JP7368407B2 - How to dispose of waste solar panels - Google Patents

How to dispose of waste solar panels Download PDF

Info

Publication number
JP7368407B2
JP7368407B2 JP2021035756A JP2021035756A JP7368407B2 JP 7368407 B2 JP7368407 B2 JP 7368407B2 JP 2021035756 A JP2021035756 A JP 2021035756A JP 2021035756 A JP2021035756 A JP 2021035756A JP 7368407 B2 JP7368407 B2 JP 7368407B2
Authority
JP
Japan
Prior art keywords
incineration
waste
power generation
frame
solar power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021035756A
Other languages
Japanese (ja)
Other versions
JP2022135749A (en
Inventor
貴之 長須
義昭 鈴木
智久 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2021035756A priority Critical patent/JP7368407B2/en
Publication of JP2022135749A publication Critical patent/JP2022135749A/en
Application granted granted Critical
Publication of JP7368407B2 publication Critical patent/JP7368407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、廃太陽光発電パネルの処理方法に関する。 The present invention relates to a method for treating waste photovoltaic panels.

廃太陽光発電パネルを有効利用する方法としては、太陽光発電パネルに用いられているガラスを分離し、ガラスカレットとしてリサイクル利用することや、セル部分を分離し、セルの電極に用いられる銀や銅などの有価物を回収する方法が知られているが、ガラスとセルを混在させないよう分離して回収することが容易ではなく、大量に処理することが難しいという問題がある。また、セルに含まれる銀や銅については、処理の困難さによって、処理コストが回収できないことから埋め立て処理されるケースもある。 Methods to effectively utilize waste photovoltaic panels include separating the glass used in the photovoltaic panels and recycling it as glass cullet, and separating the cell parts and recycling the silver and other materials used in the cell electrodes. Methods for recovering valuable materials such as copper are known, but there are problems in that it is not easy to separate and recover glass and cells so that they do not mix, and it is difficult to process in large quantities. Furthermore, due to the difficulty of processing, the silver and copper contained in cells are sometimes disposed of in landfills because the processing costs cannot be recovered.

また、近年、太陽光発電の普及に伴い、大量の太陽光発電パネルが製造され、使用されている。そのため、昨今では廃太陽光発電パネルの廃棄量は低いが、数十年後、使用寿命を迎える太陽光発電パネルの大量出現により、廃太陽光発電パネルの発生量が急激に増加すると予測される。上記廃太陽光発電パネルの処理の困難さとあいまって、深刻な産業廃棄物問題につながる懸念がある。そこで、廃太陽光発電パネルの効率的な処理方法が望まれている。 Furthermore, in recent years, with the spread of solar power generation, a large number of solar power generation panels have been manufactured and used. For this reason, the amount of waste photovoltaic panels disposed of is low these days, but it is predicted that the amount of waste photovoltaic panels generated will increase rapidly in a few decades as a large number of photovoltaic panels reach the end of their useful life. . Coupled with the difficulty of processing the waste photovoltaic panels mentioned above, there is concern that this will lead to a serious industrial waste problem. Therefore, an efficient method for processing waste photovoltaic panels is desired.

太陽光発電パネルには、一般にフレーム(通常はアルミニウム製)と、カバーガラスと、バックシート(通常はポリフッ化ビニリデン等の樹脂)と、太陽電池セルと、太陽電池セルの表裏面を封止する封止剤(通常はEVA樹脂製)とを有し、さらに太陽電池セルから外部へ電力を供するためのケーブルなどを有する。これらの部材のうち、カバーガラスを分離して回収する技術(特許文献1:特開2018-176002号公報)や、太陽電池セルを取り出す技術(特許文献2:特開2015-071162号公報)などが存在する。 A solar power generation panel generally includes a frame (usually made of aluminum), a cover glass, a back sheet (usually made of a resin such as polyvinylidene fluoride), a solar cell, and the front and back surfaces of the solar cell are sealed. It has a sealant (usually made of EVA resin), and also has a cable for supplying power from the solar cell to the outside. Among these members, there are techniques to separate and collect the cover glass (Patent Document 1: Japanese Patent Application Laid-open No. 2018-176002), techniques to take out solar cells (Patent Document 2: Japanese Patent Application Laid-Open No. 2015-071162), etc. exists.

特開2018-176002号公報Japanese Patent Application Publication No. 2018-176002 特開2015-071162号公報Japanese Patent Application Publication No. 2015-071162

特許文献1に記載される方法ではカバーガラスを板状のまま取り出すことができ、特許文献2に記載される方法では、太陽電池セルを破壊せず獲得することができるが、これらの技術は、目的とする部材を破壊しない分、処理の手間がかかり、処理コストが高くなる。また、カバーガラスと太陽電池セルを同時に効率的に処理、回収し、有効利用する手段が提案されていない。 The method described in Patent Document 1 allows the cover glass to be taken out as a plate, and the method described in Patent Document 2 allows the solar cell to be obtained without destroying it. Since the target member is not destroyed, processing is time-consuming and processing costs are high. Furthermore, no means has been proposed for efficiently processing and recovering the cover glass and the solar cell at the same time, and for effectively utilizing the cover glass and the solar cell.

本発明は上記問題点に鑑みなされたものであり、一実施形態において、廃太陽光発電パネルのカバーガラスと太陽電池セルを同時に有効に回収するためのフローを提案することを課題とする。 The present invention has been made in view of the above-mentioned problems, and in one embodiment, an object of the present invention is to propose a flow for effectively collecting the cover glass and photovoltaic cells of a waste photovoltaic panel at the same time.

