion 32A of the lower flange 32 formed in the beam 30 is inserted into the groove 61 of the first wedge member 60. , The first wedge member 60 is fixed to the lower flange 32. In this state, the diagonally upward first inclined surface 64 faces the end surface 22A1 of the lower flange 22 formed on the girder 20 with a gap in the direction of arrow X.

圧入工程Cでは、第二楔部材70が下側フランジ22と第一楔部材60との間に圧入される。このとき、図6に示されるように、一方の支持部材50Aの第二楔部材70は、矢印Yが指し示す側に向けて下側フランジ22と第一楔部材60との間の隙間に挿入される。一方、他方の支持部材50Bの第二楔部材70は、矢印Yが指し示す側と反対側に向けて下側フランジ22と第一楔部材60との間の隙間に挿入される。なお、一対の支持部材50A,50Bは、上述の通り矢印Y方向に対称に形成されている。以下、一対の支持部材50Aについて説明し、他方の支持部材50Bの説明を省略する。 In the press-fitting step C, the second wedge member 70 is press-fitted between the lower flange 22 and the first wedge member 60. At this time, as shown in FIG. 6, the second wedge member 70 of one of the support members 50A is inserted into the gap between the lower flange 22 and the first wedge member 60 toward the side indicated by the arrow Y. Wedge. On the other hand, the second wedge member 70 of the other support member 50B is inserted into the gap between the lower flange 22 and the first wedge member 60 toward the side opposite to the side indicated by the arrow Y. The pair of support members 50A and 50B are formed symmetrically in the arrow Y direction as described above. Hereinafter, the pair of support members 50A will be described, and the description of the other support member 50B will be omitted.

図7に示されるように、第二楔部材70は、矢印Yが指し示す側に向けて下側フランジ22と第一楔部材60との間の隙間に挿入される。このとき、第二段差面75は、第一段差面65の下側に位置され、第一段差面65と摺接される。図7の上図は、第二楔部材70を挿入した初期の段階を示している。第二楔部材70を挿入した初期の段階では、第一段差面65の一端(矢印Yが指し示す側と反対側の端部)と、第二段差面75の一端(矢印Yが指し示す側の端部)とが接触した状態となっており、第二楔部材70の下側への挿入量が少ない状態にある。 As shown in FIG. 7, the second wedge member 70 is inserted into the gap between the lower flange 22 and the first wedge member 60 toward the side indicated by the arrow Y. At this time, the second step surface 75 is located below the first step surface 65 and is in sliding contact with the first step surface 65. The upper figure of FIG. 7 shows the initial stage of inserting the second wedge member 70. At the initial stage of inserting the second wedge member 70, one end of the first step surface 65 (the end opposite to the side indicated by the arrow Y) and one end of the second step surface 75 (the end on the side indicated by the arrow Y). The portion) is in contact with the second wedge member 70, and the amount of insertion into the lower side of the second wedge member 70 is small.

図7の下図は、第二楔部材70の圧入が完了した状態を示している。図7の上図から下図に示されるように、矢印Yが指し示す側に向けて第二楔部材70が挿入されると、第二段差面75が第一段差面65と摺接されることにより、第二楔部材70が下側に移動する。また、第二楔部材70が下側に移動すると、第二傾斜面74と第一傾斜面64との接触領域が下側に拡がることにより第二楔部材70が徐々に下側フランジ22側に移動し、第二楔部材70における下側フランジ22側の面72が下側フランジ22の端面22A1に接触する。 The lower figure of FIG. 7 shows a state in which the press-fitting of the second wedge member 70 is completed. As shown in the upper to lower views of FIG. 7, when the second wedge member 70 is inserted toward the side indicated by the arrow Y, the second step surface 75 is in sliding contact with the first step surface 65. , The second wedge member 70 moves downward. Further, when the second wedge member 70 moves downward, the contact area between the second inclined surface 74 and the first inclined surface 64 expands downward, so that the second wedge member 70 gradually moves toward the lower flange 22 side. As it moves, the surface 72 on the lower flange 22 side of the second wedge member 70 comes into contact with the end surface 22A1 of the lower flange 22.

そして、この状態から、矢印Yが指し示す側に向けて第二楔部材70が押し込まれると、第二楔部材70が下側フランジ22と第一楔部材60との間に圧入される。また、この状態では、第二段差面75が第一段差面65に下側から係止されることで第二楔部材70が抜け止めされる。第一実施形態では、以上の要領で、小梁30が大梁20に固定される。 Then, from this state, when the second wedge member 70 is pushed toward the side indicated by the arrow Y, the second wedge member 70 is press-fitted between the lower flange 22 and the first wedge member 60. Further, in this state, the second step surface 75 is locked to the first step surface 65 from below, so that the second wedge member 70 is prevented from coming off. In the first embodiment, the beam 30 is fixed to the beam 20 in the above manner.

続いて、第一実施形態の作用及び効果を説明する。 Subsequently, the operation and effect of the first embodiment will be described.

以上詳述した通り、第一実施形態によれば、第一楔部材60及び第二楔部材70に形成された第一段差面65及び第二段差面75は、矢印Y方向に対して傾斜している。そして、第二楔部材70が矢印Y方向に沿って下側フランジ22と第一楔部材60との間の隙間に挿入されると、第二段差面75が第一段差面65と摺接されることにより、第二楔部材70が下側に移動する。また、第一楔部材60及び第二楔部材70に形成された第一傾斜面64及び第二傾斜面74は、矢印Z方向に対して傾斜している。そして、第二楔部材70が下側に移動する際に、第二傾斜面74が第一傾斜面64と摺接されることにより、第二楔部材70が徐々に大梁20側に移動し、第一楔部材60及び第二楔部材70の幅(つまり支持部材50の幅)が拡大する。 As described in detail above, according to the first embodiment, the first step surface 65 and the second step surface 75 formed on the first wedge member 60 and the second wedge member 70 are inclined with respect to the arrow Y direction. ing. Then, when the second wedge member 70 is inserted into the gap between the lower flange 22 and the first wedge member 60 along the arrow Y direction, the second step surface 75 is in sliding contact with the first step surface 65. As a result, the second wedge member 70 moves downward. Further, the first inclined surface 64 and the second inclined surface 74 formed on the first wedge member 60 and the second wedge member 70 are inclined with respect to the arrow Z direction. Then, when the second wedge member 70 moves downward, the second inclined surface 74 is in sliding contact with the first inclined surface 64, so that the second wedge member 70 gradually moves to the girder 20 side. The width of the first wedge member 60 and the second wedge member 70 (that is, the width of the support member 50) is increased.

したがって、下側フランジ22と下側フランジ32との間の隙間42の幅Wがばらついても、この隙間42の幅Wに第一楔部材60及び第二楔部材70の幅を合わせることができるので、隙間42の幅Wに合わせた幅で第一楔部材60及び第二楔部材70を下側フランジ22と下側フランジ32との間に配置できる。これにより、隙間42の幅Wがばらついても、小梁30の下側フランジ32からの圧縮力を第一楔部材60及び第二楔部材70を介して大梁20の下側フランジ22に伝達できる。また、隙間42の幅Wのばらつきを考慮した異なる幅の第一楔部材60及び第二楔部材70を複数用意する必要がないので、コストの増大を抑えることができる。 Therefore, even if the width W of the gap 42 between the lower flange 22 and the lower flange 32 varies, the widths of the first wedge member 60 and the second wedge member 70 can be adjusted to the width W of the gap 42. Therefore, the first wedge member 60 and the second wedge member 70 can be arranged between the lower flange 22 and the lower flange 32 with a width that matches the width W of the gap 42. As a result, even if the width W of the gap 42 varies, the compressive force from the lower flange 32 of the beam 30 can be transmitted to the lower flange 22 of the girder 20 via the first wedge member 60 and the second wedge member 70. .. Further, since it is not necessary to prepare a plurality of first wedge members 60 and second wedge members 70 having different widths in consideration of the variation in the width W of the gap 42, it is possible to suppress an increase in cost.

しかも、第一実施形態によれば、第二楔部材70が矢印Y方向に沿って下側フランジ22と第一楔部材60との間の隙間に挿入され、第二段差面75が第一段差面65と摺接されることで、第二楔部材70が下側に移動する。したがって、例えば、第二楔部材70を矢印Z方向に沿って挿入するためのスペースが下側フランジ22と第一楔部材60との間の隙間の上側及び下側に無い場合でも、第二楔部材70を下側フランジ22と第一楔部材60との間の隙間に挿入できる。 Moreover, according to the first embodiment, the second wedge member 70 is inserted into the gap between the lower flange 22 and the first wedge member 60 along the arrow Y direction, and the second step surface 75 is the first step. The second wedge member 70 moves downward by being slidably contacted with the surface 65. Therefore, for example, even if there is no space for inserting the second wedge member 70 along the arrow Z direction on the upper side and the lower side of the gap between the lower flange 22 and the first wedge member 60, the second wedge member 70 is not provided. The member 70 can be inserted into the gap between the lower flange 22 and the first wedge member 60.

また、第一実施形態によれば、第二段差面75は、第一段差面65に下側から係止される。したがって、第二楔部材70が上側に抜けてしまうことを抑制できる。 Further, according to the first embodiment, the second stepped surface 75 is locked to the first stepped surface 65 from below. Therefore, it is possible to prevent the second wedge member 70 from coming off upward.

次に、本開示の第二実施形態を説明する。 Next, a second embodiment of the present disclosure will be described.

図8に示される第二実施形態では、上述の第一実施形態(図2参照)に対し、第一楔部材60及び第二楔部材70の構成が次のように変更されている。すなわち、第一傾斜面64には、複数の第一段差面65が形成されている。この複数の第一段差面65は、第一傾斜面64の上側から下側にかけて間隔を空けて形成されている。同様に、第二傾斜面74には、複数の第二段差面75が形成されている。この複数の第二段差面75は、第二傾斜面74の上側から下側にかけて間隔を空けて形成されている。 In the second embodiment shown in FIG. 8, the configurations of the first wedge member 60 and the second wedge member 70 are changed as follows with respect to the above-mentioned first embodiment (see FIG. 2). That is, a plurality of first stepped surfaces 65 are formed on the first inclined surface 64. The plurality of first stepped surfaces 65 are formed at intervals from the upper side to the lower side of the first inclined surface 64. Similarly, a plurality of second stepped surfaces 75 are formed on the second inclined surface 74. The plurality of second stepped surfaces 75 are formed at intervals from the upper side to the lower side of the second inclined surface 74.

図9に示されるように、第一段差面65及び第二段差面75は、矢印Y方向に延びており、第一楔部材60及び第二楔部材70は、矢印Y方向に一定の断面で形成されている。なお、図8、図9では、第一段差面65及び第二段差面75の大きさが誇張して示されている。第一段差面65及び第二段差面75の矢印X方向の長さ(幅)は、例えば、1〜2mmである。 As shown in FIG. 9, the first step surface 65 and the second step surface 75 extend in the arrow Y direction, and the first wedge member 60 and the second wedge member 70 have a constant cross section in the arrow Y direction. It is formed. In addition, in FIGS. 8 and 9, the sizes of the first stepped surface 65 and the second stepped surface 75 are exaggerated. The length (width) of the first stepped surface 65 and the second stepped surface 75 in the arrow X direction is, for example, 1 to 2 mm.

また、図8に示されるように、第二実施形態では、上述の第一実施形態(図5〜図7参照)に対し、圧入工程Cが次のように変更されている。すなわち、圧入工程Cにおいて、第二楔部材70は、下側フランジ22と第一楔部材60との間の隙間に上側から挿入される。このとき、第二傾斜面74が第一傾斜面64に摺接されながら第二楔部材70が下側に移動される。第二楔部材70が下側に移動すると、第二傾斜面74と第一傾斜面64との接触領域が下側に拡がることにより第二楔部材70が徐々に下側フランジ22側に移動し、第二楔部材70における下側フランジ22側の面72が下側フランジ22の端面22A1に接触する。 Further, as shown in FIG. 8, in the second embodiment, the press-fitting step C is modified as follows with respect to the above-mentioned first embodiment (see FIGS. 5 to 7). That is, in the press-fitting step C, the second wedge member 70 is inserted from above into the gap between the lower flange 22 and the first wedge member 60. At this time, the second wedge member 70 is moved downward while the second inclined surface 74 is in sliding contact with the first inclined surface 64. When the second wedge member 70 moves downward, the contact area between the second inclined surface 74 and the first inclined surface 64 expands downward, so that the second wedge member 70 gradually moves toward the lower flange 22 side. , The surface 72 on the lower flange 22 side of the second wedge member 70 comes into contact with the end surface 22A1 of the lower flange 22.

この状態から、第二楔部材70が下側に押し込まれると、この第二楔部材70の押し込み量に応じて各第二段差面75が一又は複数の第一段差面65を乗り越え、第二楔部材70が下側フランジ22と第一楔部材60との間に圧入される。また、この状態では、複数の第二段差面75が複数の第一段差面65に下側から係止されることで第二楔部材70が抜け止めされる。第一実施形態では、以上の要領で、小梁30が大梁20に固定される。 From this state, when the second wedge member 70 is pushed downward, each second step surface 75 gets over one or a plurality of first step surfaces 65 according to the pushing amount of the second wedge member 70, and the second The wedge member 70 is press-fitted between the lower flange 22 and the first wedge member 60. Further, in this state, the second wedge member 70 is prevented from coming off by locking the plurality of second step surfaces 75 to the plurality of first step surfaces 65 from below. In the first embodiment, the beam 30 is fixed to the beam 20 in the above manner.

この第二実施形態によっても、第二楔部材70が下側に移動する際に、第二傾斜面74が第一傾斜面64と摺接されることにより、第二楔部材70が徐々に大梁20側に移動し、第一楔部材60及び第二楔部材70の幅(つまり支持部材50の幅)が拡大する。 Also in this second embodiment, when the second wedge member 70 moves downward, the second inclined surface 74 is in sliding contact with the first inclined surface 64, so that the second wedge member 70 gradually becomes a girder. Moving to the 20 side, the width of the first wedge member 60 and the second wedge member 70 (that is, the width of the support member 50) is expanded.

したがって、下側フランジ22と下側フランジ32との間の隙間42の幅Wがばらついても、この隙間42の幅Wに第一楔部材60及び第二楔部材70の幅を合わせることができるので、隙間42の幅Wに合わせた幅で第一楔部材60及び第二楔部材70を下側フランジ22と下側フランジ32との間に配置できる。これにより、隙間42の幅Wがばらついても、小梁30の下側フランジ32からの圧縮力を第一楔部材60及び第二楔部材70を介して大梁20の下側フランジ22に伝達できる。また、隙間42の幅Wのばらつきを考慮した異なる幅の第一楔部材60及び第二楔部材70を複数用意する必要がないので、コストの増大を抑えることができる。 Therefore, even if the width W of the gap 42 between the lower flange 22 and the lower flange 32 varies, the widths of the first wedge member 60 and the second wedge member 70 can be adjusted to the width W of the gap 42. Therefore, the first wedge member 60 and the second wedge member 70 can be arranged between the lower flange 22 and the lower flange 32 with a width that matches the width W of the gap 42. As a result, even if the width W of the gap 42 varies, the compressive force from the lower flange 32 of the beam 30 can be transmitted to the lower flange 22 of the girder 20 via the first wedge member 60 and the second wedge member 70. .. Further, since it is not necessary to prepare a plurality of first wedge members 60 and second wedge members 70 having different widths in consideration of the variation in the width W of the gap 42, it is possible to suppress an increase in cost.

また、第二実施形態によれば、複数の第二段差面75は、複数の第一段差面65に下側から係止される。したがって、第二楔部材70が上側に抜けてしまうことを抑制できる。 Further, according to the second embodiment, the plurality of second stepped surfaces 75 are locked to the plurality of first stepped surfaces 65 from below. Therefore, it is possible to prevent the second wedge member 70 from coming off upward.

次に、本開示の第三実施形態を説明する。 Next, a third embodiment of the present disclosure will be described.

