JP2004307307A - Ceramic circuit board and method of manufacturing the same - Google Patents

Ceramic circuit board and method of manufacturing the same Download PDF

Info

Publication number
JP2004307307A
JP2004307307A JP2003106518A JP2003106518A JP2004307307A JP 2004307307 A JP2004307307 A JP 2004307307A JP 2003106518 A JP2003106518 A JP 2003106518A JP 2003106518 A JP2003106518 A JP 2003106518A JP 2004307307 A JP2004307307 A JP 2004307307A
Authority
JP
Japan
Prior art keywords
circuit board
metal plate
brazing material
ceramic
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003106518A
Other languages
Japanese (ja)
Inventor
Hiromi Kikuchi
広実 菊池
Toshiyuki Imamura
寿之 今村
Hiroyuki Tejima
博之 手島
Junichi Watanabe
渡辺  純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003106518A priority Critical patent/JP2004307307A/en
Publication of JP2004307307A publication Critical patent/JP2004307307A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable ceramic circuit board in which excellent joint is attained by reducing the warpage of a metallic plate in joining and the stress concentration in a joint part of a brazing filler metal layer and a ceramic substrate is reduced. <P>SOLUTION: In the ceramic circuit board structured by joining the metallic plate to at least one surface of the ceramic substrate with the brazing filler metal layer, etching the metallic plate to form a prescribed circuit pattern and forming a swelling part where a brazing filler metal layer is swelled out from the outer periphery of the metallic plate, a thickness variation part such as a tilted surface is previously formed on the outermost peripheral part of the metallic plate and is removed by the etching treatment after the brazing joint and the swelling part of the brazing filler metal layer which has the top end making an angle of 20-60° and 0.25-1 mm swelled length remains and is formed successively in contact with the mark of the thickness variation part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特にパワー半導体モジュールに使用されるセラミックス回路基板に係わり、セラミックス基板の少なくとも一方の面にろう材層を介して回路パターンを形成する金属板を接合したセラミックス回路基板及びその製造方法に関するものである。
【0002】
【従来の技術】
パワー半導体モジュールに使用される基板としては、窒化アルミニウムや窒化珪素からなる絶縁性セラミックス基板の一方の面に回路となる導電性金属板を接合し、他の面にも放熱用の金属板を接合したセラミックス回路基板が広く用いられている。この金属板としては、銅板またはアルミニウム板が使用されている。そして、回路となる導電性金属板の上面には、半導体チップ等が接続される。また、セラミックス基板と金属との接合は、セラミックス基板の表面にTi等の活性金属を含むろう材を塗布して接合する方法が採用されている。
【0003】
近年、電動車両用インバータとして高電圧、大電流動作が可能なパワー半導体モジュール(IGBTモジュール)が用いられている。このような大電力モジュールにおいては、回路となる銅板等の金属板に接続されている半導体チップから発生する熱量も増大する。その結果、セラミックス回路基板に繰り返して発生する熱応力も増大している。この熱応力にたえられなくなると、セラミックス基板の反りや割れ等の不具合が発生することになる。窒化アルミニウムまたは窒化珪素製のセラミックス基板は、電気絶縁性および熱伝導性は優れているが、上記のように、セラミックス回路基板に繰り返して付加される熱衝撃にいっそう対応できるセラミックス回路基板の開発が要求されている。
従来から、上記のような熱応力に対応できるセラミックス回路基板について、種々の改良技術が提案されている。
【0004】
例えば、特許文献1には、窒化珪素基板の両面に銅板を直接接合法(DBC法;ダイレクト・ボンデング・カッパー法)または、活性金属ろう材を用いる活性金属法により接合し窒化珪素回路基板を作製するもので、金型を用いたプレス加工等の機械加工により予めそれぞれの外周部に傾斜部または薄肉部を形成した銅板を用いて接合するもので、これにより金属板の外周端部への応力集中を緩和できることが記載されている。
【0005】
特許文献2には、セラミックス回路基板にアルミニウム板を直接DBC接合した回路基板において、金属板の外周縁部内側に薄肉部を設けておくことで外周縁部の応力集中を緩和させることが記載されている。
【0006】
特許文献3には、セラミックス基板と金属板とをろう材層を介して接合した後、金属板をエッチング処理することで、ろう材層が金属回路パターンの側面より外方に張り出すように形成し、これにより接合端部に作用する応力集中を低減可能であること、よってセラミックス回路基板全体の曲げ強度およびたわみ量を大きくすることができ、セラミックス回路基板を実装ボードにねじで締着固定させるときのセラミックス基板の割れを低減できることが記載されている。また、金属回路パターンの表面側の面積よりも、金属回路パターンとセラミックス基板との接合面の面積を大きくし、接合端部での応力集中を防止するために金属回路パターンの側面を傾斜させている。
【0007】
【特許文献1】
特開平10−93211号公報
【特許文献2】
特開2001−267447号公報
【特許文献3】
特開平11−340598号公報
【0008】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載された外周部に形成された銅板の傾斜部または薄肉部は、銅板と窒化珪素基板とを接合した後で回路基板として繰り返し熱サイクルを受けた際の応力集中を防ぐために形成されている。また、ろう材を使用し窒化珪素基板と銅板を接合する活性金属法で接合した場合、ろう材層は銅板の外周部端と同一面となるだけで、ろう材層のはみ出し部は形成されていない。特許文献1の回路基板では製造の過程で所定量のはみ出し部を形成することが困難であり、その為ろう材層と窒化珪素基板との接合面でのろう材層端部での応力集中により、その箇所でのクラックの発生が生じる可能性を含んでいる。
【0009】
特許文献2では、アルミニウム板の外周縁部内に形成する薄肉部は、セラミックスとの接合前に設けておくことで、接合時にその薄肉部の組成変形により応力を緩和するため、セラミックス基板にクラックを発生させるのを抑制することが可能である。しかしながら、接合時の加熱・冷却後におけるセラミックス基板とアルミニウム板との熱膨張率の差により発生するアルミニウム板の反りを抑制することについての配慮はなされていない。特にろう材層を介した活性金属法による接合であると、接合時に層間にボイドが発生し密着強度が低下し良好な接合は得られない。このまま回路基板となっても実際に熱サイクルを受けると応力集中や曲げ強度に対しても弱いと言う問題がある。
【0010】
また、特許文献3では、金属板の側面より外側にはみ出す、いわゆるはみ出し部を形成したり、金属板(回路パターン)の側面を傾斜させている。これらのはみ出し部や傾斜部は、金属板とセラミックス基板を接合した後、金属板をエッチング処理することにより形成している。このようにエッチング処理によって金属板の側面を適度な傾斜面にすることやはみ出し部の寸法を規定することはエッチング処理自体では面倒で困難をともなう。
【0011】
