JP2004307926A - Method of processing waste refractory brick from copper smelting furnace - Google Patents

Method of processing waste refractory brick from copper smelting furnace Download PDF

Info

Publication number
JP2004307926A
JP2004307926A JP2003102649A JP2003102649A JP2004307926A JP 2004307926 A JP2004307926 A JP 2004307926A JP 2003102649 A JP2003102649 A JP 2003102649A JP 2003102649 A JP2003102649 A JP 2003102649A JP 2004307926 A JP2004307926 A JP 2004307926A
Authority
JP
Japan
Prior art keywords
copper
converter
waste
crushed
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003102649A
Other languages
Japanese (ja)
Inventor
Hidemasa Okamoto
秀征 岡本
Osamu Momotani
修 桃谷
Yasuhiko Kamata
保彦 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003102649A priority Critical patent/JP2004307926A/en
Publication of JP2004307926A publication Critical patent/JP2004307926A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Disintegrating Or Milling (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of efficiently disposing, when recovering copper from waste refractory bricks used in a smelting furnace, the waste refractory bricks at a low cost while obviating the necessity of special equipment, such as an autoclave, and preventing the occurrence of biting to a crushing machine such as a crusher. <P>SOLUTION: The waste refractory bricks are crushed to 50 to 200 mm maximum diameter to separate or expose copper metal impregnated into the inner part, and the copper metal and the resultant crushed matter containing the copper metal are recovered by picking and fed into a converter to undergo recovery of copper. The remaining crushed waste refractory bricks are fed to a slag beneficiation step to undergo further recovery of copper. Moreover, the whole of the crushed waste refractory bricks is fed into the converter to undergo recovery of copper, and then an unmelted portion of the crushed waste refractory bricks in the converter is fed together with converter slag to the slag beneficiation step to undergo further recovery of copper. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、乾式銅製錬における熔錬炉に使用され、耐用年数経過後に更新されて廃棄物となった耐火レンガの処理方法、特にその廃レンガに含まれる銅を効率的に回収することができる廃レンガの処理方法に関するものである。