図10に示される第三実施形態では、上述の第二実施形態(図8参照)に対し、第一楔部材60の上部と第二楔部材70の上部とを固定する溶接部81が追加されている。また、第三実施形態では、溶接部81の追加に伴い、圧入工程Cの後に溶接工程Dが追加されている。溶接工程Dでは、第一楔部材60の上部と第二楔部材70の上部とが溶接部81によって固定される。 In the third embodiment shown in FIG. 10, a welded portion 81 for fixing the upper portion of the first wedge member 60 and the upper portion of the second wedge member 70 is added to the above-mentioned second embodiment (see FIG. 8). ing. Further, in the third embodiment, the welding step D is added after the press-fitting step C with the addition of the welding portion 81. In the welding step D, the upper portion of the first wedge member 60 and the upper portion of the second wedge member 70 are fixed by the welded portion 81.

この第三実施形態によれば、第二実施形態の作用及び効果に加え、第一楔部材60の上部と第二楔部材70の上部とが溶接部81によって固定される分、第二楔部材70が上側に抜けてしまうことをより一層効果的に抑制できる。 According to this third embodiment, in addition to the actions and effects of the second embodiment, the upper portion of the first wedge member 60 and the upper portion of the second wedge member 70 are fixed by the welded portion 81, so that the second wedge member It is possible to more effectively prevent the 70 from coming off upward.

なお、第三実施形態において、溶接部81は、第一楔部材60及び第二楔部材70の上部以外の部位に設けられてもよい。 In the third embodiment, the welded portion 81 may be provided at a portion other than the upper portion of the first wedge member 60 and the second wedge member 70.

また、第三実施形態における溶接部81は、第一実施形態における第一楔部材60及び第二楔部材70に適用されてもよい。 Further, the welded portion 81 in the third embodiment may be applied to the first wedge member 60 and the second wedge member 70 in the first embodiment.

次に、本開示の第四実施形態を説明する。 Next, a fourth embodiment of the present disclosure will be described.

図11に示される第四実施形態では、上述の第一実施形態(図2参照)に対し、第一楔部材60及び第二楔部材70の構成が次のように変更されている。すなわち、第一楔部材60における下側フランジ32側の面62は、溝等を有しない平面であり、矢印Z方向に延びている。この第一楔部材60における下側フランジ32側の面62は、下側フランジ32の上側及び下側において下側フランジ32の端部32Aに溶接部82によって固定されている。また、第一楔部材60の第一傾斜面64及び第二楔部材70の第二傾斜面74は、段差等を有しない平面でそれぞれ形成されている。 In the fourth embodiment shown in FIG. 11, the configurations of the first wedge member 60 and the second wedge member 70 are changed as follows with respect to the above-mentioned first embodiment (see FIG. 2). That is, the surface 62 on the lower flange 32 side of the first wedge member 60 is a flat surface having no groove or the like and extends in the direction of arrow Z. The surface 62 on the lower flange 32 side of the first wedge member 60 is fixed to the end 32A of the lower flange 32 on the upper side and the lower side of the lower flange 32 by a welded portion 82. Further, the first inclined surface 64 of the first wedge member 60 and the second inclined surface 74 of the second wedge member 70 are each formed by a flat surface having no step or the like.

また、この第四実施形態では、上述の第一実施形態(図5〜図7参照)に対し、固定工程B及び圧入工程Cが次のように変更されている。すなわち、固定工程Bでは、第一楔部材60が隙間42に挿入され、この第一楔部材60における下側フランジ32側の面62が下側フランジ32の端面32A1に当接される。また、この状態で、第一楔部材60における下側フランジ32側の面62が下側フランジ32の上側及び下側において下側フランジ32の端部32Aに溶接部82によって固定される。 Further, in the fourth embodiment, the fixing step B and the press-fitting step C are changed as follows with respect to the above-mentioned first embodiment (see FIGS. 5 to 7). That is, in the fixing step B, the first wedge member 60 is inserted into the gap 42, and the surface 62 on the lower flange 32 side of the first wedge member 60 is brought into contact with the end surface 32A1 of the lower flange 32. Further, in this state, the surface 62 on the lower flange 32 side of the first wedge member 60 is fixed to the end 32A of the lower flange 32 on the upper side and the lower side of the lower flange 32 by the welded portion 82.

圧入工程Cでは、第二楔部材70が下側フランジ22と第一楔部材60との間の隙間に上側から挿入される。このとき、第二傾斜面74が第一傾斜面64に摺接されながら第二楔部材70が下側に移動される。第二楔部材70が下側に移動すると、第二傾斜面74と第一傾斜面64との接触領域が下側に拡がることにより第二楔部材70が徐々に下側フランジ22側に移動し、第二楔部材70における下側フランジ22側の面72が下側フランジ22の端面22A1に接触する。この状態から、第二楔部材70が下側に押し込まれると、第二楔部材70が下側フランジ22と第一楔部材60との間に圧入される。 In the press-fitting step C, the second wedge member 70 is inserted into the gap between the lower flange 22 and the first wedge member 60 from above. At this time, the second wedge member 70 is moved downward while the second inclined surface 74 is in sliding contact with the first inclined surface 64. When the second wedge member 70 moves downward, the contact area between the second inclined surface 74 and the first inclined surface 64 expands downward, so that the second wedge member 70 gradually moves toward the lower flange 22 side. , The surface 72 on the lower flange 22 side of the second wedge member 70 comes into contact with the end surface 22A1 of the lower flange 22. When the second wedge member 70 is pushed downward from this state, the second wedge member 70 is press-fitted between the lower flange 22 and the first wedge member 60.

この第四実施形態によっても、第二楔部材70が下側に移動する際に、第二傾斜面74が第一傾斜面64と摺接されることにより、第二楔部材70が徐々に大梁20側に移動し、第一楔部材60及び第二楔部材70の幅(つまり支持部材50の幅)が拡大する。 Also in this fourth embodiment, when the second wedge member 70 moves downward, the second inclined surface 74 is in sliding contact with the first inclined surface 64, so that the second wedge member 70 gradually becomes a girder. Moving to the 20 side, the width of the first wedge member 60 and the second wedge member 70 (that is, the width of the support member 50) is expanded.

したがって、下側フランジ22と下側フランジ32との間の隙間42の幅Wがばらついても、この隙間42の幅Wに第一楔部材60及び第二楔部材70の幅を合わせることができるので、隙間42の幅Wに合わせた幅で第一楔部材60及び第二楔部材70を下側フランジ22と下側フランジ32との間に配置できる。これにより、隙間42の幅Wがばらついても、小梁30の下側フランジ32からの圧縮力を第一楔部材60及び第二楔部材70を介して大梁20の下側フランジ22に伝達できる。また、隙間42の幅Wのばらつきを考慮した異なる幅の第一楔部材60及び第二楔部材70を複数用意する必要がないので、コストの増大を抑えることができる。 Therefore, even if the width W of the gap 42 between the lower flange 22 and the lower flange 32 varies, the widths of the first wedge member 60 and the second wedge member 70 can be adjusted to the width W of the gap 42. Therefore, the first wedge member 60 and the second wedge member 70 can be arranged between the lower flange 22 and the lower flange 32 with a width that matches the width W of the gap 42. As a result, even if the width W of the gap 42 varies, the compressive force from the lower flange 32 of the beam 30 can be transmitted to the lower flange 22 of the girder 20 via the first wedge member 60 and the second wedge member 70. .. Further, since it is not necessary to prepare a plurality of first wedge members 60 and second wedge members 70 having different widths in consideration of the variation in the width W of the gap 42, it is possible to suppress an increase in cost.

なお、第四実施形態において、第二楔部材70を抜け止めするために、第一傾斜面64及び第二傾斜面74は、粗面で形成されてもよく、また、第一楔部材60及び第二楔部材70が溶接又は接着等により固定されてもよい。 In the fourth embodiment, in order to prevent the second wedge member 70 from coming off, the first inclined surface 64 and the second inclined surface 74 may be formed of rough surfaces, and the first wedge member 60 and The second wedge member 70 may be fixed by welding, adhesion or the like.

また、第四実施形態における溶接部82は、第一乃至第三実施形態における第一楔部材60に適用されてもよい。 Further, the welded portion 82 in the fourth embodiment may be applied to the first wedge member 60 in the first to third embodiments.

次に、本開示の第五実施形態を説明する。 Next, a fifth embodiment of the present disclosure will be described.

図12に示される第五実施形態では、上述の第一実施形態(図2参照)に対し、支持部材50の構成が次のように変更されている。すなわち、第一楔部材60には、矢印Y方向に延びる第一溝66が形成されており、第二楔部材70には、矢印Y方向に延びる第二溝76が形成されている。第一溝66は、第一傾斜面64に開口すると共に、第一楔部材60の側面63に開放されている。同様に、第二溝76は、第二傾斜面74に開口すると共に、第二楔部材70の側面73に開放されている。第二楔部材70が下側フランジ22と第一楔部材60との間に挿入された状態では、第一溝66の上側の壁面66Aが第二溝76の下側の壁面76Aよりも上側に位置するように、第一溝66及び第二溝76の位置は設定されている。 In the fifth embodiment shown in FIG. 12, the configuration of the support member 50 is changed as follows with respect to the above-mentioned first embodiment (see FIG. 2). That is, the first wedge member 60 is formed with a first groove 66 extending in the arrow Y direction, and the second wedge member 70 is formed with a second groove 76 extending in the arrow Y direction. The first groove 66 is open to the first inclined surface 64 and is open to the side surface 63 of the first wedge member 60. Similarly, the second groove 76 opens to the second inclined surface 74 and opens to the side surface 73 of the second wedge member 70. When the second wedge member 70 is inserted between the lower flange 22 and the first wedge member 60, the upper wall surface 66A of the first groove 66 is above the lower wall surface 76A of the second groove 76. The positions of the first groove 66 and the second groove 76 are set so as to be located.

また、支持部材50は、第三楔部材90を備える。第三楔部材90は、第一溝66の上側の壁面66Aと第二溝76の下側の壁面76Aとの間に挿入される。第三楔部材90は、上側の壁面66Aと摺接される第一摺接面91と、下側の壁面76Aと摺接される第二摺接面92とを有する。この第三楔部材90は、第一摺接面91を斜面とし、第二摺接面92を垂直面とする台形ブロック状に形成されている。第一摺接面91は、第二摺接面92に対して傾斜しており、第一摺接面91と第二摺接面92との間の幅は、第三楔部材90の先端側から後端側に向かうに従って拡大する。 Further, the support member 50 includes a third wedge member 90. The third wedge member 90 is inserted between the upper wall surface 66A of the first groove 66 and the lower wall surface 76A of the second groove 76. The third wedge member 90 has a first sliding contact surface 91 that is in sliding contact with the upper wall surface 66A and a second sliding contact surface 92 that is in sliding contact with the lower wall surface 76A. The third wedge member 90 is formed in a trapezoidal block shape in which the first sliding contact surface 91 is an inclined surface and the second sliding contact surface 92 is a vertical surface. The first sliding contact surface 91 is inclined with respect to the second sliding contact surface 92, and the width between the first sliding contact surface 91 and the second sliding contact surface 92 is the tip side of the third wedge member 90. It expands from to the rear end side.

また、第五実施形態では、上述の第一実施形態(図5〜図7参照)に対し、圧入工程Cが次のように変更されている。すなわち、圧入工程Cは、第一段階C1〜第三段階C3を有する。第一段階C1では、第二楔部材70が下側フランジ22と第一楔部材60との間に上側から挿入される。なお、第二楔部材70は、矢印Y方向に沿って下側フランジ22と第一楔部材60との間に挿入されてもよい。第二段階C2では、第一溝66の上側の壁面66Aと第二溝76の下側の壁面76Aとの間に第三楔部材90が挿入される。 Further, in the fifth embodiment, the press-fitting step C is changed as follows with respect to the above-mentioned first embodiment (see FIGS. 5 to 7). That is, the press-fitting step C has a first step C1 to a third step C3. In the first stage C1, the second wedge member 70 is inserted between the lower flange 22 and the first wedge member 60 from above. The second wedge member 70 may be inserted between the lower flange 22 and the first wedge member 60 along the Y direction of the arrow. In the second stage C2, the third wedge member 90 is inserted between the upper wall surface 66A of the first groove 66 and the lower wall surface 76A of the second groove 76.

第三段階C3では、第三楔部材90が押し込まれる。第三楔部材90が押し込まれると、第一摺接面91が壁面66Aと摺接されると共に、第二摺接面92が壁面76Aと摺接され、壁面66Aに対して壁面76Aが押し下げられる。これにより、第二楔部材70が下側に移動し、第二楔部材70が下側フランジ22と第一楔部材60との間に圧入される。この状態では、壁面66Aと壁面76Aとの間に第三楔部材90が介在することで第二楔部材70が抜け止めされる。 In the third stage C3, the third wedge member 90 is pushed in. When the third wedge member 90 is pushed in, the first sliding contact surface 91 is in sliding contact with the wall surface 66A, the second sliding contact surface 92 is in sliding contact with the wall surface 76A, and the wall surface 76A is pushed down against the wall surface 66A. .. As a result, the second wedge member 70 moves downward, and the second wedge member 70 is press-fitted between the lower flange 22 and the first wedge member 60. In this state, the second wedge member 70 is prevented from coming off by interposing the third wedge member 90 between the wall surface 66A and the wall surface 76A.

この第五実施形態によれば、第一溝66の上側の壁面66Aと第二溝76の下側の壁面76Aとの間に第三楔部材90が挿入されると、壁面66Aに対して壁面76Aが押し下げられ、第二楔部材70が下側に移動する。また、第二楔部材70が下側に移動する際に、第二傾斜面74が第一傾斜面64と摺接されることにより、第二楔部材70が徐々に大梁20側に移動し、第一楔部材60及び第二楔部材70の幅(つまり支持部材50の幅)が拡大する。 According to the fifth embodiment, when the third wedge member 90 is inserted between the upper wall surface 66A of the first groove 66 and the lower wall surface 76A of the second groove 76, the wall surface with respect to the wall surface 66A The 76A is pushed down and the second wedge member 70 moves downward. Further, when the second wedge member 70 moves downward, the second inclined surface 74 is in sliding contact with the first inclined surface 64, so that the second wedge member 70 gradually moves to the girder 20 side. The width of the first wedge member 60 and the second wedge member 70 (that is, the width of the support member 50) is increased.

したがって、下側フランジ22と下側フランジ32との間の隙間42の幅Wがばらついても、この隙間42の幅Wに第一楔部材60及び第二楔部材70の幅を合わせることができるので、隙間42の幅Wに合わせた幅で第一楔部材60及び第二楔部材70を下側フランジ22と下側フランジ32との間に配置できる。これにより、隙間42の幅Wがばらついても、小梁30の下側フランジ32からの圧縮力を第一楔部材60及び第二楔部材70を介して大梁20の下側フランジ22に伝達できる。また、隙間42の幅Wのばらつきを考慮した異なる幅の第一楔部材60及び第二楔部材70を複数用意する必要がないので、コストの増大を抑えることができる。 Therefore, even if the width W of the gap 42 between the lower flange 22 and the lower flange 32 varies, the widths of the first wedge member 60 and the second wedge member 70 can be adjusted to the width W of the gap 42. Therefore, the first wedge member 60 and the second wedge member 70 can be arranged between the lower flange 22 and the lower flange 32 with a width that matches the width W of the gap 42. As a result, even if the width W of the gap 42 varies, the compressive force from the lower flange 32 of the beam 30 can be transmitted to the lower flange 22 of the girder 20 via the first wedge member 60 and the second wedge member 70. .. Further, since it is not necessary to prepare a plurality of first wedge members 60 and second wedge members 70 having different widths in consideration of the variation in the width W of the gap 42, it is possible to suppress an increase in cost.