本発明の目的は、セラミックス基板の製造過程における接合時の金属板の反りを低減し、金属回路基板とセラミックス基板との良好な接合が得られること、及びセラミックス基板完成後における、ろう材層とセラミックス基板との接合部での応力集中を低減できる信頼性の高いセラミックス回路基板とその製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、セラミックス基板の少なくとも一方の面にろう材層を介して金属板を接合し、前記金属板をエッチング処理することにより所定の回路パターンを形成すると共に、前記金属板の外縁からはみ出したろう材層によるはみ出し部を形成したセラミックス回路基板において、前記金属板には肉厚変動部を形成しておき、前記ろう付け接合後のエッチング処理により前記肉厚変動部が除去されると共に、前記肉厚変動部跡にろう材層のはみ出し部が残って形成されていることを特徴とするセラミックス回路基板である。
【0013】
本発明のセラミックス回路基板において、セラミックス回路基板の最外周部にエッチング処理後に形成されるろう材層のはみ出し部において、セラミックス基板平面とはみ出し部先端とのなす角度θが20°≦θ≦60°の範囲であることが望ましい。更に望ましくは30°≦θ≦50°である。
また、前記セラミックス回路基板の最外周部にエッチング処理後に形成されるろう材層のはみ出し部は、はみ出し長さLが0.25mm≦L≦1.0mmの範囲であることが望ましい。更に望ましくは0.3mm≦L≦0.75mmである。
さらに、前記セラミックス回路基板を構成するセラミックス基板が窒化珪素焼結体からなり、金属板が銅板からなることが望ましく、この金属板の厚さは0.3mmから1.5mmの範囲であることが望ましい。
【0014】
また本発明は、セラミックス基板の少なくとも一方の面にろう材層を介して金属板を接合し、前記金属板をエッチング処理することにより所定の回路パターンを形成すると共に、前記金属板の外縁からはみ出したろう材層によるはみ出し部を形成するセラミックス回路基板の製造方法であって、前記セラミックス基板の一面に所定の回路パターンに沿ったろう材層を形成し、前記金属板は予め最外周部に肉厚変動部を有するものを用いて、前記セラミックス基板と金属板に荷重を加えながらろう付け接合し、ろう付け接合後のエッチング処理により前記金属板の肉厚変動部を除去すると共に、前記除去後の肉厚変動部跡に連続するろう材層のはみ出し部を形成することを特徴とするセラミックス回路基板の製造方法である。ここで、上記セラミックス基板と金属板とのろう付け接合時に際して、0.02Kg/cm〜0.1Kg/cmの荷重を印加してろう付け接合することが望ましい。
【0015】
【発明の実施の形態】
本発明のセラミックス回路基板は、予め傾斜面や段差等による肉厚変動部が外周部に形成された金属板を用いており、この回路用金属板は通常矩形であるから外周の四辺に肉厚変動部が形成されている。セラミックス基板と金属板の接合時における両者の熱膨張差による反り防止については金属板の最外周部に肉厚変動部を設けておくことが効果的である。即ち、接合時においては所定の温度と所定の荷重を加えたとき端部辺が変形する反り現象が発生し部分的な圧力変動によりろう材層にボイドが発生することがあるが、これを最外周の四辺の肉厚変動部が吸収して反りを防ぐことで全体に均等な圧力がかかり密着強度の高い良好な接合が得られる。そして、この肉厚変動部は回路パターンをエッチング処理して形成する際に不要部と共に除去する。このとき、これに代わってろう材層によるはみ出し部を形成することが出来る。肉厚変動部は予め所定寸法で作られており、しかも薄肉となっているのでこの部分をエッチングして除去することは容易である。よって、結果的に寸法精度良くはみ出し部を形成することが出来る。またこのはみ出し部を緩やかな裾野状に形成することによってより熱応力の緩和を促し、セラミックス回路基板の曲げ応力及び撓み性を向上することができる。さらに本発明のはみ出し部は、比較的テーパ角が緩やかであることを特徴としており、これはろう材とセラミックス基板接合界面での応力を低減でき、この界面での亀裂の発生を抑制できると言う効果がある。
【0016】
以下、本発明の実施の形態について図面を参照して説明する。図1〜図5は、本発明のセラミックス回路基板の実施形態を示す図である。
図1はセラミックス回路基板の構成例を示しており、7は厚さ0.3〜1.5mm、熱伝導率70W/m・K以上のセラミックス基板であり、ここでは窒化ケイ素焼結体からなる。この窒化ケイ素回路基板7の一方の面には、回路用金属板3、4、5がろう材層8、9、10を介して活性金属法により接合されている。一方、他方の面(下面)には、放熱用の平板状の金属板11がろう材層12を介して活性金属法により接合されている。ここで回路用金属板3、4、5及び放熱用金属板11は銅板からなる。ろう材層8、9、10及び12は、各銅板3、4、5及び放熱用銅板11の外周端面から所定量だけはみ出したはみ出し部6を有しており、このはみ出し部のセラミックス基板7の上面とはみ出し部先端とのなす角度θは20°〜60°の範囲とし、はみ出し長さLは0.25mm〜1mmとする。このことにより窒化ケイ素基板7と銅板3、4、5及び銅板11の端面部に集中する熱応力を緩和させることができる。これら銅板の端部構造については下記する。
【0017】
本発明をセラミックス回路基板の製造方法と共に説明する。
まず、窒化珪素基板7を用意する。なお窒化珪素基板は、公知のドクターブレード法等により窒化珪素を主成分とする薄板状のグリーンシートを作成する。次にこのグリーンシートを脱脂、焼結した後、所望の寸法、例えば縦横80mm×100mmの大きさに切断することにより厚さ0.3〜0.6mmの窒化珪素基板を得ることができる。
【0018】
次に、窒化珪素基板7の主面および下面にスクリーン印刷でろう材を、その厚さが20〜30μmになるように塗布し、図2に示すように回路パターン形状に沿ったろう材層8、9、10を形成する。
【0019】
一方、回路用銅板1および放熱用銅板11を用意する。回路用銅板1は図3、図4に示すように平板状の矩形であり、その最外周部の四辺には垂直方向に対する傾斜確度αが65°から85°である傾斜部を銅板の全周に、切削または金型プレス等の機械加工で予め形成している。ここで傾斜部の寸法は、銅板の厚さTに対し傾斜部の先端厚さtがTの1/4〜1/2程度残し、この先端部から内側への距離Dは0.2mm〜2mm、好ましくは1.7mm程度にする。また、ろう材層8、9、10、12の厚さは20〜30μm程度でよい。放熱用銅板11も回路用銅板と同様に傾斜部を設けても良い。尚、傾斜部の代わりに段差部状であっても良く、要はt寸法、D寸法を確保していれば良い。なおD寸法はろう材層の端部とほぼ一致するようにあるいは若干ろう材層の端部が外側に出るようにする。図4は、図3に示す窒化珪素回路基板を主面方向から見たものである。
【0020】
続いて、ろう材層を塗布した窒化珪素基板7の主面に回路用銅板1を、下面に放熱用銅板11を正確に位置合わせをして加圧状態で保持する。この時の加圧の大きさとしては、0.02kg/cm〜0.1kg/cmの荷重を印加する。この理由は、荷重が0.02 kg/cm以下では、加熱中に、銅板が熱膨張して位置ずれを起こし易く、一方、荷重が0.1 kg/cm以上では加熱中に溶解したろう材を押し広げてしまい、回路パターンを崩して回路間を短絡させてしまう恐れがあるからである。そのため、加熱中の荷重は0.02 kg/cm〜0.1 kg/cmの範囲が好ましく、より好ましくは、0.07 kg/cmである。
【0021】
次に、塩化第二鉄溶液により所定の回路パターンになるように回路用銅板1の不要部分をエッチング処理して除去する。図3の回路用銅板1の傾斜部をD寸法部分から削除するようになし、図1に示すように端面5a、3cとなす、傾斜部を削除すると共にこれに代わって端面に連続したはみ出し部65a、63cを形成するものである。尚、回路用銅板3、4、5の最外周部以外の除去部分についても端面5c、4a、4c、3aとはみ出し部65c、64a、64c、63aのように形成する。但し、このはみ出し部65c、64a、64c、63aは、はみ出し部65a、63cに比べ銅板の肉厚が厚いためエッチングに時間がかかり、はみだし部65a、63cに比べはみ出し部先端部の角度が急峻で且つはみ出し部先端部の長さも短かい。
図1の銅板5の端部拡大図を図5に示す。エッチング処理後のはみ出し部は比較的緩やかな裾野状になっており、先端部がなす角度θは20°〜60°で比較的小さ目の角度の方が良い。この理由は上述した通り、小さい角度のほうがろう材とセラミックス基板接合界面での応力を低減でき、この界面での亀裂の発生を抑制できると言う効果があるためである。またはみ出し部の長さLについても0.25mm〜1mmがよく、比較的0.6mm程度が良い。この理由は0.25mm以下では応力が急激に増加しはみ出し部の応力緩和効果が得らず、1.5mm以上では、はみ出し部と、反対面の放熱板外周端部との距離が短くなり電気的絶縁性が低下する恐れがあるためであり、ほぼ中間の距離である0.6mm程度が好ましい。尚、傾斜部の除去及びはみ出し部の形成については放熱用銅板11についても同様にすることが出来る。
【0022】
以下、実施例について説明する。
表1の実施例及び比較例に示すように銅板の最外周部に、垂直方向に対する傾斜角度αが85°の傾斜面でt寸法は0.15mm、D寸法を1.7mmとした銅板を回路用銅板および放熱用銅板として用意し、窒化珪素基板にろう付け接合し窒化珪素回路基板を作成した。