【0002】
【従来の技術】
乾式銅製錬工程の熔錬炉補修時に発生する廃レンガには、数%〜十数%の銅を初め、数ppm〜数十ppmの金などの有価物が含まれている。この廃レンガをそのまま埋立処分する場合、高額の処理費が必要となるうえ、廃レンガに含まれる有価物を回収できないため、多大な経済的損失を招くことになる。
【0003】
そこで、廃レンガを乾式銅製錬工程に付随するカラミ選鉱工程に直接供給し、細かく破砕した後、転炉カラミなどと共に浮選処理して銅を回収することが行われている。しかしながら、廃レンガをクラッシャーなどの破砕機で細かく破砕する際に、内部に含まれる銅メタル分が破砕機に噛み込み、度々停止させてしまうため、工程全体の処理効率を極端に低下させるという問題があった。
【0004】
一方、廃レンガをそのまま又は破砕して転炉に繰り返し、メタル分を熔かし出して回収する方法も知られている。しかし、この方法においても、廃レンガ中に含まれる銅を確実に回収するには、廃レンガをクラッシャーなどの破砕機で細かく破砕してから転炉に投入する必要があるため、その際に廃レンガ内部に含まれる銅メタル分が破砕機に噛み込んで、上記と同様の問題を生じさせることが多かった。
【0005】
このような破砕機への銅メタルの噛み込みを無くすため、特開2000−262920号公報には、廃レンガを転炉などに繰り返す際に、廃レンガ中に混入した銅メタルを金属検出器にて検出し、検出された銅メタルを含む廃レンガは直接ボールミルに供給し、それ以外の廃レンガはクラッシャーを経てボールミルに供給することにより、転炉への投入に適した75μm以下の粒径が主となるように細かく粉砕する方法が記載されている。しかし、銅メタルとカラミの透磁率の差が小さいため、銅メタルの混入した廃レンガのみを金属検出器で確実に検出して分離することは容易ではない。
【0006】
また、転炉などに繰り返す廃レンガを細かく破砕する方法として、特開平8−262920号公報には、廃レンガをオートクレーブにて高温高圧の水蒸気に接触させて粉砕し、主に10mm以下に粉砕する方法が開示されている。しかし、この方法では、専用のオートクレーブが必要となるうえ、処理操作も煩雑となるため、コスト高になるという問題があった。
【0007】
【特許文献1】
特開2000−262920号公報
【特許文献2】
特開平8−262920号公報
【0008】
【発明が解決しようとする課題】
本発明は、このような従来の事情に鑑み、乾式銅製錬における熔錬炉に使用された廃レンガを処理して銅を回収する際に、オートクレーブなどの特別な設備を必要とせず、クラッシャーなどの破砕機への噛み込みをなくし、廃レンガを安価且つ効率的に処分する方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供する銅熔錬炉廃レンガの処理方法は、乾式銅製錬で使用する熔錬炉の廃レンガを、最大径50〜200mmに粗破砕して内部に含浸した銅メタルを分離又は露出させ、その銅メタル及び銅メタル含有破砕物を目視又は金属検出器により手選回収し、転炉に供給して銅を回収すると共に、残りの廃レンガ粗破砕物を銅製錬のカラミ選鉱工程に供給して、更に銅を回収することを特徴とする。
【0010】
また、本発明が提供する銅熔錬炉廃レンガの別の処理方法は、乾式銅製錬で使用する熔錬炉の廃レンガを、最大径50〜200mmに粗破砕して内部に含浸した銅メタルを分離又は露出させ、その廃レンガ粗破砕物全体を転炉に供給して銅を回収した後、転炉で熔け残った廃レンガ粗破砕物を転炉カラミと共に銅製錬のカラミ選鉱工程に供給して、更に銅を回収することを特徴とする。
【0011】
【発明の実施の形態】
本発明による廃レンガの処理方法を、図1及び図2のフローチャ−トに示す。通常、熔錬炉の補修時に発生する廃レンガは、数個がつながった状態であることが多い。そのため、図1及び図2のいずれの方法においても、まず、重機などを使用して廃レンガを粗割りすることが好ましい。粗割りした廃レンガから、混入している銅の塊や、鉄筋、ボルトなどの雑物を人手により選別(手選)して、回収メタル1として取り出す。
【0012】
回収メタル1を除去した粗割り廃レンガは、次に、ベルトコンベヤなどによって破砕機へ供給して粗破砕する。粗破砕に用いる破砕機としては、市販のジョークラッシャーやジャイレートリークラッシャーなどを使用できるが、破砕機の入口隙間はレンガを通すために十分な大きさである必要があり、異物が噛み込んだ際に容易に取り出せるような構造を持つことが望ましい。
