JP4599612B2 - Method for recovering precious metals from waste bricks - Google Patents

Method for recovering precious metals from waste bricks Download PDF

Info

Publication number
JP4599612B2
JP4599612B2 JP2005099697A JP2005099697A JP4599612B2 JP 4599612 B2 JP4599612 B2 JP 4599612B2 JP 2005099697 A JP2005099697 A JP 2005099697A JP 2005099697 A JP2005099697 A JP 2005099697A JP 4599612 B2 JP4599612 B2 JP 4599612B2
Authority
JP
Japan
Prior art keywords
lead
waste
slag
precious metals
waste bricks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005099697A
Other languages
Japanese (ja)
Other versions
JP2006274433A (en
Inventor
康勝 佐々木
浩二 副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2005099697A priority Critical patent/JP4599612B2/en
Publication of JP2006274433A publication Critical patent/JP2006274433A/en
Application granted granted Critical
Publication of JP4599612B2 publication Critical patent/JP4599612B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、貴金属を含有する原料を処理する溶錬炉や溶融炉の修理、または解体時等に発生する貴金属を含有した廃レンガから貴金属を回収する方法に関するものである。 The present invention relates to a method for recovering noble metal from waste bricks containing noble metal generated at the time of repairing or dismantling of a smelting furnace or melting furnace for treating a raw material containing noble metal.

貴金属の溶錬炉や溶融炉に使用されている塩基性のマグネシア系レンガは、これら炉の修理、解体時時には多量の廃レンガの発生源となるが、炉内で高温の溶湯と接触しているため、廃レンガには数ppmから数mass%の貴金属などの有価物を含有している。
一方、加熱炉などの廃レンガには、このような貴金属などの有価物が含浸していないので、廃レンガは炉材メーカーにおいて機械的に粉砕された後にスタンプ材として再利用されている。
しかし、貴金属の溶錬炉や溶融炉の廃レンガには貴金属が含浸しているため、粉砕より得られた粉末又は塊材も貴金属を含有しており、これらを炉材として再利用することができない。
さらに、この廃レンガをそのまま埋め立て処分する場合、高額な処理費が必要なうえ、廃レンガに含まれる貴金属を回収できないため、多大な経済的な損失を招くことになる。
Basic magnesia bricks used in precious metal smelting furnaces and melting furnaces are a source of a large amount of waste bricks at the time of repair and dismantling of these furnaces. Therefore, waste brick contains valuable materials such as several ppm to several mass% of precious metals.
On the other hand, since waste bricks such as heating furnaces are not impregnated with such valuable materials as precious metals, waste bricks are reused as stamp materials after being mechanically crushed by furnace material manufacturers.
However, since noble metals are impregnated in precious metal smelting furnaces and waste bricks from melting furnaces, the powder or lump obtained from pulverization also contains precious metals, and these can be reused as furnace materials. Can not.
Furthermore, when this waste brick is disposed of in landfill as it is, a high processing cost is required and the precious metal contained in the waste brick cannot be recovered, resulting in a great economic loss.

そこで、廃レンガを破砕機にて粉砕して、非鉄製錬の溶錬炉や溶融炉、例えば、銅製錬の自溶炉、反射炉、転炉などに繰り返し溶解させることにより、廃レンガ中の貴金属を溶湯して回収することが一般的に行われている。
しかし、この方法においても、貴金属の溶錬炉や溶融炉等に使用されているマグクロ系レンガは、非常に高融点であるため、銅製錬における自溶炉、反射炉、あるいは転炉などに繰返し溶融処理を行っても貴金属を含有した廃レンガが未溶解のままスラグとともに排出されることがある。また、廃レンガに含有している貴金属を確実に回収できているか把握することができなかった。
さらに、銅製錬工程の自溶炉、反射炉、あるいは転炉などで貴金属を含む廃レンガを溶融処理しても、銅電解工程、銅殿物処理工程を経由するため、貴金属を回収するまでの滞留期間は最短でも1カ月以上を要し、廃レンガ中に含まれる貴金属を早期に確実に高収率にて回収することができないという問題があった。
Therefore, by crushing waste bricks with a crusher and repeatedly dissolving them in non-ferrous smelting furnaces and melting furnaces, such as copper smelting furnaces, reflection furnaces, converters, etc., Generally, the precious metal is melted and recovered.
However, in this method as well, magcro bricks used in precious metal smelting furnaces and melting furnaces have a very high melting point, so they are repeatedly used in flash smelting furnaces, reflection furnaces, or converters in copper smelting. Even when the melting treatment is performed, the waste brick containing the precious metal may be discharged together with the slag without being dissolved. Moreover, it was not possible to grasp whether the precious metal contained in the waste brick was reliably recovered.
In addition, even if waste bricks containing precious metals are melted in the flash smelting furnace, reflection furnace, or converter of the copper smelting process, they pass through the copper electrolysis process and the copper porcelain treatment process. The residence time required a minimum of one month or more, and there was a problem that the precious metal contained in the waste brick could not be recovered quickly and reliably in a high yield.