表1にろう付け接合時の荷重を変えて銅板と窒化珪素基板とのろう付け接合を行った場合の実施例と比較例を示す。このように荷重が0.02〜0.1kg/cmではろう付け接合後に、回路側および放熱側には、ボイドの発生は無くかつ回路パターン間のろう材の余分なはみ出しも無い良好なろうろう付け接合状態が得られた。一方、比較例1に示す荷重0.01kg/cmでは、回路側および放熱側にボイドが有る。また比較例2に示す荷重0.12kg/cmでは、回路側および放熱側にボイドは無いが、回路パターン間のろう材の余分なはみだしが有る。このようなことからろう付け接合時の荷重は0.02〜0.10kg/cmが現実的で好ましいと考える。
【0023】
【表1】

Figure 2004307307
【0024】
次に表2の実施例及び比較例に示すように銅板の最外周部に、垂直方向に対する傾斜角度αの傾斜面でt寸法を0.3〜0.75mm、D寸法を1.5mmとした銅板を回路用銅板および放熱用銅板として用意し、窒化珪素基板にろう付け接合し窒化珪素回路基板を作製した。ろう付け接合時の荷重は0.07kg/cmとした。
回路用銅板と放熱用銅板についてろう付け接合後の反りを3次元形状測定器にて測定した。ここで、接合後の銅板の反りが凹とは、銅板の最外周部が窒化珪素基板に対し反り上がった状態を示し、凸とは逆に銅板の最外周部が窒化珪素基板側に反り下がった状態を示す。銅板の反りの大きさは、銅板の中心部を基準として、最外周部が反り上がった状態を+、逆に反り下がった状態を−と定義する。また銅板と窒化珪素基板との間のろう材層に発生するボイドおよび回路パターン間のろう材はみだしを超音波画像診断装置(日立建機ファインテック製)にて観察した。
【0025】
【表2】
Figure 2004307307
【0026】
以上のことより実施例5〜8では、回路側銅板および放熱側銅板ともに、反りは小さく、かつ窒化珪素基板に対して凸状となっていた。水平または凸状であると銅板全体に均等の荷重が印加されるため銅板と窒化珪素基板の間に、溶解したろう材が十分にいきわたりボイドが無い良好な接合状態となる。
一方、比較例3での傾斜角度αが50°では、傾斜部の変形が大き過ぎるため、ろう付け接合後の回路側銅板および放熱側銅板ともに窒化珪素基板に対して凹状の変形が大きすぎ、このため荷重が銅板全体に印加されずボイドが発生し良好な接合状態が得られず接合不良が生じる。また比較例4の傾斜角度αが90°では、逆に凹状の銅板の反りが大きくなり、反り上がった最外周部にのみ荷重が印加され、銅板全体には十分な荷重が印加されないため接合不良となる。
ろう付け接合後の回路側および放熱側銅板の反りが小さくまたは平坦であるとパワー半導体モジュールとしてケースに組み込む場合に組立て易く、半導体チップ等をはんだ付け接合する時のはんだ接合性も良好となる。
【0027】
次にろう付け接合をした窒化珪素回路基板の回路用銅板に回路パターンを形成するためにフォトレジストでエッチングパターンを形成し、その後、湿式エッチングで銅回路基板をエッチングした。この時、放熱側銅板にも余分な箇所がエッチングされないためにフォトレジストを、予め銅板最外周部に形成した傾斜部以外に塗布しておく。
ろう付け接合前に予め形成する傾斜部の角度と、エッチング時間を変えることでろう材層のはみ出し部先端の角度とろう材先端のはみだし部長さLが異なる実施例及び比較例の窒化珪素基板を用意した。
表3にろう材層の先端直下の応力と1000サイクル後のヒートサイクル試験後のろう材先端直下のクラックの有・無を示す。尚、ここでの応力は先端の傾斜角およびはみだし長さの実測値から計算で求めた。
【0028】
【表3】
Figure 2004307307
【0029】
実施例9〜17に示すように、ろう材層はみ出し部の先端と基板平面とのなす角度θが20°〜60°の範囲では、ヒートサイクル試験後のクラックの発生がない。一方、比較例5〜10に示すように、ろう材層はみだし部の長さLが0、0.1mmであるとヒートサイクル試験後にクラックの発生がある。
さらに、比較例11〜13に示すように、ろう材層はみ出し部の先端と基板平面とのなす角度θが75°であるとろう材層はみだし部の長さLが0.25、0.5、1.0mmであっても接合部の応力が高く、ヒートサイクル試験後にクラックが発生することが確認された。
よって、先端部がなす角度θは20°〜60°で発生応力が比較的小さい45あるいは50°以下が良い。またはみ出し部の長さLについても先端部がなす角度θによるが概ね0.25mm〜1mmから選択するのが良い。
【0030】
【発明の効果】
以上に説明した本発明は、次の効果を有している。
(1)本発明のセラミックス回路基板の製造方法によれば、ろう付け接合前に回路側銅板および放熱側銅板の最外周部に予め肉厚変動部を形成しておくことで、ろう付け接合の加熱中に銅板が反るのを抑制し、均一に荷重を印加できるためにろう材層にボイドがない良好な接合状態を得られる。
(2)本発明の窒化珪素回路基板は、ろう付け接合後のエッチングにより銅板の最外周部の傾斜部が除去された後に、緩やかな角度のついた寸法精度の高いはみ出し部が形成され、その箇所での応力が低減されるため割れの発生が少なく信頼性が高い。
(3)本発明の窒化珪素回路基板は、ろう付け接合後のエッチングにより銅板の最外周部の傾斜部が除去されることで、傾斜部の変形による応力が低減されるためはみ出し部での応力緩和の効果が向上する。
【図面の簡単な説明】
【図1】本発明に係わる窒化珪素回路基板の一実施例を示す断面図である。
【図2】窒化珪素基板上に塗布したろう材層を示す上面図である。
【図3】図1に示す窒化珪素回路基板のろう付け接合前を示す断面図である。
【図4】回路用銅板の一例を示す上面図である。
【図5】図1の回路基板の端部の拡大断面図である。
【符号の説明】
1、11:回路用銅板
2、2a〜2d:金属板の肉厚変動部(傾斜面)
3、4、5:銅板
6、63a、63c、64a、64c、65a、65c:はみ出し部
7:セラミックス基板(窒化珪素基板)
8、9、10、12:ろう材層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention particularly relates to a ceramic circuit board used for a power semiconductor module, and more particularly to a ceramic circuit board in which a metal plate forming a circuit pattern is bonded to at least one surface of the ceramic substrate via a brazing material layer and a method of manufacturing the same. Things.
[0002]
[Prior art]
As the substrate used for the power semiconductor module, a conductive metal plate to be a circuit is joined to one surface of an insulating ceramic substrate made of aluminum nitride or silicon nitride, and a metal plate for heat dissipation is joined to the other surface Ceramic circuit boards are widely used. As the metal plate, a copper plate or an aluminum plate is used. Then, a semiconductor chip or the like is connected to the upper surface of the conductive metal plate serving as a circuit. Further, for joining the ceramic substrate and the metal, a method of applying a brazing material containing an active metal such as Ti to the surface of the ceramic substrate and joining them is adopted.
[0003]
2. Description of the Related Art In recent years, power semiconductor modules (IGBT modules) capable of high-voltage and large-current operation have been used as inverters for electric vehicles. In such a high-power module, the amount of heat generated from a semiconductor chip connected to a metal plate such as a copper plate serving as a circuit also increases. As a result, thermal stress repeatedly generated on the ceramic circuit board is also increasing. If the thermal stress cannot be maintained, problems such as warpage and cracking of the ceramic substrate will occur. Although ceramic substrates made of aluminum nitride or silicon nitride have excellent electrical insulation and thermal conductivity, as described above, the development of ceramic circuit substrates that can further respond to thermal shocks repeatedly applied to ceramic circuit substrates has been developed. Is required.