また、第五実施形態によれば、第一溝66の上側の壁面66Aと第二溝76の下側の壁面76Aとの間に矢印Y方向に沿って第三楔部材90が挿入されることで、第二楔部材70が下側に移動し、この第二楔部材70が下側フランジ22と第一楔部材60との間の隙間に圧入される。したがって、例えば、第二楔部材70を下側フランジ22と第一楔部材60との間の隙間に圧入させるためのスペースが下側フランジ22と第一楔部材60との間の隙間の上側及び下側に無い場合でも、第二楔部材70を下側フランジ22と第一楔部材60との間の隙間に圧入させることができる。 Further, according to the fifth embodiment, the third wedge member 90 is inserted between the upper wall surface 66A of the first groove 66 and the lower wall surface 76A of the second groove 76 along the arrow Y direction. Then, the second wedge member 70 moves downward, and the second wedge member 70 is press-fitted into the gap between the lower flange 22 and the first wedge member 60. Therefore, for example, the space for press-fitting the second wedge member 70 into the gap between the lower flange 22 and the first wedge member 60 is located above the gap between the lower flange 22 and the first wedge member 60. Even if it is not on the lower side, the second wedge member 70 can be press-fitted into the gap between the lower flange 22 and the first wedge member 60.

また、第五実施形態によれば、第二楔部材70が下側フランジ22と第一楔部材60との間の隙間に圧入された状態では、上側の壁面66Aと下側の壁面76Aとの間に第三楔部材90が介在する。したがって、第二楔部材70が上側に抜けてしまうことを抑制できる。 Further, according to the fifth embodiment, when the second wedge member 70 is press-fitted into the gap between the lower flange 22 and the first wedge member 60, the upper wall surface 66A and the lower wall surface 76A are formed. A third wedge member 90 is interposed between them. Therefore, it is possible to prevent the second wedge member 70 from coming off upward.

次に、本開示の第六実施形態を説明する。 Next, the sixth embodiment of the present disclosure will be described.

図13に示される第六実施形態では、上述の第一実施形態(図2参照)に対し、第一楔部材60及び第二楔部材70の構成が次のように変更されている。すなわち、第一傾斜面64及び第二傾斜面74は、段差や溝等を有しない平面で形成されている。また、第二楔部材70における下側フランジ22側の面72には、下側フランジ22側に突出する複数の凸部77が形成されている。複数の凸部77は、下側フランジ22側の面72の上側から下側にかけて間隔を空けて形成されている。 In the sixth embodiment shown in FIG. 13, the configurations of the first wedge member 60 and the second wedge member 70 are changed as follows with respect to the above-mentioned first embodiment (see FIG. 2). That is, the first inclined surface 64 and the second inclined surface 74 are formed of a flat surface having no steps or grooves. Further, a plurality of convex portions 77 projecting toward the lower flange 22 side are formed on the surface 72 of the second wedge member 70 on the lower flange 22 side. The plurality of convex portions 77 are formed at intervals from the upper side to the lower side of the surface 72 on the lower flange 22 side.

凸部77は、より具体的には、段差面77Aと傾斜面77Bとを有する段差状に形成されている。段差面77Aは、上向きに形成されている。各凸部77において、傾斜面77Bは、段差面77Aの下側に位置しており、下側に向かうに従って第二傾斜面74側に向かうように矢印Z方向に対して傾斜している。図13では、凸部77の大きさが誇張して示されている。凸部77の矢印X方向の長さ(段差面77Aの幅)は、例えば、1〜2mmである。第二楔部材70が下側フランジ22と第一楔部材60との間に圧入された状態において、複数の凸部77は、下側フランジ22の端面22A1に食い込んでいる。 More specifically, the convex portion 77 is formed in a stepped shape having a stepped surface 77A and an inclined surface 77B. The step surface 77A is formed upward. In each convex portion 77, the inclined surface 77B is located below the stepped surface 77A, and is inclined in the direction of arrow Z so as to go toward the second inclined surface 74 side toward the lower side. In FIG. 13, the size of the convex portion 77 is exaggerated. The length of the convex portion 77 in the arrow X direction (width of the stepped surface 77A) is, for example, 1 to 2 mm. In a state where the second wedge member 70 is press-fitted between the lower flange 22 and the first wedge member 60, the plurality of convex portions 77 bite into the end surface 22A1 of the lower flange 22.

また、第六実施形態では、上述の第一実施形態(図5〜図7参照)に対し、圧入工程Cが次のように変更されている。すなわち、圧入工程Cでは、第二楔部材70が下側フランジ22と第一楔部材60との間の隙間に上側から挿入される。このとき、第二傾斜面74が第一傾斜面64に摺接されながら第二楔部材70が下側に移動される。 Further, in the sixth embodiment, the press-fitting step C is modified as follows with respect to the above-mentioned first embodiment (see FIGS. 5 to 7). That is, in the press-fitting step C, the second wedge member 70 is inserted into the gap between the lower flange 22 and the first wedge member 60 from above. At this time, the second wedge member 70 is moved downward while the second inclined surface 74 is in sliding contact with the first inclined surface 64.

第二楔部材70が下側に移動すると、第二傾斜面74と第一傾斜面64との接触領域が下側に拡がることにより第二楔部材70が徐々に下側フランジ22側に移動し、第二楔部材70における下側フランジ22側の面72(複数の凸部77)が下側フランジ22の端面22A1に接触する。この状態から、第二楔部材70が下側に押し込まれると、複数の凸部77が下側フランジ22の端面22A1に食い込んだ状態で、第二楔部材70が下側フランジ22と第一楔部材60との間に圧入される。この状態では、複数の凸部77が下側フランジ22の端面22A1に食い込むことで、第二楔部材70が抜け止めされる。 When the second wedge member 70 moves downward, the contact area between the second inclined surface 74 and the first inclined surface 64 expands downward, so that the second wedge member 70 gradually moves toward the lower flange 22 side. , The surface 72 (plurality of convex portions 77) on the lower flange 22 side of the second wedge member 70 comes into contact with the end surface 22A1 of the lower flange 22. From this state, when the second wedge member 70 is pushed downward, the second wedge member 70 has the lower flange 22 and the first wedge in a state where the plurality of convex portions 77 bite into the end surface 22A1 of the lower flange 22. It is press-fitted between the member 60 and the member 60. In this state, the plurality of convex portions 77 bite into the end surface 22A1 of the lower flange 22, so that the second wedge member 70 is prevented from coming off.

この第六実施形態によっても、第二楔部材70が下側に移動する際に、第二傾斜面74が第一傾斜面64と摺接されることにより、第二楔部材70が徐々に大梁20側に移動し、第一楔部材60及び第二楔部材70の幅(つまり支持部材50の幅)が拡大する。 Also in this sixth embodiment, when the second wedge member 70 moves downward, the second inclined surface 74 is in sliding contact with the first inclined surface 64, so that the second wedge member 70 gradually becomes a girder. Moving to the 20 side, the width of the first wedge member 60 and the second wedge member 70 (that is, the width of the support member 50) is expanded.

したがって、下側フランジ22と下側フランジ32との間の隙間42の幅Wがばらついても、この隙間42の幅Wに第一楔部材60及び第二楔部材70の幅を合わせることができるので、隙間42の幅Wに合わせた幅で第一楔部材60及び第二楔部材70を下側フランジ22と下側フランジ32との間に配置できる。これにより、隙間42の幅Wがばらついても、小梁30の下側フランジ32からの圧縮力を第一楔部材60及び第二楔部材70を介して大梁20の下側フランジ22に伝達できる。また、隙間42の幅Wのばらつきを考慮した異なる幅の第一楔部材60及び第二楔部材70を複数用意する必要がないので、コストの増大を抑えることができる。 Therefore, even if the width W of the gap 42 between the lower flange 22 and the lower flange 32 varies, the widths of the first wedge member 60 and the second wedge member 70 can be adjusted to the width W of the gap 42. Therefore, the first wedge member 60 and the second wedge member 70 can be arranged between the lower flange 22 and the lower flange 32 with a width that matches the width W of the gap 42. As a result, even if the width W of the gap 42 varies, the compressive force from the lower flange 32 of the beam 30 can be transmitted to the lower flange 22 of the girder 20 via the first wedge member 60 and the second wedge member 70. .. Further, since it is not necessary to prepare a plurality of first wedge members 60 and second wedge members 70 having different widths in consideration of the variation in the width W of the gap 42, it is possible to suppress an increase in cost.

また、第六実施形態によれば、複数の凸部77が下側フランジ22の端面22A1に食い込んだ状態で、第二楔部材70が下側フランジ22と第一楔部材60との間に圧入される。したがって、第二楔部材70が上側に抜けてしまうことを抑制できる。 Further, according to the sixth embodiment, the second wedge member 70 is press-fitted between the lower flange 22 and the first wedge member 60 in a state where the plurality of convex portions 77 bite into the end surface 22A1 of the lower flange 22. Will be done. Therefore, it is possible to prevent the second wedge member 70 from coming off upward.

なお、第六実施形態における複数の凸部77は、第一乃至第五実施形態における第二楔部材70に適用されてもよい。 The plurality of convex portions 77 in the sixth embodiment may be applied to the second wedge member 70 in the first to fifth embodiments.

また、上記第一乃至第六実施形態における構成のうち組み合わせ可能な構成は、適宜組み合わされて実施されてもよい。 In addition, the configurations that can be combined among the configurations in the first to sixth embodiments may be combined and implemented as appropriate.

次に、本開示の第七実施形態を説明する。 Next, a seventh embodiment of the present disclosure will be described.

図14に示される第七実施形態に係る小梁接合構造100では、上述の第六実施形態に係る小梁接合構造10(図13参照)に対し、第一楔部材60及び第二楔部材70の配置が次のように変更されている。すなわち、第一楔部材60は、大梁20側に配置され、第二楔部材70は、小梁30側に配置されている。第一楔部材60の溝61には、下側フランジ22の端部22Aが挿入されており、これにより、第一楔部材60は、下側フランジ22に固定されている。また、第二楔部材70は、下側フランジ32と第一楔部材60との間に圧入されており、複数の凸部77は、下側フランジ32の端面32A1に食い込んでいる。 In the beam joining structure 100 according to the seventh embodiment shown in FIG. 14, the first wedge member 60 and the second wedge member 70 are compared with the beam joining structure 10 (see FIG. 13) according to the sixth embodiment described above. The arrangement of is changed as follows. That is, the first wedge member 60 is arranged on the girder 20 side, and the second wedge member 70 is arranged on the girder 30 side. The end portion 22A of the lower flange 22 is inserted into the groove 61 of the first wedge member 60, whereby the first wedge member 60 is fixed to the lower flange 22. Further, the second wedge member 70 is press-fitted between the lower flange 32 and the first wedge member 60, and the plurality of convex portions 77 bite into the end surface 32A1 of the lower flange 32.

また、第七実施形態では、固定工程及び圧入工程が次のように実行される。すなわち、固定工程では、第一楔部材60が隙間42に挿入されると共に、この第一楔部材60の溝61に大梁20に形成された下側フランジ22の端部22Aが挿入されることにより、第一楔部材60が下側フランジ22に固定される。また、圧入工程では、第二楔部材70が下側フランジ32と第一楔部材60との間の隙間に上側から挿入される。このとき、第二傾斜面74が第一傾斜面64に摺接されながら第二楔部材70が下側に移動される。 Further, in the seventh embodiment, the fixing step and the press-fitting step are executed as follows. That is, in the fixing step, the first wedge member 60 is inserted into the gap 42, and the end portion 22A of the lower flange 22 formed on the girder 20 is inserted into the groove 61 of the first wedge member 60. , The first wedge member 60 is fixed to the lower flange 22. Further, in the press-fitting step, the second wedge member 70 is inserted into the gap between the lower flange 32 and the first wedge member 60 from above. At this time, the second wedge member 70 is moved downward while the second inclined surface 74 is in sliding contact with the first inclined surface 64.

第二楔部材70が下側に移動すると、第二傾斜面74と第一傾斜面64との接触領域が下側に拡がることにより第二楔部材70が徐々に下側フランジ32側に移動し、第二楔部材70における下側フランジ32側の面72(複数の凸部77)が下側フランジ32の端面32A1に接触する。この状態から、第二楔部材70が下側に押し込まれると、複数の凸部77が下側フランジ32の端面32A1に食い込んだ状態で、第二楔部材70が下側フランジ32と第一楔部材60との間に圧入される。この状態では、複数の凸部77が下側フランジ32の端面32A1に食い込むことで、第二楔部材70が抜け止めされる。 When the second wedge member 70 moves downward, the contact area between the second inclined surface 74 and the first inclined surface 64 expands downward, so that the second wedge member 70 gradually moves toward the lower flange 32 side. , The surface 72 (plurality of convex portions 77) on the lower flange 32 side of the second wedge member 70 comes into contact with the end surface 32A1 of the lower flange 32. From this state, when the second wedge member 70 is pushed downward, the second wedge member 70 has the lower flange 32 and the first wedge in a state where the plurality of convex portions 77 bite into the end surface 32A1 of the lower flange 32. It is press-fitted between the member 60 and the member 60. In this state, the plurality of convex portions 77 bite into the end surface 32A1 of the lower flange 32, so that the second wedge member 70 is prevented from coming off.

この第七実施形態によれば、第二楔部材70が下側に移動する際に、第二傾斜面74が第一傾斜面64と摺接されることにより、第二楔部材70が徐々に小梁30側に移動し、第一楔部材60及び第二楔部材70の幅(つまり支持部材50の幅)が拡大する。 According to this seventh embodiment, when the second wedge member 70 moves downward, the second inclined surface 74 is in sliding contact with the first inclined surface 64, so that the second wedge member 70 gradually moves. It moves to the beam 30 side, and the width of the first wedge member 60 and the second wedge member 70 (that is, the width of the support member 50) is expanded.

したがって、下側フランジ22と下側フランジ32との間の隙間42の幅Wがばらついても、この隙間42の幅Wに第一楔部材60及び第二楔部材70の幅を合わせることができるので、隙間42の幅Wに合わせた幅で第一楔部材60及び第二楔部材70を下側フランジ22と下側フランジ32との間に配置できる。これにより、隙間42の幅Wがばらついても、小梁30の下側フランジ32からの圧縮力を第一楔部材60及び第二楔部材70を介して大梁20の下側フランジ22に伝達できる。また、隙間42の幅Wのばらつきを考慮した異なる幅の第一楔部材60及び第二楔部材70を複数用意する必要がないので、コストの増大を抑えることができる。 Therefore, even if the width W of the gap 42 between the lower flange 22 and the lower flange 32 varies, the widths of the first wedge member 60 and the second wedge member 70 can be adjusted to the width W of the gap 42. Therefore, the first wedge member 60 and the second wedge member 70 can be arranged between the lower flange 22 and the lower flange 32 with a width that matches the width W of the gap 42. As a result, even if the width W of the gap 42 varies, the compressive force from the lower flange 32 of the beam 30 can be transmitted to the lower flange 22 of the girder 20 via the first wedge member 60 and the second wedge member 70. .. Further, since it is not necessary to prepare a plurality of first wedge members 60 and second wedge members 70 having different widths in consideration of the variation in the width W of the gap 42, it is possible to suppress an increase in cost.

また、第七実施形態によれば、複数の凸部77が下側フランジ32の端面32A1に食い込んだ状態で、第二楔部材70が下側フランジ32と第一楔部材60との間に圧入される。したがって、第二楔部材70が上側に抜けてしまうことを抑制できる。 Further, according to the seventh embodiment, the second wedge member 70 is press-fitted between the lower flange 32 and the first wedge member 60 in a state where the plurality of convex portions 77 bite into the end surface 32A1 of the lower flange 32. Will be done. Therefore, it is possible to prevent the second wedge member 70 from coming off upward.

なお、上述の第七実施形態と同様に、上記第一乃至第五実施形態において、第一楔部材60が大梁20側に配置され、第二楔部材70が小梁30側に配置されてもよい。 Similarly to the seventh embodiment described above, in the first to fifth embodiments, even if the first wedge member 60 is arranged on the girder 20 side and the second wedge member 70 is arranged on the girder 30 side. Good.

次に、本開示の第八実施形態を説明する。 Next, the eighth embodiment of the present disclosure will be described.

図15に示される第八実施形態において、建物構造Sは、大梁20と、一対の小梁30と、複数の支持部材50と、スラブ110とを備える。一対の小梁30は、大梁20の矢印X方向の両側にそれぞれ配置されている。 In the eighth embodiment shown in FIG. 15, the building structure S includes a girder 20, a pair of girders 30, a plurality of support members 50, and a slab 110. The pair of small beams 30 are arranged on both sides of the large beam 20 in the direction of the arrow X.