【0013】
粗破砕後の廃レンガ(廃レンガ粗破砕物)の大きさは、破砕機の刃の隙間によって適宜調整できるが、本発明では最大径が50〜200mmとなるように粗破砕する。粗破砕後の廃レンガの最大径が200mmを越えると、内部にある主な銅メタルを分離させ又は露出させることができない。逆に最大径を50mmより小さくする場合には、破砕機の刃の隙間が狭くなるため、廃レンガに含浸しているメタル分による噛み込みが発生しやすくなる。
【0014】
上記の粗破砕を行った後、図1の方法の場合には、粗破砕した廃レンガを再び目視又は金属検出器により手選し、粗破砕によって廃レンガから分離された銅メタルや、露出された銅メタルを含む廃レンガ粗破砕物(銅メタル含有破砕物)を、回収メタル2として除去する。この回収メタル2は、先に粗割り廃レンガから分離した回収メタル1と共に、銅製錬の転炉に供給して熔解され、銅や有価物として回収される。
【0015】
回収メタル2を除去した廃レンガ粗破砕物は、手選されずに残った銅分を含むので、銅製錬工場に既存のカラミ選鉱工程に供給し、転炉カラミなどと混合して処理する。即ち、カラミ選鉱工程で廃レンガ粗破砕物を更に破砕し、ボールミルなどによって粒度40μm程度にまで磨鉱した後、浮選処理により銅を浮鉱として回収する。カラミ選鉱工程への廃レンガ粗破砕物の供給割合は、目標処理量などに鑑みて適宜設定されるが、廃レンガの量が多すぎると浮選処理で起泡が発生しなくなるなどの問題が生じることがあるため、全体の1〜5重量%の範囲で調整するのが好ましい。
【0016】
一方、図2の方法では、粗破砕した廃レンガをそのまま(銅メタルを分離することなく)、先に粗割り廃レンガから分離した回収メタル1と共に、転炉へ投入する。粗破砕された廃レンガ中の銅メタルは、分離又は露出しているため転炉で容易に熔出して、銅や有価物として回収することができる。また、転炉で熔け残った廃レンガ粗破砕物は、転炉カラミと共にカラミ選鉱工程へ供給され、上記図1の方法の場合と同様にして、更に銅を回収することができる。
【0017】
尚、この図2の方法は、粗破砕後の手選工程を省略できるため、処理費を削減することができるが、転炉内で熔け残った廃レンガ粗破砕物によってカラミ排出経路中で詰まるなどの問題を生じることがある。従って、粗破砕後の廃レンガの粒度や転炉の操業状況に応じて、図1の方法と図2の方法を適宜使い分けることが望ましい。
【0018】
上記図1及び図2のいずれの方法においても、カラミ選鉱工程に供給された廃レンガは、最終的には転炉カラミなどと混合された状態で処理される。この廃レンガには微細な銅が含まれているが、カラミ選鉱工程で粉砕・浮選することにより、転炉カラミ中の銅と同様に、精鉱中に濃縮・回収される。一方、廃レンガの主成分である酸化マグネシウムなどの非金属成分は、浮選尾鉱である鉄精粉中に分配され、セメント原料などとして利用される。
【0019】
このような本発明の方法においては、廃レンガ中に含まれる銅や有価物を、主に転炉で回収するだけでなく、既設の銅製錬のカラミ選鉱工程を利用して更に回収するため、確実に且つ効率よく回収することができる。そのため、粗破砕の工程での廃レンガの大きさを最大径50〜200mmと従来よりも大きく設定することが可能となり、その結果として粗破砕工程やカラミ選鉱工程でクラッシャーなどの破砕機への噛み込みをなくすことができる。
【0020】
【実施例】
実施例1
銅熔錬炉の廃レンガ約20トンを、図1の方法で処理した。即ち、複数個がつながった廃レンガを重機で粗割りし、目視手選して銅塊やボルトなど(回収メタル1)を取り除いた後、オープンセット50mmに調整したジョークラッシャー(250×250mm/5.5kW)により、最大径が100〜200mmとなるように粗破砕した。粗破砕時にクラッシャーへの噛み込みは起らなかった。この粗破砕した廃レンガをクラッシャーの排出コンベヤ上で目視手選して、更に銅メタル及び銅メタル含有破砕物(回収メタル2)を取り除いた。
【0021】
粗割り後に取り除いた回収メタル1と、粗破砕後に取り除いた回収メタル2とは、既存の転炉に供給して熔解処理した。一方、メタルを除去した廃レンガ粗破砕物は、転炉カラミに1重量%の割合で混合し、既存のカラミ選鉱工程に供給して処理した。その結果、カラミ選鉱工程でクラッシャーへの噛み込みは起らず、また浮選処理では起泡が十分に発生し、問題なく処理することができた。
【0022】
上記の処理方法において、使用した廃レンガ、回収メタル1と回収メタル2、及びカラミ選鉱処理物の各重量を、下記表1にまとめて示した。尚、回収メタル1及び回収メタル2には廃レンガと固着したものがあるため、その一部を更に細かく破砕・分離して重量測定し、粗銅純分の割合と重量を求めた。
【0023】
【表1】