Conventionally, various improved techniques have been proposed for ceramic circuit boards that can cope with the above-described thermal stress.
[0004]
For example, in Patent Document 1, a silicon nitride circuit board is manufactured by joining a copper plate to both sides of a silicon nitride substrate by a direct bonding method (DBC method; direct bonding copper method) or an active metal method using an active metal brazing material. It is joined by using a copper plate with a slanted portion or a thin-walled portion formed on its outer periphery in advance by mechanical processing such as press working using a mold, thereby applying stress to the outer peripheral end of the metal plate. It states that concentration can be eased.
[0005]
Patent Literature 2 describes that in a circuit board in which an aluminum plate is directly DBC-bonded to a ceramic circuit board, stress concentration at the outer peripheral edge portion is reduced by providing a thin portion inside the outer peripheral edge portion of the metal plate. ing.
[0006]
Patent Document 3 discloses that after joining a ceramic substrate and a metal plate via a brazing material layer, the metal plate is subjected to an etching treatment so that the brazing material layer extends outward from the side surface of the metal circuit pattern. As a result, it is possible to reduce the concentration of stress acting on the joint end, thereby increasing the bending strength and the amount of deflection of the entire ceramic circuit board, and fixing the ceramic circuit board to the mounting board with screws. It is described that cracking of the ceramic substrate at the time can be reduced. Also, make the area of the joint surface between the metal circuit pattern and the ceramic substrate larger than the area of the front side of the metal circuit pattern, and incline the side surface of the metal circuit pattern to prevent stress concentration at the joint end. I have.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H10-92311 [Patent Document 2]
JP 2001-26747 A [Patent Document 3]
JP-A-11-340598
[Problems to be solved by the invention]
However, the inclined portion or the thin portion of the copper plate formed on the outer peripheral portion described in Patent Document 1 prevents stress concentration when the copper plate and the silicon nitride substrate are bonded and repeatedly subjected to a thermal cycle as a circuit substrate. It is formed to pass. Also, when the brazing material is used to join the silicon nitride substrate and the copper plate by the active metal method, the brazing material layer is only flush with the outer peripheral edge of the copper plate, and the protruding portion of the brazing material layer is formed. Absent. In the circuit board of Patent Literature 1, it is difficult to form a predetermined amount of protruding portion during the manufacturing process, so that stress concentration at the end of the brazing material layer at the joining surface between the brazing material layer and the silicon nitride substrate occurs. , There is a possibility that a crack may occur at that location.
[0009]
According to Patent Literature 2, a thin portion formed in the outer peripheral portion of an aluminum plate is provided before joining with a ceramic, so that stress is reduced by composition deformation of the thin portion at the time of joining. It is possible to suppress the occurrence. However, no consideration is given to suppressing the warpage of the aluminum plate caused by the difference in the coefficient of thermal expansion between the ceramic substrate and the aluminum plate after heating and cooling during joining. In particular, in the case of joining by the active metal method via the brazing material layer, voids are generated between the layers at the time of joining, the adhesion strength is reduced, and good joining cannot be obtained. Even if the circuit board is left as it is, there is a problem that it is weak against stress concentration and bending strength when actually subjected to a thermal cycle.
