JP2004311709A - Manufacturing method of semiconductor device and semiconductor manufacturing device - Google Patents

Manufacturing method of semiconductor device and semiconductor manufacturing device Download PDF

Info

Publication number
JP2004311709A
JP2004311709A JP2003103055A JP2003103055A JP2004311709A JP 2004311709 A JP2004311709 A JP 2004311709A JP 2003103055 A JP2003103055 A JP 2003103055A JP 2003103055 A JP2003103055 A JP 2003103055A JP 2004311709 A JP2004311709 A JP 2004311709A
Authority
JP
Japan
Prior art keywords
semiconductor element
underfill resin
pressure
substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003103055A
Other languages
Japanese (ja)
Inventor
Eiji Hayashi
英二 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2003103055A priority Critical patent/JP2004311709A/en
Publication of JP2004311709A publication Critical patent/JP2004311709A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor device which reduces influences of voids caused by the entry of bubbles between an underfill resin and a semiconductor element, and suppresses the occurrence of the voids ascribed to the bubbling of the underfill resin. <P>SOLUTION: The method comprises steps of supplying the underfill resin 36 to a portion of a substrate 21, which is opposite to the semiconductor element 11, adhering the semiconductor element 11 onto a surface of the underfill resin 36, electrically connecting electrodes 12 of the semiconductor element 11 to connector pads 22 of the substrate 21, and curing the underfill resin 36 in an atmosphere whose pressure is higher than that of an atmosphere in the step of adhering the semiconductor element 11 to the surface of the underfill resin 36 and higher than the atmospheric pressure. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、半導体装置の製造方法および半導体製造装置に関し、より特定的には、半導体素子を基板上にフリップチップ実装する半導体装置の製造方法および半導体製造装置に関する。
【0002】
【従来の技術】
従来から、半導体素子の下面に形成した電極と、基板の上面に形成した接続パッドとを半田バンプなどを介して接合するフリップチップ実装が行なわれている。このフリップチップ実装を行なう際に、半導体素子とこの半導体素子を実装する基板との隙間に樹脂を充填して両者を接着する場合がある。これは、半導体素子と基板とを接着して一体化することにより、半導体素子と基板の熱膨張率の差により電極と接続パッドとの間に発生する熱応力を低減するものである。これにより電極と接続パッドとの接触不良などを抑制することができる。したがって、この半導体素子と基板との接着は強固かつ確実に行なわれなければならない。
【0003】
この半導体素子と基板との間に樹脂を充填する方法としては、半導体素子を基板上にフリップチップ実装した後に、半導体素子の下面と基板の上面との隙間に液状の樹脂を注入する方法がある。この方法によると次のような問題点がある。
【0004】
半田バンプの表面に塗布したフラックスが、半田バンプを溶融したときに上記隙間に入り込むことがある。そのフラックスが上記隙間に残留していた場合には、このフラックスにより樹脂の注入が妨げられ、ボイドが発生することがある。この場合には、接着が不完全となり、歩留まりが低下する。
【0005】
そこで、基板の表面に予めアンダーフィル樹脂を供給しておき、そのアンダーフィル樹脂に基板を密着させた後、半田バンプによる電極と接続パッドとの接続を行なうフリップチップ実装方法も開発されている。この方法によると、半田バンプに塗布されたフラックスの影響を受けることがない。
【0006】
しかし、このアンダーフィル樹脂を用いたフリップチップ実装方法においても、次のような問題がある。アンダーフィル樹脂の表面には多少の凹凸が存在する。そのようなアンダーフィル樹脂に下面が平滑な基板を当接すると、凹部に空気が残り、半導体素子の下面とアンダーフィル樹脂の表面との界面に気泡が残ることがあり、これがボイドとなることがある。この場合には、このボイドにより半導体素子と基板とが確実に接着されないという問題がある。
【0007】
この問題を解決するフリップチップ実装方法としては、特許文献1記載のフリップチップ実装方法がある。特許文献1記載のフリップチップ実装方法においては、減圧雰囲気中において半導体素子をアンダーフィル樹脂の表面に密着させる。さらに、この減圧雰囲気中において、半導体素子の電極と基板の接続パッドとに設けた半田バンプ加熱する等して、両者を接続する。
【0008】
続いて、このアンダーフィル樹脂を硬化させる前に、雰囲気の圧力を解放して大気圧とする。このときアンダーフィル樹脂と基板との界面に発生したボイドは、雰囲気の圧力の上昇に伴って収縮する。雰囲気が大気圧の状態を維持しながら、アンダーフィル樹脂を硬化させることで、ボイドが収縮した状態のままで硬化するので、ボイドの影響を少なくすることができる。
【0009】
【特許文献1】
特開平11−163048号公報
【0010】
【発明が解決しようとする課題】
上記の特許文献1に記載されたフリップチップ実装方法によると、上記のようにアンダーフィル樹脂と基板との界面に発生したボイドを収縮させることができる。しかし、このフリップチップ実装方法においても、次のような問題がある。
【0011】
半田バンプを溶融させるための加熱や、アンダーフィル樹脂を硬化させるための加熱により、アンダーフィル樹脂が加熱され、アンダーフィル樹脂が発泡することがある。その状態でアンダーフィル樹脂が硬化すると、アンダーフィル樹脂に発泡による気泡が残ったままとなり、これがボイドとなって、半導体素子と基板との接着力が低下する。上記特許文献1記載のフリップチップ実装方法では、このアンダーフィル樹脂の発泡に起因するボイドを抑制する効果はない。
【0012】
特許文献1記載のフリップチップ実装方法においては、減圧雰囲気中において、半導体素子の電極と基板の接続パッドとを接続する。この接続として一般的な半田パンプを用いる場合には、半田バンプを溶融させるための加熱が必要となる。このとき、その熱によりアンダーフィル樹脂も加熱されるが、特許文献1に記載のフリップチップ実装方法において減圧雰囲気であるために、かえってアンダーフィル樹脂の発泡が発生しやすくなり、これによりボイドの発生が助長されることが懸念される。
【0013】
したがって、この発明は、上記課題を解決するためになされたものであり、アンダーフィル樹脂と半導体素子との間に気泡が混入することにより発生するボイドの影響を低減することができると共に、アンダーフィル樹脂の発泡に起因するボイドの発生も抑制することができる半導体装置の製造方法および半導体製造装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