鉄鋼製錬において使用済みとなったマグネシア系廃レンガの再利用法が例えば、特開平6−11617号公報(特許文献1)で提案されている。この方法では、使用済みマグネシアレンガを粉砕機により粉砕し、これをMgOを主成分とする耐火物を内張りした溶鋼製錬炉に繰り返して、溶解させることにより、スラグ中のMgO濃度を調整している。 For example, Japanese Patent Laid-Open No. 6-11617 (Patent Document 1) proposes a method of reusing magnesia waste bricks that have been used in steel smelting. In this method, the used magnesia brick is pulverized by a pulverizer, and this is repeated in a molten steel smelting furnace lined with a refractory mainly composed of MgO to adjust the MgO concentration in the slag. Yes.

また、特開2003−286523号公報(特許文献2)によると、マグネシア系廃レンガの再利用方法として、マグネシア系耐火物の炉壁を有する電気炉を用いて原料の金属材料および副原料を溶解するときの副原料の一部として、破砕したマグネシア系廃レンガを使用している。 According to Japanese Patent Laid-Open No. 2003-286523 (Patent Document 2), as a method of reusing magnesia-based waste bricks, a raw metal material and an auxiliary material are melted using an electric furnace having a furnace wall of a magnesia-based refractory. Crushed magnesia-based waste bricks are used as part of the auxiliary raw materials.

以上のように、マグネシア系廃レンガをスラグ組成調整用に再利用処理することが一般的に行われている方法である。 As described above, it is a commonly practiced method to reuse magnesia waste bricks for slag composition adjustment.

特開平6−11617号JP-A-6-11617 特開2003−286523号JP 2003-286523 A

本発明は、このような従来の事情に鑑み、貴金属の溶錬炉や溶融炉に使用された廃レンガを溶融して貴金属を回収する際に、銅製錬工程にて処理をせずに、廃レンガに含有する貴金属を早期に確実に高回収率にて回収する方法を提供することを目的とする。     In view of such conventional circumstances, the present invention eliminates the waste metal used in the smelting furnace and the melting furnace of the precious metal and recovers the precious metal without any treatment in the copper smelting process. It is an object of the present invention to provide a method for recovering precious metals contained in bricks quickly and reliably at a high recovery rate.

本発明は、上記の課題を解決するものであって、
(1)貴金属を含有するマグネシア系廃レンガを20mm以下に粉砕し、貴金属を含有する廃レンガと、溶剤と、酸化鉛及びまたは鉛と、還元剤とともに溶融させ、廃レンガ中に含有する貴金属を鉛に吸収させて、貴金属を回収する廃レンガからの貴金属の回収方法。
(2)上記(1)記載の好適なスラグ組成はCaO:32〜47mass%、SiO2:45〜53mass%、MgO:4~13mass%である廃レンガからの貴金属の回収方法。
(3)上記(1)から(2)記載の吸収媒体である鉛が、酸化鉛として酸化鉛/スラグ重量比が0.6以上である廃レンガからの貴金属の回収方法。
を提供する。
The present invention solves the above problems,
(1) Crush the magnesia waste brick containing noble metal to 20mm or less, melt the waste brick containing noble metal, solvent, lead oxide and / or lead, and reducing agent to contain the noble metal contained in the waste brick. A method for recovering precious metals from waste bricks that is absorbed by lead and recovers precious metals.
(2) The method for recovering precious metals from waste bricks, wherein the preferred slag composition described in (1) is CaO: 32 to 47 mass%, SiO 2 : 45 to 53 mass%, MgO: 4 to 13 mass%.
(3) A method for recovering precious metals from waste bricks, wherein the lead as the absorbing medium described in (1) to (2) above is lead oxide and the lead oxide / slag weight ratio is 0.6 or more.
I will provide a.