[0010]
In Patent Literature 3, a so-called protruding portion that protrudes outside the side surface of the metal plate is formed, or the side surface of the metal plate (circuit pattern) is inclined. These protruding portions and inclined portions are formed by bonding a metal plate and a ceramic substrate and then etching the metal plate. As described above, it is troublesome and difficult to form the side surface of the metal plate into an appropriate inclined surface by the etching process and to define the size of the protruding portion by the etching process itself.
[0011]
An object of the present invention is to reduce warpage of a metal plate at the time of joining in a process of manufacturing a ceramic substrate, to obtain a good joining between a metal circuit board and a ceramic substrate, and to complete a brazing material layer after completion of the ceramic substrate. An object of the present invention is to provide a highly reliable ceramic circuit board capable of reducing stress concentration at a joint with a ceramic substrate and a method of manufacturing the same.
[0012]
[Means for Solving the Problems]
The present invention joins a metal plate to at least one surface of a ceramic substrate via a brazing material layer, forms a predetermined circuit pattern by etching the metal plate, and protrudes from an outer edge of the metal plate. In the ceramic circuit board having a protruding portion formed by a material layer, a thickness variation portion is formed on the metal plate, and the thickness variation portion is removed by etching after the brazing, and the thickness variation portion is removed. A ceramic circuit board characterized in that a protruding portion of a brazing material layer is formed and left in a trace of a thickness variation portion.
[0013]
In the ceramic circuit board of the present invention, at the protruding portion of the brazing material layer formed after the etching process on the outermost peripheral portion of the ceramic circuit board, the angle θ between the ceramic substrate plane and the protruding portion tip is 20 ° ≦ θ ≦ 60 ° Is desirably within the range. More desirably, 30 ° ≦ θ ≦ 50 °.
The protruding portion of the brazing material layer formed on the outermost peripheral portion of the ceramic circuit board after the etching treatment preferably has a protruding length L in a range of 0.25 mm ≦ L ≦ 1.0 mm. More desirably, 0.3 mm ≦ L ≦ 0.75 mm.
Further, the ceramic substrate constituting the ceramic circuit board is preferably made of a silicon nitride sintered body, and the metal plate is preferably made of a copper plate. The thickness of the metal plate is preferably in the range of 0.3 mm to 1.5 mm. desirable.
[0014]
In addition, the present invention provides a method in which a metal plate is joined to at least one surface of a ceramic substrate via a brazing material layer, a predetermined circuit pattern is formed by etching the metal plate, and the metal plate protrudes from an outer edge of the metal plate. A method of manufacturing a ceramic circuit board for forming a protruding portion by a brazing material layer, comprising: forming a brazing material layer along a predetermined circuit pattern on one surface of the ceramic substrate; Using a material having a portion, the ceramic substrate and the metal plate are brazed and joined while applying a load, and the thickness variation portion of the metal plate is removed by etching after the brazing joint, and the thickness after the removal is removed. A method for manufacturing a ceramic circuit board, comprising forming a protruding portion of a brazing material layer continuous with a trace of a thickness variation portion. Here, at the time of brazing the ceramic substrate and the metal plate, it is desirable to apply a load of 0.02 kg / cm 2 to 0.1 kg / cm 2 to perform brazing.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The ceramic circuit board of the present invention uses a metal plate in which a thickness variation portion such as an inclined surface or a step is formed in the outer peripheral portion in advance. A fluctuation part is formed. In order to prevent warpage due to a difference in thermal expansion between the ceramic substrate and the metal plate at the time of joining, it is effective to provide a thickness variation portion at the outermost peripheral portion of the metal plate. That is, at the time of joining, when a predetermined temperature and a predetermined load are applied, a warp phenomenon occurs in which the edge side is deformed, and voids may be generated in the brazing material layer due to partial pressure fluctuation. By preventing the warpage by absorbing the thickness variation portions on the four sides on the outer periphery, uniform pressure is applied to the whole, and good bonding with high adhesion strength can be obtained. The thickness variation portion is removed together with the unnecessary portion when the circuit pattern is formed by etching. At this time, the protruding portion can be formed by the brazing material layer instead. The thickness variation portion is formed in a predetermined size in advance, and is thin, so that it is easy to remove this portion by etching. As a result, the protruding portion can be formed with high dimensional accuracy. Further, by forming the protruding portion in a gentle skirt shape, relaxation of thermal stress is promoted, and bending stress and flexibility of the ceramic circuit board can be improved. Furthermore, the protruding portion of the present invention is characterized by a relatively gentle taper angle, which can reduce the stress at the interface between the brazing material and the ceramic substrate and suppress the occurrence of cracks at this interface. effective.
[0016]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 5 are views showing an embodiment of the ceramic circuit board of the present invention.
FIG. 1 shows an example of the configuration of a ceramic circuit board. Reference numeral 7 denotes a ceramic substrate having a thickness of 0.3 to 1.5 mm and a thermal conductivity of 70 W / m · K or more. . Circuit metal plates 3, 4, and 5 are joined to one surface of the silicon nitride circuit board 7 through brazing material layers 8, 9, and 10 by an active metal method. On the other hand, a flat metal plate 11 for heat dissipation is joined to the other surface (lower surface) via a brazing material layer 12 by an active metal method. Here, the circuit metal plates 3, 4, 5 and the heat radiation metal plate 11 are made of a copper plate. The brazing material layers 8, 9, 10 and 12 have protruding portions 6 protruding from the outer peripheral end surfaces of the copper plates 3, 4, 5 and the heat-dissipating copper plate 11 by a predetermined amount. The angle θ between the upper surface and the tip of the protruding portion is in the range of 20 ° to 60 °, and the protruding length L is 0.25 mm to 1 mm. Thereby, the thermal stress concentrated on the end faces of the silicon nitride substrate 7, the copper plates 3, 4, 5, and the copper plate 11 can be reduced. The end structure of these copper plates will be described below.
[0017]
The present invention will be described together with a method for manufacturing a ceramic circuit board.
First, a silicon nitride substrate 7 is prepared. As the silicon nitride substrate, a thin green sheet mainly containing silicon nitride is formed by a known doctor blade method or the like. Next, after degreasing and sintering the green sheet, the green sheet is cut into a desired size, for example, a size of 80 mm × 100 mm, whereby a silicon nitride substrate having a thickness of 0.3 to 0.6 mm can be obtained.
[0018]
Next, a brazing material is applied to the main surface and the lower surface of the silicon nitride substrate 7 by screen printing so as to have a thickness of 20 to 30 μm, and as shown in FIG. 9 and 10 are formed.