Figure 2004307926
【0024】
実施例2
銅熔錬炉の廃レンガ約6.7トンを、図2の方法で処理した。即ち、複数個がつながった廃レンガを重機で粗割りし、目視手選して銅塊やボルトなど(回収メタル1)を取り除いた後、オープンセット50mmに調整した実施例1と同じジョークラッシャーにより、最大径が100〜200mmとなるように粗破砕した。粗破砕時にクラッシャーへの噛み込みは起らなかった。
【0025】
粗破砕された廃レンガ粗破砕物は手選せず、そのまま転炉へ供給した。転炉では1バッチの操業で廃レンガ粗破砕物1トンを投入し、廃レンガ中の銅メタルを熔解して回収し、転炉で熔け残った廃レンガは転炉カラミと共に排出した。1バッチの操業で転炉カラミは60〜70トン発生するため、転炉カラミ中のレンガ混入量は平均1.5重量%前後と推定される。
【0026】
転炉で熔け残った廃レンガ粗破砕物と転炉カラミの混合物を転炉から排出し、カラミ選鉱工程にて処理した。その結果、カラミ排出経路でのレンガ詰まりによるトラブルは発生せず、カラミ選鉱工程でクラッシャーへの噛み込みは起らず、また浮選処理では起泡が十分に発生し、問題なく処理することができた。
【0027】
上記の処理方法において、使用した廃レンガ、回収メタル1、及び転炉処理物の各重量を、下記表2にまとめて示した。尚、回収メタル1には廃レンガと固着したものがあるため、実施例1と同様にして、粗銅純分の割合と重量を求めた。
【0028】
【表2】
Figure 2004307926
【0029】
【発明の効果】
本発明によれば、乾式銅製錬における熔錬炉に使用された廃レンガを処理して銅を回収する際に、オートクレーブなどの特別な設備を必要とせず、主に転炉で回収すると同時に、既設の銅製錬のカラミ選鉱工程を利用して回収するため、確実に効率よく、且つ安価に回収することができる。また、粗破砕での廃レンガの大きさを最大径50〜200mmと従来よりも大きく設定することが可能となり、粗破砕工程やカラミ選鉱工程でクラッシャーなどの破砕機への噛み込みをなくすことができる。
【図面の簡単な説明】
【図1】本発明による廃レンガの処理方法を示すフローチャ−トである。
【図2】本発明による廃レンガの別の処理方法を示すフローチャ−トである。[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is used in a smelting furnace in dry copper smelting, and is a method for treating refractory bricks that have been renewed after a lapse of service life and have become waste, in particular, copper contained in the waste brick can be efficiently recovered. The present invention relates to a method for treating waste bricks.
[0002]
[Prior art]
Waste bricks generated at the time of smelting furnace repair in the dry copper smelting process contain valuables such as several percent to several tens of ppm of copper, as well as several ppm to several tens of ppm of gold. If this waste brick is to be landfilled as it is, a large amount of processing cost is required, and valuable resources contained in the waste brick cannot be collected, resulting in a great economic loss.
[0003]
Therefore, waste bricks are directly supplied to a Karami beneficiation process associated with a dry copper smelting process, finely crushed, and then subjected to flotation treatment together with a converter Karami to recover copper. However, when finely crushing waste bricks using a crusher such as a crusher, the copper metal content contained in the crusher may bite into the crusher and stop frequently, resulting in extremely low processing efficiency of the entire process. was there.
[0004]
On the other hand, there is also known a method in which waste bricks are directly or crushed and repeatedly used in a converter to melt and recover metal components. However, even in this method, in order to reliably recover the copper contained in the waste brick, it is necessary to finely crush the waste brick with a crusher such as a crusher and then put the waste brick into the converter. The copper metal contained in the brick often bites into the crusher, causing the same problem as described above.
[0005]
In order to eliminate the biting of copper metal into such a crusher, Japanese Patent Application Laid-Open No. 2000-262920 discloses that, when waste bricks are repeated in a converter or the like, copper metal mixed in waste bricks is used as a metal detector. Waste bricks containing copper metal detected are directly supplied to the ball mill, and the other waste bricks are supplied to the ball mill via a crusher, so that the particle size of 75 μm or less suitable for feeding into the converter is obtained. A method of pulverizing finely so as to be main is described. However, since the difference in magnetic permeability between copper metal and karam is small, it is not easy to reliably detect and separate only waste bricks mixed with copper metal with a metal detector.
[0006]
Further, as a method of finely crushing waste bricks repeated in a converter or the like, JP-A-8-262920 discloses that waste bricks are crushed by contacting with high-temperature and high-pressure steam in an autoclave and mainly crushed to 10 mm or less. A method is disclosed. However, in this method, a dedicated autoclave is required, and the processing operation is complicated, resulting in a problem that the cost is increased.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-262920 [Patent Document 2]
JP-A-8-262920
[Problems to be solved by the invention]
In view of such conventional circumstances, the present invention does not require special equipment such as an autoclave, when processing waste bricks used in a smelting furnace in dry copper smelting and recovering copper, such as a crusher. It is an object of the present invention to provide a method of disposing of waste bricks inexpensively and efficiently by eliminating biting into a crusher.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the method for treating copper smelting furnace waste brick provided by the present invention is to roughly crush the waste brick of a smelting furnace used in dry copper smelting to a maximum diameter of 50 to 200 mm and impregnate the inside. The separated copper metal is separated or exposed, and the copper metal and the copper metal-containing crushed material are visually or manually collected by a metal detector, and supplied to a converter to collect copper, and the remaining waste brick coarse crushed material is recovered. It is characterized in that it is supplied to a copper smelting Karami beneficiation process to further recover copper.
[0010]