この発明に基づいた半導体装置の製造方法に従えば、電極を備えた半導体素子を、上記電極に対応する接続パッドを備えた基板にフリップチップ実装する半導体装置の製造方法において、基板の半導体装置に対向する部分にアンダーフィル樹脂を供給する工程と、アンダーフィル樹脂の表面に半導体素子を密着させる工程と、半導体素子の電極と基板の接続パッドとを電気的に接続する工程と、アンダーフィル樹脂の表面に半導体素子を密着させる工程における雰囲気より高圧、かつ、大気圧より高圧の高圧雰囲気中において、アンダーフィル樹脂を硬化させる工程とを備えている。
【0015】
この発明に基づいた半導体製造装置に従えば、基板上に半導体素子をフリップチップ実装する、半導体製造装置であって、基板を保持するステージと、ステージに対して半導体素子の主表面を平行に保持しながら、ステージに保持した基板に向かって移動可能なボンディングヘッドと、半導体素子および基板を包囲する耐圧ボックスと、耐圧ボックス内の雰囲気を大気圧より高圧にする加圧装置とを備えている。
【0016】
【発明の実施の形態】
以下、本実施の形態における半導体装置の製造方法および半導体製造装置について、図を参照しながら説明する。なお、図1から図5は、本実施の形態における半導体装置の製造方法の各工程を示す概略断面図である。
【0017】
(半導体装置)
本実施の形態の半導体装置31は、半導体素子11を基板21にフリップチップ実装して構成されている。まず、半導体装置31を構成する半導体素子11および基板21の構造について説明する。
【0018】
図1に示すように半導体素子11の下面には、複数の電極12が設けられており、電極12の表面には半田バンプ35が設けられている。基板21の上面にも、半導体素子11の電極12に対応する位置に、複数の接続パッド22が設けられている。この接続パッド22は、基板21の図示しない配線に接続されている。接続パッド22の表面にも半田バンプ35が設けられている。本実施の形態では半田バンプを用いているが、金など他の金属材料で構成したバンプを用いても良い。また、バンプは、本実施の形態のように電極12と接続パッド22の両方に設けても良いし、電極12または接続パッド22の一方にのみ設けるようにしても良い。
【0019】
基板21の半導体素子11に対向する位置には、アンダーフィル樹脂36が予め供給されている。アンダーフィル樹脂36は本実施の形態では、流れにくい液状の熱硬化性エポキシ樹脂を用いている。このアンダーフィル樹脂36としては、本実施の形態のような液状の樹脂以外に、フィルム状の樹脂などを用いることができる。
【0020】
本実施の形態では、アンダーフィル樹脂36は、基板21にのみ予め供給しているが、半導体素子11にのみ予め供給するようにしても良いし、両方に予め供給するようにしてもよい。
【0021】
図5に示す半導体装置31は、上述のように、半導体素子11を基板21にフリップチップ実装して構成されている。半導体素子11の電極12と、基板21の接続パッド22とは、半田バンプ35を介して電気的に接続されている。また、半導体素子11と基板21とは、アンダーフィル樹脂36により接着されて一体化されている。
【0022】
(半導体製造装置)
図1を参照して、半導体製造装置50の構造について説明する。図1に示すように、この半導体製造装置50は、ステージ51と、ボンディングヘッド56と、耐圧ボックス58と、加圧装置としてのポンプ52とを備えている。
【0023】
ステージ51は、基板21を水平に保持するものであり、ステージ51には、基板21を真空吸着するための吸引管54が設けられている。このステージ51はヒータを内蔵しており、基板21の予備加熱が可能である。
【0024】
ボンディングヘッド56は、半導体素子11を、基板21の表面と平行に保持した状態で昇降可能に構成されており、その内部には半導体素子11を真空吸引するための吸引管57が配設されている。ボンディングヘッド56は、半導体素子11を保持した状態で昇降することで、半導体素子11を、基板21の表面に予め配設したアンダーフィル樹脂36に密着させることができる。また、このボンディングヘッド56はヒータを内蔵しており、半導体素子11を室温から400℃程度まで加熱することができる。
【0025】
耐圧ボックス58は、半導体素子11および基板21を包囲するものである。耐圧ボックス58は、ステージ51との間で気密を保持することができる。また、耐圧ボックス58はその内部の雰囲気を高圧にしてもその圧力に耐えられるように構成されている。
【0026】
ステージ51には、ステージ51の上面側に連通する通気管53を介して、加圧装置としてのポンプ52が接続されている。ポンプ52は、耐圧ボックス58の内部に空気または不活性ガスを送り込み、耐圧ボックス58の内部の雰囲気を高圧にすることができる。
【0027】
(半導体装置の製造方法)
図1から図5を参照して、半導体装置の製造方法について説明する。
【0028】
図1を参照して、耐圧ボックス58の内部の雰囲気が大気圧の状態で、基板21をステージ51の所定位置に配置し、吸引管54により吸引することで真空吸着して固定する。
【0029】
同時に、耐圧ボックス58の内部の雰囲気が大気圧の状態で、半導体素子11をボンディングヘッド56に装着する。このとき半導体素子11は、基板21上方の所定の位置に位置決めすると共に吸引管57により吸引することで真空吸着して固定する。
【0030】
このとき特許文献1記載のフリップチップ実装方法のように、耐圧ボックス58の内部の雰囲気が減圧されている場合には、真空吸着を用いることが困難となる。本実施の形態においては、耐圧ボックス58の内部は大気圧または大気圧より高圧であるので、真空吸着による吸着が可能である。したがって、特許文献1のフリップチップ実装方法のように半導体素子11や基板21の固定手段の選択において制限を受けることはない。
【0031】
図2を参照して、耐圧ボックス58の内部の雰囲気を大気圧に保ったまま、ボンディングヘッド56を基板21に向かって下降させ、半導体素子11の下面を、基板21の上面に予め配設したアンダーフィル樹脂36の表面に密着させる。このとき半導体素子11は、基板21の所定位置に位置し、対応する半導体素子11の電極12と基板21の接続パッド22とが半田バンプ35を介して接触する。ボンディングヘッド56は、半導体素子11をアンダーフィル樹脂36に密着させるとき、半導体素子11を下方向に加圧する。これにより半導体素子11は、基板21に圧接され、半田バンプ35は変形して電極12と接続パッド22とを広い面積で接触する。
【0032】
ここで、半導体素子11を密着させる前のアンダーフィル樹脂36の表面には多少の凹凸がある。そのため半導体素子11をアンダーフィル樹脂36に密着させたとき、半導体素子11の下面とアンダーフィル樹脂36の表面との界面に気泡が残り、図2に模式的に示すようなボイド37が形成されることがある。
【0033】
図3を参照して、ポンプ52を作動させ、耐圧ボックス58の内部に空気または不活性ガスを送り込み、耐圧ボックス58の内部の雰囲気を高圧にする。このように耐圧ボックス58の内部を高圧にすることで、大気圧と高圧の差圧の影響により上記のような気泡からなるボイド37は収縮する。
【0034】
図4を参照して、耐圧ボックス58の内部の高圧雰囲気を維持しながら、半田バンプ35およびアンダーフィル樹脂36を加熱する。この加熱により半田バンプ35を溶融させ、半導体素子11の電極12と基板21の接続パッド22とを電気的に接続する。また、このアンダーフィル樹脂36の加熱により、アンダーフィル樹脂36は硬化する。半田バンプ35を溶融させる必要があるため、このときの加熱温度は、本実施の形態では200℃程度であり、この加熱はステージ51およびボンディングヘッド56に内蔵したヒータにより行なう。
【0035】
この加熱によりアンダーフィル樹脂36が高温になっても、耐圧ボックス58の内部が高圧雰囲気に保たれているので、アンダーフィル樹脂36の発泡を抑制することができる。これにより新たなボイドの発生を抑制することができる。この実施の形態ではこのように、電極12と接続パッド22を電気的に接続する工程と、アンダーフィル樹脂36を硬化させる工程とを同時に行なっている。
【0036】
電極12と接続パッド22とを電気的に接続する工程およびアンダーフィル樹脂36を硬化させる工程における、耐圧ボックス58の内部の高圧雰囲気としては、たとえば0.2MPa以上とするのが好ましい。圧力が0.2MPa未満であると、半導体素子11をアンダーフィル樹脂36の表面に密着させる工程で発生したボイド37が十分に収縮せず、このボイド37の影響を完全に排除できない可能性がある。また、この圧力では、電極12と接続パッド22を電気的に接続する工程およびアンダーフィル樹脂36を硬化させる工程におけるアンダーフィル樹脂36の発泡を十分に抑制できない可能性がある。