[0019]
On the other hand, a circuit copper plate 1 and a heat dissipation copper plate 11 are prepared. The copper plate 1 for circuit is a flat rectangular shape as shown in FIGS. 3 and 4, and the four outermost peripheral sides are provided with an inclined part having an inclination accuracy α of 65 ° to 85 ° with respect to the vertical direction all around the copper plate. In addition, it is formed in advance by machining such as cutting or die pressing. Here, the dimension of the inclined portion is such that the tip thickness t of the inclined portion is about 1 / to の of the thickness T of the copper plate, and the distance D from the tip to the inside is 0.2 mm to 2 mm. , Preferably about 1.7 mm. The thickness of the brazing material layers 8, 9, 10, and 12 may be about 20 to 30 μm. The heat-dissipating copper plate 11 may also be provided with an inclined portion similarly to the circuit copper plate. Note that a stepped portion may be used instead of the inclined portion, and it is only necessary that the t and D dimensions be secured. The dimension D is set so as to substantially coincide with the end of the brazing material layer, or to make the end of the brazing material layer project outward. FIG. 4 is a view of the silicon nitride circuit board shown in FIG. 3 viewed from a main surface direction.
[0020]
Subsequently, the circuit copper plate 1 is accurately aligned with the main surface of the silicon nitride substrate 7 coated with the brazing material layer, and the heat radiation copper plate 11 is accurately aligned with the lower surface, and is held in a pressurized state. At this time, a load of 0.02 kg / cm 2 to 0.1 kg / cm 2 is applied as the magnitude of the pressure. The reason for this is that when the load is 0.02 kg / cm 2 or less, the copper plate thermally expands during heating and easily shifts in position. On the other hand, when the load is 0.1 kg / cm 2 or more, the copper plate melts during heating. This is because the brazing material may be spread out, breaking the circuit pattern and causing a short circuit between the circuits. Therefore, the load during heating is preferably in the range of 0.02 kg / cm 2 to 0.1 kg / cm 2 , and more preferably 0.07 kg / cm 2 .
[0021]
Next, unnecessary portions of the circuit copper plate 1 are removed by etching using a ferric chloride solution so as to form a predetermined circuit pattern. The inclined portion of the circuit copper plate 1 of FIG. 3 is removed from the D-dimension portion, and the end surfaces 5a and 3c are formed as shown in FIG. 1. The inclined portion is removed and a protruding portion connected to the end surface is used instead. 65a and 63c are formed. The removed portions other than the outermost peripheral portions of the circuit copper plates 3, 4, 5 are also formed like the end faces 5c, 4a, 4c, 3a and the protruding portions 65c, 64a, 64c, 63a. However, the protruding portions 65c, 64a, 64c, and 63a require a longer etching time because the copper plate is thicker than the protruding portions 65a and 63c. Also, the length of the tip of the protruding portion is short.
FIG. 5 shows an enlarged view of the end of the copper plate 5 of FIG. The protruding portion after the etching process has a relatively gentle skirt shape, and the angle θ formed by the tip portion is preferably 20 ° to 60 ° and a relatively small angle is better. This is because, as described above, the smaller angle has the effect of reducing the stress at the interface between the brazing material and the ceramic substrate and suppressing the occurrence of cracks at this interface. Alternatively, the length L of the protruding portion is preferably 0.25 mm to 1 mm, and more preferably about 0.6 mm. The reason for this is that when the thickness is 0.25 mm or less, the stress increases rapidly and the effect of relaxing the stress at the protruding portion cannot be obtained. This is because there is a possibility that the electrical insulation may decrease, and it is preferable that the distance is approximately 0.6 mm, which is a substantially intermediate distance. The removal of the inclined portion and the formation of the protruding portion can be similarly performed for the copper plate 11 for heat radiation.
[0022]
Hereinafter, examples will be described.
As shown in Examples and Comparative Examples in Table 1, a copper plate having a slope with an inclination angle α of 85 ° with respect to the vertical direction, a t dimension of 0.15 mm, and a D dimension of 1.7 mm was mounted on the outermost peripheral portion of the copper plate. Prepared as a copper plate for heat dissipation and a copper plate for heat dissipation, and brazed to a silicon nitride substrate to form a silicon nitride circuit board.
Table 1 shows examples and comparative examples in which the brazing connection between the copper plate and the silicon nitride substrate was performed while changing the load at the time of brazing. In this way, when the load is 0.02 to 0.1 kg / cm 2 , after brazing, there is no void on the circuit side and the heat radiation side, and there is no excess protrusion of the brazing material between circuit patterns. A brazed joint condition was obtained. On the other hand, at the load of 0.01 kg / cm 2 shown in Comparative Example 1, there are voids on the circuit side and the heat radiation side. At a load of 0.12 kg / cm 2 shown in Comparative Example 2, there are no voids on the circuit side and the heat radiation side, but there is extra protrusion of brazing material between circuit patterns. From these facts, it is considered that the load at the time of brazing is practically preferable to be 0.02 to 0.10 kg / cm 2 .
[0023]
[Table 1]
Figure 2004307307
[0024]
Next, as shown in Examples and Comparative Examples in Table 2, the t dimension was set to 0.3 to 0.75 mm and the D dimension was set to 1.5 mm on the inclined surface having an inclination angle α with respect to the vertical direction on the outermost peripheral portion of the copper plate. A copper plate was prepared as a copper plate for a circuit and a copper plate for heat dissipation, and was brazed to a silicon nitride substrate to produce a silicon nitride circuit substrate. The load at the time of brazing was set to 0.07 kg / cm 2 .
The warpage of the copper plate for circuit and the copper plate for heat radiation after brazing was measured with a three-dimensional shape measuring instrument. Here, when the warpage of the copper plate after bonding is concave, the outermost peripheral portion of the copper plate is warped up with respect to the silicon nitride substrate, and the outermost peripheral portion of the copper plate is warped down toward the silicon nitride substrate, contrary to the projection. It shows the state that it was turned on. The magnitude of the warpage of the copper plate is defined as + when the outermost peripheral portion is warped with respect to the center portion of the copper plate as a reference, and − when the outermost peripheral portion is warped down. In addition, voids generated in the brazing material layer between the copper plate and the silicon nitride substrate and the protrusion of the brazing material between circuit patterns were observed with an ultrasonic diagnostic imaging apparatus (manufactured by Hitachi Construction Machinery Finetech).
[0025]
[Table 2]
Figure 2004307307
[0026]
As described above, in Examples 5 to 8, both the circuit-side copper plate and the heat-dissipation-side copper plate had a small warpage and a convex shape with respect to the silicon nitride substrate. If the copper plate is horizontal or convex, a uniform load is applied to the entire copper plate, so that the molten brazing material sufficiently spreads between the copper plate and the silicon nitride substrate and a good bonding state without voids is obtained.
On the other hand, when the inclination angle α in Comparative Example 3 was 50 °, the deformation of the inclined portion was too large, so that the circuit-side copper plate and the heat-radiation-side copper plate after the brazing were too concavely deformed with respect to the silicon nitride substrate, Therefore, a load is not applied to the entire copper plate, voids are generated, and a good bonding state cannot be obtained, resulting in poor bonding. When the inclination angle α in Comparative Example 4 was 90 °, the warp of the concave copper plate was conversely increased, and a load was applied only to the warped outermost portion, and a sufficient load was not applied to the entire copper plate. It becomes.