各小梁30と大梁20との接合には、小梁接合構造10がそれぞれ適用されている。すなわち、大梁20は、一対のシアプレート24を備える。一対のシアプレート24は、大梁20から各小梁30側に向けてそれぞれ延びている。各シアプレート24には、小梁30が接合されている。各小梁30とシアプレート24との接合部12の構成は、矢印X方向に対称である。 A beam joining structure 10 is applied to the joining of each beam 30 and the beam 20. That is, the girder 20 includes a pair of shear plates 24. The pair of shear plates 24 extend from the girder 20 toward each girder 30 side. A beam 30 is joined to each shear plate 24. The configuration of the joint portion 12 between each beam 30 and the shear plate 24 is symmetrical in the direction of arrow X.

小梁30の高さ寸法H2は、大梁20の高さ寸法H1よりも小とされており、各小梁30の下側フランジ32は、大梁20の下側フランジ22よりも上側に位置している。大梁20のウェブ23には、一対のリブ26が形成されている。一対のリブ26は、各小梁30側に向けて延びている。大梁20及び一対の小梁30の上記以外の構成は、上述の第一実施形態(図1参照)と同様である。 The height dimension H2 of the girder 30 is smaller than the height dimension H1 of the girder 20, and the lower flange 32 of each girder 30 is located above the lower flange 22 of the girder 20. There is. A pair of ribs 26 are formed on the web 23 of the girder 20. The pair of ribs 26 extend toward each beam 30 side. The configuration of the girder 20 and the pair of girders 30 other than the above is the same as that of the first embodiment (see FIG. 1) described above.

各小梁30の下側フランジ32と各リブ26との間には、隙間42がそれぞれ生じている。この各隙間42には、支持部材50がそれぞれ配置されている。支持部材50の第一楔部材60及び第二楔部材70には、一例として、上述の第四実施形態(図11参照)の構成が適用されている。 A gap 42 is formed between the lower flange 32 of each beam 30 and each rib 26. Support members 50 are arranged in each of the gaps 42. As an example, the configuration of the fourth embodiment (see FIG. 11) described above is applied to the first wedge member 60 and the second wedge member 70 of the support member 50.

スラブ110は、大梁20及び一対の小梁30の上に設けられている。スラブ110は、複数の鉄筋112と、コンクリート113によって構成されている。大梁20及び一対の小梁30と、コンクリート113とは、大梁20及び一対の小梁30の上面に設けられた複数のシアコネクタ114によって接合されている。また、大梁20及び一対の小梁30の上面には、複数のデッキプレート115が設けられている。 The slab 110 is provided on the girder 20 and the pair of girders 30. The slab 110 is composed of a plurality of reinforcing bars 112 and concrete 113. The girder 20 and the pair of girders 30 and the concrete 113 are joined by a plurality of shear connectors 114 provided on the upper surfaces of the girder 20 and the pair of girders 30. Further, a plurality of deck plates 115 are provided on the upper surfaces of the girder 20 and the pair of girders 30.

この第八実施形態によれば、各小梁30の下側フランジ32と大梁20のリブ26との間の隙間42には、支持部材50が挿入されているので、各小梁30の下側フランジ32からの圧縮力を大梁20に伝達できる。また、大梁20の上側フランジ21及び小梁30の上側フランジ31とスラブ110のコンクリート113とがシアコネクタ114で接合されているので、小梁30の上側フランジ31からの引張力をスラブ110に配した鉄筋112を介して大梁20に伝達できる。 According to the eighth embodiment, since the support member 50 is inserted in the gap 42 between the lower flange 32 of each beam 30 and the rib 26 of the girder 20, the lower side of each beam 30 is formed. The compressive force from the flange 32 can be transmitted to the girder 20. Further, since the upper flange 21 of the girder 20 and the upper flange 31 of the girder 30 and the concrete 113 of the slab 110 are joined by the shear connector 114, the tensile force from the upper flange 31 of the girder 30 is distributed to the slab 110. It can be transmitted to the girder 20 via the reinforcing bar 112.

これにより、小梁30のウェブ33のみをボルトで大梁20に接合するピン接合に比べて、小梁30の中央部のたわみと曲げモーメントを抑制できる。しかも、小梁30のウェブ33を溶接やボルトで大梁20に接合すると共に小梁30の上側フランジ31及び下側フランジ32を溶接やボルトで大梁20に接合する剛接合に比べて、小梁30と大梁20との接合部12の補強が簡易で済むので、工程やコストの増大を最小限に抑えることができる。 As a result, the deflection and bending moment of the central portion of the beam 30 can be suppressed as compared with the pin joining in which only the web 33 of the beam 30 is joined to the girder 20 with bolts. Moreover, the beam 30 is compared with the rigid joint in which the web 33 of the beam 30 is joined to the girder 20 by welding or bolting, and the upper flange 31 and the lower flange 32 of the beam 30 are joined to the girder 20 by welding or bolting. Since the joint portion 12 between the beam and the girder 20 can be easily reinforced, an increase in process and cost can be minimized.

なお、第八実施形態において、第一楔部材60及び第二楔部材70には、一例として、第四実施形態の構成が適用されているが、上述の第一、第二、第三、第五、第六、及び、第七実施形態のいずれかの構成が適用されてもよい。 In the eighth embodiment, the configuration of the fourth embodiment is applied to the first wedge member 60 and the second wedge member 70 as an example, but the first, second, third, and first described above are applied. The configuration of any of the fifth, sixth, and seventh embodiments may be applied.

次に、本開示の第九実施形態を説明する。 Next, a ninth embodiment of the present disclosure will be described.

図16に示される第九実施形態では、上述の第八実施形態(図15参照)に対し、小梁接合構造10の構成が次のように変更されている。すなわち、各小梁30のウェブ33及び下側フランジ32は、矢印X方向に大梁20のウェブ23に近接する位置にまで延長されており、各小梁30の下側フランジ32と大梁20のウェブ23との間には、隙間42がそれぞれ生じている。この各隙間42には、支持部材50がそれぞれ配置されている。支持部材50の第一楔部材60及び第二楔部材70には、一例として、上述の第四実施形態(図11参照)の構成が適用されている。 In the ninth embodiment shown in FIG. 16, the configuration of the beam joining structure 10 is changed as follows with respect to the above-mentioned eighth embodiment (see FIG. 15). That is, the web 33 and the lower flange 32 of each beam 30 are extended in the arrow X direction to a position close to the web 23 of the beam 20, and the lower flange 32 and the web of the beam 20 of each beam 30 are extended. A gap 42 is formed between the 23 and the 23. Support members 50 are arranged in each of the gaps 42. As an example, the configuration of the fourth embodiment (see FIG. 11) described above is applied to the first wedge member 60 and the second wedge member 70 of the support member 50.

この第九実施形態によれば、各小梁30の下側フランジ32と大梁20のウェブ23との間の隙間42には、支持部材50が挿入されているので、各小梁30の下側フランジ32からの圧縮力を大梁20に伝達できる。また、大梁20の上側フランジ21及び小梁30の上側フランジ31とスラブ110のコンクリートと113がシアコネクタ114で接合されているので、小梁30の上側フランジ31からの引張力をスラブ110に配した鉄筋112を介して大梁20に伝達できる。 According to the ninth embodiment, since the support member 50 is inserted in the gap 42 between the lower flange 32 of each beam 30 and the web 23 of the girder 20, the lower side of each beam 30 is formed. The compressive force from the flange 32 can be transmitted to the girder 20. Further, since the upper flange 21 of the girder 20, the upper flange 31 of the girder 30, the concrete of the slab 110 and 113 are joined by the shear connector 114, the tensile force from the upper flange 31 of the girder 30 is distributed to the slab 110. It can be transmitted to the girder 20 via the reinforcing bar 112.

これにより、小梁30のウェブ33のみをボルトで大梁20に接合するピン接合に比べて、小梁30の中央部のたわみと曲げモーメントを抑制できる。しかも、小梁30のウェブ33を溶接やボルトで大梁20に接合すると共に小梁30の上側フランジ31及び下側フランジ32を溶接やボルトで大梁20に接合する剛接合に比べて、小梁30と大梁20との接合部12の補強が簡易で済むので、工程やコストの増大を最小限に抑えることができる。 As a result, the deflection and bending moment of the central portion of the beam 30 can be suppressed as compared with the pin joining in which only the web 33 of the beam 30 is joined to the girder 20 with bolts. Moreover, the beam 30 is compared with the rigid joint in which the web 33 of the beam 30 is joined to the girder 20 by welding or bolting, and the upper flange 31 and the lower flange 32 of the beam 30 are joined to the girder 20 by welding or bolting. Since the joint portion 12 between the beam and the girder 20 can be easily reinforced, an increase in process and cost can be minimized.

なお、第九実施形態において、第一楔部材60及び第二楔部材70には、一例として、第四実施形態の構成が適用されているが、上述の第一、第二、第三、第五、第六、及び、第七実施形態のいずれかの構成が適用されてもよい。 In the ninth embodiment, the configuration of the fourth embodiment is applied to the first wedge member 60 and the second wedge member 70 as an example, but the above-mentioned first, second, third, and third embodiments are applied. The configuration of any of the fifth, sixth, and seventh embodiments may be applied.

次に、本開示の第十実施形態を説明する。 Next, a tenth embodiment of the present disclosure will be described.

図17、図18に示されるように、第十実施形態において、建物構造Sは、柱120と、複数の小梁30と、複数の支持部材50と、スラブ110とを備える。柱120は、「構造部材」の一例であり、矢印Z方向に延びている。水平方向に切断した柱120の断面形状は、四角形であり、複数の小梁30は、柱120に形成された複数の側面121から各側面121の法線方向に延びている。図18に示されるように、柱120は、複数の鉄筋122及びコンクリート123によって構成された鉄筋コンクリート製である。 As shown in FIGS. 17 and 18, in the tenth embodiment, the building structure S includes columns 120, a plurality of beams 30, a plurality of support members 50, and a slab 110. The pillar 120 is an example of a “structural member” and extends in the direction of arrow Z. The cross-sectional shape of the column 120 cut in the horizontal direction is a quadrangle, and the plurality of girders 30 extend from the plurality of side surfaces 121 formed on the column 120 in the normal direction of each side surface 121. As shown in FIG. 18, the column 120 is made of reinforced concrete composed of a plurality of reinforcing bars 122 and concrete 123.

各小梁30と柱120との接合には、小梁接合構造10がそれぞれ適用されている。すなわち、柱120の各側面121には、支持プレート124がそれぞれ設けられている。支持プレート124には、柱120の内部に向けて延びる複数のスタッド125が接合されており、支持プレート124とコンクリート123とは、複数のスタッド125によって接合されている。 A beam joining structure 10 is applied to the joining of each beam 30 and the column 120. That is, a support plate 124 is provided on each side surface 121 of the pillar 120. A plurality of studs 125 extending toward the inside of the pillar 120 are joined to the support plate 124, and the support plate 124 and the concrete 123 are joined by the plurality of studs 125.

図17に示されるように、支持プレート124は、柱120の側面121に露出しており、側面121の一部を構成している。各支持プレート124には、シアプレート24がそれぞれ接合されている。各シアプレート24は、側面121(支持プレート124)から側面121の法線方向に延びている。各シアプレート24には、小梁30がそれぞれ接合されている。各小梁30とシアプレート24との接合部12の構成は、同一である。この各小梁30とシアプレート24との接合部12の構成は、上述の第一実施形態(図1参照)と同様である。 As shown in FIG. 17, the support plate 124 is exposed on the side surface 121 of the pillar 120 and forms a part of the side surface 121. A shear plate 24 is joined to each support plate 124. Each shear plate 24 extends from the side surface 121 (support plate 124) in the normal direction of the side surface 121. A beam 30 is joined to each shear plate 24. The structure of the joint portion 12 between each beam 30 and the shear plate 24 is the same. The configuration of the joint portion 12 between each beam 30 and the shear plate 24 is the same as that of the first embodiment (see FIG. 1) described above.

図17、図18に示されるように、小梁30の下側フランジ32と支持プレート124との間には、隙間42が生じている。この隙間42には、支持部材50が配置されている。支持部材50の第一楔部材60及び第二楔部材70には、一例として、上述の第四実施形態(図11参照)の構成が適用されている。 As shown in FIGS. 17 and 18, a gap 42 is formed between the lower flange 32 of the beam 30 and the support plate 124. A support member 50 is arranged in the gap 42. As an example, the configuration of the fourth embodiment (see FIG. 11) described above is applied to the first wedge member 60 and the second wedge member 70 of the support member 50.

スラブ110は、複数の小梁30の上に設けられている。スラブ110は、複数の鉄筋112と、コンクリート113によって構成されている。図17では、便宜上、スラブ110に用いられる複数の鉄筋112のうちの一部のみが図示されている。図18に示されるように、複数の小梁30と、コンクリート113とは、各小梁30の上面に設けられた複数のシアコネクタ114によって接合されている。また、スラブ110と柱120とは、接続部材116で接続されている。 The slab 110 is provided on a plurality of beamlets 30. The slab 110 is composed of a plurality of reinforcing bars 112 and concrete 113. In FIG. 17, for convenience, only a part of the plurality of reinforcing bars 112 used for the slab 110 is shown. As shown in FIG. 18, the plurality of beams 30 and the concrete 113 are joined by a plurality of shear connectors 114 provided on the upper surface of each beam 30. Further, the slab 110 and the pillar 120 are connected by a connecting member 116.

この第十実施形態によれば、各小梁30の下側フランジ32と柱120の側面121との間の隙間42には、支持部材50が挿入されているので、各小梁30の下側フランジ32からの圧縮力を柱120に伝達できる。また、小梁30の上側フランジ31とスラブ110とがシアコネクタ114で接合されると共に、スラブ110と柱120とが接続部材116で接続されているので、小梁30の上側フランジ31からの引張力をスラブ110に配した鉄筋112及び接続部材116を介して柱120に伝達できる。 According to the tenth embodiment, since the support member 50 is inserted into the gap 42 between the lower flange 32 of each beam 30 and the side surface 121 of the column 120, the lower side of each beam 30 is formed. The compressive force from the flange 32 can be transmitted to the column 120. Further, since the upper flange 31 of the beam 30 and the slab 110 are joined by the shear connector 114 and the slab 110 and the column 120 are connected by the connecting member 116, the tension from the upper flange 31 of the beam 30 The force can be transmitted to the column 120 via the reinforcing bar 112 arranged on the slab 110 and the connecting member 116.

これにより、小梁30のウェブ33のみをボルトで柱120に接合するピン接合に比べて、小梁30の中央部のたわみと曲げモーメントを抑制できる。しかも、小梁30のウェブ33を溶接やボルトで柱120に接合すると共に小梁30の上側フランジ31及び下側フランジ32を溶接やボルトで柱120に接合する剛接合に比べて、小梁30と柱120との接合部12の補強が簡易で済むので、工程やコストの増大を最小限に抑えることができる。 As a result, the deflection and bending moment of the central portion of the beam 30 can be suppressed as compared with the pin joining in which only the web 33 of the beam 30 is joined to the column 120 with bolts. Moreover, the beam 30 is compared with the rigid joining in which the web 33 of the beam 30 is joined to the column 120 by welding or bolting and the upper flange 31 and the lower flange 32 of the beam 30 are joined to the column 120 by welding or bolting. Since the joint portion 12 between the column 120 and the column 120 can be easily reinforced, an increase in the process and cost can be minimized.

なお、第十実施形態において、第一楔部材60及び第二楔部材70には、一例として、第四実施形態の構成が適用されているが、上述の第一、第二、第三、第五、第六、及び、第七実施形態のいずれかの構成が適用されてもよい。 In the tenth embodiment, the configuration of the fourth embodiment is applied to the first wedge member 60 and the second wedge member 70 as an example, but the above-mentioned first, second, third, and first embodiments are applied. The configuration of any of the fifth, sixth, and seventh embodiments may be applied.

次に、本開示の第十一実施形態を説明する。 Next, the eleventh embodiment of the present disclosure will be described.