Further, another method of treating copper smelting furnace waste bricks provided by the present invention is a copper metal impregnated with a waste brick of a smelting furnace used in dry copper smelting, roughly crushed to a maximum diameter of 50 to 200 mm and impregnated inside. Is separated or exposed, and the whole waste brick crushed material is supplied to the converter to recover copper, and then the waste brick coarse crushed material remaining in the converter is supplied to the copper smelting Karami beneficiation process together with the converter Karami. And further recovering the copper.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for treating waste bricks according to the present invention is shown in the flowcharts of FIGS. Usually, several pieces of waste brick generated at the time of repair of a smelting furnace are often connected. Therefore, in any of the methods shown in FIGS. 1 and 2, it is preferable to first roughly break the waste brick using a heavy machine or the like. From the roughly-split waste bricks, contaminants such as mixed copper lumps, reinforcing bars, and bolts are manually selected (hand-selected) and taken out as the recovered metal 1.
[0012]
Next, the roughly-split waste brick from which the recovered metal 1 has been removed is supplied to a crusher by a belt conveyor or the like to be roughly crushed. As a crusher used for coarse crushing, a commercially available jaw crusher or a gyratory crusher can be used, but the entrance gap of the crusher needs to be large enough to pass bricks, and foreign matter has been caught. It is desirable to have a structure that can be easily taken out.
[0013]
The size of the waste brick after coarse crushing (waste brick coarse crushed material) can be appropriately adjusted by the gap between the blades of the crusher, but in the present invention, coarse crushing is performed so that the maximum diameter is 50 to 200 mm. When the maximum diameter of the waste brick after coarse crushing exceeds 200 mm, the main copper metal inside cannot be separated or exposed. Conversely, when the maximum diameter is smaller than 50 mm, the gap between the blades of the crusher is narrowed, so that the bitten by the metal impregnated in the waste brick is likely to occur.
[0014]
After the coarse crushing is performed, in the case of the method of FIG. 1, the coarsely crushed waste brick is again visually or manually selected by a metal detector, and the copper metal separated from the waste brick by the coarse crushing or exposed metal is exposed. The coarsely crushed waste brick containing copper metal (the crushed material containing copper metal) is removed as recovered metal 2. The recovered metal 2 is supplied to a converter for copper smelting and melted together with the recovered metal 1 previously separated from the roughly-split waste brick, and is recovered as copper and valuable resources.
[0015]
Since the coarsely crushed waste brick from which the recovered metal 2 has been removed contains the copper remaining without being hand-selected, it is supplied to the existing Karami beneficiation process in the copper smelting plant and mixed with the converter Karami and processed. That is, in the Karami beneficiation step, the coarsely crushed waste bricks are further crushed and crushed to a particle size of about 40 μm by a ball mill or the like, and then copper is recovered as flotation by flotation treatment. The supply ratio of the coarsely crushed waste bricks to the Karami beneficiation process is appropriately set in consideration of the target treatment amount, but if the amount of waste bricks is too large, there is a problem that foaming does not occur in the flotation treatment. Therefore, it is preferable to adjust the amount in the range of 1 to 5% by weight of the whole.
[0016]
On the other hand, in the method of FIG. 2, the coarsely crushed waste brick is directly charged (without separating the copper metal) together with the recovered metal 1 separated from the coarsely divided waste brick into the converter. The copper metal in the roughly crushed waste brick is separated or exposed, so that it can be easily melted in a converter and recovered as copper or valuable resources. Further, the coarsely crushed waste bricks left unmelted in the converter are supplied to the Karami beneficiation process together with the converter Karami, and copper can be further recovered in the same manner as in the method of FIG.
[0017]
In addition, the method of FIG. 2 can omit the manual selection step after coarse crushing, thereby reducing the processing cost. However, the method of FIG. Such problems may occur. Therefore, it is desirable to appropriately use the method of FIG. 1 and the method of FIG. 2 according to the granularity of the waste brick after the coarse crushing and the operating condition of the converter.
[0018]
In each of the methods shown in FIGS. 1 and 2, the waste bricks supplied to the Karami beneficiation process are finally treated in a state of being mixed with converter Karami and the like. Although this waste brick contains fine copper, it is concentrated and recovered in the concentrate as in the case of the copper in the converter Karami by crushing and flotation in the Karami beneficiation process. On the other hand, non-metal components such as magnesium oxide, which are the main components of waste bricks, are distributed into iron flotation, which is flotation tailings, and are used as a raw material for cement.
[0019]
In such a method of the present invention, not only copper and valuables contained in waste bricks are mainly recovered in the converter, but also to further recover using the existing copper smelting Karami beneficiation process, The collection can be performed reliably and efficiently. Therefore, it is possible to set the size of the waste brick in the coarse crushing process to a maximum diameter of 50 to 200 mm larger than before, and as a result, to bite a crusher such as a crusher in the coarse crushing process and the Karami beneficiation process. Crowding can be eliminated.
[0020]
【Example】
Example 1
About 20 tons of waste bricks from the copper smelting furnace were treated in the manner shown in FIG. That is, a plurality of connected waste bricks are roughly divided by a heavy machine, visually selected to remove copper lumps, bolts, etc. (recovery metal 1), and then a jaw crusher (250 × 250 mm / 5) adjusted to an open set of 50 mm. .5 kW) so that the maximum diameter was 100 to 200 mm. No biting into the crusher occurred during coarse crushing. The coarsely crushed waste brick was visually and manually selected on a discharge conveyor of a crusher to further remove copper metal and crushed material containing copper metal (recovered metal 2).
[0021]
The recovered metal 1 removed after the coarse cracking and the recovered metal 2 removed after the coarse crushing were supplied to an existing converter and melted. On the other hand, the coarsely crushed waste brick from which the metal was removed was mixed with the converter kalami at a ratio of 1% by weight, and supplied to an existing kalami beneficiation process for treatment. As a result, no biting to the crusher occurred in the Karami beneficiation process, and foaming was sufficiently generated in the flotation treatment, so that the treatment could be performed without any problem.
[0022]
In the above treatment method, the weights of the used bricks, the recovered metal 1 and the recovered metal 2, and the weights of the Karami beneficiation products are shown in Table 1 below. In addition, since some of the recovered metal 1 and the recovered metal 2 were fixed to the waste brick, a part of the recovered metal was further crushed and separated, and the weight was measured to determine the proportion and weight of the pure copper.
[0023]
[Table 1]
Figure 2004307926
[0024]
Example 2
About 6.7 tons of waste bricks from the copper smelting furnace were treated in the manner shown in FIG. That is, a plurality of connected waste bricks are roughly divided by heavy equipment, visually selected to remove copper lumps, bolts, etc. (recovery metal 1), and then adjusted to an open set of 50 mm using the same jaw crusher as in Example 1 And coarsely crushed so that the maximum diameter would be 100 to 200 mm. No biting into the crusher occurred during coarse crushing.
[0025]
The coarsely crushed waste bricks were supplied to the converter as they were without manual selection. In the converter, one ton of the roughly crushed waste brick was put in one batch operation, copper metal in the waste brick was melted and recovered, and the waste brick remaining in the converter was discharged together with the converter karami. Since 60 to 70 tons of converter lumps are generated in one batch operation, the amount of bricks mixed in the converter lumps is estimated to be around 1.5% by weight on average.
[0026]
A mixture of coarsely crushed waste brick and converter karam left behind in the converter was discharged from the converter and treated in a karam beneficiation process. As a result, there is no trouble due to brick clogging in the kalami discharge route, no biting to the crusher occurs in the kalami beneficiation process, and sufficient foaming occurs in the flotation process, and it can be processed without problems. did it.
[0027]
In the above treatment method, the weights of the used bricks, the recovered metal 1, and the converter treatment products used are shown in Table 2 below. In addition, since some of the recovered metal 1 was fixed to the waste brick, the ratio and weight of the blister copper content were determined in the same manner as in Example 1.
[0028]
[Table 2]
Figure 2004307926
[0029]
【The invention's effect】
According to the present invention, when treating waste bricks used in a smelting furnace in dry copper smelting and recovering copper, there is no need for special equipment such as an autoclave, and at the same time recovering mainly in a converter, Since the recovery is performed by using the existing copper smelting Karami beneficiation process, the recovery can be reliably performed efficiently and inexpensively. In addition, it is possible to set the size of waste brick in coarse crushing to a maximum diameter of 50 to 200 mm larger than before, and to eliminate biting into crushers such as crushers in the coarse crushing process and the Karami beneficiation process. it can.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a method for treating waste bricks according to the present invention.
FIG. 2 is a flowchart showing another method of treating waste bricks according to the present invention.