本発明者は鋭意検討の結果、廃太陽光発電パネルのカバーガラスと太陽電池セルを分別せずに回収して、非鉄製錬炉の溶剤として利用することで、上記課題を解決することができることを見いだした。本発明は上記知見に基づき完成されたものであり、以下に例示される。 As a result of intensive studies, the present inventor has found that the above problem can be solved by collecting the cover glass and solar cells of waste photovoltaic panels without separating them and using them as a solvent for non-ferrous smelting furnaces. I found it. The present invention was completed based on the above findings, and is exemplified below.

[1]
少なくともカバーガラスと、フレームと、太陽電池セルと、封止剤と、ケーブルとを有する廃太陽光発電パネルの処理方法であって、
前記フレームを分離する分離工程と、
前記フレーム以外の部材を焼却する焼却工程と、
前記焼却工程により得られる焼却品を非鉄製錬炉に添加する再利用工程
を含む、廃太陽光発電パネルの処理方法。
[2]
さらに、前記焼却工程の前に、前記フレームを除く部材を粉砕する粉砕工程を含む、[1]に記載の廃太陽光発電パネルの処理方法。
[3]
前記焼却工程により、前記廃太陽光発電パネルの樹脂質量を前記焼却品の全体質量の10%以下とする、[1]又は[2]に記載の廃太陽光発電パネルの処理方法。
[4]
前記再利用工程の前に、前記ケーブルを篩別により前記焼却品から分離する、[1]~[3]のいずれか1項に記載の廃太陽光発電パネルの処理方法。
[5]
前記焼却工程の前に前記ケーブルを分離し、前記焼却工程は前記フレーム及び前記ケーブル以外の部材を焼却する、[1]~[3]のいずれか1項に記載の廃太陽光発電パネルの処理方法。
[6]
前記焼却工程は、格子状の仕切りによって、高さ方向において上段と下段の2段に分かれる加熱炉を使用して実施し、前記上段は焼却すべき物を収納し、前記下段は前記焼却品を回収する、[1]~[4]のいずれか1項に記載の廃太陽光発電パネルの処理方法。
[7]
前記焼却工程は、格子状の仕切りによって、高さ方向において上段と下段の2段に分かれる加熱炉を使用して実施し、前記上段は焼却すべき物を収納するとともに、前記ケーブルを収容した耐熱性容器を収納し、前記下段は前記焼却品を回収し、前記ケーブルは前記耐熱性容器から回収される、[5]に記載の廃太陽光発電パネルの処理方法。
[8]
前記分離工程において、前記カバーガラスを割ることにより前記フレームを他の部材から分離する、[1]~[7]のいずれか1項に記載の廃太陽光発電パネルの処理方法。
[9]
前記再利用工程において、前記焼却品を珪酸鉱と混合した後に前記非鉄製錬炉に投入する、[1]~[8]のいずれか1項に記載の廃太陽光発電パネルの処理方法。
[10]
前記非鉄製錬炉は自溶炉であり、前記再利用工程の前に、さらに前記焼却品に対して篩別を行い、異物を除去してから前記自溶炉に投入する、[1]~[9]のいずれか1項に記載の廃太陽光発電パネルの処理方法。
[1]
A method for processing a waste photovoltaic panel having at least a cover glass, a frame, a solar cell, an encapsulant, and a cable, the method comprising:
a separation step of separating the frame;
an incineration step of incinerating members other than the frame;
A method for processing waste solar power generation panels, including a reuse step of adding the incinerated product obtained in the incineration step to a non-ferrous smelting furnace.
[2]
The method for processing a waste solar power generation panel according to [1], further comprising a crushing step of crushing members other than the frame before the incineration step.
[3]
The method for processing a waste solar power generation panel according to [1] or [2], wherein the incineration step reduces the resin mass of the waste solar power generation panel to 10% or less of the total mass of the incineration product.
[4]
The method for processing a waste solar power generation panel according to any one of [1] to [3], wherein the cable is separated from the incineration product by sieving before the reuse step.
[5]
The treatment of waste solar power generation panels according to any one of [1] to [3], wherein the cable is separated before the incineration step, and the incineration step incinerates members other than the frame and the cable. Method.
[6]
The incineration step is carried out using a heating furnace that is divided into two stages, an upper stage and a lower stage, in the height direction by a grid-like partition, the upper stage stores the items to be incinerated, and the lower stage stores the items to be incinerated. The method for treating a waste solar power generation panel according to any one of [1] to [4], wherein the waste solar power generation panel is recovered.
[7]
The incineration process is carried out using a heating furnace that is divided into two stages, an upper stage and a lower stage, in the height direction by a grid-like partition. The method for processing waste solar power generation panels according to [5], wherein the lower stage collects the incineration product, and the cable is collected from the heat-resistant container.
[8]
The method for processing a waste solar power generation panel according to any one of [1] to [7], wherein in the separation step, the frame is separated from other members by breaking the cover glass.
[9]
The method for processing a waste solar power generation panel according to any one of [1] to [8], wherein in the reuse step, the incineration product is mixed with silicate ore and then introduced into the non-ferrous smelting furnace.
[10]
The non-ferrous smelting furnace is a flash smelting furnace, and before the reuse step, the incineration product is further sieved to remove foreign substances and then introduced into the flash smelting furnace, [1] [9] The method for processing a waste solar power generation panel according to any one of items.