【0037】
この耐圧ボックスの内部の高圧雰囲気としては、1MPa以上であることがさらに好ましい。1MPa以上であると、さらにボイド37を小さく収縮させることができ、ボイド37を、その悪影響をほぼ完全に排除することができるレベルまで小さくすることができる。また、アンダーフィル樹脂36の発泡を抑制する効果がさらに顕著となる。
【0038】
一方、ボイド37を収縮させるためには、この高圧雰囲気の圧力は高いほど好ましいが、耐圧ボックス58の製造コスト等を考慮すると、現実的には、2MPa程度が上限となる。
【0039】
また、本実施の形態では、半導体素子11を基板21のアンダーフィル樹脂36表面に密着させる工程を、大気圧雰囲気中で行なっている。ボイド37を収縮させるために、この工程と、後のアンダーフィル樹脂36を硬化させる工程とで十分な差圧が確保される必要がある。その差圧が確保されるならば、半導体素子11を基板21のアンダーフィル樹脂36表面に密着させる工程は、必ずしも大気圧の雰囲気中で行なわなくてもよい。
【0040】
図5を参照して、アンダーフィル樹脂36が完全に硬化した後、ボンディングヘッド56の吸着を解除し、ボンディングヘッド56を上昇させる。また、耐圧ボックス58の内部の高圧雰囲気を大気に解放し、大気圧に戻す。このとき、アンダーフィル樹脂36は完全に硬化しているので、高圧雰囲気を解放してもボイド37が再度膨張することはない。したがって、ボイド37が微小化された状態を維持するので、ボイド37による接着不良などの悪影響を回避することができる。
【0041】
本実施の形態では上記のように、電極12と接続パッド22とを電気的に接続する工程とアンダーフィル樹脂36を硬化させる工程とを同時に行なったが、これらを別々の工程で行なってもよい。その場合の電極12と接続パッド22とを電気的に接続する工程とアンダーフィル樹脂36を硬化させる工程とを以下に説明する。
【0042】
(電極12と接続パッド22とを電気的に接続する工程)
図4を参照して、耐圧ボックス58の内部を高圧雰囲気とし、半田バンプ35を加熱して溶融させ、半導体素子11の電極12と基板21の接続パッド22とを電気的に接続する。この半田バンプ35の加熱は、半導体素子11や基板21の熱膨張を抑制するために、熱膨張率の小さい半導体素子11の側から加熱を行うためボンディングヘッド56に内蔵したヒータにより行うことが好ましい。このときの加熱温度は、本実施の形態では200℃程度である。
【0043】
このとき、加熱方法、加熱温度によっては、半田バンプ35を加熱する熱が伝わりアンダーフィル樹脂36も加熱され、部分的に高温になることがある。その場合でも、耐圧ボックス58の内部が高圧に保たれているので、アンダーフィル樹脂36の発泡を抑制することができる。これにより新たなボイドの発生を抑制することができる。
【0044】
(アンダーフィル樹脂を硬化させる工程)
耐圧ボックス58の内部の高圧雰囲気を維持しながら、アンダーフィル樹脂36を加熱しアンダーフィル樹脂36を硬化させる。この加熱もボンディングヘッド56に内蔵したヒータにより行ない、加熱温度は200℃程度である。この加熱によりアンダーフィル樹脂36が高温になっても、耐圧ボックス58の内部が高圧雰囲気に保たれているので、アンダーフィル樹脂36の発泡を抑制することができ、新たなボイドの発生を抑制することができる。
【0045】
なお、電極12と接続パッド22とを電気的に接続する工程と、アンダーフィル樹脂36を硬化させる工程とは、同一圧力の高圧雰囲気中で行なってもよいし、それぞれの工程の特性に応じて圧力を変更するようにしてもよい。
【0046】
上記実施の形態においては、電極12と接続パッド22とを電気的に接続する工程とアンダーフィル樹脂36を硬化させる工程において、いずれも加熱する工程を含んでいる。ここで、電極12と接続パッド22とを機械的に圧着したり、加熱しなくても硬化するアンダーフィル樹脂36を用いたりすることで、これらの工程において加熱する工程を含まないようにしてもよい。その場合にも、これらの工程において、アンダーフィル樹脂36に新たなボイドが発生することを防止することができる。
【0047】
なお、今回開示した上記実施の形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施の形態のみによって解釈されるのではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
【0048】
【発明の効果】
本発明によると、アンダーフィル樹脂と半導体素子との間に気泡が混入することにより発生するボイドの影響を低減することができると共に、アンダーフィル樹脂の発泡に起因するボイドの発生も抑制することができる。
【図面の簡単な説明】
【図1】この発明に基づいた本実施の形態における、半導体素子および基板を半導体製造装置に装着する工程を示す概略断面図である。
【図2】この発明に基づいた本実施の形態における、半導体素子をアンダーフィル樹脂に密着させる工程を示す概略断面図である。
【図3】この発明に基づいた本実施の形態における、耐圧ボックスの内部を高圧雰囲気にする工程を示す概略断面図である。
【図4】この発明に基づいた本実施の形態における、電極と接続パッドとを電気的に接続し、アンダーフィル樹脂を硬化させる工程を示す概略断面図である。
【図5】この発明に基づいた本実施の形態における、半導体装置の製造を完了した状態を示す概略断面図である。
【符号の説明】
11 半導体素子、12 電極、21 基板、22 接続パッド、31 半導体装置、35 半田バンプ、36 アンダーフィル樹脂、37 ボイド、50 半導体製造装置、51 ステージ、52 ポンプ(加圧装置)、56 ボンディングヘッド、58 耐圧ボックス。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device manufacturing method and a semiconductor manufacturing apparatus, and more particularly to a semiconductor device manufacturing method and a semiconductor manufacturing apparatus in which a semiconductor element is flip-chip mounted on a substrate.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, flip-chip mounting has been performed in which electrodes formed on a lower surface of a semiconductor element and connection pads formed on an upper surface of a substrate are joined via solder bumps or the like. When this flip-chip mounting is performed, a resin may be filled in a gap between a semiconductor element and a substrate on which the semiconductor element is mounted, and the two may be bonded to each other. This is to reduce the thermal stress generated between the electrode and the connection pad due to the difference in the coefficient of thermal expansion between the semiconductor element and the substrate by bonding and integrating the semiconductor element and the substrate. As a result, poor contact between the electrode and the connection pad can be suppressed. Therefore, the bonding between the semiconductor element and the substrate must be performed firmly and reliably.