If the circuit board and the heat-dissipation-side copper plate after brazing are warped to be small or flat, they are easy to assemble when incorporated into a case as a power semiconductor module, and the solderability at the time of soldering and joining a semiconductor chip or the like becomes good.
[0027]
Next, an etching pattern was formed with a photoresist in order to form a circuit pattern on the circuit copper plate of the brazed silicon nitride circuit board, and then the copper circuit board was etched by wet etching. At this time, a photoresist is applied to portions other than the inclined portion formed in advance on the outermost peripheral portion of the copper plate in order to prevent an unnecessary portion from being etched on the copper plate on the heat radiation side.
By changing the angle of the inclined portion formed before brazing and the etching time, the angle of the tip of the protruding portion of the brazing material layer and the length L of the protruding portion of the brazing material tip are different by changing the silicon nitride substrates of Examples and Comparative Examples. Prepared.
Table 3 shows the stress immediately below the tip of the brazing material layer and the presence / absence of cracks immediately below the tip of the brazing material after the heat cycle test after 1000 cycles. Here, the stress was calculated from the actually measured values of the inclination angle of the tip and the protruding length.
[0028]
[Table 3]
Figure 2004307307
[0029]
As shown in Examples 9 to 17, when the angle θ between the tip of the protruding portion of the brazing material layer and the plane of the substrate is in the range of 20 ° to 60 °, no crack occurs after the heat cycle test. On the other hand, as shown in Comparative Examples 5 to 10, when the length L of the protruding portion of the brazing material layer is 0 or 0.1 mm, cracks occur after the heat cycle test.
Further, as shown in Comparative Examples 11 to 13, when the angle θ between the tip of the protruding portion of the brazing material layer and the plane of the substrate is 75 °, the length L of the protruding portion of the brazing material layer is 0.25, 0.5 , 1.0 mm, the stress at the joint was high, and it was confirmed that cracks occurred after the heat cycle test.
Therefore, it is preferable that the angle θ formed by the tip is 20 ° to 60 ° and the generated stress is relatively small, ie, 45 or 50 ° or less. Alternatively, the length L of the protruding portion also depends on the angle θ formed by the tip portion, but is preferably selected from about 0.25 mm to 1 mm.
[0030]
【The invention's effect】
The present invention described above has the following effects.
(1) According to the method for manufacturing a ceramic circuit board of the present invention, the thickness variation portion is formed in advance on the outermost peripheral portions of the circuit-side copper plate and the heat-radiation-side copper plate before brazing, so that brazing bonding can be performed. Since the copper plate is prevented from warping during heating and a uniform load can be applied, a good joining state without voids in the brazing material layer can be obtained.
(2) In the silicon nitride circuit board of the present invention, after the inclined portion at the outermost periphery of the copper plate is removed by etching after brazing, a protruding portion having a gentle angle and high dimensional accuracy is formed. Since the stress at the location is reduced, the occurrence of cracks is small and the reliability is high.
(3) In the silicon nitride circuit board of the present invention, since the inclined portion at the outermost peripheral portion of the copper plate is removed by etching after brazing, the stress due to the deformation of the inclined portion is reduced, so that the stress at the protruding portion is reduced. The effect of relaxation is improved.
[Brief description of the drawings]
FIG. 1 is a sectional view showing one embodiment of a silicon nitride circuit board according to the present invention.
FIG. 2 is a top view showing a brazing material layer applied on a silicon nitride substrate.
3 is a cross-sectional view showing the silicon nitride circuit board shown in FIG. 1 before brazing.
FIG. 4 is a top view showing an example of a circuit copper plate.
FIG. 5 is an enlarged sectional view of an end of the circuit board of FIG. 1;
[Explanation of symbols]
1, 11: circuit copper plate 2, 2a to 2d: thickness variation portion (inclined surface) of metal plate
3, 4, 5: copper plates 6, 63a, 63c, 64a, 64c, 65a, 65c: protruding portion 7: ceramic substrate (silicon nitride substrate)
8, 9, 10, 12: brazing material layer

Claims (7)

セラミックス基板の少なくとも一方の面にろう材層を介して金属板を接合し、前記金属板をエッチング処理することにより所定の回路パターンを形成すると共に、前記金属板の外縁からはみ出したろう材層によるはみ出し部を形成したセラミックス回路基板において、前記金属板には肉厚変動部を形成しておき、前記ろう付け接合後のエッチング処理により前記肉厚変動部が除去されると共に、前記肉厚変動部跡にろう材層のはみ出し部が残って形成されていることを特徴とするセラミックス回路基板。A metal plate is joined to at least one surface of the ceramic substrate via a brazing material layer, and a predetermined circuit pattern is formed by etching the metal plate, and the brazing material layer protruding from the outer edge of the metal plate. In the ceramic circuit board in which the portion is formed, a thickness variation portion is formed on the metal plate, the thickness variation portion is removed by an etching process after the brazing, and the thickness variation portion trace is formed. A ceramic circuit board, wherein a protruding portion of a brazing material layer remains. 前記セラミックス回路基板の最外周部にエッチング処理後に形成される前記ろう材層のはみ出し部において、セラミックス基板平面とはみ出し部先端とのなす角度θが20°≦θ≦60°の範囲であることを特徴とする請求項1記載のセラミックス回路基板。In the protruding portion of the brazing material layer formed after the etching process on the outermost peripheral portion of the ceramic circuit board, the angle θ between the ceramic substrate plane and the protruding portion tip is in a range of 20 ° ≦ θ ≦ 60 °. The ceramic circuit board according to claim 1, wherein: 前記セラミックス回路基板の最外周部にエッチング処理後に形成される前記ろう材層のはみ出し部は、はみ出し長さLが0.25mm≦L≦1mmの範囲であることを特徴とする請求項1又は2記載のセラミックス回路基板。The protruding portion of the brazing material layer formed after the etching process on the outermost peripheral portion of the ceramic circuit board has a protruding length L in a range of 0.25 mm ≦ L ≦ 1 mm. The ceramic circuit board as described. 前記金属板の厚さが0.3mmから1.5mmの範囲であることを特徴とする請求項1〜3の何れかに記載のセラミックス回路基板。4. The ceramic circuit board according to claim 1, wherein a thickness of the metal plate is in a range of 0.3 mm to 1.5 mm. 前記セラミックス基板が窒化珪素焼結体からなり、前記金属板が銅板からなることを特徴とする請求項1〜4の何れかに記載のセラミックス回路基板。The ceramic circuit board according to any one of claims 1 to 4, wherein the ceramic substrate is made of a silicon nitride sintered body, and the metal plate is made of a copper plate. セラミックス基板の少なくとも一方の面にろう材層を介して金属板を接合し、前記金属板をエッチング処理することにより所定の回路パターンを形成すると共に、前記金属板の外縁からはみ出したろう材層によるはみ出し部を形成するセラミックス回路基板の製造方法であって、前記セラミックス基板の一面に所定の回路パターンに沿ったろう材層を形成し、前記金属板は予め最外周部に肉厚変動部を有するものを用いて、前記セラミックス基板と金属板に荷重を加えながらろう付け接合し、ろう付け接合後のエッチング処理により前記金属板の肉厚変動部を除去すると共に、前記除去後の肉厚変動部跡に連続するろう材層のはみ出し部を形成することを特徴とするセラミックス回路基板の製造方法。A metal plate is joined to at least one surface of the ceramic substrate via a brazing material layer, and a predetermined circuit pattern is formed by etching the metal plate, and the brazing material layer protruding from the outer edge of the metal plate. A method of manufacturing a ceramic circuit board for forming a portion, comprising forming a brazing material layer along a predetermined circuit pattern on one surface of the ceramic substrate, wherein the metal plate has a thickness variation portion in the outermost peripheral portion in advance. Using, while applying a load to the ceramic substrate and the metal plate, the brazing joining, while removing the thickness variation portion of the metal plate by an etching process after the brazing joint, to the trace of the thickness variation portion after the removal. A method for manufacturing a ceramic circuit board, comprising forming a protruding portion of a continuous brazing material layer. 前記セラミックス基板と金属板とのろう付け接合に際し、0.02kg/cm〜0.1kg/cmの荷重を印加してろう付け接合することを特徴とするセラミックス回路基板の製造方法。Wherein upon brazing between the ceramic substrate and the metal plate, 0.02kg / cm 2 ~0.1kg / method of manufacturing a ceramic circuit board, characterized in that cm by applying a load of 2 brazed.