本発明によれば、廃太陽光発電パネルのカバーガラスとフレームを同時に有効に回収することができる。 According to the present invention, the cover glass and frame of a waste solar power generation panel can be effectively collected at the same time.

次に、本発明の実施形態について、詳細に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。 Next, embodiments of the present invention will be described in detail. It is understood that the present invention is not limited to the following embodiments, and that design changes, improvements, etc. may be made as appropriate based on the common knowledge of those skilled in the art without departing from the spirit of the present invention. Should.

(1.廃太陽光発電パネル)
廃太陽光発電パネルは、少なくともカバーガラスと、フレームと、太陽電池セルと、封止剤と、ケーブルとを有するものであれば、具体的な構成や素材が限定されない。フレームは、通常アルミニウム製であり、封止剤は、通常EVA樹脂などのプラスチック製であり、ケーブルは、通常絶縁材料に覆われる銅線である。一例として、廃太陽光発電パネルにおいて、カバーガラス、EVA封止剤、太陽電池セル、EVA封止剤、バックシートが順に積層されており、表側がカバーガラスで構成され、裏側がバックシートで構成されている。太陽電池セルには、外部に電力を出力するためのケーブルが設けられている。ほかにも、電気回路を形成するために、より多くのケーブルが含まれる場合がある。
(1. Waste solar power generation panels)
The specific structure and material of the waste solar power generation panel are not limited as long as it has at least a cover glass, a frame, a solar cell, a sealant, and a cable. The frame is usually made of aluminum, the encapsulant is usually made of plastic such as EVA resin, and the cable is usually copper wire covered with an insulating material. As an example, in a waste photovoltaic power generation panel, a cover glass, an EVA encapsulant, a solar cell, an EVA encapsulant, and a back sheet are laminated in this order, with the front side made up of the cover glass and the back side made up of the back sheet. has been done. The solar battery cell is provided with a cable for outputting power to the outside. Additionally, more cables may be included to form an electrical circuit.

(2.分離工程)
本発明の一実施形態において、廃太陽光発電パネルからフレームを分離する分離工程が実施される。当該工程を実施する理由は以下のとおりである。
(2. Separation process)
In one embodiment of the invention, a separation step is performed to separate the frame from the waste photovoltaic panel. The reason for implementing this process is as follows.

太陽光発電パネルに類似する物の例として、特開2001-296509号公報には、液晶パネルを破砕することにより得られるガラス片を、非鉄製錬炉に投入する技術が開示されている。この処理方法では、液晶パネルに含まれる有機物を乾留または燃焼させた後、破砕機によって破砕し、所定の粒度(例えば最大5~10mm)に調整し、製錬炉で処理されている。 As an example of a product similar to a solar power generation panel, Japanese Patent Laid-Open No. 2001-296509 discloses a technique in which glass pieces obtained by crushing a liquid crystal panel are fed into a non-ferrous smelting furnace. In this treatment method, the organic matter contained in the liquid crystal panel is carbonized or burned, then crushed by a crusher, adjusted to a predetermined particle size (for example, maximum 5 to 10 mm), and then processed in a smelting furnace.

廃太陽光発電パネルにも、前述のように、太陽電池セルを挟む形で、EVAなどのプラスチック製の封止剤が用いられている。そして、プラスチックのような有機物は非鉄製錬処理の副産物である硫酸の着色原料となるため、焼却する必要がある。しかしながら、廃太陽光発電パネルをそのままで焼却すると、フレームも含んだ状態で焼却炉へ投入する必要があり、特に大容量の大型パネルの場合、廃太陽光発電パネルを搬入できる大型の加熱炉が必要となるので、作業性、処理コストなどの面では好ましくない。 As mentioned above, plastic encapsulants such as EVA are also used in waste photovoltaic panels to sandwich the solar cells. Organic materials such as plastics must be incinerated because they serve as coloring materials for sulfuric acid, a byproduct of nonferrous smelting. However, if waste solar power generation panels are incinerated as is, they must be put into an incinerator including the frame, and especially in the case of large-capacity panels, a large heating furnace that can carry waste solar power generation panels is required. This is not preferable in terms of workability, processing cost, etc.

そのため、焼却工程を実施する前に、フレームを他の部材から分離する分離工程を実施する。分離の具体的な方法は特に限定されないが、例えば特許文献1の方法で取り外すことも可能であり、あるいは、カバーガラスを割ることにより、フレームとその他の部材との接合部を折損させてフレームを分離することが可能である。カバーガラスを割る具体的な手段は特に限定されないが、典型的にはガラス面を機械で押して破る手段が挙げられる。後述のように、カバーガラスを非鉄製錬炉に投入することにより再利用するので、カバーガラスや太陽電池セルの破損を回避する必要はないからである。 Therefore, before performing the incineration process, a separation process is performed to separate the frame from other members. The specific method of separation is not particularly limited, but it is possible to remove the frame by the method described in Patent Document 1, for example, or by breaking the cover glass and breaking the joints between the frame and other members. It is possible to separate. Although the specific means for breaking the cover glass is not particularly limited, a typical method is to press the glass surface with a machine to break it. This is because, as will be described later, since the cover glass is reused by being put into a non-ferrous smelting furnace, there is no need to avoid damage to the cover glass or the solar battery cells.