図19に示される第十一実施形態において、柱120は、鉄骨、鉄筋、及び、コンクリートによって構成された鉄骨鉄筋コンクリート製である。この第十一実施形態では、上述の第十実施形態(図17、図18参照)に対し、小梁接合構造10の構成が次のように変更されている。すなわち、各シアプレート24は、柱120のコンクリートで形成された側面121から側面121の法線方向に突出している。各シアプレート24には、小梁30がそれぞれ接合されている。各小梁30とシアプレート24との接合部12の構成は、上述の第一実施形態(図1参照)と同様である。 In the eleventh embodiment shown in FIG. 19, the column 120 is made of steel-framed reinforced concrete composed of steel frame, reinforcing bar, and concrete. In the eleventh embodiment, the configuration of the beam joining structure 10 is changed as follows with respect to the tenth embodiment (see FIGS. 17 and 18) described above. That is, each shear plate 24 projects from the side surface 121 formed of concrete of the pillar 120 in the normal direction of the side surface 121. A beam 30 is joined to each shear plate 24. The configuration of the joint portion 12 between each beam 30 and the shear plate 24 is the same as that of the first embodiment (see FIG. 1) described above.

小梁30の下側フランジ32と柱120の側面121との間には、隙間42が生じている。この隙間42には、支持部材50が配置されている。支持部材50の第一楔部材60及び第二楔部材70には、一例として、上述の第四実施形態(図11参照)の構成が適用されている。 A gap 42 is formed between the lower flange 32 of the beam 30 and the side surface 121 of the column 120. A support member 50 is arranged in the gap 42. As an example, the configuration of the fourth embodiment (see FIG. 11) described above is applied to the first wedge member 60 and the second wedge member 70 of the support member 50.

この第十一実施形態によっても、上述の第十実施形態と同様に、小梁30のウェブ33のみをボルトで柱120に接合するピン接合に比べて、小梁30の中央部のたわみと曲げモーメントを抑制できる。しかも、小梁30のウェブ33を溶接やボルトで柱120に接合すると共に小梁30の上側フランジ31及び下側フランジ32を溶接やボルトで柱120に接合する剛接合に比べて、小梁30と柱120との接合部12の補強が簡易で済むので、工程やコストの増大を最小限に抑えることができる。 Also in this eleventh embodiment, as in the tenth embodiment described above, the deflection and bending of the central portion of the beam 30 are compared with the pin joining in which only the web 33 of the beam 30 is joined to the column 120 with bolts. The moment can be suppressed. Moreover, the beam 30 is compared with the rigid joining in which the web 33 of the beam 30 is joined to the column 120 by welding or bolting and the upper flange 31 and the lower flange 32 of the beam 30 are joined to the column 120 by welding or bolting. Since the joint portion 12 between the column 120 and the column 120 can be easily reinforced, an increase in the process and cost can be minimized.

なお、柱120は、鉄筋コンクリート製及び鉄骨鉄筋コンクリート製以外に、鉄骨製でもよい。 The column 120 may be made of steel in addition to the reinforced concrete and the steel-framed reinforced concrete.

また、第十一実施形態において、第一楔部材60及び第二楔部材70には、一例として、第四実施形態の構成が適用されているが、上述の第一、第二、第三、第五、第六、及び、第七実施形態のいずれかの構成が適用されてもよい。 Further, in the eleventh embodiment, the configuration of the fourth embodiment is applied to the first wedge member 60 and the second wedge member 70 as an example, but the above-mentioned first, second, third, and third embodiments are applied. The configuration of any of the fifth, sixth, and seventh embodiments may be applied.

次に、本開示の第十二実施形態を説明する。 Next, the twelfth embodiment of the present disclosure will be described.

図20に示されるように、第十二実施形態において、建物構造Sは、柱120と、壁130と、小梁30と、複数の支持部材50と、スラブ110とを備える。柱120及び壁130は、それぞれ「構造部材」の一例であり、矢印Z方向に延びている。小梁30は、柱120及び壁130の間に配置されており、矢印X方向に延びている。柱120は、複数の鉄筋122及びコンクリート123によって構成された鉄筋コンクリート製である。同様に、壁130も、複数の鉄筋132及びコンクリート133によって構成された鉄筋コンクリート製である。 As shown in FIG. 20, in the twelfth embodiment, the building structure S includes columns 120, walls 130, beams 30, a plurality of support members 50, and slabs 110. The pillar 120 and the wall 130 are examples of "structural members", respectively, and extend in the direction of arrow Z. The beam 30 is arranged between the column 120 and the wall 130 and extends in the direction of arrow X. The column 120 is made of reinforced concrete composed of a plurality of reinforcing bars 122 and concrete 123. Similarly, the wall 130 is also made of reinforced concrete composed of a plurality of reinforcing bars 132 and concrete 133.

小梁30と柱120及び壁130との接合には、小梁接合構造10がそれぞれ適用されている。すなわち、柱120の側面121、及び、壁130の側面131には、支持プレート124、134がそれぞれ設けられている。各支持プレート124、134には、複数のスタッド125、135がそれぞれ接合されている。柱120の支持プレート124とコンクリート123とは、複数のスタッド125によって接合されている。同様に、壁130の支持プレート134とコンクリート133とは、複数のスタッド135によって接合されている。 The beam joining structure 10 is applied to the joining of the beam 30, the column 120, and the wall 130, respectively. That is, support plates 124 and 134 are provided on the side surface 121 of the pillar 120 and the side surface 131 of the wall 130, respectively. A plurality of studs 125 and 135 are joined to the support plates 124 and 134, respectively. The support plate 124 of the pillar 120 and the concrete 123 are joined by a plurality of studs 125. Similarly, the support plate 134 of the wall 130 and the concrete 133 are joined by a plurality of studs 135.

柱120の支持プレート124は、柱120の側面121から露出しており、柱120の側面121の一部を構成している。同様に、壁130の支持プレート134は、壁130の側面131から露出しており、壁130の側面131の一部を構成している。各支持プレート124、134には、シアプレート24がそれぞれ接合されており、柱120に設けられたシアプレート24には、小梁30の一端が接合され、壁130に設けられたシアプレート24には、小梁30の他端が接合されている。小梁30と各シアプレート24との接合部12の構成は、同一である。この小梁30と各シアプレート24との接合部12の構成は、上述の第一実施形態(図1参照)と同様である。 The support plate 124 of the pillar 120 is exposed from the side surface 121 of the pillar 120 and constitutes a part of the side surface 121 of the pillar 120. Similarly, the support plate 134 of the wall 130 is exposed from the side surface 131 of the wall 130 and forms a part of the side surface 131 of the wall 130. A shear plate 24 is joined to each of the support plates 124 and 134, and one end of a beam 30 is joined to the shear plate 24 provided on the column 120 to the shear plate 24 provided on the wall 130. Is joined to the other end of the beam 30. The structure of the joint portion 12 between the beam 30 and each shear plate 24 is the same. The configuration of the joint portion 12 between the beam 30 and each shear plate 24 is the same as that of the first embodiment (see FIG. 1) described above.

小梁30の下側フランジ32と各支持プレート124、134との間には、隙間42がそれぞれ生じている。この各隙間42には、支持部材50がそれぞれ配置されている。支持部材50の第一楔部材60及び第二楔部材70には、一例として、上述の第四実施形態(図11参照)の構成が適用されている。 A gap 42 is formed between the lower flange 32 of the beam 30 and the support plates 124 and 134, respectively. Support members 50 are arranged in each of the gaps 42. As an example, the configuration of the fourth embodiment (see FIG. 11) described above is applied to the first wedge member 60 and the second wedge member 70 of the support member 50.

スラブ110は、小梁30の上に設けられている。スラブ110は、複数の鉄筋112と、コンクリート113によって構成されている。小梁30とコンクリート113とは、小梁30の上面に設けられた複数のシアコネクタ114によって接合されている。また、スラブ110と柱120及び壁130とは、接続部材116でそれぞれ接続されている。 The slab 110 is provided on the beam 30. The slab 110 is composed of a plurality of reinforcing bars 112 and concrete 113. The beam 30 and the concrete 113 are joined by a plurality of shear connectors 114 provided on the upper surface of the beam 30. Further, the slab 110, the pillar 120, and the wall 130 are each connected by a connecting member 116.

この第十二実施形態によれば、小梁30の下側フランジ32と、柱120及び壁130との間の隙間42には、支持部材50がそれぞれ挿入されているので、小梁30の下側フランジ32からの圧縮力を柱120及び壁130に伝達できる。また、小梁30の上側フランジ31とスラブ110とがシアコネクタ114で接合されると共に、スラブ110と柱120及び壁130とが接続部材116で接続されているので、小梁30の上側フランジ31からの引張力をスラブ110に配した鉄筋112及び接続部材116を介して柱120及び壁130に伝達できる。 According to the twelfth embodiment, since the support member 50 is inserted into the gap 42 between the lower flange 32 of the beam 30 and the pillar 120 and the wall 130, the support member 50 is inserted under the beam 30. The compressive force from the side flange 32 can be transmitted to the pillar 120 and the wall 130. Further, since the upper flange 31 of the beam 30 and the slab 110 are joined by the shear connector 114, and the slab 110, the column 120, and the wall 130 are connected by the connecting member 116, the upper flange 31 of the beam 30 is connected. The tensile force from the slab 110 can be transmitted to the column 120 and the wall 130 via the reinforcing bar 112 and the connecting member 116 arranged on the slab 110.

これにより、小梁30のウェブ33のみをボルトで柱120や壁130に接合するピン接合に比べて、小梁30の中央部のたわみと曲げモーメントを抑制できる。しかも、小梁30のウェブ33を溶接やボルトで柱120や壁130に接合すると共に小梁30の上側フランジ31及び下側フランジ32を溶接やボルトで柱120や壁130に接合する剛接合に比べて、小梁30と柱120や壁130との接合部12の補強が簡易で済むので、工程やコストの増大を最小限に抑えることができる。 As a result, the deflection and bending moment of the central portion of the beam 30 can be suppressed as compared with the pin joining in which only the web 33 of the beam 30 is joined to the column 120 and the wall 130 with bolts. Moreover, the web 33 of the beam 30 is joined to the column 120 or the wall 130 by welding or bolting, and the upper flange 31 and the lower flange 32 of the beam 30 are joined to the column 120 or wall 130 by welding or bolting. In comparison, the joint portion 12 between the beam 30 and the column 120 or the wall 130 can be easily reinforced, so that an increase in process and cost can be minimized.

なお、第十二実施形態において、第一楔部材60及び第二楔部材70には、一例として、第四実施形態の構成が適用されているが、上述の第一、第二、第三、第五、第六、及び、第七実施形態のいずれかの構成が適用されてもよい。 In the twelfth embodiment, the configuration of the fourth embodiment is applied to the first wedge member 60 and the second wedge member 70 as an example, but the above-mentioned first, second, third, and third embodiments are applied. The configuration of any of the fifth, sixth, and seventh embodiments may be applied.

次に、本開示の第十三実施形態を説明する。 Next, the thirteenth embodiment of the present disclosure will be described.

図21に示される第十三実施形態において、建物構造Sは、上述の第十二実施形態に対し、柱120(図20参照)の代わりに、大梁140を有する構成とされている。大梁140は、「構造部材」の一例であり、矢印Y方向に延びている。大梁140は、複数の鉄筋142及びコンクリート143によって構成された鉄筋コンクリート製である。 In the thirteenth embodiment shown in FIG. 21, the building structure S is configured to have a girder 140 instead of the column 120 (see FIG. 20) as compared with the above-mentioned twelfth embodiment. The girder 140 is an example of a “structural member” and extends in the Y direction of the arrow. The girder 140 is made of reinforced concrete composed of a plurality of reinforcing bars 142 and concrete 143.

小梁30と大梁140との接合には、小梁接合構造10が適用されている。すなわち、大梁140の側面141には、支持プレート144が設けられている。支持プレート144には、複数のスタッド145が接合されている。大梁140の支持プレート144とコンクリート143とは、複数のスタッド145によって接合されている。大梁140の支持プレート144は、大梁140の側面141から露出しており、大梁140の側面141の一部を構成している。 The beam joining structure 10 is applied to join the beam 30 and the beam 140. That is, a support plate 144 is provided on the side surface 141 of the girder 140. A plurality of studs 145 are joined to the support plate 144. The support plate 144 of the girder 140 and the concrete 143 are joined by a plurality of studs 145. The support plate 144 of the girder 140 is exposed from the side surface 141 of the girder 140 and constitutes a part of the side surface 141 of the girder 140.

支持プレート144には、シアプレート24が接合されており、大梁140に設けられたシアプレート24には、小梁30の一端が接合され、壁130に設けられたシアプレート24には、小梁30の他端が接合されている。小梁30と各シアプレート24との接合部12の構成は、同一である。この小梁30と各シアプレート24との接合部12の構成は、上述の第一実施形態(図1参照)と同様である。 A shear plate 24 is joined to the support plate 144, one end of the beam 30 is joined to the shear plate 24 provided on the girder 140, and a beam is joined to the shear plate 24 provided on the wall 130. The other end of 30 is joined. The structure of the joint portion 12 between the beam 30 and each shear plate 24 is the same. The configuration of the joint portion 12 between the beam 30 and each shear plate 24 is the same as that of the first embodiment (see FIG. 1) described above.

小梁30の下側フランジ32と各支持プレート134、144との間には、隙間42がそれぞれ生じている。この各隙間42には、支持部材50がそれぞれ配置されている。支持部材50の第一楔部材60及び第二楔部材70には、一例として、上述の第四実施形態(図11参照)の構成が適用されている。スラブ110と大梁140及び壁130とは、接続部材116でそれぞれ接続されている。 A gap 42 is formed between the lower flange 32 of the beam 30 and each of the support plates 134 and 144. Support members 50 are arranged in each of the gaps 42. As an example, the configuration of the fourth embodiment (see FIG. 11) described above is applied to the first wedge member 60 and the second wedge member 70 of the support member 50. The slab 110, the girder 140, and the wall 130 are each connected by a connecting member 116.

この第十三実施形態によれば、小梁30の下側フランジ32と、大梁140及び壁130との間の隙間42には、支持部材50がそれぞれ挿入されているので、小梁30の下側フランジ32からの圧縮力を大梁140及び壁130に伝達できる。また、小梁30の上側フランジ31と、大梁140及び壁130の間に設けられたスラブ110とがシアコネクタ114で接合されると共に、スラブ110と大梁140及び壁130とが接続部材116で接続されているので、小梁30の上側フランジ31からの引張力をスラブ110に配した鉄筋112及び接続部材116を介して大梁140及び壁130に伝達できる。 According to the thirteenth embodiment, since the support member 50 is inserted into the gap 42 between the lower flange 32 of the beam 30 and the girder 140 and the wall 130, the support member 50 is inserted under the beam 30. The compressive force from the side flange 32 can be transmitted to the girder 140 and the wall 130. Further, the upper flange 31 of the beam 30 and the slab 110 provided between the girder 140 and the wall 130 are joined by a shear connector 114, and the slab 110 and the girder 140 and the wall 130 are connected by a connecting member 116. Therefore, the tensile force from the upper flange 31 of the beam 30 can be transmitted to the beam 140 and the wall 130 via the reinforcing bar 112 and the connecting member 116 arranged on the slab 110.

これにより、小梁30のウェブ33のみをボルトで大梁140や壁130に接合するピン接合に比べて、小梁30の中央部のたわみと曲げモーメントを抑制できる。しかも、小梁30のウェブ33を溶接やボルトで大梁140や壁130に接合すると共に小梁30の上側フランジ31及び下側フランジ32を溶接やボルトで大梁140や壁130に接合する剛接合に比べて、小梁30と大梁140や壁130との接合部12の補強が簡易で済むので、工程やコストの増大を最小限に抑えることができる。 As a result, the deflection and bending moment of the central portion of the beam 30 can be suppressed as compared with the pin joining in which only the web 33 of the beam 30 is joined to the girder 140 and the wall 130 with bolts. Moreover, the web 33 of the beam 30 is joined to the girder 140 and the wall 130 by welding and bolts, and the upper flange 31 and the lower flange 32 of the beam 30 are joined to the girder 140 and the wall 130 by welding and bolts. In comparison, the joint portion 12 between the small beam 30 and the large beam 140 or the wall 130 can be easily reinforced, so that an increase in process and cost can be minimized.