[0003]
As a method of filling the resin between the semiconductor element and the substrate, there is a method of flip-chip mounting the semiconductor element on the substrate and then injecting a liquid resin into a gap between the lower surface of the semiconductor element and the upper surface of the substrate. . This method has the following problems.
[0004]
The flux applied to the surface of the solder bump may enter the gap when the solder bump is melted. If the flux remains in the gap, the flux may hinder the injection of the resin, and may cause voids. In this case, the adhesion is incomplete, and the yield is reduced.
[0005]
Therefore, a flip-chip mounting method has been developed in which an underfill resin is supplied to the surface of the substrate in advance, and the substrate is brought into close contact with the underfill resin, and then the electrodes are connected to the connection pads by solder bumps. According to this method, there is no influence of the flux applied to the solder bump.
[0006]
However, the flip chip mounting method using the underfill resin also has the following problems. There are some irregularities on the surface of the underfill resin. When a substrate having a smooth lower surface is brought into contact with such an underfill resin, air remains in the concave portion, and air bubbles may remain at the interface between the lower surface of the semiconductor element and the surface of the underfill resin, which may be a void. is there. In this case, there is a problem that the semiconductor element and the substrate are not securely bonded by the void.
[0007]
As a flip-chip mounting method for solving this problem, there is a flip-chip mounting method described in Patent Document 1. In the flip-chip mounting method described in Patent Document 1, a semiconductor element is brought into close contact with the surface of an underfill resin in a reduced-pressure atmosphere. Further, in this reduced-pressure atmosphere, the two are connected by heating solder bumps provided on the electrodes of the semiconductor element and the connection pads of the substrate.
[0008]
Subsequently, before the underfill resin is cured, the pressure of the atmosphere is released to atmospheric pressure. At this time, voids generated at the interface between the underfill resin and the substrate shrink as the pressure of the atmosphere increases. By curing the underfill resin while maintaining the atmosphere at atmospheric pressure, the voids are cured in a contracted state, so that the effects of the voids can be reduced.
[0009]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H11-163048
[Problems to be solved by the invention]
According to the flip-chip mounting method described in Patent Literature 1, the void generated at the interface between the underfill resin and the substrate can be reduced as described above. However, this flip chip mounting method also has the following problems.
[0011]
The heating for melting the solder bumps and the heating for curing the underfill resin may heat the underfill resin and foam the underfill resin. When the underfill resin cures in this state, bubbles due to foaming remain in the underfill resin, which form voids, which lower the adhesive strength between the semiconductor element and the substrate. In the flip chip mounting method described in Patent Document 1, there is no effect of suppressing voids caused by foaming of the underfill resin.
[0012]
In the flip-chip mounting method described in Patent Document 1, an electrode of a semiconductor element is connected to a connection pad of a substrate in a reduced-pressure atmosphere. When a general solder pump is used for this connection, heating for melting the solder bumps is required. At this time, the underfill resin is also heated by the heat. However, in the flip-chip mounting method described in Patent Document 1, the underfill resin is more likely to be foamed due to the reduced pressure atmosphere, thereby generating voids. Is likely to be promoted.
[0013]
Accordingly, the present invention has been made to solve the above-described problem, and can reduce the influence of voids generated by the incorporation of bubbles between the underfill resin and the semiconductor element, and can reduce the effect of underfill. It is an object of the present invention to provide a method of manufacturing a semiconductor device and a semiconductor manufacturing apparatus capable of suppressing generation of voids due to resin foaming.
[0014]
[Means for Solving the Problems]
According to a method of manufacturing a semiconductor device according to the present invention, in a method of manufacturing a semiconductor device by flip-chip mounting a semiconductor element having electrodes on a substrate having connection pads corresponding to the electrodes, A step of supplying an underfill resin to an opposing portion; a step of bringing a semiconductor element into close contact with the surface of the underfill resin; a step of electrically connecting an electrode of the semiconductor element to a connection pad of a substrate; Curing the underfill resin in a high-pressure atmosphere higher than the atmosphere and higher than the atmospheric pressure in the step of bringing the semiconductor element into close contact with the surface.
[0015]
According to a semiconductor manufacturing apparatus based on the present invention, a semiconductor manufacturing apparatus for flip-chip mounting a semiconductor element on a substrate, wherein the stage holding the substrate and the main surface of the semiconductor element are held parallel to the stage Meanwhile, the semiconductor device includes a bonding head movable toward the substrate held on the stage, a pressure-resistant box surrounding the semiconductor element and the substrate, and a pressure device for increasing the atmosphere in the pressure-resistant box to a pressure higher than the atmospheric pressure.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for manufacturing a semiconductor device and a semiconductor manufacturing apparatus according to the present embodiment will be described with reference to the drawings. 1 to 5 are schematic cross-sectional views showing each step of the method of manufacturing a semiconductor device according to the present embodiment.
[0017]
(Semiconductor device)
The semiconductor device 31 of the present embodiment is configured by mounting the semiconductor element 11 on the substrate 21 by flip chip mounting. First, the structure of the semiconductor element 11 and the substrate 21 constituting the semiconductor device 31 will be described.
[0018]
As shown in FIG. 1, a plurality of electrodes 12 are provided on the lower surface of the semiconductor element 11, and solder bumps 35 are provided on the surface of the electrodes 12. A plurality of connection pads 22 are also provided on the upper surface of the substrate 21 at positions corresponding to the electrodes 12 of the semiconductor element 11. The connection pad 22 is connected to a wiring (not shown) on the substrate 21. A solder bump 35 is also provided on the surface of the connection pad 22. Although a solder bump is used in this embodiment, a bump made of another metal material such as gold may be used. Further, the bumps may be provided on both the electrode 12 and the connection pad 22 as in the present embodiment, or may be provided only on one of the electrode 12 and the connection pad 22.
[0019]
An underfill resin 36 is supplied in advance to a position of the substrate 21 facing the semiconductor element 11. In the present embodiment, a liquid thermosetting epoxy resin that does not easily flow is used as the underfill resin 36. As the underfill resin 36, a film-like resin or the like can be used in addition to the liquid resin as in the present embodiment.
[0020]
In this embodiment, the underfill resin 36 is supplied only to the substrate 21 in advance. However, the underfill resin 36 may be supplied only to the semiconductor element 11 in advance, or may be supplied in advance to both.
[0021]
The semiconductor device 31 shown in FIG. 5 is configured by flip-chip mounting the semiconductor element 11 on the substrate 21 as described above. The electrode 12 of the semiconductor element 11 and the connection pad 22 of the substrate 21 are electrically connected via a solder bump 35. Further, the semiconductor element 11 and the substrate 21 are bonded and integrated with the underfill resin 36.
[0022]
(Semiconductor manufacturing equipment)
The structure of the semiconductor manufacturing apparatus 50 will be described with reference to FIG. As shown in FIG. 1, the semiconductor manufacturing apparatus 50 includes a stage 51, a bonding head 56, a pressure-resistant box 58, and a pump 52 as a pressurizing device.
[0023]
The stage 51 holds the substrate 21 horizontally. The stage 51 is provided with a suction tube 54 for vacuum-sucking the substrate 21. The stage 51 has a built-in heater and can preheat the substrate 21.