(3.焼却工程)
焼却工程において、フレームが分離された後の廃太陽光発電パネルの他の部材を焼却する。焼却の目的は、前工程で破砕した破砕物を非鉄製錬炉で処理する際に排ガス中に有機物の揮発物質が混入すると排ガスから副産物として回収する製品硫酸の品質悪化に影響することから、封止剤などの樹脂分を除去することであり、好ましくは、焼却工程により、廃太陽光発電パネルの樹脂質量を全体質量の10%以下とする。非鉄製錬炉での悪影響を極力抑制する観点から、焼却工程後の樹脂質量は焼却品の全体質量の8%以下であることがより好ましく、5%以下であることがさらにより好ましく、2%以下であることがさらにより好ましい。
(3. Incineration process)
In the incineration process, other components of the waste photovoltaic panel after the frame has been separated are incinerated. The purpose of incineration is to prevent the contamination of sulfuric acid from the waste gas when the crushed materials crushed in the previous process are processed in a non-ferrous smelting furnace. This method involves removing resin components such as inhibitors, and preferably reduces the resin mass of the waste solar power generation panel to 10% or less of the total mass by an incineration process. From the viewpoint of suppressing adverse effects in the non-ferrous smelting furnace as much as possible, the resin mass after the incineration step is more preferably 8% or less of the total mass of the incinerated product, even more preferably 5% or less, and 2% or less of the total mass of the incinerated product. It is even more preferable that it is the following.

ケーブルに使用される銅線などの金属は有価金属であるため、焼却工程の前又は後に回収することが好ましい。本発明の一実施形態において、焼却工程の後、後述の再利用工程の前に、ケーブルを篩別により前記焼却品から分離することで回収する。また、本発明の別の一実施形態において、焼却工程の前にケーブルを予め分離し、ケーブルを他部材と一緒に焼却しない。 Since metals such as copper wire used in cables are valuable metals, it is preferable to collect them before or after the incineration process. In one embodiment of the present invention, after the incineration step and before the reuse step described below, the cable is recovered by separating it from the incineration product by sieving. Also, in another embodiment of the invention, the cable is pre-separated before the incineration process, and the cable is not incinerated together with other components.

焼却工程において使用される焼却炉の具体的構成は限定されず、定置炉の他、ロータリーキルン、ストーカー炉が挙げられる。一実施形態において、焼却工程は、格子状の仕切りによって、高さ方向において上段と下段の2段に分かれる加熱炉を使用して実施し、格子状の仕切りの上の上段は焼却すべき物を収納し、格子状の仕切りの下の下段は焼却品を回収することができる。上段においては、焼却すべきものを可燃性の袋内に収容してもよい。焼却炉としてこのような2段構造のものを使用することにより、焼却すべき物と焼却品との区別がしやすくなり、未燃の樹脂分を含む物が焼却品に混入することを抑制することができる。また、定置炉のようなバッチ式の炉を用いる場合、廃太陽光発電パネルを焼却するための専用炉としなくても廃太陽光発電パネル由来以外の焼却物とのコンタミネーションを防止することができ、その結果、焼却品の回収量の把握がしやすくなる。 The specific configuration of the incinerator used in the incineration process is not limited, and examples include a stationary furnace, a rotary kiln, and a stoker furnace. In one embodiment, the incineration process is carried out using a heating furnace that is divided into two stages, an upper stage and a lower stage, in the height direction by a grid-like partition, and the upper stage above the grid-like partition is used to store the material to be incinerated. The lower level under the lattice-like partition can be used to collect incinerated items. In the upper stage, items to be incinerated may be stored in combustible bags. By using such a two-tiered incinerator, it becomes easier to distinguish between the items that should be incinerated and the items to be incinerated, and it is possible to prevent items containing unburned resin from being mixed in with the items to be incinerated. be able to. In addition, when using a batch type furnace such as a stationary furnace, it is possible to prevent contamination with incinerated materials other than those derived from waste solar power generation panels, even if the furnace is not dedicated to incinerating waste solar power generation panels. As a result, it becomes easier to understand the amount of incinerated items collected.

焼却工程の前にあらかじめケーブルを分離した場合、焼却工程において使用される焼却炉の具体的構成も限定されず、定置炉の他、ロータリーキルン、ストーカー炉が挙げられる。一実施形態においては、格子状の仕切りによって、高さ方向において上段と下段の2段に分かれる加熱炉を使用して実施し、格子状の仕切りの上の上段は焼却すべき物を収納するとともに、ケーブルを収容した耐熱性容器を収納し、格子状の仕切りの下の下段は焼却品を回収することができる。この場合、ケーブルは絶縁材料が除去された状態で、耐熱性容器から回収できる。 When the cables are separated in advance before the incineration process, the specific configuration of the incinerator used in the incineration process is not limited, and examples include a stationary furnace, a rotary kiln, and a stoker furnace. In one embodiment, the heating furnace is divided into two stages, an upper stage and a lower stage, in the height direction by a lattice-like partition, and the upper stage above the lattice-like partition stores the materials to be incinerated. , a heat-resistant container containing cables is stored, and the lower tier under the lattice-like partition can be used to collect incinerated items. In this case, the cable can be recovered from the heat-resistant container with the insulation material removed.

焼却工程の条件は特に限定されないが、典型的には100~650℃の範囲内に保持して行われる。 The conditions of the incineration step are not particularly limited, but the temperature is typically maintained within the range of 100 to 650°C.