JP2003106518A 2003-04-10 2003-04-10 Ceramic circuit board and method of manufacturing the same Pending JP2004307307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003106518A JP2004307307A (en) 2003-04-10 2003-04-10 Ceramic circuit board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106518A JP2004307307A (en) 2003-04-10 2003-04-10 Ceramic circuit board and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004307307A true JP2004307307A (en) 2004-11-04

Family

ID=33468686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106518A Pending JP2004307307A (en) 2003-04-10 2003-04-10 Ceramic circuit board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004307307A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286897A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Metal-ceramic bonding substrate
JP2007053349A (en) * 2005-07-20 2007-03-01 Mitsubishi Materials Corp Insulating substrate and manufacturing method thereof as well as power module and substrate thereof
JP2012119519A (en) * 2010-12-01 2012-06-21 Denki Kagaku Kogyo Kk Ceramic circuit board and module using same
WO2017222235A1 (en) * 2016-06-21 2017-12-28 주식회사 아모센스 Ceramic substrate and manufacturing method therefor
CN108155103A (en) * 2017-12-26 2018-06-12 天津荣事顺发电子有限公司 A kind of aluminium nitride ceramic copper-clad substrate and preparation method thereof
EP3370488A1 (en) 2017-03-03 2018-09-05 Dowa Metaltech Co., Ltd. Method for producing metal/ceramic circuit board
WO2019221174A1 (en) * 2018-05-16 2019-11-21 株式会社 東芝 Ceramic copper circuit board and method for producing same
JP2021101454A (en) * 2019-12-24 2021-07-08 株式会社東芝 Ceramic circuit board with screw pad member and semiconductor device using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286897A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Metal-ceramic bonding substrate
JP4498966B2 (en) * 2005-03-31 2010-07-07 Dowaホールディングス株式会社 Metal-ceramic bonding substrate
JP2007053349A (en) * 2005-07-20 2007-03-01 Mitsubishi Materials Corp Insulating substrate and manufacturing method thereof as well as power module and substrate thereof
JP2012119519A (en) * 2010-12-01 2012-06-21 Denki Kagaku Kogyo Kk Ceramic circuit board and module using same
WO2017222235A1 (en) * 2016-06-21 2017-12-28 주식회사 아모센스 Ceramic substrate and manufacturing method therefor
US11291113B2 (en) 2016-06-21 2022-03-29 Amosense Co. Ltd. Ceramic substrate and manufacturing method therefor
EP3370488A1 (en) 2017-03-03 2018-09-05 Dowa Metaltech Co., Ltd. Method for producing metal/ceramic circuit board
US10834823B2 (en) 2017-03-03 2020-11-10 Dowa Metaltech Co., Ltd. Producing metal/ceramic circuit board by removing residual silver
CN108155103A (en) * 2017-12-26 2018-06-12 天津荣事顺发电子有限公司 A kind of aluminium nitride ceramic copper-clad substrate and preparation method thereof
WO2019221174A1 (en) * 2018-05-16 2019-11-21 株式会社 東芝 Ceramic copper circuit board and method for producing same
US11277911B2 (en) 2018-05-16 2022-03-15 Kabushiki Kaisha Toshiba Ceramic copper circuit board and method for manufacturing the same
US11653447B2 (en) 2018-05-16 2023-05-16 Kabushiki Kaisha Toshiba Ceramic copper circuit board and method for manufacturing the same
JP2021101454A (en) * 2019-12-24 2021-07-08 株式会社東芝 Ceramic circuit board with screw pad member and semiconductor device using the same
JP7301732B2 (en) 2019-12-24 2023-07-03 株式会社東芝 Ceramic circuit board with screw pad member and semiconductor device using the same

Similar Documents

Publication Publication Date Title
CN103477429B (en) Semiconductor device and manufacturing method thereof
JP4793622B2 (en) Ceramic circuit board, power module, and method of manufacturing power module
JP7451638B2 (en) Method for manufacturing ceramic metal circuit board and method for manufacturing semiconductor device
JP2008010520A (en) Substrate for power module, and its manufacturing method
JP3347279B2 (en) Semiconductor device and method of manufacturing the same
JP3855947B2 (en) Electronic component device and manufacturing method thereof
CN115884952A (en) Method for producing a cermet substrate and cermet substrate produced by means of said method
JP2004307307A (en) Ceramic circuit board and method of manufacturing the same
JP4765110B2 (en) Metal-ceramic bonding substrate and manufacturing method thereof
JP4479531B2 (en) Ceramic circuit board and semiconductor module using the same
JP6278516B2 (en) Power module substrate
JP4124040B2 (en) Semiconductor device
JP4496404B2 (en) Metal-ceramic bonding substrate and manufacturing method thereof
JP2003174114A (en) Semiconductor circuit board and semiconductor device
JP3779074B2 (en) Ceramic circuit board and power module using it
JP2001230362A (en) Semiconductor element, method of soldering the same and circuit board
JP4427154B2 (en) Ceramic circuit board
JP2006286897A (en) Metal-ceramic bonding substrate
JPH08274423A (en) Ceramic circuit board
JP2004311691A (en) Metal board for circuit and ceramic circuit board
JP3871599B2 (en) Structure
JP2006140402A (en) Semiconductor integrated circuit device
JPH0368157A (en) High frequency thick film integrated circuit device
JP2005072098A (en) Semiconductor device
JP5052290B2 (en) Manufacturing method of circuit board with metal fittings