[0024]
The bonding head 56 is configured to be able to move up and down while holding the semiconductor element 11 in parallel with the surface of the substrate 21, and a suction pipe 57 for vacuum-suctioning the semiconductor element 11 is provided inside the bonding head 56. I have. The bonding head 56 is moved up and down while holding the semiconductor element 11, so that the semiconductor element 11 can be brought into close contact with the underfill resin 36 provided in advance on the surface of the substrate 21. Further, the bonding head 56 has a built-in heater, and can heat the semiconductor element 11 from room temperature to about 400 ° C.
[0025]
The withstand voltage box 58 surrounds the semiconductor element 11 and the substrate 21. The pressure-resistant box 58 can maintain airtightness with the stage 51. The pressure-resistant box 58 is configured to withstand the pressure even when the atmosphere inside the box is high.
[0026]
A pump 52 as a pressurizing device is connected to the stage 51 via a ventilation pipe 53 communicating with the upper surface of the stage 51. The pump 52 can send air or an inert gas into the inside of the pressure-resistant box 58 to make the atmosphere inside the pressure-resistant box 58 high pressure.
[0027]
(Method of Manufacturing Semiconductor Device)
A method for manufacturing a semiconductor device will be described with reference to FIGS.
[0028]
Referring to FIG. 1, in a state where the atmosphere inside pressure-resistant box 58 is at atmospheric pressure, substrate 21 is arranged at a predetermined position on stage 51, and is suction-fixed by suction pipe 54 to be vacuum-adsorbed and fixed.
[0029]
At the same time, the semiconductor element 11 is mounted on the bonding head 56 while the atmosphere inside the pressure-resistant box 58 is at atmospheric pressure. At this time, the semiconductor element 11 is positioned at a predetermined position above the substrate 21 and is sucked by the suction pipe 57 to be vacuum-adsorbed and fixed.
[0030]
At this time, when the atmosphere inside the pressure-resistant box 58 is reduced in pressure as in the flip chip mounting method described in Patent Document 1, it becomes difficult to use vacuum suction. In the present embodiment, since the inside of the pressure-resistant box 58 has an atmospheric pressure or a pressure higher than the atmospheric pressure, suction by vacuum suction is possible. Therefore, there is no limitation in selecting the fixing means of the semiconductor element 11 and the substrate 21 unlike the flip chip mounting method of Patent Document 1.
[0031]
Referring to FIG. 2, while maintaining the atmosphere inside pressure-resistant box 58 at atmospheric pressure, bonding head 56 is lowered toward substrate 21, and the lower surface of semiconductor element 11 is disposed on the upper surface of substrate 21 in advance. It is brought into close contact with the surface of the underfill resin 36. At this time, the semiconductor element 11 is located at a predetermined position on the substrate 21, and the corresponding electrode 12 of the semiconductor element 11 and the connection pad 22 of the substrate 21 are in contact via the solder bump 35. The bonding head 56 presses the semiconductor element 11 downward when the semiconductor element 11 is brought into close contact with the underfill resin 36. As a result, the semiconductor element 11 is pressed against the substrate 21, and the solder bumps 35 are deformed to bring the electrode 12 into contact with the connection pad 22 over a wide area.
[0032]
Here, the surface of the underfill resin 36 before the semiconductor element 11 is brought into close contact has some irregularities. Therefore, when the semiconductor element 11 is brought into close contact with the underfill resin 36, bubbles remain at the interface between the lower surface of the semiconductor element 11 and the surface of the underfill resin 36, and voids 37 are formed as schematically shown in FIG. Sometimes.
[0033]
Referring to FIG. 3, pump 52 is operated to send air or an inert gas into pressure-resistant box 58, and the atmosphere inside pressure-resistant box 58 is set to a high pressure. By setting the inside of the pressure-resistant box 58 to a high pressure in this way, the above-described void 37 made of bubbles contracts due to the influence of the differential pressure between the atmospheric pressure and the high pressure.
[0034]
Referring to FIG. 4, solder bump 35 and underfill resin 36 are heated while maintaining a high-pressure atmosphere inside pressure-resistant box 58. This heating causes the solder bumps 35 to melt, thereby electrically connecting the electrodes 12 of the semiconductor element 11 and the connection pads 22 of the substrate 21. Further, by heating the underfill resin 36, the underfill resin 36 is cured. Since the solder bumps 35 need to be melted, the heating temperature at this time is about 200 ° C. in the present embodiment, and this heating is performed by a heater built in the stage 51 and the bonding head 56.
[0035]
Even if the temperature of the underfill resin 36 becomes high due to this heating, since the inside of the pressure-resistant box 58 is kept in a high-pressure atmosphere, foaming of the underfill resin 36 can be suppressed. Thereby, generation of a new void can be suppressed. In this embodiment, the step of electrically connecting the electrode 12 and the connection pad 22 and the step of curing the underfill resin 36 are simultaneously performed in this manner.
[0036]
In the step of electrically connecting the electrode 12 and the connection pad 22 and the step of curing the underfill resin 36, the high-pressure atmosphere inside the pressure-resistant box 58 is preferably, for example, 0.2 MPa or more. If the pressure is less than 0.2 MPa, the void 37 generated in the step of bringing the semiconductor element 11 into close contact with the surface of the underfill resin 36 may not be sufficiently shrunk, and the effect of the void 37 may not be completely eliminated. . In addition, with this pressure, foaming of the underfill resin 36 in the step of electrically connecting the electrode 12 and the connection pad 22 and the step of curing the underfill resin 36 may not be sufficiently suppressed.
[0037]
The high-pressure atmosphere inside the pressure-resistant box is more preferably 1 MPa or more. When the pressure is 1 MPa or more, the void 37 can be further contracted, and the void 37 can be reduced to a level at which the adverse effect can be almost completely eliminated. Further, the effect of suppressing the foaming of the underfill resin 36 is further remarkable.
[0038]
On the other hand, in order to shrink the void 37, the pressure of the high-pressure atmosphere is preferably as high as possible. However, considering the manufacturing cost of the pressure-resistant box 58 and the like, the upper limit is practically about 2 MPa.
[0039]
In the present embodiment, the step of bringing the semiconductor element 11 into close contact with the surface of the underfill resin 36 of the substrate 21 is performed in an atmospheric pressure atmosphere. In order to shrink the void 37, it is necessary to secure a sufficient differential pressure between this step and the step of curing the underfill resin 36 later. If the pressure difference is ensured, the step of bringing the semiconductor element 11 into close contact with the surface of the underfill resin 36 of the substrate 21 does not necessarily need to be performed in an atmosphere at atmospheric pressure.
[0040]
Referring to FIG. 5, after the underfill resin 36 is completely cured, the suction of the bonding head 56 is released, and the bonding head 56 is raised. In addition, the high-pressure atmosphere inside the pressure-resistant box 58 is released to the atmosphere and returned to the atmospheric pressure. At this time, since the underfill resin 36 is completely cured, the void 37 does not expand again even when the high-pressure atmosphere is released. Therefore, since the void 37 is maintained in a miniaturized state, it is possible to avoid adverse effects such as poor adhesion due to the void 37.