(4.粉砕工程)
焼却を効率的に行うため、あるいは作業上の利便性を高めるため、焼却工程の前に、フレーム以外の部材を粉砕する粉砕工程を行うことが好ましい。粉砕工程を、フレームを分離する上記分離工程の後に行ってもよく、粉砕工程の途中で解体した廃太陽光発電パネルからフレームを分離してもよい。すなわち、粉砕工程の途中に分離工程を行ってもよい。
(4. Grinding process)
In order to perform incineration efficiently or to improve operational convenience, it is preferable to perform a pulverization step of pulverizing members other than the frame before the incineration step. The crushing process may be performed after the separation process of separating the frames, or the frames may be separated from the disassembled waste photovoltaic panels during the crushing process. That is, the separation step may be performed during the pulverization step.

粉砕後の粉砕物の寸法制御は、使用する方法、設備の仕様により適宜合わせれば良い。 The size control of the pulverized product after pulverization may be adjusted as appropriate depending on the method used and the specifications of the equipment.

(5.再利用工程)
焼却工程の後に得られる焼却品には、カバーガラス由来のガラス成分が多く含まれる。ガラスの成分は、典型的にはSiO2:50~65%、酸化マグネシウム:2~4%、酸化ナトリウム:10~16%であり、その他、酸化カルシウム、酸化アルミニウム等が含まれている。本発明の別の一実施形態において、焼却工程により得られる焼却品を非鉄製錬炉に添加する再利用工程が実施される。以下、銅を非鉄金属の一例として説明する。
(5. Reuse process)
The incinerated product obtained after the incineration process contains many glass components derived from the cover glass. The glass typically contains 50 to 65% SiO 2 , 2 to 4% magnesium oxide, 10 to 16% sodium oxide, and also contains calcium oxide, aluminum oxide, and the like. In another embodiment of the present invention, a recycling step is performed in which the incinerated product obtained from the incineration step is added to a non-ferrous smelting furnace. Hereinafter, copper will be explained as an example of a non-ferrous metal.

銅製錬炉では、銅精鉱を酸化反応させて銅品位65%程度の銅マットと、FeやSiが主成分のスラグを製造する自溶炉や、銅マットを酸化反応させて、銅品位99%程度の粗銅を製造する転炉などがある。自溶炉や転炉では酸化反応熱により原料を溶融状態にして保持し、銅マットとスラグ、または粗銅とスラグの2層に分離してそれぞれ回収するが、適切なスラグ組成にして溶融時の融点を下げる目的で溶剤が添加される。 In the copper smelting furnace, copper concentrate is subjected to an oxidation reaction to produce copper matte with a copper grade of about 65%, and in the flash smelting furnace, copper matte is oxidized to produce copper matte with a copper grade of about 99. There are converters that produce blister copper of approximately 30%. In a flash furnace or converter, the raw material is kept in a molten state by the heat of oxidation reaction, and separated into two layers: copper matte and slag, or blister copper and slag, and recovered. Solvents are added to lower the melting point.

溶剤にはさまざまな種類があるが、SiO2を主成分とする珪酸鉱を用いるのが一般的である。珪酸鉱を溶剤として用いる場合、自溶炉や転炉では以下の反応が発生する。
自溶炉:CuFeS2+SiO2+O2→Cu2S・FeS+2FeO・SiO2+SO2
転炉:Cu2S・FeS+SiO2+O2→Cu+2FeO・SiO2+SO2
Although there are various types of solvents, silicate ore containing SiO 2 as a main component is generally used. When silicate ore is used as a solvent, the following reactions occur in a flash furnace or converter.
Flash furnace: CuFeS 2 +SiO 2 +O 2 →Cu 2 S・FeS+2FeO・SiO 2 +SO 2
Converter: Cu 2 S・FeS+SiO 2 +O 2 →Cu+2FeO・SiO 2 +SO 2

前述のように、廃太陽光発電パネルカバーガラスにはSiO2が多く含まれるので、焼却工程により得られる焼却品を珪酸鉱の代わりとして用いることが可能である。また、太陽電池セルも同時に処理した場合、太陽電池セルに含まれる銀等の有価金属はマットや粗銅中に溶解する。そして、その粗銅を電解精製して電気銅を製造する際に電解殿物中に移行する。得られた電解殿物を公知の殿物処理技術を用いて処理することにより最終的に製品銀として精製して回収することが可能である。 As mentioned above, since the waste photovoltaic panel cover glass contains a large amount of SiO 2 , it is possible to use the incinerated product obtained by the incineration process as a substitute for silicate ore. Furthermore, when solar cells are also treated at the same time, valuable metals such as silver contained in the solar cells are dissolved into the matte or blister copper. Then, when the blister copper is electrolytically refined to produce electrolytic copper, it migrates into electrolytic precipitates. By treating the obtained electrolytic precipitate using a known precipitate treatment technique, it is possible to finally refine and recover product silver.

非鉄製錬炉が自溶炉である場合、溶剤は通常粉粒体として投入されるので、異物(例えば、廃太陽電池のバックシートや封止剤等の未燃残渣で数cm以上のもの)があると、自溶炉の原料装入部で詰まることがある。そのため、焼却品に対して篩別を行い、異物を除去してから自溶炉に投入することが好ましい。 When the non-ferrous smelting furnace is a flash furnace, the solvent is usually introduced in the form of powder and granules, so foreign substances (for example, unburned residues of waste solar cell backsheets, sealants, etc. that are several centimeters or larger) If there is, the raw material charging section of the flash furnace may become clogged. Therefore, it is preferable to sieve the incinerated product to remove foreign matter before introducing it into the flash furnace.