Claims (2)

乾式銅製錬で使用する熔錬炉の廃レンガを、最大径50〜200mmに粗破砕して内部に含浸した銅メタルを分離又は露出させ、その銅メタル及び銅メタル含有破砕物を目視又は金属検出器により手選回収し、転炉に供給して銅を回収すると共に、残りの廃レンガ粗破砕物を銅製錬のカラミ選鉱工程に供給して、更に銅を回収することを特徴とする銅熔錬炉廃レンガの処理方法。Waste bricks of smelting furnaces used in dry copper smelting are roughly crushed to a maximum diameter of 50 to 200 mm to separate or expose the copper metal impregnated inside, and the copper metal and copper metal-containing crushed material are visually or metal detected. A copper smelting process, wherein the copper is recovered by hand-selection and supplied to a converter to recover copper, and the remaining coarsely crushed waste bricks are supplied to a copper smelting process for Karami beneficiation to further recover copper. How to treat smelting bricks. 乾式銅製錬で使用する熔錬炉の廃レンガを、最大径50〜200mmに粗破砕して内部に含浸した銅メタルを分離又は露出させ、その廃レンガ粗破砕物全体を転炉に供給して銅を回収した後、転炉で熔け残った廃レンガ粗破砕物を転炉カラミと共に銅製錬のカラミ選鉱工程に供給して、更に銅を回収することを特徴とする銅熔錬炉廃レンガの処理方法。The waste brick of the smelting furnace used in the dry copper smelting is roughly crushed to a maximum diameter of 50 to 200 mm to separate or expose the copper metal impregnated therein, and the entire waste crushed brick is supplied to the converter. After recovering the copper, the coarsely crushed waste brick remaining in the converter is supplied together with the converter kalami to the kalami beneficiation process of copper smelting, and further copper is recovered. Processing method.
JP2003102649A 2003-04-07 2003-04-07 Method of processing waste refractory brick from copper smelting furnace Pending JP2004307926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102649A JP2004307926A (en) 2003-04-07 2003-04-07 Method of processing waste refractory brick from copper smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102649A JP2004307926A (en) 2003-04-07 2003-04-07 Method of processing waste refractory brick from copper smelting furnace