[0041]
In the present embodiment, as described above, the step of electrically connecting the electrode 12 and the connection pad 22 and the step of curing the underfill resin 36 are performed simultaneously, but these steps may be performed in separate steps. . The process of electrically connecting the electrode 12 and the connection pad 22 and the process of curing the underfill resin 36 in this case will be described below.
[0042]
(Step of electrically connecting electrode 12 and connection pad 22)
Referring to FIG. 4, the inside of pressure-resistant box 58 is set to a high-pressure atmosphere, and solder bumps 35 are heated and melted, so that electrodes 12 of semiconductor element 11 and connection pads 22 of substrate 21 are electrically connected. The heating of the solder bumps 35 is preferably performed by a heater built in the bonding head 56 for heating from the side of the semiconductor element 11 having a small coefficient of thermal expansion in order to suppress the thermal expansion of the semiconductor element 11 and the substrate 21. . The heating temperature at this time is about 200 ° C. in the present embodiment.
[0043]
At this time, depending on the heating method and the heating temperature, the heat for heating the solder bumps 35 is transmitted, and the underfill resin 36 is also heated, so that the temperature may be partially high. Even in such a case, since the inside of the pressure-resistant box 58 is maintained at a high pressure, foaming of the underfill resin 36 can be suppressed. Thereby, generation of a new void can be suppressed.
[0044]
(Step of curing underfill resin)
While maintaining the high-pressure atmosphere inside the pressure-resistant box 58, the underfill resin 36 is heated to cure the underfill resin 36. This heating is also performed by a heater built in the bonding head 56, and the heating temperature is about 200 ° C. Even if the temperature of the underfill resin 36 becomes high due to this heating, since the inside of the pressure-resistant box 58 is kept in a high-pressure atmosphere, foaming of the underfill resin 36 can be suppressed, and generation of new voids can be suppressed. be able to.
[0045]
The step of electrically connecting the electrode 12 and the connection pad 22 and the step of curing the underfill resin 36 may be performed in a high-pressure atmosphere at the same pressure, or may be performed according to the characteristics of each step. The pressure may be changed.
[0046]
In the above embodiment, both the step of electrically connecting the electrode 12 and the connection pad 22 and the step of curing the underfill resin 36 include a heating step. Here, the steps of heating may not be included in these steps by mechanically pressing the electrode 12 and the connection pad 22 or using an underfill resin 36 that cures without heating. Good. Also in that case, in these steps, generation of new voids in the underfill resin 36 can be prevented.
[0047]
It should be noted that the above-described embodiment disclosed herein is merely an example in all respects, and is not a basis for restrictive interpretation. Therefore, the technical scope of the present invention is not defined only by the above-described embodiments, but is defined based on the description of the claims. In addition, all changes within the meaning and scope equivalent to the claims are included.
[0048]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, while being able to reduce the influence of the void generate | occur | produced by a bubble mixing between an underfill resin and a semiconductor element, it also suppresses generation | occurrence | production of the void resulting from foaming of an underfill resin. it can.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a step of mounting a semiconductor element and a substrate in a semiconductor manufacturing apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing a step of bringing a semiconductor element into close contact with an underfill resin in the present embodiment based on the present invention.
FIG. 3 is a schematic cross-sectional view showing a step of setting the inside of a pressure-resistant box to a high-pressure atmosphere in the present embodiment based on the present invention.
FIG. 4 is a schematic cross-sectional view showing a step of electrically connecting an electrode and a connection pad and curing an underfill resin in the present embodiment based on the present invention.
FIG. 5 is a schematic cross-sectional view showing a state where the manufacture of the semiconductor device is completed in the present embodiment based on the present invention;
[Explanation of symbols]
Reference Signs List 11 semiconductor element, 12 electrodes, 21 substrate, 22 connection pad, 31 semiconductor device, 35 solder bump, 36 underfill resin, 37 void, 50 semiconductor manufacturing device, 51 stage, 52 pump (pressurizing device), 56 bonding head, 58 Pressure box.

Claims (6)

電極を備えた半導体素子を、前記電極に対応する接続パッドを備えた基板にフリップチップ実装する半導体装置の製造方法であって、
前記基板の、前記半導体素子に対向する部分にアンダーフィル樹脂を供給する工程と、
前記アンダーフィル樹脂の表面に前記半導体素子を密着させる工程と、
前記半導体素子の電極と、前記基板の接続パッドとを電気的に接続する工程と、
前記アンダーフィル樹脂の表面に半導体素子を密着させる工程における雰囲気より高圧、かつ、大気圧より高圧の高圧雰囲気中において、前記アンダーフィル樹脂を硬化させる工程と、を備えた、半導体装置の製造方法。
A method for manufacturing a semiconductor device in which a semiconductor element having electrodes is flip-chip mounted on a substrate having connection pads corresponding to the electrodes,
A step of supplying an underfill resin to a portion of the substrate facing the semiconductor element,
Contacting the semiconductor element on the surface of the underfill resin,
The step of electrically connecting the electrode of the semiconductor element and the connection pad of the substrate,
Curing the underfill resin in a high-pressure atmosphere higher than the atmosphere and higher than the atmospheric pressure in the step of bringing the semiconductor element into close contact with the surface of the underfill resin.
前記半導体素子の電極と前記基板の接続パッドとを電気的に接続する工程において、前記電極および前記接続パッドの一方または両方に設けられたバンプを加熱する工程を含み、
前記加熱する工程は、大気圧より高圧の高圧雰囲気中において行なう、請求項1に記載の半導体装置の製造方法。
The step of electrically connecting the electrode of the semiconductor element and the connection pad of the substrate includes a step of heating a bump provided on one or both of the electrode and the connection pad,
2. The method according to claim 1, wherein the heating is performed in a high-pressure atmosphere higher than the atmospheric pressure.
前記アンダーフィル樹脂を硬化させる工程は、アンダーフィル樹脂を加熱する工程を含む、請求項1または2に記載の半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 1, wherein the step of curing the underfill resin includes a step of heating the underfill resin. 高圧雰囲気の圧力は、0.2MPa以上、2MPa未満である、請求項1から3のいずれかに記載の半導体装置の製造方法。4. The method of manufacturing a semiconductor device according to claim 1, wherein a pressure of the high-pressure atmosphere is 0.2 MPa or more and less than 2 MPa. 5. 前記アンダーフィル樹脂の表面に半導体素子を密着させる工程は、略大気圧の雰囲気中で行なわれる、請求項1から4のいずれかに記載の半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 1, wherein the step of bringing the semiconductor element into close contact with the surface of the underfill resin is performed in an atmosphere at substantially atmospheric pressure. 基板上に半導体素子をフリップチップ実装する、半導体製造装置であって、
前記基板を保持するステージと、
前記ステージに対して前記半導体素子の主表面を平行に保持しながら、前記ステージに保持した基板に向かって移動可能なボンディングヘッドと、
前記半導体素子および前記基板を包囲する耐圧ボックスと、
前記耐圧ボックス内の雰囲気を大気圧より高圧にする加圧装置と、を備えた、半導体製造装置。
A semiconductor manufacturing apparatus for flip-chip mounting a semiconductor element on a substrate,
A stage for holding the substrate,
A bonding head movable toward the substrate held on the stage while holding the main surface of the semiconductor element parallel to the stage;
A pressure-resistant box surrounding the semiconductor element and the substrate;
A pressurizing device for setting an atmosphere in the pressure-resistant box to a pressure higher than the atmospheric pressure.
JP2003103055A 2003-04-07 2003-04-07 Manufacturing method of semiconductor device and semiconductor manufacturing device Withdrawn JP2004311709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103055A JP2004311709A (en) 2003-04-07 2003-04-07 Manufacturing method of semiconductor device and semiconductor manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103055A JP2004311709A (en) 2003-04-07 2003-04-07 Manufacturing method of semiconductor device and semiconductor manufacturing device

Publications (1)

Publication Number Publication Date
JP2004311709A true JP2004311709A (en) 2004-11-04

Family

ID=33466319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103055A Withdrawn JP2004311709A (en) 2003-04-07 2003-04-07 Manufacturing method of semiconductor device and semiconductor manufacturing device

Country Status (1)

Country Link
JP (1) JP2004311709A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098608A (en) * 2006-09-15 2008-04-24 Lintec Corp Method for producing semiconductor device
JP2008305842A (en) * 2007-06-05 2008-12-18 Lintec Corp Semiconductor chip bonding apparatus and semiconductor chip bonding method
WO2009014087A1 (en) * 2007-07-23 2009-01-29 Lintec Corporation Semiconductor device manufacturing method
EP2063465A1 (en) * 2006-09-15 2009-05-27 Lintec Corporation Process for producing semiconductor device
JP2009135309A (en) * 2007-11-30 2009-06-18 Lintec Corp Method of manufacturing semiconductor device
US7687314B2 (en) 2007-12-28 2010-03-30 Fujitsu Limited Electronic apparatus manufacturing method
WO2010052871A1 (en) * 2008-11-06 2010-05-14 住友ベークライト株式会社 Electronic device manufacturing method and electronic device
JP2011040512A (en) * 2009-08-10 2011-02-24 Murata Mfg Co Ltd Method of manufacturing circuit board
WO2011048774A1 (en) 2009-10-19 2011-04-28 住友ベークライト株式会社 Process for production of electronic device, electronic device, and device for production of electronic device
JP2011211156A (en) * 2009-10-19 2011-10-20 Sumitomo Bakelite Co Ltd Process for production electronic device, and electronic device
WO2011132384A1 (en) * 2010-04-23 2011-10-27 住友ベークライト株式会社 Device and method for producing electronic device, and pair of compressed members thereof
JP2011228620A (en) * 2010-03-31 2011-11-10 Sumitomo Bakelite Co Ltd Method of manufacturing electronic device and manufacturing apparatus of the same
WO2012026091A1 (en) * 2010-08-24 2012-03-01 住友ベークライト株式会社 Method for manufacturing electronic device
JP2012074636A (en) * 2010-09-29 2012-04-12 Sumitomo Bakelite Co Ltd Joining method, semiconductor device, multilayer circuit board, and electronic component
JP2012160668A (en) * 2011-02-02 2012-08-23 Sumitomo Bakelite Co Ltd Method for manufacturing electric component
CN102709203A (en) * 2011-03-28 2012-10-03 山田尖端科技株式会社 Bonding apparatus and bonding method
JP2012204718A (en) * 2011-03-28 2012-10-22 Apic Yamada Corp Joining device and joining method
JP2013033952A (en) * 2011-06-29 2013-02-14 Sumitomo Bakelite Co Ltd Manufacturing method of semiconductor device
JP2013045945A (en) * 2011-08-25 2013-03-04 Sumitomo Bakelite Co Ltd Manufacturing method of semiconductor device
JP2013168536A (en) * 2012-02-16 2013-08-29 Sumitomo Bakelite Co Ltd Method of manufacturing semiconductor device
JP2013225642A (en) * 2011-11-11 2013-10-31 Sumitomo Bakelite Co Ltd Semiconductor device manufacturing method
WO2014024849A1 (en) 2012-08-06 2014-02-13 積水化学工業株式会社 Method for manufacturing semiconductor device and adhesive for mounting flip chip
CN103748683A (en) * 2011-08-24 2014-04-23 住友电木株式会社 Method for manufacturing semiconductor device, block stacked body, and sequential stacked body
JP2016036041A (en) * 2015-10-21 2016-03-17 住友ベークライト株式会社 Method of manufacturing semiconductor device
KR20160045628A (en) 2013-08-22 2016-04-27 세키스이가가쿠 고교가부시키가이샤 Semiconductor adhesive
US11404395B2 (en) 2019-11-15 2022-08-02 Samsung Electronics Co., Ltd. Semiconductor package including underfill material layer and method of forming the same
KR102448321B1 (en) * 2022-01-03 2022-09-28 와이투라인 주식회사 The void removal apparatus for removal big size void and void removal method using the same

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2063465A1 (en) * 2006-09-15 2009-05-27 Lintec Corporation Process for producing semiconductor device
JP2008098608A (en) * 2006-09-15 2008-04-24 Lintec Corp Method for producing semiconductor device
US8545663B2 (en) * 2006-09-15 2013-10-01 Lintec Corporation Process for manufacturing semiconductor devices
EP2063465A4 (en) * 2006-09-15 2012-08-08 Lintec Corp Process for producing semiconductor device
JP2008305842A (en) * 2007-06-05 2008-12-18 Lintec Corp Semiconductor chip bonding apparatus and semiconductor chip bonding method
JP4625828B2 (en) * 2007-06-05 2011-02-02 リンテック株式会社 Semiconductor chip bonding apparatus and bonding method
US8003441B2 (en) 2007-07-23 2011-08-23 Lintec Corporation Manufacturing method of semiconductor device
WO2009014087A1 (en) * 2007-07-23 2009-01-29 Lintec Corporation Semiconductor device manufacturing method
JP2009027054A (en) * 2007-07-23 2009-02-05 Lintec Corp Manufacturing method for semiconductor device
KR101133892B1 (en) 2007-07-23 2012-04-09 린텍 코포레이션 Method of manufacturing semiconductor device
JP2009135309A (en) * 2007-11-30 2009-06-18 Lintec Corp Method of manufacturing semiconductor device
US7687314B2 (en) 2007-12-28 2010-03-30 Fujitsu Limited Electronic apparatus manufacturing method
JP5533663B2 (en) * 2008-11-06 2014-06-25 住友ベークライト株式会社 Manufacturing method of electronic device
US8389328B2 (en) 2008-11-06 2013-03-05 Sumitomo Bakelite Co., Ltd. Method of manufacturing electronic device and electronic device
KR101633945B1 (en) * 2008-11-06 2016-06-27 스미토모 베이클리트 컴퍼니 리미티드 Method of manufacturing electronic device and electronic device
TWI503900B (en) * 2008-11-06 2015-10-11 Sumitomo Bakelite Co Method of manufacturing electronic device and electronic device
EP2384103A1 (en) * 2008-11-06 2011-11-02 Sumitomo Bakelite Company Limited Electronic device manufacturing method and electronic device
WO2010052871A1 (en) * 2008-11-06 2010-05-14 住友ベークライト株式会社 Electronic device manufacturing method and electronic device
JP2014096608A (en) * 2008-11-06 2014-05-22 Sumitomo Bakelite Co Ltd Method of manufacturing electronic device and resin composition