以上のように、廃太陽光発電パネルのカバーガラスは溶剤として非鉄製錬炉に添加することにより再利用され、太陽電池セルに含まれる銀等の有価物も回収できるので、廃太陽光発電パネルのカバーガラスと太陽電池セルを同時に有効に回収することができる。また、本発明の一部の実施形態によれば、ケーブルなどに含まれる有価金属やアルミフレームも効率的に回収することができ、これにより、廃棄物をゼロにすることも可能である。 As mentioned above, the cover glass of waste photovoltaic power generation panels can be reused by adding it to a non-ferrous smelting furnace as a solvent, and valuable materials such as silver contained in the photovoltaic cells can also be recovered. cover glass and solar cells can be effectively collected at the same time. Further, according to some embodiments of the present invention, valuable metals and aluminum frames contained in cables and the like can be efficiently recovered, thereby making it possible to reduce waste to zero.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

(るつぼ試験)
廃太陽光発電パネルを手作業で解体し、カバーガラスを分離した。このカバーガラスの組成は表1に示される。また、通常の溶剤として使用される珪酸鉱の組成も表1に示す。このカバーガラスと珪酸鉱をディスクミルで粉砕した。
(Crucible test)
The waste photovoltaic panels were disassembled by hand and the cover glass was separated. The composition of this cover glass is shown in Table 1. Table 1 also shows the composition of silicate ore used as a common solvent. This cover glass and silicate ore were crushed using a disk mill.

Figure 0007368407000001
Figure 0007368407000001

また、表2に示される組成を有する銅精鉱を用意した。 In addition, copper concentrate having the composition shown in Table 2 was prepared.

Figure 0007368407000002
Figure 0007368407000002

まず、加熱炉を1300℃までに昇温した。次に、Fe/SiO2が1.05となるように、銅精鉱と溶剤の割合を調整して混合し、るつぼに充填し、このるつぼを加熱炉に投入した。参考例では珪酸鉱のみを使用したのに対し、試験例では一部珪酸鉱をカバーガラスに置き換えた。 First, the temperature of the heating furnace was raised to 1300°C. Next, the ratio of copper concentrate and solvent was adjusted and mixed so that Fe/SiO 2 was 1.05, and the mixture was filled into a crucible, and the crucible was placed in a heating furnace. In the reference example, only silicate ore was used, whereas in the test example, silicate ore was partially replaced with a cover glass.

Figure 0007368407000003
Figure 0007368407000003

次に、1L/minの速度で空気をるつぼに吹き込み、30分間保持した。その後、加熱炉からるつぼを取り出し、大気中で自然冷却した。結果として、参考例と試験例のいずれにおいても、金属銅を得ることができた。また、溶剤の一部をカバーガラスに置き換えた試験例については、カバーガラスが残存することなくスラグが生成されていたことから溶剤として機能したことを確認した。 Next, air was blown into the crucible at a rate of 1 L/min and held for 30 minutes. Thereafter, the crucible was taken out of the heating furnace and allowed to cool naturally in the atmosphere. As a result, metallic copper could be obtained in both the reference example and the test example. In addition, in the test example in which part of the solvent was replaced with a cover glass, slag was generated without any remaining cover glass, confirming that it functioned as a solvent.

(実機試験)
廃太陽光発電パネルから分離したカバーガラスを用い、試験した。このカバーガラスの組成は表4に示される。
(actual machine test)
A cover glass separated from a waste photovoltaic panel was used for testing. The composition of this cover glass is shown in Table 4.

Figure 0007368407000004
Figure 0007368407000004

このカバーガラスを、表5の割合で、珪酸鉱とともに、銅精鉱を酸化反応させる自溶炉に供給した。なお、供給量(t)は、1日の量を示す。 This cover glass was supplied together with silicate ore to a flash furnace in which copper concentrate was subjected to an oxidation reaction in the proportions shown in Table 5. Note that the supply amount (t) indicates the amount per day.

Figure 0007368407000005
Figure 0007368407000005

各例の自溶炉の処理により得られるスラグのサンプルを採取し、スラグ中の銅品位を蛍光X線装置により測定し、従来例1の数値を1として、各例の相対値を評価した。結果を表6に示す。 A sample of the slag obtained by the treatment in the flash furnace of each example was taken, and the copper quality in the slag was measured using a fluorescent X-ray device.The value of Conventional Example 1 was set as 1, and the relative value of each example was evaluated. The results are shown in Table 6.

Figure 0007368407000006
Figure 0007368407000006

仮に、廃太陽光発電パネル由来のカバーガラスが溶剤として機能した場合、2FeO・SiO2が生成する反応が妨げられ、FeOが酸素で酸化されるので、相対的にマグネタイトの生成量が増加し、溶体の粘度が上昇する。溶体の粘度が上昇すれば、スラグ中のマット粒子の沈降が遅くなり、スラグ中のCuの品位が上昇する。ところが、実施例では、スラグ中のCuの品位の上昇が見受けられないことから、廃太陽光発電パネル由来のカバーガラスが溶剤として機能していることが確認された。 If the cover glass derived from waste photovoltaic panels functions as a solvent, the reaction that produces 2FeO SiO 2 will be hindered, and FeO will be oxidized with oxygen, resulting in a relative increase in the amount of magnetite produced. The viscosity of the solution increases. If the viscosity of the solution increases, the settling of matte particles in the slag will slow down, and the quality of Cu in the slag will increase. However, in the example, since no increase in the quality of Cu in the slag was observed, it was confirmed that the cover glass derived from the waste solar power generation panel was functioning as a solvent.