本発明は、以下の効果を有する。
(1)廃レンガから効率的に貴金属を回収できる。
(2)特に白金等の貴金属を含んだ廃レンガから、効率的に貴金属を回収できる。
The present invention has the following effects.
(1) Precious metals can be efficiently recovered from waste bricks.
(2) Precious metals can be efficiently recovered from waste bricks containing precious metals such as platinum.

次に、本発明の貴金属を含有した廃レンガの処理方法を図1のフローシートを用いて、より具体的に説明する。
本発明の処理対象物は、貴金属を含有する原料を処理する溶錬炉や溶融炉の使用済みになったマグネシア系廃レンガ、MgO−Cr2O3、MgO‐C、MgO−Al2O3−C等のMgOを主成分とする焼成または非焼成レンガで、白金など貴金属を数ppmから数mass%含有している。
Next, the processing method of the waste brick containing the noble metal of this invention is demonstrated more concretely using the flow sheet of FIG.
The object to be treated of the present invention is a magnesia waste brick, MgO-Cr 2 O 3 , MgO-C, MgO-Al 2 O 3 which has been used in a smelting furnace or a melting furnace for treating a raw material containing a noble metal. A fired or non-fired brick mainly composed of MgO such as -C, and contains precious metals such as platinum of several ppm to several mass%.

これら廃レンガをジョークラッシャーなどの破砕機にて粉砕するが、その粒径が大きすぎると溶解するのに時間がかかるとともに、廃レンガに含有している貴金属の回収率が低下するので、20mm以下に粉砕するのが好ましい。
より好ましくは、10mm以下である。 表面積が多い方が、溶解しやすいからである。
These waste bricks are crushed with a crusher such as a jaw crusher, but if the particle size is too large, it will take time to dissolve, and the recovery rate of precious metals contained in the waste brick will decrease, so 20 mm or less It is preferable to pulverize.
More preferably, it is 10 mm or less. It is because the one with a larger surface area is easier to dissolve.

粉砕した廃レンガを溶融した際に生成するガラス状の酸化物(以下「スラグ」という)組成がCaO:32〜47mass%、SiO2:45〜53mass%、MgO:4~13mass%になるように廃レンガと溶剤(炭酸カルシウム、珪酸)とを予混合し、また生成するスラグ量の0.6重量倍以上の酸化鉛と、理論量の2倍当量以上の還元剤、例えばコークスとともに、1,500℃以上に加熱して溶融する。
前記温度で溶融を続けることで廃レンガ成分はスラグの層となり、コークス等の還元剤により還元された酸化鉛は金属鉛となり、比重差により沈降した金属鉛の層を形成する。
The composition of glassy oxide (hereinafter referred to as “slag”) generated when melting the crushed waste brick is CaO: 32 to 47 mass%, SiO 2 : 45 to 53 mass%, MgO: 4 to 13 mass% Premixed with waste brick and solvent (calcium carbonate, silicic acid), lead oxide more than 0.6 times the amount of slag to be generated, and reducing agent more than twice the theoretical amount, such as coke, 1,500 ℃ Heat to the above and melt.
By continuing to melt at the above temperature, the waste brick component becomes a slag layer, lead oxide reduced by a reducing agent such as coke becomes metal lead, and a metal lead layer settled due to the difference in specific gravity is formed.

また廃レンガに含まれる貴金属はスラグ中に分散し、前記金属鉛に吸収されて沈降し、金属鉛の層へ吸収されて廃レンガから分離される。
スラグ中に分散した白金など貴金属が金属鉛に吸収されて沈降し、金属鉛の層に吸収されるために十分な時間溶融した後、上層の溶融したスラグ層と下層の溶融した金属鉛の層に分けて貴鉛を得る。
Moreover, the precious metal contained in the waste brick is dispersed in the slag, absorbed by the metal lead and settled, absorbed by the metal lead layer and separated from the waste brick.
After precious metal such as platinum dispersed in the slag is absorbed and settled by the lead metal and melted for a sufficient time to be absorbed by the lead metal layer, the upper molten slag layer and the lower molten metal lead layer Divided into get precious lead.