なお、第十三実施形態において、大梁140は、鉄筋コンクリート製以外に、鉄骨製でもよい。 In the thirteenth embodiment, the girder 140 may be made of steel frame as well as made of reinforced concrete.

また、第十三実施形態において、第一楔部材60及び第二楔部材70には、一例として、第四実施形態の構成が適用されているが、上述の第一、第二、第三、第五、第六、及び、第七実施形態のいずれかの構成が適用されてもよい。 Further, in the thirteenth embodiment, the configuration of the fourth embodiment is applied to the first wedge member 60 and the second wedge member 70 as an example, but the above-mentioned first, second, third, and third embodiments are applied. The configuration of any of the fifth, sixth, and seventh embodiments may be applied.

次に、本開示の第十四実施形態を説明する。 Next, the fourteenth embodiment of the present disclosure will be described.

図22に示される第十四実施形態では、上述の第八実施形態(図15参照)に対し、小梁接合構造10が次のように変更されている。すなわち、大梁20に設けられたシアプレート24と小梁30のウェブ33との接合には、溶接が用いられており、シアプレート24の先端側の縁部は、溶接部151によってウェブ33に接合されている。締結部材11は、シアプレート24及びウェブ33を溶接する際の仮止めのために使用される。 In the fourteenth embodiment shown in FIG. 22, the beam joining structure 10 is modified as follows with respect to the above-mentioned eighth embodiment (see FIG. 15). That is, welding is used for joining the shear plate 24 provided on the girder 20 and the web 33 of the beam 30, and the edge portion on the tip side of the shear plate 24 is joined to the web 33 by the welded portion 151. Has been done. The fastening member 11 is used for temporary fixing when welding the shear plate 24 and the web 33.

この第十四実施形態によっても、上述の第八実施形態と同様に、小梁30のウェブ33のみをボルトで大梁20に接合するピン接合に比べて、小梁30の中央部のたわみと曲げモーメントを抑制できる。しかも、小梁30のウェブ33を溶接やボルトで大梁20に接合すると共に小梁30の上側フランジ31及び下側フランジ32を溶接やボルトで大梁20に接合する剛接合に比べて、小梁30と大梁20との接合部12の補強が簡易で済むので、工程やコストの増大を最小限に抑えることができる。 Also in this fourteenth embodiment, as in the eighth embodiment described above, the deflection and bending of the central portion of the beam 30 are compared with the pin joining in which only the web 33 of the beam 30 is joined to the girder 20 with bolts. The moment can be suppressed. Moreover, the beam 30 is compared with the rigid joint in which the web 33 of the beam 30 is joined to the girder 20 by welding or bolting, and the upper flange 31 and the lower flange 32 of the beam 30 are joined to the girder 20 by welding or bolting. Since the joint portion 12 between the beam and the girder 20 can be easily reinforced, an increase in process and cost can be minimized.

なお、第十四実施形態において、第一楔部材60及び第二楔部材70には、一例として、第四実施形態の構成が適用されているが、上述の第一、第二、第三、第五、第六、及び、第七実施形態のいずれかの構成が適用されてもよい。 In the fourteenth embodiment, the configuration of the fourth embodiment is applied to the first wedge member 60 and the second wedge member 70 as an example, but the above-mentioned first, second, third, and fourth embodiments are applied. The configuration of any of the fifth, sixth, and seventh embodiments may be applied.

また、上記第八乃至第十四実施形態における構成のうち、組み合わせ可能な構成は、適宜、組み合わされて実施されてもよい。 In addition, among the configurations in the eighth to fourteenth embodiments, the configurations that can be combined may be appropriately combined and implemented.

以上、本開示の第一乃至第十四実施形態について説明したが、本開示は、上記に限定されるものでなく、その主旨を逸脱しない範囲内において上記以外にも種々変形して実施可能であることは勿論である。 The first to fourteenth embodiments of the present disclosure have been described above, but the present disclosure is not limited to the above, and can be implemented by various modifications other than the above within a range not deviating from the gist thereof. Of course there is.

Claims (41)

水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合工程と、
前記構造部材と水平方向に対向する斜め上向きの第一傾斜面を有する第一楔部材を前記隙間に挿入して前記下側フランジに固定する固定工程と、
第二楔部材における斜め下向きの第二傾斜面を前記第一傾斜面に摺接させながら前記第二楔部材を下側に移動させて、前記第二楔部材を前記構造部材と前記第一楔部材との間に圧入する圧入工程と、
を備え
前記第一楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜する下向きの第一ガイド面を有し、
前記第二楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜する上向きの第二ガイド面を有し、
前記圧入工程において、前記第二楔部材を前記小梁の幅方向一方側から他方側に移動させながら前記第二ガイド面を前記第一ガイド面に摺接させることで前記第二楔部材を下側に移動させる、
小梁接合方法。
The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. Joining process and
A fixing step of inserting a first wedge member having a first inclined surface diagonally upward facing the structural member in the gap and fixing the first wedge member to the lower flange.
The second wedge member is moved downward while sliding the diagonally downward second inclined surface of the second wedge member against the first inclined surface, and the second wedge member is moved to the structural member and the first wedge. The press-fitting process of press-fitting between the members and
Equipped with a,
The first wedge member has a downward first guide surface that inclines downward from one side in the width direction of the beam toward the other side.
The second wedge member has an upward second guide surface that inclines downward from one side in the width direction of the beam toward the other side.
In the press-fitting step, the second wedge member is lowered by sliding the second guide surface against the first guide surface while moving the second wedge member from one side to the other in the width direction of the beam. Move to the side,
Beam joining method.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合工程と、
前記下側フランジと対向する斜め上向きの第一傾斜面を有する第一楔部材を前記隙間に挿入して前記構造部材に固定する固定工程と、
第二楔部材における斜め下向きの第二傾斜面を前記第一傾斜面に摺接させながら前記第二楔部材を下側に移動させて、前記第二楔部材を前記下側フランジと前記第一楔部材との間に圧入する圧入工程と、
を備え
前記第一楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜する下向きの第一ガイド面を有し、
前記第二楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜する上向きの第二ガイド面を有し、
前記圧入工程において、前記第二楔部材を前記小梁の幅方向一方側から他方側に移動させながら前記第二ガイド面を前記第一ガイド面に摺接させることで前記第二楔部材を下側に移動させる、
小梁接合方法。
The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. Joining process and
A fixing step of inserting a first wedge member having an obliquely upward first inclined surface facing the lower flange into the gap and fixing the first wedge member to the structural member.
The second wedge member is moved downward while sliding the diagonally downward second inclined surface of the second wedge member against the first inclined surface, and the second wedge member is moved to the lower flange and the first. The press-fitting process of press-fitting between the wedge member and
Equipped with a,
The first wedge member has a downward first guide surface that inclines downward from one side in the width direction of the beam toward the other side.
The second wedge member has an upward second guide surface that inclines downward from one side in the width direction of the beam toward the other side.
In the press-fitting step, the second wedge member is lowered by sliding the second guide surface against the first guide surface while moving the second wedge member from one side to the other in the width direction of the beam. Move to the side,
Beam joining method.
前記圧入工程において、前記第二ガイド面を前記第一ガイド面に下側から係止させることで前記第二楔部材の抜け止めをする、
請求項1又は請求項2に記載の小梁接合方法。
In the press-fitting step, the second wedge member is prevented from coming off by locking the second guide surface to the first guide surface from below.
The beam joining method according to claim 1 or 2.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合工程と、
前記構造部材と水平方向に対向する斜め上向きの第一傾斜面を有する第一楔部材を前記隙間に挿入して前記下側フランジに固定する固定工程と、
第二楔部材における斜め下向きの第二傾斜面を前記第一傾斜面に摺接させながら前記第二楔部材を下側に移動させて、前記第二楔部材を前記構造部材と前記第一楔部材との間に圧入する圧入工程と、
を備え、
前記第一楔部材には、前記第一傾斜面に開口すると共に前記第一楔部材の側面に開放された第一溝が形成され、
前記第二楔部材には、前記第二傾斜面に開口すると共に前記第二楔部材の側面に開放された第二溝が形成され、
前記圧入工程において、前記第一溝の上側の壁面と前記第二溝の下側の壁面との間に第三楔部材を挿入することで前記第二楔部材を下側に移動させる、
小梁接合方法。
The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. Joining process and
A fixing step of inserting a first wedge member having a first inclined surface diagonally upward facing the structural member in the gap and fixing the first wedge member to the lower flange.
The second wedge member is moved downward while sliding the diagonally downward second inclined surface of the second wedge member against the first inclined surface, and the second wedge member is moved to the structural member and the first wedge. The press-fitting process of press-fitting between the members and
With
The first wedge member is formed with a first groove that is open to the first inclined surface and is open to the side surface of the first wedge member.
The second wedge member is formed with a second groove that is open to the second inclined surface and is open to the side surface of the second wedge member.
In the press-fitting step, the second wedge member is moved downward by inserting the third wedge member between the upper wall surface of the first groove and the lower wall surface of the second groove.
Beam joining method.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合工程と、
前記下側フランジと対向する斜め上向きの第一傾斜面を有する第一楔部材を前記隙間に挿入して前記構造部材に固定する固定工程と、
第二楔部材における斜め下向きの第二傾斜面を前記第一傾斜面に摺接させながら前記第二楔部材を下側に移動させて、前記第二楔部材を前記下側フランジと前記第一楔部材との間に圧入する圧入工程と、
を備え、
前記第一楔部材には、前記第一傾斜面に開口すると共に前記第一楔部材の側面に開放された第一溝が形成され、
前記第二楔部材には、前記第二傾斜面に開口すると共に前記第二楔部材の側面に開放された第二溝が形成され、
前記圧入工程において、前記第一溝の上側の壁面と前記第二溝の下側の壁面との間に第三楔部材を挿入することで前記第二楔部材を下側に移動させる、
小梁接合方法。
The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. Joining process and
A fixing step of inserting a first wedge member having an obliquely upward first inclined surface facing the lower flange into the gap and fixing the first wedge member to the structural member.
The second wedge member is moved downward while sliding the diagonally downward second inclined surface of the second wedge member against the first inclined surface, and the second wedge member is moved to the lower flange and the first. The press-fitting process of press-fitting between the wedge member and
With
The first wedge member is formed with a first groove that is open to the first inclined surface and is open to the side surface of the first wedge member.
The second wedge member is formed with a second groove that is open to the second inclined surface and is open to the side surface of the second wedge member.
In the press-fitting step, the second wedge member is moved downward by inserting the third wedge member between the upper wall surface of the first groove and the lower wall surface of the second groove.
Beam joining method.
前記第二楔部材における前記構造部材側の面には、前記構造部材側に突出する凸部が形成され、
前記圧入工程において、前記凸部を前記構造部材に食い込ませることで前記第二楔部材の抜け止めをする、
請求項1又は請求項4に記載の小梁接合方法。
A convex portion protruding toward the structural member is formed on the surface of the second wedge member on the structural member side.
In the press-fitting step, the convex portion is made to bite into the structural member to prevent the second wedge member from coming off.
The beam joining method according to claim 1 or 4 .
前記第二楔部材における前記下側フランジ側の面には、前記下側フランジ側に突出する凸部が形成され、
前記圧入工程において、前記凸部を前記下側フランジに食い込ませることで前記第二楔部材の抜け止めをする、
請求項2又は請求項5に記載の小梁接合方法。
On the surface of the second wedge member on the lower flange side, a convex portion protruding toward the lower flange is formed.
In the press-fitting step, the convex portion is made to bite into the lower flange to prevent the second wedge member from coming off.
The beam joining method according to claim 2 or 5 .
前記構造部材は、H形鋼によって構成された大梁であり、
前記小梁の前記下側フランジは、前記大梁の下側フランジよりも上側に位置し、
前記大梁のウェブには、水平方向に延びて前記小梁の前記下側フランジとの間に前記隙間が生じるリブが形成され、
前記小梁の前記下側フランジと前記リブとの間の前記隙間に前記第一楔部材及び前記第二楔部材を配置する、
請求項1〜請求項7のいずれか一項に記載の小梁接合方法。
The structural member is a girder made of H-shaped steel.
The lower flange of the girder is located above the lower flange of the girder.
The web of the girder is formed with ribs extending in the horizontal direction to form the gap between the girder and the lower flange of the girder.
The first wedge member and the second wedge member are arranged in the gap between the lower flange of the beam and the rib.
The beam joining method according to any one of claims 1 to 7.
前記構造部材は、H形鋼によって構成された大梁であり、
前記小梁の前記下側フランジは、前記大梁の下側フランジよりも上側に位置し、
前記小梁の前記下側フランジと前記大梁のウェブとの間には、前記隙間が生じ、
前記小梁の前記下側フランジと前記ウェブとの間の前記隙間に前記第一楔部材及び前記第二楔部材を配置する、
請求項1〜請求項7のいずれか一項に記載の小梁接合方法。
The structural member is a girder made of H-shaped steel.
The lower flange of the girder is located above the lower flange of the girder.
The gap is formed between the lower flange of the beam and the web of the girder.
The first wedge member and the second wedge member are arranged in the gap between the lower flange of the beam and the web.
The beam joining method according to any one of claims 1 to 7.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合工程と、
前記構造部材と水平方向に対向する斜め上向きの第一傾斜面を有する第一楔部材を前記隙間に挿入して前記下側フランジに固定する固定工程と、
第二楔部材における斜め下向きの第二傾斜面を前記第一傾斜面に摺接させながら前記第二楔部材を下側に移動させて、前記第二楔部材を前記構造部材と前記第一楔部材との間に圧入する圧入工程と、
を備え、
前記構造部材は、鉄筋コンクリート製又は鉄骨鉄筋コンクリート製の柱であり、
前記小梁の前記下側フランジと前記柱の側面との間には、前記隙間が生じ、
前記小梁の前記下側フランジと前記側面との間の前記隙間に前記第一楔部材及び前記第二楔部材を配置する、
小梁接合方法。
The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. Joining process and
A fixing step of inserting a first wedge member having a first inclined surface diagonally upward facing the structural member in the gap and fixing the first wedge member to the lower flange.
The second wedge member is moved downward while sliding the diagonally downward second inclined surface of the second wedge member against the first inclined surface, and the second wedge member is moved to the structural member and the first wedge. The press-fitting process of press-fitting between the members and
With
The structural member is a column made of reinforced concrete or steel-framed reinforced concrete.
The gap is formed between the lower flange of the beam and the side surface of the column.
The first wedge member and the second wedge member are arranged in the gap between the lower flange and the side surface of the beam.
Beam joining method.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合工程と、
前記下側フランジと対向する斜め上向きの第一傾斜面を有する第一楔部材を前記隙間に挿入して前記構造部材に固定する固定工程と、
第二楔部材における斜め下向きの第二傾斜面を前記第一傾斜面に摺接させながら前記第二楔部材を下側に移動させて、前記第二楔部材を前記下側フランジと前記第一楔部材との間に圧入する圧入工程と、
を備え、
前記構造部材は、鉄筋コンクリート製又は鉄骨鉄筋コンクリート製の柱であり、
前記小梁の前記下側フランジと前記柱の側面との間には、前記隙間が生じ、
前記小梁の前記下側フランジと前記側面との間の前記隙間に前記第一楔部材及び前記第二楔部材を配置する、
小梁接合方法。
The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. Joining process and
A fixing step of inserting a first wedge member having an obliquely upward first inclined surface facing the lower flange into the gap and fixing the first wedge member to the structural member.
The second wedge member is moved downward while sliding the diagonally downward second inclined surface of the second wedge member against the first inclined surface, and the second wedge member is moved to the lower flange and the first. The press-fitting process of press-fitting between the wedge member and
With
The structural member is a column made of reinforced concrete or steel-framed reinforced concrete.
The gap is formed between the lower flange of the beam and the side surface of the column.
The first wedge member and the second wedge member are arranged in the gap between the lower flange and the side surface of the beam.
Beam joining method.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合工程と、
前記構造部材と水平方向に対向する斜め上向きの第一傾斜面を有する第一楔部材を前記隙間に挿入して前記下側フランジに固定する固定工程と、
第二楔部材における斜め下向きの第二傾斜面を前記第一傾斜面に摺接させながら前記第二楔部材を下側に移動させて、前記第二楔部材を前記構造部材と前記第一楔部材との間に圧入する圧入工程と、
を備え、
前記構造部材は、鉄筋コンクリート製の壁であり、
前記小梁の前記下側フランジと前記壁の側面との間には、前記隙間が生じ、
前記小梁の前記下側フランジと前記側面との間の前記隙間に前記第一楔部材及び前記第二楔部材を配置する、
小梁接合方法。
The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. Joining process and
A fixing step of inserting a first wedge member having a first inclined surface diagonally upward facing the structural member in the gap and fixing the first wedge member to the lower flange.
The second wedge member is moved downward while sliding the diagonally downward second inclined surface of the second wedge member against the first inclined surface, and the second wedge member is moved to the structural member and the first wedge. The press-fitting process of press-fitting between the members and
With
The structural member is a wall made of reinforced concrete.
The gap is formed between the lower flange of the beam and the side surface of the wall.
The first wedge member and the second wedge member are arranged in the gap between the lower flange and the side surface of the beam.
Beam joining method.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合工程と、The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. Joining process and
前記下側フランジと対向する斜め上向きの第一傾斜面を有する第一楔部材を前記隙間に挿入して前記構造部材に固定する固定工程と、 A fixing step of inserting a first wedge member having an obliquely upward first inclined surface facing the lower flange into the gap and fixing the first wedge member to the structural member.
第二楔部材における斜め下向きの第二傾斜面を前記第一傾斜面に摺接させながら前記第二楔部材を下側に移動させて、前記第二楔部材を前記下側フランジと前記第一楔部材との間に圧入する圧入工程と、 The second wedge member is moved downward while sliding the diagonally downward second inclined surface of the second wedge member against the first inclined surface, and the second wedge member is moved to the lower flange and the first. The press-fitting process of press-fitting between the wedge member and
を備え、 With
前記構造部材は、鉄筋コンクリート製の壁であり、 The structural member is a wall made of reinforced concrete.
前記小梁の前記下側フランジと前記壁の側面との間には、前記隙間が生じ、 The gap is formed between the lower flange of the beam and the side surface of the wall.
前記小梁の前記下側フランジと前記側面との間の前記隙間に前記第一楔部材及び前記第二楔部材を配置する、 The first wedge member and the second wedge member are arranged in the gap between the lower flange and the side surface of the beam.
小梁接合方法。 Beam joining method.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合工程と、The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. Joining process and
前記構造部材と水平方向に対向する斜め上向きの第一傾斜面を有する第一楔部材を前記隙間に挿入して前記下側フランジに固定する固定工程と、 A fixing step of inserting a first wedge member having a first inclined surface diagonally upward facing the structural member in the gap and fixing the first wedge member to the lower flange.
第二楔部材における斜め下向きの第二傾斜面を前記第一傾斜面に摺接させながら前記第二楔部材を下側に移動させて、前記第二楔部材を前記構造部材と前記第一楔部材との間に圧入する圧入工程と、 The second wedge member is moved downward while sliding the diagonally downward second inclined surface of the second wedge member against the first inclined surface, and the second wedge member is moved to the structural member and the first wedge. The press-fitting process of press-fitting between the members and
を備え、 With
前記構造部材は、鉄筋コンクリート製の大梁であり、 The structural member is a girder made of reinforced concrete.
前記小梁の前記下側フランジと前記大梁の側面との間には、前記隙間が生じ、 The gap is formed between the lower flange of the beam and the side surface of the beam.
前記小梁の前記下側フランジと前記側面との間の前記隙間に前記第一楔部材及び前記第二楔部材を配置する、 The first wedge member and the second wedge member are arranged in the gap between the lower flange and the side surface of the beam.
小梁接合方法。 Beam joining method.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合工程と、The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. Joining process and
前記下側フランジと対向する斜め上向きの第一傾斜面を有する第一楔部材を前記隙間に挿入して前記構造部材に固定する固定工程と、 A fixing step of inserting a first wedge member having an obliquely upward first inclined surface facing the lower flange into the gap and fixing the first wedge member to the structural member.
第二楔部材における斜め下向きの第二傾斜面を前記第一傾斜面に摺接させながら前記第二楔部材を下側に移動させて、前記第二楔部材を前記下側フランジと前記第一楔部材との間に圧入する圧入工程と、 The second wedge member is moved downward while sliding the diagonally downward second inclined surface of the second wedge member against the first inclined surface, and the second wedge member is moved to the lower flange and the first. The press-fitting process of press-fitting between the wedge member and
を備え、 With
前記構造部材は、鉄筋コンクリート製の大梁であり、 The structural member is a girder made of reinforced concrete.
前記小梁の前記下側フランジと前記大梁の側面との間には、前記隙間が生じ、 The gap is formed between the lower flange of the beam and the side surface of the beam.
前記小梁の前記下側フランジと前記側面との間の前記隙間に前記第一楔部材及び前記第二楔部材を配置する、 The first wedge member and the second wedge member are arranged in the gap between the lower flange and the side surface of the beam.
小梁接合方法。 Beam joining method.
前記第一楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜する下向きの第一ガイド面を有し、 The first wedge member has a downward first guide surface that inclines downward from one side in the width direction of the beam toward the other side.
前記第二楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜する上向きの第二ガイド面を有し、 The second wedge member has an upward second guide surface that inclines downward from one side in the width direction of the beam toward the other side.
前記圧入工程において、前記第二楔部材を前記小梁の幅方向一方側から他方側に移動させながら前記第二ガイド面を前記第一ガイド面に摺接させることで前記第二楔部材を下側に移動させる、 In the press-fitting step, the second wedge member is lowered by sliding the second guide surface against the first guide surface while moving the second wedge member from one side to the other in the width direction of the beam. Move to the side,
請求項10〜請求項15のいずれか一項に記載の小梁接合方法。 The beam joining method according to any one of claims 10 to 15.
前記第一楔部材には、前記第一傾斜面に開口すると共に前記第一楔部材の側面に開放された第一溝が形成され、The first wedge member is formed with a first groove that is open to the first inclined surface and is open to the side surface of the first wedge member.
前記第二楔部材には、前記第二傾斜面に開口すると共に前記第二楔部材の側面に開放された第二溝が形成され、 The second wedge member is formed with a second groove that is open to the second inclined surface and is open to the side surface of the second wedge member.
前記圧入工程において、前記第一溝の上側の壁面と前記第二溝の下側の壁面との間に第三楔部材を挿入することで前記第二楔部材を下側に移動させる、 In the press-fitting step, the second wedge member is moved downward by inserting the third wedge member between the upper wall surface of the first groove and the lower wall surface of the second groove.
請求項10〜請求項15のいずれか一項に記載の小梁接合方法。 The beam joining method according to any one of claims 10 to 15.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部と、
前記隙間に挿入されて前記下側フランジに固定されると共に、前記構造部材と水平方向に対向する斜め上向きの第一傾斜面を有する第一楔部材と、
前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記構造部材と前記第一楔部材との間に圧入された第二楔部材と、
を備え、
前記第一楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜する下向きの第一ガイド面を有し、
前記第二楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜する上向きの第二ガイド面を有し、
前記第二ガイド面は、前記第一ガイド面に接触している、
小梁接合構造。
The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. At the joint,
A first wedge member that is inserted into the gap and fixed to the lower flange, and has a first inclined surface that is obliquely upward facing the structural member in the horizontal direction.
A second wedge member having an obliquely downward second inclined surface in contact with the first inclined surface and press-fitted between the structural member and the first wedge member.
With
The first wedge member has a downward first guide surface that inclines downward from one side in the width direction of the beam toward the other side.
The second wedge member has an upward second guide surface that inclines downward from one side in the width direction of the beam toward the other side.
The second guide surface is in contact with the first guide surface.
Beam joint structure.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部と、
前記隙間に挿入されて前記構造部材に固定されると共に、前記下側フランジと対向する斜め上向きの第一傾斜面を有する第一楔部材と、
前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記下側フランジと前記第一楔部材との間に圧入された第二楔部材と、
を備え、
前記第一楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜する下向きの第一ガイド面を有し、
前記第二楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜する上向きの第二ガイド面を有し、
前記第二ガイド面は、前記第一ガイド面に接触している、
小梁接合構造。
The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. At the joint,
A first wedge member that is inserted into the gap and fixed to the structural member and has a first inclined surface that faces diagonally upward and faces the lower flange.
A second wedge member having an obliquely downward second inclined surface in contact with the first inclined surface and press-fitted between the lower flange and the first wedge member.
With
The first wedge member has a downward first guide surface that inclines downward from one side in the width direction of the beam toward the other side.
The second wedge member has an upward second guide surface that inclines downward from one side in the width direction of the beam toward the other side.
The second guide surface is in contact with the first guide surface.
Beam joint structure.
前記第二ガイド面は、前記第一ガイド面に下側から係止されている、
請求項18又は請求項19に記載の小梁接合構造。
The second guide surface is locked to the first guide surface from below.
The beam joining structure according to claim 18 or 19 .
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部と、
前記隙間に挿入されて前記下側フランジに固定されると共に、前記構造部材と水平方向に対向する斜め上向きの第一傾斜面を有する第一楔部材と、
前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記構造部材と前記第一楔部材との間に圧入された第二楔部材と、
を備え、
前記第一楔部材には、前記第一傾斜面に開口すると共に前記第一楔部材の側面に開放された第一溝が形成され、
前記第二楔部材には、前記第二傾斜面に開口すると共に前記第二楔部材の側面に開放された第二溝が形成され、
前記第一溝の上側の壁面と前記第二溝の下側の壁面との間には、第三楔部材が挿入されている、
小梁接合構造。
The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. At the joint,
A first wedge member that is inserted into the gap and fixed to the lower flange, and has a first inclined surface that is obliquely upward facing the structural member in the horizontal direction.
A second wedge member having an obliquely downward second inclined surface in contact with the first inclined surface and press-fitted between the structural member and the first wedge member.
With
The first wedge member is formed with a first groove that is open to the first inclined surface and is open to the side surface of the first wedge member.
The second wedge member is formed with a second groove that is open to the second inclined surface and is open to the side surface of the second wedge member.
A third wedge member is inserted between the upper wall surface of the first groove and the lower wall surface of the second groove.
Beam joint structure.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部と、
前記隙間に挿入されて前記構造部材に固定されると共に、前記下側フランジと対向する斜め上向きの第一傾斜面を有する第一楔部材と、
前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記下側フランジと前記第一楔部材との間に圧入された第二楔部材と、
を備え、
前記第一楔部材には、前記第一傾斜面に開口すると共に前記第一楔部材の側面に開放された第一溝が形成され、
前記第二楔部材には、前記第二傾斜面に開口すると共に前記第二楔部材の側面に開放された第二溝が形成され、
前記第一溝の上側の壁面と前記第二溝の下側の壁面との間には、第三楔部材が挿入されている、
小梁接合構造。
The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. At the joint,
A first wedge member that is inserted into the gap and fixed to the structural member and has a first inclined surface that faces diagonally upward and faces the lower flange.
A second wedge member having an obliquely downward second inclined surface in contact with the first inclined surface and press-fitted between the lower flange and the first wedge member.
With
The first wedge member is formed with a first groove that is open to the first inclined surface and is open to the side surface of the first wedge member.
The second wedge member is formed with a second groove that is open to the second inclined surface and is open to the side surface of the second wedge member.
A third wedge member is inserted between the upper wall surface of the first groove and the lower wall surface of the second groove.
Beam joint structure.
前記第二楔部材における前記構造部材側の面には、前記構造部材側に突出する凸部が形成され、
前記凸部は、前記構造部材に食い込んでいる、
請求項18又は請求項21に記載の小梁接合構造。
A convex portion protruding toward the structural member is formed on the surface of the second wedge member on the structural member side.
The convex portion bites into the structural member.
The beam joining structure according to claim 18 or 21 .
前記第二楔部材における前記下側フランジ側の面には、前記下側フランジ側に突出する凸部が形成され、
前記凸部は、前記下側フランジに食い込んでいる、
請求項19又は請求項22に記載の小梁接合構造。
On the surface of the second wedge member on the lower flange side, a convex portion protruding toward the lower flange is formed.
The convex portion bites into the lower flange.
The beam joining structure according to claim 19 or 22 .
前記構造部材は、H形鋼によって構成された大梁であり、The structural member is a girder made of H-shaped steel.
前記小梁の前記下側フランジは、前記大梁の下側フランジよりも上側に位置し、 The lower flange of the girder is located above the lower flange of the girder.
前記大梁のウェブには、水平方向に延びて前記小梁の前記下側フランジとの間に前記隙間が生じるリブが形成されており、 The web of the girder is formed with ribs extending in the horizontal direction to form the gap between the girder and the lower flange of the girder.
前記第一楔部材及び前記第二楔部材は、前記小梁の前記下側フランジと前記リブとの間の前記隙間に配置されている、 The first wedge member and the second wedge member are arranged in the gap between the lower flange and the rib of the beam.
請求項18〜請求項24のいずれか一項に記載の小梁接合構造。 The beam joining structure according to any one of claims 18 to 24.
前記構造部材は、H形鋼によって構成された大梁であり、The structural member is a girder made of H-shaped steel.
前記小梁の前記下側フランジは、前記大梁の下側フランジよりも上側に位置し、 The lower flange of the girder is located above the lower flange of the girder.
前記小梁の前記下側フランジと前記大梁のウェブとの間には、前記隙間が生じ、 The gap is formed between the lower flange of the beam and the web of the girder.
前記第一楔部材及び前記第二楔部材は、前記小梁の前記下側フランジと前記ウェブとの間の前記隙間に配置されている、 The first wedge member and the second wedge member are arranged in the gap between the lower flange of the beam and the web.
請求項18〜請求項24のいずれか一項に記載の小梁接合構造。 The beam joining structure according to any one of claims 18 to 24.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部と、The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. At the joint,
前記隙間に挿入されて前記下側フランジに固定されると共に、前記構造部材と水平方向に対向する斜め上向きの第一傾斜面を有する第一楔部材と、 A first wedge member that is inserted into the gap and fixed to the lower flange, and has a first inclined surface that is obliquely upward facing the structural member in the horizontal direction.
前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記構造部材と前記第一楔部材との間に圧入された第二楔部材と、 A second wedge member having an obliquely downward second inclined surface in contact with the first inclined surface and press-fitted between the structural member and the first wedge member.
を備え、 With
前記構造部材は、鉄筋コンクリート製又は鉄骨鉄筋コンクリート製の柱であり、 The structural member is a column made of reinforced concrete or steel-framed reinforced concrete.
前記小梁の前記下側フランジと前記柱の側面との間には、前記隙間が生じ、 The gap is formed between the lower flange of the beam and the side surface of the column.
前記第一楔部材及び前記第二楔部材は、前記小梁の前記下側フランジと前記側面との間の前記隙間に配置されている、 The first wedge member and the second wedge member are arranged in the gap between the lower flange and the side surface of the beam.
小梁接合構造。 Beam joint structure.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部と、The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. At the joint,
前記隙間に挿入されて前記構造部材に固定されると共に、前記下側フランジと対向する斜め上向きの第一傾斜面を有する第一楔部材と、 A first wedge member that is inserted into the gap and fixed to the structural member and has a first inclined surface that faces diagonally upward and faces the lower flange.
前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記下側フランジと前記第一楔部材との間に圧入された第二楔部材と、 A second wedge member having an obliquely downward second inclined surface in contact with the first inclined surface and press-fitted between the lower flange and the first wedge member.
を備え、 With
前記構造部材は、鉄筋コンクリート製又は鉄骨鉄筋コンクリート製の柱であり、 The structural member is a column made of reinforced concrete or steel-framed reinforced concrete.
前記小梁の前記下側フランジと前記柱の側面との間には、前記隙間が生じ、 The gap is formed between the lower flange of the beam and the side surface of the column.
前記第一楔部材及び前記第二楔部材は、前記小梁の前記下側フランジと前記側面との間の前記隙間に配置されている、 The first wedge member and the second wedge member are arranged in the gap between the lower flange and the side surface of the beam.
小梁接合構造。 Beam joint structure.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部と、The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. At the joint,
前記隙間に挿入されて前記下側フランジに固定されると共に、前記構造部材と水平方向に対向する斜め上向きの第一傾斜面を有する第一楔部材と、 A first wedge member that is inserted into the gap and fixed to the lower flange and has a first inclined surface that is obliquely upward facing the structural member in the horizontal direction.
前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記構造部材と前記第一楔部材との間に圧入された第二楔部材と、 A second wedge member having an obliquely downward second inclined surface in contact with the first inclined surface and press-fitted between the structural member and the first wedge member.
を備え、 With
前記構造部材は、鉄筋コンクリート製の壁であり、 The structural member is a wall made of reinforced concrete.
前記小梁の前記下側フランジと前記壁の側面との間には、前記隙間が生じ、 The gap is formed between the lower flange of the beam and the side surface of the wall.
前記第一楔部材及び前記第二楔部材は、前記小梁の前記下側フランジと前記側面との間の前記隙間に配置されている、 The first wedge member and the second wedge member are arranged in the gap between the lower flange and the side surface of the beam.
小梁接合構造。 Beam joint structure.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部と、The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. At the joint,
前記隙間に挿入されて前記構造部材に固定されると共に、前記下側フランジと対向する斜め上向きの第一傾斜面を有する第一楔部材と、 A first wedge member that is inserted into the gap and fixed to the structural member and has a first inclined surface that faces diagonally upward and faces the lower flange.
前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記下側フランジと前記第一楔部材との間に圧入された第二楔部材と、 A second wedge member having an obliquely downward second inclined surface in contact with the first inclined surface and press-fitted between the lower flange and the first wedge member.
を備え、 With
前記構造部材は、鉄筋コンクリート製の壁であり、 The structural member is a wall made of reinforced concrete.
前記小梁の前記下側フランジと前記壁の側面との間には、前記隙間が生じ、 The gap is formed between the lower flange of the beam and the side surface of the wall.
前記第一楔部材及び前記第二楔部材は、前記小梁の前記下側フランジと前記側面との間の前記隙間に配置されている、 The first wedge member and the second wedge member are arranged in the gap between the lower flange and the side surface of the beam.
小梁接合構造。 Beam joint structure.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部と、The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. At the joint,
前記隙間に挿入されて前記下側フランジに固定されると共に、前記構造部材と水平方向に対向する斜め上向きの第一傾斜面を有する第一楔部材と、 A first wedge member that is inserted into the gap and fixed to the lower flange and has a first inclined surface that is obliquely upward facing the structural member in the horizontal direction.
前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記構造部材と前記第一楔部材との間に圧入された第二楔部材と、 A second wedge member having an obliquely downward second inclined surface in contact with the first inclined surface and press-fitted between the structural member and the first wedge member.
を備え、 With
前記構造部材は、鉄筋コンクリート製の大梁であり、 The structural member is a girder made of reinforced concrete.
前記小梁の前記下側フランジと前記大梁の側面との間には、前記隙間が生じ、 The gap is formed between the lower flange of the beam and the side surface of the beam.
前記第一楔部材及び前記第二楔部材は、前記小梁の前記下側フランジと前記側面との間の前記隙間に配置されている、 The first wedge member and the second wedge member are arranged in the gap between the lower flange and the side surface of the beam.
小梁接合構造。 Beam joint structure.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部と、 The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. At the joint,
前記隙間に挿入されて前記構造部材に固定されると共に、前記下側フランジと対向する斜め上向きの第一傾斜面を有する第一楔部材と、 A first wedge member that is inserted into the gap and fixed to the structural member and has a first inclined surface that faces diagonally upward and faces the lower flange.
前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記下側フランジと前記第一楔部材との間に圧入された第二楔部材と、 A second wedge member having an obliquely downward second inclined surface in contact with the first inclined surface and press-fitted between the lower flange and the first wedge member.
を備え、 With
前記構造部材は、鉄筋コンクリート製の大梁であり、 The structural member is a girder made of reinforced concrete.
前記小梁の前記下側フランジと前記大梁の側面との間には、前記隙間が生じ、 The gap is formed between the lower flange of the beam and the side surface of the beam.
前記第一楔部材及び前記第二楔部材は、前記小梁の前記下側フランジと前記側面との間の前記隙間に配置されている、 The first wedge member and the second wedge member are arranged in the gap between the lower flange and the side surface of the beam.
小梁接合構造。 Beam joint structure.
前記第一楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜する下向きの第一ガイド面を有し、 The first wedge member has a downward first guide surface that inclines downward from one side in the width direction of the beam toward the other side.
前記第二楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜する上向きの第二ガイド面を有し、 The second wedge member has an upward second guide surface that inclines downward from one side in the width direction of the beam toward the other side.
前記第二ガイド面は、前記第一ガイド面に接触している、 The second guide surface is in contact with the first guide surface.
請求項27〜請求項32のいずれか一項に記載の小梁接合構造。 The beam joining structure according to any one of claims 27 to 32.
前記第一楔部材には、前記第一傾斜面に開口すると共に前記第一楔部材の側面に開放された第一溝が形成され、 The first wedge member is formed with a first groove that is open to the first inclined surface and is open to the side surface of the first wedge member.
前記第二楔部材には、前記第二傾斜面に開口すると共に前記第二楔部材の側面に開放された第二溝が形成され、 The second wedge member is formed with a second groove that is open to the second inclined surface and is open to the side surface of the second wedge member.
前記第一溝の上側の壁面と前記第二溝の下側の壁面との間には、第三楔部材が挿入されている、 A third wedge member is inserted between the upper wall surface of the first groove and the lower wall surface of the second groove.
請求項27〜請求項32のいずれか一項に記載の小梁接合構造。 The beam joining structure according to any one of claims 27 to 32.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部を有する小梁接合構造に用いられる支持部材であって、 The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. A support member used in a beam joint structure having a joint portion.
前記隙間に挿入されて前記下側フランジに固定されると共に、前記構造部材と水平方向に対向する斜め上向きの第一傾斜面を有する第一楔部材と、 A first wedge member that is inserted into the gap and fixed to the lower flange and has a first inclined surface that is obliquely upward facing the structural member in the horizontal direction.
前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記構造部材と前記第一楔部材との間に圧入される第二楔部材と、 A second wedge member having an obliquely downward second inclined surface in contact with the first inclined surface and press-fitted between the structural member and the first wedge member.
を備え、 With
前記第一楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜する下向きの第一ガイド面を有し、 The first wedge member has a downward first guide surface that inclines downward from one side in the width direction of the beam toward the other side.
前記第二楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜し、前記第一ガイド面に接触する上向きの第二ガイド面を有する、 The second wedge member has an upward second guide surface that inclines downward from one side in the width direction of the beam toward the other side and contacts the first guide surface.
支持部材。 Support member.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部を有する小梁接合構造に用いられる支持部材であって、 The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. A support member used in a beam joint structure having a joint portion.
前記隙間に挿入されて前記構造部材に固定されると共に、前記下側フランジと対向する斜め上向きの第一傾斜面を有する第一楔部材と、 A first wedge member that is inserted into the gap and fixed to the structural member and has a first inclined surface that faces diagonally upward and faces the lower flange.
前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記下側フランジと前記第一楔部材との間に圧入される第二楔部材と、 A second wedge member having an obliquely downward second inclined surface in contact with the first inclined surface and press-fitted between the lower flange and the first wedge member.
を備え、 With
前記第一楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜する下向きの第一ガイド面を有し、 The first wedge member has a downward first guide surface that inclines downward from one side in the width direction of the beam toward the other side.
前記第二楔部材は、前記小梁の幅方向一方側から他方側に向かうに従って下側に向かうように傾斜し、前記第一ガイド面に接触する上向きの第二ガイド面を有する、 The second wedge member has an upward second guide surface that inclines downward from one side in the width direction of the beam toward the other side and contacts the first guide surface.
支持部材。 Support member.
前記第二ガイド面は、前記第一ガイド面に下側から係止されている、 The second guide surface is locked to the first guide surface from below.
請求項35又は請求項36に記載の支持部材。 The support member according to claim 35 or 36.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部を有する小梁接合構造に用いられる支持部材であって、 The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. A support member used in a beam joint structure having a joint portion.
前記隙間に挿入されて前記下側フランジに固定されると共に、前記構造部材と水平方向に対向する斜め上向きの第一傾斜面を有する第一楔部材と、 A first wedge member that is inserted into the gap and fixed to the lower flange and has a first inclined surface that is obliquely upward facing the structural member in the horizontal direction.
前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記構造部材と前記第一楔部材との間に圧入される第二楔部材と、 A second wedge member having an obliquely downward second inclined surface in contact with the first inclined surface and press-fitted between the structural member and the first wedge member.
を備え、 With
前記第一楔部材には、前記第一傾斜面に開口すると共に前記第一楔部材の側面に開放された第一溝が形成され、 The first wedge member is formed with a first groove that is open to the first inclined surface and is open to the side surface of the first wedge member.
前記第二楔部材には、前記第二傾斜面に開口すると共に前記第二楔部材の側面に開放された第二溝が形成され、 The second wedge member is formed with a second groove that is open to the second inclined surface and is open to the side surface of the second wedge member.
前記支持部材は、前記第一溝の上側の壁面と前記第二溝の下側の壁面との間に挿入される第三楔部材を備える、 The support member includes a third wedge member inserted between the upper wall surface of the first groove and the lower wall surface of the second groove.
支持部材。 Support member.
水平方向に延びるH形鋼によって構成された小梁の下側フランジと構造部材との間に水平方向の隙間を生じさせた状態で前記隙間よりも上側において前記小梁を前記構造部材に接合する接合部を有する小梁接合構造に用いられる支持部材であって、 The beam is joined to the structural member above the gap in a state where a horizontal gap is formed between the lower flange of the beam made of H-shaped steel extending in the horizontal direction and the structural member. A support member used in a beam joint structure having a joint portion.
前記隙間に挿入されて前記構造部材に固定されると共に、前記下側フランジと対向する斜め上向きの第一傾斜面を有する第一楔部材と、 A first wedge member that is inserted into the gap and fixed to the structural member and has a first inclined surface that faces diagonally upward and faces the lower flange.
前記第一傾斜面と接触する斜め下向きの第二傾斜面を有し、前記下側フランジと前記第一楔部材との間に圧入される第二楔部材と、 A second wedge member having an obliquely downward second inclined surface in contact with the first inclined surface and press-fitted between the lower flange and the first wedge member.
を備え、 With
前記第一楔部材には、前記第一傾斜面に開口すると共に前記第一楔部材の側面に開放された第一溝が形成され、 The first wedge member is formed with a first groove that is open to the first inclined surface and is open to the side surface of the first wedge member.
前記第二楔部材には、前記第二傾斜面に開口すると共に前記第二楔部材の側面に開放された第二溝が形成され、 The second wedge member is formed with a second groove that is open to the second inclined surface and is open to the side surface of the second wedge member.
前記支持部材は、前記第一溝の上側の壁面と前記第二溝の下側の壁面との間に挿入される第三楔部材を備える、 The support member includes a third wedge member inserted between the upper wall surface of the first groove and the lower wall surface of the second groove.
支持部材。 Support member.
前記第二楔部材における前記構造部材側の面には、前記構造部材側に突出する凸部が形成されている、 A convex portion protruding toward the structural member is formed on the surface of the second wedge member on the structural member side.
請求項35又は請求項38に記載の支持部材。 The support member according to claim 35 or 38.
前記第二楔部材における前記下側フランジ側の面には、前記下側フランジ側に突出する凸部が形成されている、 A convex portion protruding toward the lower flange side is formed on the surface of the second wedge member on the lower flange side.
請求項36又は請求項39に記載の支持部材。 The support member according to claim 36 or 39.
JP2019520657A 2017-10-17 2018-09-12 Beam joining method, beam joining structure, and support members Active JP6769549B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017200891 2017-10-17
JP2017200891 2017-10-17
PCT/JP2018/033886 WO2019077916A1 (en) 2017-10-17 2018-09-12 Beam joining method, beam joining structure, and support member