このことより、廃太陽光発電パネルの処理方法として、分離、粉砕、焼却などの前処理によりカバーガラスを得られれば、溶剤として非鉄製錬炉に投入することが可能であることが分かった。 From this, it was found that as a treatment method for waste photovoltaic power generation panels, if a cover glass can be obtained through pretreatment such as separation, crushing, and incineration, it is possible to introduce it into a nonferrous smelting furnace as a solvent.

Claims (9)

少なくともカバーガラスと、フレームと、太陽電池セルと、封止剤と、ケーブルとを有する廃太陽光発電パネルの処理方法であって、
前記フレームを分離する分離工程と、
前記フレーム以外の部材を焼却する焼却工程と、
前記焼却工程により得られる焼却品を非鉄製錬炉に添加する再利用工程
を含み、
前記再利用工程の前に、前記ケーブルを篩別により前記焼却品から分離する、廃太陽光発電パネルの処理方法。
A method for processing a waste photovoltaic panel having at least a cover glass, a frame, a solar cell, an encapsulant, and a cable, the method comprising:
a separation step of separating the frame;
an incineration step of incinerating members other than the frame;
A reuse step of adding the incinerated product obtained from the incineration step to a non-ferrous smelting furnace ,
A method for processing waste photovoltaic panels , wherein the cable is separated from the incineration product by sieving before the reuse step .
少なくともカバーガラスと、フレームと、太陽電池セルと、封止剤と、ケーブルとを有する廃太陽光発電パネルの処理方法であって、A method for processing a waste photovoltaic panel having at least a cover glass, a frame, a solar cell, an encapsulant, and a cable, the method comprising:
前記フレームを分離する分離工程と、a separation step of separating the frame;
前記フレーム以外の部材を焼却する焼却工程と、an incineration step of incinerating members other than the frame;
前記焼却工程により得られる焼却品を非鉄製錬炉に添加する再利用工程A reuse process of adding the incinerated product obtained in the above incineration process to a non-ferrous smelting furnace.
を含み、including;
前記焼却工程の前に前記ケーブルを分離し、前記焼却工程は前記フレーム及び前記ケーブル以外の部材を焼却する、廃太陽光発電パネルの処理方法。A method for processing a waste solar power generation panel, wherein the cable is separated before the incineration step, and in the incineration step, members other than the frame and the cable are incinerated.
さらに、前記焼却工程の前に、前記フレームを除く部材を粉砕する粉砕工程を含む、請求項1又は2に記載の廃太陽光発電パネルの処理方法。 The method for processing a waste solar power generation panel according to claim 1 or 2 , further comprising a crushing step of crushing the members excluding the frame before the incineration step. 前記焼却工程により、前記廃太陽光発電パネルの樹脂質量を前記焼却品の全体質量の10%以下とする、請求項1~3のいずれか1項に記載の廃太陽光発電パネルの処理方法。 The method for processing a waste solar power generation panel according to any one of claims 1 to 3 , wherein the incineration step reduces the resin mass of the waste solar power generation panel to 10% or less of the total mass of the incineration product. 前記焼却工程は、格子状の仕切りによって、高さ方向において上段と下段の2段に分かれる加熱炉を使用して実施し、前記上段は焼却すべき物を収納し、前記下段は前記焼却品を回収する、請求項1、又は請求項1に従属する請求項3若しくは4に記載の廃太陽光発電パネルの処理方法。 The incineration step is carried out using a heating furnace that is divided into two stages, an upper stage and a lower stage, in the height direction by a grid-like partition, the upper stage stores the items to be incinerated, and the lower stage stores the items to be incinerated. The method for processing waste solar power generation panels according to claim 1 or claim 3 or 4 dependent on claim 1, wherein the waste solar power generation panels are collected. 前記焼却工程は、格子状の仕切りによって、高さ方向において上段と下段の2段に分かれる加熱炉を使用して実施し、前記上段は焼却すべき物を収納するとともに、前記ケーブルを収容した耐熱性容器を収納し、前記下段は前記焼却品を回収し、前記ケーブルは前記耐熱性容器から回収される、請求項に記載の廃太陽光発電パネルの処理方法。 The incineration process is carried out using a heating furnace that is divided into two stages, an upper stage and a lower stage, in the height direction by a grid-like partition. 3. The method for processing waste photovoltaic power generation panels according to claim 2 , wherein the lower stage collects the incineration product, and the cable is collected from the heat-resistant container. 前記分離工程において、前記カバーガラスを割ることにより前記フレームを他の部材から分離する、請求項1~のいずれか1項に記載の廃太陽光発電パネルの処理方法。 The method for treating a waste solar power generation panel according to any one of claims 1 to 6 , wherein in the separation step, the frame is separated from other members by breaking the cover glass. 前記再利用工程において、前記焼却品を珪酸鉱と混合した後に前記非鉄製錬炉に投入する、請求項1~のいずれか1項に記載の廃太陽光発電パネルの処理方法。 8. The method for treating waste photovoltaic panels according to claim 1, wherein in the recycling step, the incinerated product is mixed with silicate ore and then introduced into the non-ferrous smelting furnace. 前記非鉄製錬炉は自溶炉であり、前記再利用工程の前に、さらに前記焼却品に対して篩別を行い、異物を除去してから前記自溶炉に投入する、請求項1~のいずれか1項に記載の廃太陽光発電パネルの処理方法。 The non-ferrous smelting furnace is a flash smelting furnace, and before the reuse step, the incineration product is further sieved to remove foreign matter before being charged into the flash smelting furnace. 8. The method for processing waste solar power generation panels according to any one of 8 .
JP2021035756A 2021-03-05 2021-03-05 How to dispose of waste solar panels Active JP7368407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021035756A JP7368407B2 (en) 2021-03-05 2021-03-05 How to dispose of waste solar panels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021035756A JP7368407B2 (en) 2021-03-05 2021-03-05 How to dispose of waste solar panels

Publications (2)

Publication Number Publication Date
JP2022135749A JP2022135749A (en) 2022-09-15
JP7368407B2 true JP7368407B2 (en) 2023-10-24

Family

ID=83231999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021035756A Active JP7368407B2 (en) 2021-03-05 2021-03-05 How to dispose of waste solar panels

Country Status (1)

Country Link
JP (1) JP7368407B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024032212A (en) 2022-08-29 2024-03-12 セイコーエプソン株式会社 Colorimetric system, terminal device, information processing device and program

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084531A (en) 1998-09-16 2000-03-28 Sharp Corp Method of disposal for liquid crystal panel
JP2001296509A (en) 2000-04-13 2001-10-26 Sharp Corp Method for reusing waste liquid crystal panel
JP2003130318A (en) 2001-10-26 2003-05-08 Mitsubishi Materials Corp Industrial waste treatment plant
JP2003297248A (en) 2002-03-29 2003-10-17 Dowa Mining Co Ltd Disposing method of waste television
CN102544239A (en) 2012-03-07 2012-07-04 英利集团有限公司 Method and device for decomposing and recycling photovoltaic component
JP2015110201A (en) 2013-12-06 2015-06-18 三菱電機株式会社 Solar battery module recycling method
WO2015098232A1 (en) 2013-12-26 2015-07-02 パンパシフィック・カッパー株式会社 Method for processing electrical/electronic component scraps
JP2018176002A (en) 2017-04-03 2018-11-15 一般財団法人電力中央研究所 Recovery method and recovery device of plate glass of solar battery module
WO2019151351A1 (en) 2018-01-31 2019-08-08 Jx金属株式会社 Processing method for electronic/electric device component waste

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102207445B1 (en) * 2019-02-01 2021-01-25 한국해양대학교 산학협력단 Recycling method for spent solar module using pyrometallurgy

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084531A (en) 1998-09-16 2000-03-28 Sharp Corp Method of disposal for liquid crystal panel
JP2001296509A (en) 2000-04-13 2001-10-26 Sharp Corp Method for reusing waste liquid crystal panel
JP2003130318A (en) 2001-10-26 2003-05-08 Mitsubishi Materials Corp Industrial waste treatment plant
JP2003297248A (en) 2002-03-29 2003-10-17 Dowa Mining Co Ltd Disposing method of waste television
CN102544239A (en) 2012-03-07 2012-07-04 英利集团有限公司 Method and device for decomposing and recycling photovoltaic component
JP2015110201A (en) 2013-12-06 2015-06-18 三菱電機株式会社 Solar battery module recycling method
WO2015098232A1 (en) 2013-12-26 2015-07-02 パンパシフィック・カッパー株式会社 Method for processing electrical/electronic component scraps
JP2015123418A (en) 2013-12-26 2015-07-06 パンパシフィック・カッパー株式会社 Treatment method of electric/electronic component scrap
JP2018176002A (en) 2017-04-03 2018-11-15 一般財団法人電力中央研究所 Recovery method and recovery device of plate glass of solar battery module
WO2019151351A1 (en) 2018-01-31 2019-08-08 Jx金属株式会社 Processing method for electronic/electric device component waste

Also Published As

Publication number Publication date
JP2022135749A (en) 2022-09-15

Similar Documents

Publication Publication Date Title
EP2366038B1 (en) Method for recovering metals contained in electronic waste
KR101782234B1 (en) Processing method of electric and electronic parts scraps
KR100795288B1 (en) Scrap and/or sludge treatment method containing copper, precious metals
CN110719963B (en) Treatment method of lithium ion battery waste
JP7322687B2 (en) Valuable metal recovery method from waste batteries
JP2018145479A (en) Recovery method of platinum group metals
WO2021177005A1 (en) Method for recovering valuable metals from waste battery
JP7368407B2 (en) How to dispose of waste solar panels
JP2021031760A (en) Process for recovering valuable metal
AU2004221471B2 (en) Recovery of metal values from cermet
JP2015124413A (en) Method of processing electric/electronic parts scrap in copper smelting
KR20220139978A (en) How to recover valuable metals
JP6591675B2 (en) Method for producing metal manganese
EP4397777A1 (en) Method for producing valuable metal
JP7447643B2 (en) Valuable metal recovery method
JPWO2018168472A1 (en) Method of producing metallic manganese
JP7106776B1 (en) Method for treating cover glass derived from waste photovoltaic panels
JP2021139020A (en) Valuable metal recovery method from waste battery
Wu et al. The Latest Development of oxygen bottom blowing lead smelting technology
JP2006274433A (en) Method for recovering noble metal from waste brick
JP7389344B2 (en) Method for recovering valuable metals from waste batteries
Gomes et al. Fundamentals of pyrometallurgical operations in lead-acid battery recycling
WO2024070500A1 (en) Valuable metal production method
US20240240281A1 (en) Method for producing valuable metal
SU1006528A1 (en) Method for processing secondary lead raw material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231012

R151 Written notification of patent or utility model registration

Ref document number: 7368407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151