該貴鉛を溶湯温度1,000℃〜1,200℃の温度範囲にて、空気又は酸素ガスを吹き込んで酸化する。これにより酸化された酸化鉛の層は上層となり、下層には貴金属を吸収している未酸化の貴金属鉛の層となる。
次いで、上層の酸化鉛の層と、下層の貴金属鉛層とを凝固させて貴金属鉛を得る。
このプロセスで重要なことは貴金属を吸収している貴鉛の部分を酸化して酸化鉛の層とし該酸化鉛の層から貴金属を吸収している貴金属鉛を分離することで、貴金属を濃縮する点にある。
The noble lead is oxidized by blowing air or oxygen gas at a molten metal temperature range of 1,000 ° C to 1,200 ° C. Thus, the oxidized lead oxide layer becomes the upper layer, and the lower layer becomes the unoxidized noble metal lead layer that absorbs the noble metal.
Next, the upper lead oxide layer and the lower noble metal lead layer are solidified to obtain noble metal lead.
What is important in this process is that the noble metal is concentrated by oxidizing the noble lead portion that absorbs the noble metal into a lead oxide layer and separating the noble metal lead absorbing the noble metal from the lead oxide layer. In the point.

また、酸化し分離する操作を繰り返して貴鉛中の貴金属の品位を高めるようにしてもよい。
この貴金属鉛中の貴金属品位は数mass%から50mass%の範囲で任意にコントロールできるが、この後工程における貴金属精製工程における貴金属の回収効率を高めるには貴金属の品位は10〜40mass%の範囲が好ましい。
Further, the oxidation and separation operation may be repeated to improve the quality of the noble metal in the noble lead.
The precious metal quality in this precious metal lead can be arbitrarily controlled in the range of several mass% to 50mass%, but in order to improve the recovery efficiency of the precious metal in the precious metal refining process in the subsequent process, the precious metal quality should be in the range of 10-40mass%. preferable.

該貴金属鉛を粉砕機にて1mm以下に粉砕した後、貴金属の精製工程にて貴金属を精製して得る。 The precious metal lead is obtained by refining the precious metal in a precious metal refining step after pulverizing the precious metal lead to 1 mm or less.

次に、本発明の白金など貴金属を含浸した廃レンガから白金など貴金属の回収方法に関わる実施例を記載する。   Next, examples relating to a method for recovering noble metals such as platinum from waste brick impregnated with noble metals such as platinum according to the present invention will be described.

(実施例1)
白金を含有したマグネシア系廃レンガ(Pt:0.65%、MgO:51mass%、Cr2O3: 8.5%、Al2O3:6.5%、SiO2:1.3%)を10mm以下に粉砕し、溶剤である炭酸カルシウム、酸化ケイ素を表1に示すスラグ組成で、スラグ量が100gになるように調合し、アルミナルツボに装入して、高速昇温炉を用いてスラグの流動性を測定した。
Example 1
Crush the magnesia waste bricks containing platinum (Pt: 0.65%, MgO: 51 mass%, Cr 2 O 3 : 8.5%, Al 2 O 3 : 6.5%, SiO 2 : 1.3%) to 10mm or less, and use a solvent. A certain calcium carbonate and silicon oxide were prepared with the slag composition shown in Table 1 so that the amount of slag was 100 g, charged into an alumina crucible, and the fluidity of the slag was measured using a high-speed heating furnace.

測定は大気雰囲気にて、500℃/hrの昇温速度で1500℃まで昇温した後、1500℃にて1時間保持後、ステンレス製L型鋼(幅5cm)を傾斜7.5度に傾け、バーナーで200〜250℃に加熱した状態で、高さ10cmより一気にV型条鋼の溝面に落下させ、落下地点から流下し凝固先端まで距離(以下、流動長さと記す)を測定した。 The measurement was performed in an air atmosphere at a heating rate of 500 ° C / hr up to 1500 ° C, held at 1500 ° C for 1 hour, and then the stainless steel L-shaped steel (width 5cm) was tilted to 7.5 °. While being heated to 200 to 250 ° C. with a burner, it was dropped at a height of 10 cm onto the groove surface of the V-shaped steel bar, and flowed down from the dropping point to the solidification tip (hereinafter referred to as the flow length).

その結果のスラグの化学分析値と流動長さを表1に示す。
Table 1 shows the chemical analysis value and flow length of the resulting slag.

表1中No.2、No.3、No.4のスラグ流動長さは25cm以上で流動性の良いスラグであり、好適なスラグ組成は、表1に示すNo.2、No.4に示すように、CaO:33〜47mass%、SiO2:43〜51mass%、MgO:6〜13mass%であった。 The slag flow lengths of No.2, No.3, and No.4 in Table 1 are slag with good fluidity with 25cm or more, and suitable slag compositions are shown in No.2 and No.4 shown in Table 1. as, CaO: 33~47mass%, SiO 2 : 43~51mass%, MgO: was 6~13mass%.