KR20110082073A (en) * 2008-11-06 2011-07-15 스미토모 베이클리트 컴퍼니 리미티드 Electronic device manufacturing method and electronic device
EP2384103A4 (en) * 2008-11-06 2014-01-08 Sumitomo Bakelite Co Electronic device manufacturing method and electronic device
CN102204420B (en) * 2008-11-06 2013-11-13 住友电木株式会社 Electronic device manufacturing method and electronic device
CN102204420A (en) * 2008-11-06 2011-09-28 住友电木株式会社 Electronic device manufacturing method and electronic device
JP2011040512A (en) * 2009-08-10 2011-02-24 Murata Mfg Co Ltd Method of manufacturing circuit board
CN102668051A (en) * 2009-10-19 2012-09-12 住友电木株式会社 Process for production of electronic device, electronic device, and device for production of electronic device
WO2011048774A1 (en) 2009-10-19 2011-04-28 住友ベークライト株式会社 Process for production of electronic device, electronic device, and device for production of electronic device
JP2011211156A (en) * 2009-10-19 2011-10-20 Sumitomo Bakelite Co Ltd Process for production electronic device, and electronic device
JP2011228620A (en) * 2010-03-31 2011-11-10 Sumitomo Bakelite Co Ltd Method of manufacturing electronic device and manufacturing apparatus of the same
CN102859674A (en) * 2010-04-23 2013-01-02 住友电木株式会社 Device and method for producing electronic device, and pair of compressed members thereof
WO2011132384A1 (en) * 2010-04-23 2011-10-27 住友ベークライト株式会社 Device and method for producing electronic device, and pair of compressed members thereof
JPWO2011132384A1 (en) * 2010-04-23 2013-07-18 住友ベークライト株式会社 Electronic device manufacturing method and apparatus, and a pair of clamping members
WO2012026091A1 (en) * 2010-08-24 2012-03-01 住友ベークライト株式会社 Method for manufacturing electronic device
JP2012074636A (en) * 2010-09-29 2012-04-12 Sumitomo Bakelite Co Ltd Joining method, semiconductor device, multilayer circuit board, and electronic component
JP2012160668A (en) * 2011-02-02 2012-08-23 Sumitomo Bakelite Co Ltd Method for manufacturing electric component
JP2012204718A (en) * 2011-03-28 2012-10-22 Apic Yamada Corp Joining device and joining method
CN102709203A (en) * 2011-03-28 2012-10-03 山田尖端科技株式会社 Bonding apparatus and bonding method
US9016342B2 (en) 2011-03-28 2015-04-28 Apic Yamada Corporation Bonding apparatus and bonding method
JP2013033952A (en) * 2011-06-29 2013-02-14 Sumitomo Bakelite Co Ltd Manufacturing method of semiconductor device
CN103748683A (en) * 2011-08-24 2014-04-23 住友电木株式会社 Method for manufacturing semiconductor device, block stacked body, and sequential stacked body
US9349714B2 (en) 2011-08-24 2016-05-24 Sumitomo Bakelite Co., Ltd. Method of manufacturing semiconductor device, block stacked body, and sequential stacked body
JP2013045945A (en) * 2011-08-25 2013-03-04 Sumitomo Bakelite Co Ltd Manufacturing method of semiconductor device
JP2013225642A (en) * 2011-11-11 2013-10-31 Sumitomo Bakelite Co Ltd Semiconductor device manufacturing method
US9123830B2 (en) 2011-11-11 2015-09-01 Sumitomo Bakelite Co., Ltd. Manufacturing method for semiconductor device
JP2013168536A (en) * 2012-02-16 2013-08-29 Sumitomo Bakelite Co Ltd Method of manufacturing semiconductor device
US9209155B2 (en) 2012-08-06 2015-12-08 Sekisui Chemical Co., Ltd. Method for manufacturing semiconductor device and adhesive for mounting flip chip
KR20150040784A (en) 2012-08-06 2015-04-15 세키스이가가쿠 고교가부시키가이샤 Method for manufacturing semiconductor device and adhesive for mounting flip chip
WO2014024849A1 (en) 2012-08-06 2014-02-13 積水化学工業株式会社 Method for manufacturing semiconductor device and adhesive for mounting flip chip
US9748195B2 (en) 2012-08-06 2017-08-29 Sekisui Chemical Co., Ltd. Adhesive for mounting flip chip for use in a method for producing a semiconductor device
KR20160045628A (en) 2013-08-22 2016-04-27 세키스이가가쿠 고교가부시키가이샤 Semiconductor adhesive
JP2016036041A (en) * 2015-10-21 2016-03-17 住友ベークライト株式会社 Method of manufacturing semiconductor device
US11404395B2 (en) 2019-11-15 2022-08-02 Samsung Electronics Co., Ltd. Semiconductor package including underfill material layer and method of forming the same
US11764192B2 (en) 2019-11-15 2023-09-19 Samsung Electronics Co., Ltd. Semiconductor package including underfill material layer and method of forming the same
KR102448321B1 (en) * 2022-01-03 2022-09-28 와이투라인 주식회사 The void removal apparatus for removal big size void and void removal method using the same

Similar Documents

Publication Publication Date Title
JP2004311709A (en) Manufacturing method of semiconductor device and semiconductor manufacturing device
JP3717899B2 (en) Semiconductor device and manufacturing method thereof
US7566586B2 (en) Method of manufacturing a semiconductor device
JP5892682B2 (en) Joining method
JP6029245B2 (en) Crimping apparatus and crimping method
JPH11307584A (en) Manufacture of semiconductor device
JPH11274241A (en) Producing method for semiconductor device
JP3491827B2 (en) Semiconductor device and manufacturing method thereof
US7687314B2 (en) Electronic apparatus manufacturing method
JP2007214291A (en) Flip-chip mounting method
JP2000124164A (en) Manufacture of semiconductor device and mounting method thereof
JP2002198384A (en) Semiconductor device and its fabrication method
JP4640380B2 (en) Mounting method of semiconductor device
JP4289779B2 (en) Semiconductor mounting method and semiconductor mounting apparatus
JP2008192725A (en) Semiconductor device, and method and apparatus for manufacturing the same
JP3014577B2 (en) Method for manufacturing semiconductor device
JP4024458B2 (en) Method for mounting semiconductor device and method for manufacturing semiconductor device package
JP2003297879A (en) Semiconductor chip press-fixing device
JP3960076B2 (en) Electronic component mounting method
JP5098939B2 (en) Bonding apparatus and bonding method
JP3273556B2 (en) Mounting structure of functional element and method of manufacturing the same
JPH11340278A (en) Resin sheet for mounting semiconductor device, flip chip mounting method and circuit board
JPH11288975A (en) Bonding method and device
JP2004039886A (en) Semiconductor device and its fabricating method
JP3990814B2 (en) Electronic component manufacturing method and electronic component manufacturing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704