Publications (2)

Publication Number Publication Date
JPWO2019077916A1 JPWO2019077916A1 (en) 2020-09-10
JP6769549B2 true JP6769549B2 (en) 2020-10-14

Family

ID=66174383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019520657A Active JP6769549B2 (en) 2017-10-17 2018-09-12 Beam joining method, beam joining structure, and support members

Country Status (3)

Country Link
JP (1) JP6769549B2 (en)
SG (1) SG11202001080YA (en)
WO (1) WO2019077916A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7136379B1 (en) * 2021-07-06 2022-09-13 日本製鉄株式会社 Joined structure and method of designing the joined structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425950B2 (en) 2020-03-30 2024-02-01 日本製鉄株式会社 beam joint structure
CN114837301B (en) * 2022-05-30 2023-08-04 福建省交建集团工程有限公司 Stepped steel plate-based node structure and construction method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857404U (en) * 1981-10-13 1983-04-19 フアンシ−ツダ株式会社 Board joining device
JP2570543Y2 (en) * 1993-12-27 1998-05-06 清司 細川 Pillar establishment fixed structure in wooden building
JPH10245898A (en) * 1997-03-03 1998-09-14 Shintoku Kogyo Kk Toroidal joint and clamping jig thereof
JP4107259B2 (en) * 2004-03-29 2008-06-25 清水建設株式会社 Steel beam connection structure
JP2009052302A (en) * 2007-08-28 2009-03-12 Takenaka Komuten Co Ltd Rigid joint structure of steel beam
JP6432779B2 (en) * 2015-02-03 2018-12-05 清水建設株式会社 Joint structure of reinforced concrete column and steel beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7136379B1 (en) * 2021-07-06 2022-09-13 日本製鉄株式会社 Joined structure and method of designing the joined structure
WO2023281619A1 (en) * 2021-07-06 2023-01-12 日本製鉄株式会社 Joining structure, and method for designing joining structure

Also Published As

Publication number Publication date
SG11202001080YA (en) 2020-03-30
JPWO2019077916A1 (en) 2020-09-10
WO2019077916A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
JP4044483B2 (en) Bonding structure of structures using gusset plates and buildings
JP4649360B2 (en) Seismic joint structure and construction method thereof
JP6769549B2 (en) Beam joining method, beam joining structure, and support members
WO2011093533A1 (en) Continuous minor steel beam structure
WO2020100367A1 (en) Bonding structure
KR20150027297A (en) Connection structure for steel reinforced concrete columns and steel beams
KR20140098524A (en) Connecting structure and method between h-shaped steel column and beam
JP4710067B2 (en) Beam-column joint structure
JP4690810B2 (en) Large beam and small beam joint construction method and joint structure
JP6283839B2 (en) Rigid connection method of large beam and small beam
JP4107259B2 (en) Steel beam connection structure
KR20210077197A (en) Colunm-beam connetion structure
JP3209111U (en) Vertical frame material and steel house
KR101825580B1 (en) Steel and precast concrete hybrid beam
JP5613466B2 (en) Concrete wall mounting structure
JP6753043B2 (en) Beam joining structure and beam joining method
JP2004257005A (en) Beam-column connecting structure and beam-column connecting method
JP4285427B2 (en) Seismic reinforcement structure for buildings
JP2014051822A (en) Steel beam and column-beam joint structure
JP2010053556A (en) Reinforcing structure of steel column-beam joint portion
JP5033387B2 (en) Vibration suppression reinforcement structure
JP6565543B2 (en) Column and beam joint structure, building with column and beam joint structure
JP7390993B2 (en) Beam joint structures and buildings
JPH09189075A (en) Connection structure of square tubular steel column to wide flange beam
JP6362131B2 (en) Horizontal force reinforcement structure of building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200907

R151 Written notification of patent or utility model registration

Ref document number: 6769549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151