(実施例2)
次に表2に示すように、上記の好適なスラグ組成範囲内で、白金を含有した実施例1記載のマグネシア系廃レンガ、炭酸カルシウム、及び酸化ケイ素を調合した。
その調合物が溶融したときに生成するスラグ重量に対して、酸化鉛/スラグ重量比が0.4、0.6、0.8になるように酸化鉛を添加し、さらにコークスを酸化鉛を鉛に還元するのに必要な量の2倍当量分のコークスを黒鉛ルツボに装入した。
(Example 2)
Next, as shown in Table 2, the magnesia waste brick, calcium carbonate, and silicon oxide described in Example 1 containing platinum were prepared within the above-described preferable slag composition range.
Lead oxide is added so that the weight ratio of lead oxide / slag is 0.4, 0.6, 0.8 with respect to the slag weight generated when the blend is melted. The graphite crucible was charged with a coke equivalent to twice the amount required to reduce to lead.

この黒鉛ルツボを高速昇温炉内にセットし、大気雰囲気にて昇温速度500℃/hrで1500℃まで昇温して2時間溶融保持した。所定時間保持した後、冷却し、スラグと貴鉛に分離して重量を秤量した後、各試料を分析した。


This graphite crucible was set in a high-speed heating furnace, heated to 1500 ° C. at a heating rate of 500 ° C./hr in an air atmosphere, and melted and held for 2 hours. After holding for a predetermined time, the sample was cooled, separated into slag and noble lead and weighed, and then each sample was analyzed.


その結果のスラグ、貴鉛の化学分析値、及びPtの回収率を表3に示す。
廃レンガからのPt回収率は上記のスラグ組成の範囲において、酸化鉛量をスラグ量の0.6倍以上添加すれば、表3のNo.2、No.3、No.5、No.6に示すように、Ptを97%以上回収することができる。
試験No.1〜No.6にて得られた貴鉛全量をアルミナルツボに装入し、溶湯温度1,100℃の温度にて、空気を吹き込んで酸化し、Pt品位22mass%の貴金属鉛を得た。
The resulting slag, chemical analysis values of noble lead, and Pt recovery are shown in Table 3.
The recovery rate of Pt from waste bricks is No.2, No.3, No.5, No.6 in Table 3 if the amount of lead oxide is added more than 0.6 times the amount of slag within the above slag composition range. As shown in the figure, 97% or more of Pt can be recovered.
The total amount of noble lead obtained in tests No. 1 to No. 6 was charged into an alumina crucible and oxidized by blowing air at a molten metal temperature of 1,100 ° C. to obtain noble metal lead with a Pt quality of 22 mass%. .

本発明方法の各工程を示すフローチャートである。It is a flowchart which shows each process of this invention method.

Claims (3)

貴金属を含有するマグネシア系廃レンガを20mm以下に粉砕し、貴金属を含有する廃レンガと、溶剤と、酸化鉛及びまたは鉛と、還元剤とともに溶融させ、廃レンガ中に含有する貴金属を鉛に吸収させて、貴金属を回収することを特徴とする廃レンガからの貴金属の回収方法。 Crushing magnesia waste bricks containing precious metals to 20mm or less, melting them with waste bricks containing precious metals, solvents, lead oxide and / or lead, and reducing agents, and absorbing precious metals contained in waste bricks into lead A method for recovering precious metal from waste bricks, characterized in that precious metal is recovered. 請求項1記載の粉砕した廃レンガと溶剤を溶融した際に生成するガラス状の酸化物(以下「スラグ」という)の組成がCaO:32〜47mass%、SiO2:45〜53mass%、MgO:4〜13mass%になるようにすることを特徴とする廃レンガからの貴金属の回収方法。
The composition of the glassy oxide (hereinafter referred to as “slag”) produced when the ground waste brick according to claim 1 and the solvent are melted (hereinafter referred to as “slag”) is CaO: 32 to 47 mass%, SiO2: 45 to 53 mass%, MgO: 4 A method for recovering precious metals from waste bricks, characterized in that the amount is set to 13 mass% .
請求項1から2記載の吸収媒体である鉛が、酸化鉛として酸化鉛/スラグ重量比が0.6以上であることを特徴とする廃レンガからの貴金属の回収方法。















A method for recovering precious metals from waste bricks, wherein the lead as the absorbing medium according to claim 1 or 2 has a lead oxide / slag weight ratio of 0.6 or more as lead oxide.