Publications (1)

Publication Number Publication Date
JP2004307926A true JP2004307926A (en) 2004-11-04

Family

ID=33466016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102649A Pending JP2004307926A (en) 2003-04-07 2003-04-07 Method of processing waste refractory brick from copper smelting furnace

Country Status (1)

Country Link
JP (1) JP2004307926A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274433A (en) * 2005-03-30 2006-10-12 Nikko Kinzoku Kk Method for recovering noble metal from waste brick
CN106672981A (en) * 2016-12-19 2017-05-17 河钢股份有限公司承德分公司 Method and application of resource utilization of waste refractory brick

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274433A (en) * 2005-03-30 2006-10-12 Nikko Kinzoku Kk Method for recovering noble metal from waste brick
JP4599612B2 (en) * 2005-03-30 2010-12-15 Jx日鉱日石金属株式会社 Method for recovering precious metals from waste bricks
CN106672981A (en) * 2016-12-19 2017-05-17 河钢股份有限公司承德分公司 Method and application of resource utilization of waste refractory brick

Similar Documents

Publication Publication Date Title
JP6050222B2 (en) Disposal of electrical and electronic parts waste
JP4823175B2 (en) Incineration ash treatment system
JP6375205B2 (en) Valuable metal recovery method and valuable metal recovery system
KR100993715B1 (en) Sampling method and sampling facilities
JP2007092133A (en) Method for treating scrap and/or sludge containing copper and noble metal
JPS63116794A (en) Method of recovering available substance from garbage fuel ash
US4126673A (en) Method for processing dross
JP4948429B2 (en) Processing system for combustible waste containing metals and chlorine
JP6228843B2 (en) Disposal of electrical and electronic parts waste in copper smelting
JP2000005702A (en) Method and device for recovering metal from solid waste
US7328863B2 (en) Counterweight and method for recycling the same
JP2020069406A (en) Processing device and processing method of metal-containing waste
JP2006272246A (en) Method for recovering granular iron in slag
JP2004307926A (en) Method of processing waste refractory brick from copper smelting furnace
US11549155B2 (en) Reduced iron production method and production apparatus
JP2008279353A (en) SORTING AND RECOVERING METHOD OF MgO-C BRICK CHIP FROM REFRACTORY CHIP
US5901910A (en) Metal recovery from salt cake and other compositions
JP2013138975A (en) Incineration ash treatment system
WO2018198042A1 (en) Process and device for recovering metal
JP2017190529A (en) Method of processing electric/electronic parts scrap in copper smelting
GB1603932A (en) Method and apparatus for processing dross
JP2021088746A (en) Method for reusing desulfurization slag
JP2019155237A (en) Fishing net recycling apparatus and method
USRE31028E (en) Method for processing dross
JP2659319B2 (en) Method and apparatus for recycling waste incineration residue