JP2005099697A 2005-03-30 2005-03-30 Method for recovering precious metals from waste bricks Expired - Fee Related JP4599612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005099697A JP4599612B2 (en) 2005-03-30 2005-03-30 Method for recovering precious metals from waste bricks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099697A JP4599612B2 (en) 2005-03-30 2005-03-30 Method for recovering precious metals from waste bricks

Publications (2)

Publication Number Publication Date
JP2006274433A JP2006274433A (en) 2006-10-12
JP4599612B2 true JP4599612B2 (en) 2010-12-15

Family

ID=37209462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099697A Expired - Fee Related JP4599612B2 (en) 2005-03-30 2005-03-30 Method for recovering precious metals from waste bricks

Country Status (1)

Country Link
JP (1) JP4599612B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2465603B (en) * 2008-11-24 2010-10-13 Tetronics Ltd Method for recovery of metals
CN107312931B (en) * 2017-05-22 2018-11-27 昆明理工大学 Method that is a kind of while recycling noble metal and prepare HIGH-PURITY SILICON
CN111847920B (en) * 2020-06-24 2021-11-23 浙江大学 High-activity regeneration auxiliary cementing material based on physical ball milling and nano-modification synergistic strengthening of brick-concrete powder and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217536A (en) * 1985-03-20 1986-09-27 Sumitomo Metal Mining Co Ltd Method for recovering noble metal from silver separation slag
JP2004292912A (en) * 2003-03-27 2004-10-21 Nittetsu Mining Co Ltd Method for recovering high purity rhodium from rhodium-containing metal waste or the like
JP2004307926A (en) * 2003-04-07 2004-11-04 Sumitomo Metal Mining Co Ltd Method of processing waste refractory brick from copper smelting furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61217536A (en) * 1985-03-20 1986-09-27 Sumitomo Metal Mining Co Ltd Method for recovering noble metal from silver separation slag
JP2004292912A (en) * 2003-03-27 2004-10-21 Nittetsu Mining Co Ltd Method for recovering high purity rhodium from rhodium-containing metal waste or the like
JP2004307926A (en) * 2003-04-07 2004-11-04 Sumitomo Metal Mining Co Ltd Method of processing waste refractory brick from copper smelting furnace

Also Published As

Publication number Publication date
JP2006274433A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
Xiao et al. Vitrification of bottom ash from a municipal solid waste incinerator
US9611520B2 (en) Base metal recovery
KR101782234B1 (en) Processing method of electric and electronic parts scraps
BE1024028B1 (en) IMPROVED SNAIL FROM THE PRODUCTION OF NON-FERRO METALS
JP2018145479A (en) Recovery method of platinum group metals
JP4599612B2 (en) Method for recovering precious metals from waste bricks
CA1185096A (en) Recovery of precious metals
JP2012140318A (en) Method for reusing used carbon-containing refractory
KR101110650B1 (en) Recovery of metal values from cermet
EP3950173B1 (en) Flux configured to be used in electroslag remelting method, and flux production method
JP2009041052A (en) Method for smelting copper-containing dross by using slag-fuming furnace
JP3903141B2 (en) Methods for recovering platinum group elements
Lu et al. Lead extraction from Cathode Ray Tube (CRT) funnel glass: Reaction mechanisms in thermal reduction with addition of carbon (C)
JP7368407B2 (en) How to dispose of waste solar panels
WO2008117044A2 (en) Method for treating spent pot liner
KR20230018308A (en) Method for recovering platinum group metals
JP4525453B2 (en) Slag fuming method
JP2005126732A (en) Smelting-reduction method for material containing metallic oxide, and smelting-reduction apparatus
KR101306688B1 (en) Method and apparatus for recovering silicon from slag
Botha et al. Effect of silica concentration on degree of sintering of chromite-silica ladle well filler sand based on South African raw materials
JP7328566B2 (en) Manufacturing method of recycled refractory raw material
WO2023084898A1 (en) Flux used in electro-slag remelting process, method for producing said flux, and method for producing high-purity steel
JPS591777B2 (en) Aluminum reduction smelting method
JP7095674B2 (en) How to make concrete
JP4274067B2 (en) Method for removing impurity metal from copper alloy and slag fuming method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100909

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees