JP3779074B2 - Ceramic circuit board and power module using it - Google Patents

Ceramic circuit board and power module using it Download PDF

Info

Publication number
JP3779074B2
JP3779074B2 JP27281098A JP27281098A JP3779074B2 JP 3779074 B2 JP3779074 B2 JP 3779074B2 JP 27281098 A JP27281098 A JP 27281098A JP 27281098 A JP27281098 A JP 27281098A JP 3779074 B2 JP3779074 B2 JP 3779074B2
Authority
JP
Japan
Prior art keywords
circuit board
ceramic
size
metal plate
ceramic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27281098A
Other languages
Japanese (ja)
Other versions
JP2000101203A (en
Inventor
健次 門田
勲 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP27281098A priority Critical patent/JP3779074B2/en
Publication of JP2000101203A publication Critical patent/JP2000101203A/en
Application granted granted Critical
Publication of JP3779074B2 publication Critical patent/JP3779074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Description

【0001】
【発明の属する技術分野】
本発明は、半田クラックに対する耐久性を向上させた、特に、ICパッケージやIGBT、GTO等のパワーモジュールに好適なセラミックス回路基板とそれを用いたパワーモジュールに関する。
【0002】
【従来の技術】
半導体分野において、LSIの集積化や高速化がすすむことに加え、GTOやIGBT等のパワーデバイスの用途が拡大することなどの事情から、シリコンチップの発熱量が増加の一途をたどっている。そして、前記パワーモジュールが電鉄や電気自動車などの長期信頼性が要求される分野に採用されるにつれ、シリコンチップが搭載されている回路基板、あるいは回路基板が搭載されているモジュールの放熱特性が一層重大な問題となってきている。
【0003】
これらの用途に於いては、半導体素子を搭載したセラミックス回路基板が銅等の熱放散性に優れる金属製ヒートシンクに半田を介して接合され用いられている。しかし、低熱膨張率のセラミックス回路基板と高熱膨張率の金属製ヒートシンクとの熱膨張差が大きいため、前記半導体素子から発生した熱に原因して、セラミックス回路基板とヒートシンクとを接合している半田部に「半田クラック」と呼ばれるクラックを生じさせ、セラミックス回路基板とヒートシンクとの間の熱の伝導経路を遮断し、その結果、半導体素子の放熱が充分に行われずに前記半導体素子の温度上昇、熱的劣化を生じさせ、機能が停止してしまう問題がある。
【0004】
半田クラックの発生は車両、電気自動車などの長期的に信頼性を必要とする用途にとっては致命的な欠点であり、放熱特性に優れ、電気的信頼性が大幅に向上したセラミックス回路基板とそれを用いたモジュールが切望されている。
【0005】
最近、前述の熱膨張差の発生を抑制することを目的に、Al−SiC複合体からなる低熱膨張率のヒートシンクを使用したパワーモジュールが開発され、長期信頼性を必要とするハイブリッドカーや電鉄などに使用されはじめている。
【0006】
Al―SiC複合体からなる低熱膨張率のヒートシンクは、パワーモジュールの長期信頼性に対して非常に効果的であり、いろいろな製法によるものが市販されている。例えば、ダイキャスト法(特開平5−508350号公報)や溶湯鍛造法(「まてりあ」第36巻、第1号、1997年、40−46頁)などの高圧鋳造法、或いは、自発浸透法(特開平2−197368号公報)等が知られている。
【0007】
しかし、Al−SiC複合体を用いたヒートシンクは、前記のいずれの製法によるものであっても、従来公知の銅製ヒートシンクよりも製造コストが高いという欠点がある。その理由として、Al−SiC複合体の製造法自体から由来する要因や、また板状のヒートシンクとしての寸法的な歩留まり要因などが挙げられるが、いずれせよ従来から使用されている銅板にはコストや寸法精度の点で及ばない。
【0008】
また、Al−SiC複合体の熱伝導率は、SiCの含有量に依存するが、約150W/m・K〜200W/m・K程度であり、銅製ヒートシンクの熱伝導率の約400W/m・Kに対して約半分以下の低熱伝導率である。従って、半導体素子から発生する熱を効率的にパワーモジュールから外部に逃すには不利であり、パワーモジュールとしての許容電力量が低くなってしまう欠点がある。
【0009】
上記理由のために、Al−SiC複合体からなるヒートシンクは、その信頼性の高さは認められながらも、使用用途は限定され、銅製ヒートシンクからのAl−SiC複合体からなるヒートシンクへの置き換えは進んでいない。特に、廉価であることを要求される汎用品のパワーモジュールについては、銅製ヒートシンクを今後とも用いる趨勢にある。
【0010】
【発明が解決しようとする課題】
即ち、廉価で熱伝導率の高い銅製ヒートシンクを使用し、しかも、前記半田クラックを抑制し得るセラミックス回路基板、或いはそれを用いたモジュールが強く望まれているものの、実用的に満足できるものは得られていなかった。
【0011】
【課題を解決するための手段】
本発明者らは、上記の事情に鑑み鋭意検討を重ねた結果、セラミックス回路基板の構造を若干変更することのみで、耐半田クラック性を大幅に向上させ得ることを実験的に見出し、本発明に至ったものである。
【0012】
即ち、本発明は、一主面上に回路を、他の一主面上に放熱部材への接合用金属板を設けてなるセラミックス回路基板であって、前記接合用金属板が、セラミックス基板と対向する面において、接合部分と該接合分の周囲に設けられた非接合部分とを有し、しかも、非接合部分で厚みの異なる部分を有することを特徴とするセラミックス回路基板である。
【0013】
また、本発明は、接合用金属板の大きさがセラミックス基板の大きさよりも大きく、非接合部分の大きさが金属板の端部から接合部境界まで0.1mm以上の距離を有することを特徴とする前記のセラミックス回路基板、或いは、接合用金属板の大きさがセラミックス基板の大きさと同等もしくは小さく、非接合部分の大きさが金属板の端部から接合部境界まで0.1mm以上の距離を有することを特徴とする前記のセラミックス回路基板である。
【0014】
本発明は、前記接合用金属板上にヒートシンクを設けたことを特徴とする前記のセラミックス回路基板であり、該セラミックス回路基板を用いてなることを特徴とするパワーモジュールである。
【0015】
【発明の実施の形態】
本発明のセラミックス回路基板は、図1、図2及び図3に示したとおりに、セラミックス基板1の表裏に金属板2、3が接合され、片面(表面)の金属板2は、パターニングされ回路として使用され、他の片面(裏面)の金属板3は、ヒートシンクと呼ばれる放熱部材4に半田5を介して接合された構造を有し、前記放熱部材4への接合に用いられる金属板3が、セラミックス基板1と対向する面において、接合部分(A)と該接合分の周囲に設けられた非接合部分(B、B’)とを有しており、しかも、非接合部分で厚みの異なる部分を有することを本質としていて、この構造を採用することで、耐半田クラック性が極めて優れるという特徴を有する。
【0016】
前記構造を採用するときに耐半田クラック性が優れるという理由は明らかではないが、本発明者らは以下のように推察している。即ち、従来のセラミックス回路基板は、放熱部材4への接合に用いられる金属板3について、セラミックスとの接合界面と金属板端部は一致しており、セラミックスと金属板の間には隙間、または銅板のはみ出しがない構造を採用している(図8参照)。このため、従来のセラミックス回路基板では、セラミックス回路基板と金属製ヒートシンクとの熱膨張差に起因する応力が、接合用金属板の端部から半田内部に集中的に加わるため、半田クラックを発生しやすい。
【0017】
これに対して、本発明のセラミックス回路基板では、非接合部を接合部の周囲に設けることにより、応力の一部を接合用金属板3とセラミックス基板1の接合部分に分担させるようになり、半田に加わる応力集中を緩和させることができ、その結果、半田クラックに対する耐久性を向上させることができるものである。加えて、非接合部分の金属板が厚みの異なる部分を有することによって、セラミックス基板1の接合部分端部が、過度の応力集中によって破壊することをも防いでいる。
【0018】
従って、非接合部は、図1に例示したとおりにセラミックス基板と対向するように設けられていても、図2に例示したとおりにセラミックス基板からはみ出すように設けられていても、或いは図3に例示したとおりセラミックス基板と対向する部分とはみ出す部分があるように設けられていても構わない。更に、非接合部分の金属板の厚みの異なる部分は、図4に例示したとおりに切り欠きにより設けられていても、図5に示したとおりに切り欠きに幅を持たせて溝に加工していても、図6に例示したとおりにテーパーにより設けられていても、図7に例示したとおりに段差により設けられていても構わない。
【0019】
本発明において、非接合部分(B、B’)の大きさが、金属板の端部より接合部までの距離が0.1mm以上であることが好ましい。0.1mm未満の場合には、前記効果が顕著でない場合があり、その結果、本発明の目的を達成できないことがある。また、その上限の距離については、特に定めるべき技術的な理由はないが、不必要に大きくても基板サイズの増大につながるので意味がなく、セラミックス基板の一般的な70mm×35mmの大きさの場合には、非接合部が10.0mm以下であれば良い。
【0020】
本発明は、前記の接合用金属板上に半田を介してヒートシンクを設けたセラミックス回路基板であり、前記セラミックス回路基板の回路上に半導体素子等の電子、電気部品を搭載したパワーモジュールである。いずれも、前記セラミックス回路基板の耐半田クラック性に優れるという特徴を有するので、長期的な信頼性に優れるという特徴を有している。
【0021】
本発明のセラミックス回路基板を得る方法としては、従来公知の方法を組み合わせて得ることができるが、次に例示する、活性金属含有ろう材を介して接合用金属板をセラミックス基板に接合する方法が、前記非接合部分(B、B’)の大きさを制御しやすいという特徴があるし、また、作製しやすいこと、更に、従来の基板寸法やプロセスを大きく変えることがなく、製造コストの上昇も小さいといった利点がある。
【0022】
即ち、セラミックス基板の主面上に、回路となる金属板と、放熱部材に接合される金属板3を、ろう材により接合する。セラミックス基板としては、窒化アルミニウム、窒化珪素、酸化アルミニウム、炭化珪素等が知られているが、本発明は窒化アルミニウム、窒化珪素等の熱膨張率の小さな窒化物セラミックスにおいて適用され、その効果が著しい。また、これら窒化物セラミックス基板に銅等の金属板をろう材を介して接合する場合、ろう材中にTi、Zr、Hf等の窒化物セラミックスの成分と反応する活性金属を含有するろう材を用いることが好ましい。
【0023】
また、ヒートシンクなどの放熱部材は、前記したとおりに、熱伝導性に優れる銅が用いられることが多く、接合用金属としても銅が好ましく使用されるが、本発明においては、これに限定されるものでなく、本発明の効果を阻害しない限り、アルミニウム、タングステン、モリブデン等の金属、もしくは前述の金属−セラミックス複合材などを用いることも出来る。
【0024】
金属板のセラミックス基板への接合に当たっては、活性金属含有ろう材をセラミックス基板の一主面の全面に塗布し、この面には回路用金属板を接合する。他の一主面には、接合用金属板の大きさよりも所望の寸法だけ小さな大きさで前記活性金属含有ろう材をセラミックス基板に塗布し、接合後に非接合部分(B)が存在するようにすれば良い。
【0025】
また、金属板のセラミックス基板への他の接合方法として、活性金属含有ろう材をセラミックス基板両面に前面塗付し、回路用金属板については上記と同一操作とするが、他の一主面にはセラミックス基板よりも大きな寸法の金属板を接合し、金属板のはみ出し部分(B’)を設ける方法を採用することもできる。
【0026】
接合の方法に関しては、従来公知の方法で加熱し、前記ろう材を溶融、反応せしめて、セラミックス基板と金属板とを接合する。その後、回路用金属板、必要ならば接合用金属板にエッチングマスクを被せ、エッチングすることで、回路形成、接合用金属板の寸法調整を行うことで、本発明にセラミックス回路基板を容易に得ることが出来る。
【0027】
【実施例】
〔実施例1〕
銀粉末75重量部、銅粉末25重量部、ジルコニウム粉末15重量部、テルピネオール15重量部、及びポリイソブチルメタアクリレートのトルエン溶液を固形分で1重量部加えて良く混練し、ろう材ペーストを調整した。このろう材ペーストを大きさ60×35mm、厚み0.635mmの窒化珪素板の片面に全面塗布し、もう片面には55×30mmの大きさで中心にスクリーン印刷機により塗布した。その際の塗布量(乾燥後)は6〜8mg/cm2とした。
【0028】
ろう材ペーストが全面に塗布された窒化珪素板の表面側に大きさ60×35mm、厚み0.3mmの無酸素銅板を接触配置した。裏面には、大きさ60×35mm、厚み0.25mmの無酸素銅板の片面周囲に端部から2mmの位置に深さ0.05mmの切れ込みを加工し、加工面をセラミックス側になるように接触配置した。これを、圧力1×10-5Torr以下の真空下、900℃で30分加熱した後、炉冷し、接合体を作製した。
【0029】
前記接合体の厚み0.3mmの銅板上には回路パターンの形状で、別の銅板上には銅板全面にUV硬化タイプのエッチングレジストをスクリーン印刷で塗布、硬化させ、塩化第2鉄水溶液を用いてエッチング処理を行なうことにより銅回路パターンを形成した。さらに、銅回路間には不要なろう材や活性金属成分と窒化珪素との反応生成物が残留するので、温度60℃、10%フッ化アンモニウム水溶液に10分間浸漬して、前記残留物を除去し、セラミックス回路基板を作製した。
【0030】
上記操作で得たセラミックス回路基板を用いて、50×90×3mmの銅板中央部に鉛−錫共晶半田を用い、230℃の温度でリフローにより半田付けを行ない一体構造とし、モジュールを作製した。このモジュールについて、ヒートサイクル試験を行なった。
【0031】
ヒートサイクル試験は気相中において−40℃で30分保持した後に室温で10分放置し、次に気相中125℃で30分保持した後に室温で10分放置することを1回とした。この試験を100、300、500回経過させた後に、超音波映像探査装置(日立建機製mi−scope)を用いて、セラミックス回路基板と銅製ヒートシンクとの間に存在する半田のクラック発生状態を調べた。その結果、表1に示したとおりに、500回経過後にも何ら異常がなく、良好であった。
【0032】
【表1】

Figure 0003779074
【0033】
〔実施例2〕
実施例1で用いたろう材ペーストを準備した。このろう材ペーストを60×35mm、厚み0.635mmの窒化珪素板の両面に全面塗布しスクリーン印刷機により塗布した。その際の塗布量(乾燥後)は6〜8mg/cm2とした。
【0034】
ろう材ペーストが全面に塗布された窒化珪素板の片面に大きさ60mm×35mm厚み0.3mmの無酸素銅板を、その裏面に大きさ70mm×35mm厚み0.25mmの無酸素銅板の片面周囲に端部から3mmの位置に深さ0.05mmの切れ込みを加工し、加工面をセラミックス側になるように接触配置した。接触配置してから、実施例1と同一条件で接合体を作製した。
【0035】
前記接合体の厚み0.3mmの銅板上には回路パターンの形状で、0.15mmの銅板上には銅板全面にUV硬化タイプのエッチングレジストをスクリーン印刷で塗布、更に0.15mmの銅板のはみ出し部分の基板側にも小型ローラーにて同様にエッチングレジストを塗布してUV硬化させ、塩化第2鉄溶液を用いてエッチング処理を行なうことにより銅回路パターンを形成した。さらに、銅回路間には不要なろう材や活性金属成分と窒化珪素との反応生成物が残留するので、温度60℃、10%フッ化アンモニウム溶液に10分間浸漬して前記残留物を除去し、セラミックス回路基板を作製した。実施例1と同じ評価を行った結果を表1に示したが、実施例1と同様に良好な結果が得られた。
【0036】
〔実施例3〕
実施例1で用いたろう材ペーストを準備した。このろう材ペーストを大きさ60×35mm、厚み0.635mmの窒化珪素板の片面に全面塗布し、もう片面には55×30mmの大きさで中心にスクリーン印刷機により塗布した。その際の塗布量(乾燥後)は6〜8mg/cm2とした。
【0037】
ろう材ペーストが全面に塗布された窒化珪素板の片面に大きさ60mm×35mm厚み0.3mmの無酸素銅板を、その裏面に大きさ70mm×35mm厚み0.25mmの無酸素銅板の片面周囲に端部から3mmの位置に深さ0.05mmの切れ込みを加工し、加工面をセラミックス側になるように接触配置した。接触配置してから、実施例1と同一条件で接合体を作製した。
【0038】
前記接合体の厚み0.3mmの銅板上には回路パターンの形状で、0.15mmの銅板上には銅板全面にUV硬化タイプのエッチングレジストをスクリーン印刷で塗布、更に0.15mmの銅板のはみ出し部分の基板側にも小型ローラーにて同様にエッチングレジストを塗布してUV硬化させ、塩化第2鉄溶液を用いてエッチング処理を行なうことにより銅回路パターンを形成した。さらに、銅回路間には不要なろう材や活性金属成分と窒化珪素との反応生成物が残留するので、温度60℃、10%フッ化アンモニウム溶液に10分間浸漬して前記残留物を除去し、セラミックス回路基板を作製した。実施例1と同じ評価を行った結果を表1に示したが、実施例1と同様に良好な結果が得られた。
【0039】
〔実施例4〕
実施例1で用いたろう材ペーストを準備した。このろう材ペーストを大きさ60×35mm、厚み0.635mmの窒化珪素板の片面に全面塗布し、もう片面には55×30mmの大きさで中心にスクリーン印刷機により塗布した。その際の塗布量(乾燥後)は6〜8mg/cm2とした。
【0040】
ろう材ペーストが全面に塗布された窒化珪素板の片面に大きさ60mm×35mm厚み0.3mmの無酸素銅板を、その裏面に、大きさ70mm×35mm厚み0.25mmの無酸素銅板の片面周囲に端部から5mmの位置に深さ0.05mm幅0.5mmの溝を加工し、加工面をセラミックス側になるように接触配置した。接触配置してから、実施例1と同一条件で接合体を作製した。
【0041】
前記接合体の厚み0.3mmの銅板上には回路パターンの形状で、0.15mmの銅板上には銅板全面にUV硬化タイプのエッチングレジストをスクリーン印刷で塗布、更に0.15mmの銅板のはみ出し部分の基板側にも小型ローラーにて同様にエッチングレジストを塗布してUV硬化させ、塩化第2鉄溶液を用いてエッチング処理を行なうことにより銅回路パターンを形成した。さらに、銅回路間には不要なろう材や活性金属成分と窒化珪素との反応生成物が残留するので、温度60℃、10%フッ化アンモニウム溶液に10分間浸漬して前記残留物を除去し、セラミックス回路基板を作製した。実施例1と同じ評価を行った結果を表1に示したが、実施例1と同様に良好な結果が得られた。
【0042】
〔実施例5〕
実施例1で用いたろう材ペーストを準備した。このろう材ペーストを大きさ60×35mm、厚み0.635mmの窒化珪素板の片面に全面塗布し、もう片面には50×30mmの大きさで中心にスクリーン印刷機により塗布した。その際の塗布量(乾燥後)は6〜8mg/cm2とした。
【0043】
ろう材ペーストが全面に塗布された窒化珪素板の表面側に大きさ60×35mm、厚み0.3mmの無酸素銅板を接触配置した。その裏面には、大きさ60×35mm、中心部の50×30mmの大きさは厚み0.25mmで、端部の厚みは0.15mmになるようにテーパー加工した無酸素銅板を接触配置した。これを、圧力1×10-5Torr以下の真空下、900℃で30分加熱した後、炉冷し、接合体を作製した。
【0044】
前記接合体の厚み0.3mmの銅板上には回路パターンの形状で、別の銅板上には銅板全面にUV硬化タイプのエッチングレジストをスクリーン印刷で塗布、硬化させ、塩化第2鉄水溶液を用いてエッチング処理を行なうことにより銅回路パターンを形成した。さらに、銅回路間には不要なろう材や活性金属成分と窒化珪素との反応生成物が残留するので、温度60℃、10%フッ化アンモニウム水溶液に10分間浸漬して、前記残留物を除去し、セラミックス回路基板を作製した。実施例1と同じ評価を行った結果を表1に示したが、実施例1と同様に良好な結果が得られた。
【0045】
〔実施例6〕
実施例1で用いたろう材ペーストを準備した。このろう材ペーストを60×35mm、厚み0.635mmの窒化珪素板の両面に全面塗布しスクリーン印刷機により塗布した。その際の塗布量(乾燥後)は6〜8mg/cm2とした。
【0046】
ろう材ペーストが全面に塗布された窒化珪素板の片面に大きさ60mm×35mm厚み0.3mmの無酸素銅板を、その裏面に大きさ70mm×35mm中心部の60×30mmの大きさは厚み0.25mmで、その外側の厚みは0.15mmに加工した無酸素銅板を加工面がセラミックス側になるように接触配置した。接触配置してから、実施例1と同一条件で接合体を作製した。
【0047】
前記接合体の厚み0.3mmの銅板上には回路パターンの形状で、0.15mmの銅板上には銅板全面にUV硬化タイプのエッチングレジストをスクリーン印刷で塗布、更に0.15mmの銅板のはみ出し部分の基板側にも小型ローラーにて同様にエッチングレジストを塗布してUV硬化させ、塩化第2鉄溶液を用いてエッチング処理を行なうことにより銅回路パターンを形成した。さらに、銅回路間には不要なろう材や活性金属成分と窒化珪素との反応生成物が残留するので、温度60℃、10%フッ化アンモニウム溶液に10分間浸漬して前記残留物を除去し、セラミックス回路基板を作製した。実施例1と同じ評価を行った結果を表1に示したが、実施例1と同様に良好な結果が得られた。
【0048】
〔実施例7〕
実施例7については、セラミックス基板として窒化アルミニウム板を用いた以外は実施例1に示す方法で試料を得た。実施例1と同じ評価を行った結果を表1に示したが、500回経過後にも何ら異常がなく、良好であった。
【0049】
〔実施例8〕
実施例8については、セラミックス基板として窒化アルミニウム板を用いた以外は実施例2に示す方法で試料を得た。実施例1と同じ評価を行った結果を表1に示したが、500回経過後にも何ら異常がなく、良好であった。
【0050】
〔比較例1〕
窒化アルミニウム板の裏表両面の全面に実施例1と同様のろう材を塗布し、その後は実施例1と同じ操作でセラミックス回路基板も作製し、実施例1と同じ評価を行った。その結果を表1に示したが、300回後に部分的にクラックが認められ、500回後にはかなりの部分にクラック、剥離が認められた。
【0051】
【発明の効果】
本発明のセラミックス回路基板は、熱サイクル時に発生するセラミックス回路基板と金属製ヒートシンクとの間に発生しがちな半田クラックを大幅に抑制しているという特徴を有し産業上非常に有用なものである。また、該セラミックス回路基板を用いたパワーモジュールは、安価で放熱性が高い金属製ヒートシンク用いながらも、熱サイクルを被る実使用条件下での信頼性が大幅に向上しているという特徴がある。
【図面の簡単な説明】
【図1】本発明の実施例1に係るセラミックス回路基板の断面模式図。
【図2】本発明の実施例2に係るセラミックス回路基板の断面模式図。
【図3】本発明の実施例3に係るセラミックス回路基板の断面模式図。
【図4】本発明の実施例1、2、3に係るセラミックス回路基板の接合用金属板端部断面拡大模式図。
【図5】本発明の実施例4に係るセラミックス回路基板の接合用金属板端部断面拡大模式図。
【図6】本発明の実施例5に係るセラミックス回路基板の接合用金属板端部断面拡大模式図。
【図7】本発明の実施例6に係るセラミックス回路基板の接合用金属板端部断面拡大模式図。
【図8】比較例である従来公知のセラミックス回路基板の断面図。
【符号の説明】
1 セラミックス基板
2 金属板(回路用)
3 金属板(接合用)
4 放熱部材(ヒートシンク)
5 半田
6 半導体部品
A 接合部分
B、B’ 非接合部分[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceramic circuit board having improved durability against solder cracks, particularly suitable for power modules such as IC packages, IGBTs, GTOs, and the like, and a power module using the same.
[0002]
[Prior art]
In the semiconductor field, the amount of heat generated by a silicon chip is constantly increasing due to the fact that the use of power devices such as GTO and IGBT is expanded in addition to the progress of LSI integration and speedup. As the power module is used in fields requiring long-term reliability such as electric railways and electric vehicles, the heat dissipation characteristics of the circuit board on which the silicon chip is mounted or the module on which the circuit board is mounted are further increased. It has become a serious problem.
[0003]
In these applications, a ceramic circuit board on which a semiconductor element is mounted is used by being joined to a metal heat sink having excellent heat dissipation such as copper via solder. However, since the thermal expansion difference between the ceramic circuit board having a low thermal expansion coefficient and the metal heat sink having a high thermal expansion coefficient is large, the solder that joins the ceramic circuit board and the heat sink due to heat generated from the semiconductor element. Causing a crack called "solder crack" in the part, blocking the heat conduction path between the ceramic circuit board and the heat sink, and as a result, the semiconductor element is not sufficiently dissipated and the temperature of the semiconductor element rises. There is a problem that the function is stopped due to thermal deterioration.
[0004]
The generation of solder cracks is a fatal defect for applications that require long-term reliability, such as vehicles and electric vehicles. Ceramic circuit boards with excellent heat dissipation characteristics and greatly improved electrical reliability The modules used are anxious.
[0005]
Recently, for the purpose of suppressing the above-mentioned difference in thermal expansion, a power module using a heat sink having a low thermal expansion coefficient made of an Al-SiC composite has been developed, such as a hybrid car or electric railway that requires long-term reliability. It is starting to be used.
[0006]
A heat sink having a low coefficient of thermal expansion made of an Al—SiC composite is very effective for the long-term reliability of a power module, and products manufactured by various manufacturing methods are commercially available. For example, a high pressure casting method such as a die casting method (Japanese Patent Laid-Open No. 5-508350) or a molten metal forging method ("Materia" Vol. 36, No. 1, 1997, pp. 40-46) or spontaneous penetration The method (Japanese Patent Laid-Open No. 2-197368) is known.
[0007]
However, a heat sink using an Al—SiC composite has a disadvantage that its manufacturing cost is higher than that of a conventionally known copper heat sink, regardless of which of the above-described manufacturing methods. Reasons for this include factors derived from the manufacturing method of the Al-SiC composite itself, and dimensional yield factors as a plate-shaped heat sink. It is not enough in terms of dimensional accuracy.
[0008]
The thermal conductivity of the Al-SiC composite depends on the SiC content, but is about 150 W / m · K to 200 W / m · K, and is about 400 W / m · K, which is the thermal conductivity of the copper heat sink. Low thermal conductivity of about half or less than K. Therefore, it is disadvantageous for efficiently releasing the heat generated from the semiconductor element to the outside from the power module, and there is a drawback that the allowable power amount as the power module is lowered.
[0009]
For the above reasons, the heat sink made of an Al-SiC composite is recognized for its high reliability, but its use is limited. The replacement of a heat sink made of copper with a heat sink made of an Al-SiC composite is not possible. Not progressing. In particular, for general-purpose power modules that are required to be inexpensive, there is a trend to use copper heat sinks in the future.
[0010]
[Problems to be solved by the invention]
In other words, a ceramic circuit board that can be used inexpensively and has a high thermal conductivity and can suppress the solder cracks, or a module using the same is strongly desired, but a practically satisfactory one is obtained. It was not done.
[0011]
[Means for Solving the Problems]
As a result of intensive studies in view of the above circumstances, the present inventors have experimentally found that solder crack resistance can be significantly improved by only slightly changing the structure of the ceramic circuit board. Has been reached.
[0012]
That is, the present invention is a ceramic circuit board in which a circuit is provided on one main surface and a metal plate for bonding to a heat radiating member is provided on the other main surface, and the bonding metal plate is a ceramic substrate and A ceramic circuit board having a joining portion and a non-joining portion provided around the joining portion on opposite surfaces, and having a non-joining portion having a different thickness.
[0013]
Further, the present invention is characterized in that the size of the bonding metal plate is larger than the size of the ceramic substrate, and the size of the non-bonded portion has a distance of 0.1 mm or more from the end of the metal plate to the boundary of the bonded portion. The size of the ceramic circuit board or the metal plate for bonding is equal to or smaller than the size of the ceramic substrate, and the size of the non-bonded portion is a distance of 0.1 mm or more from the end of the metal plate to the boundary of the bonded portion It is said ceramic circuit board characterized by having.
[0014]
The present invention is the above-described ceramic circuit board, wherein a heat sink is provided on the joining metal plate, and the power module is characterized by using the ceramic circuit board.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIGS. 1, 2, and 3, the ceramic circuit board of the present invention has metal plates 2 and 3 bonded to the front and back of the ceramic substrate 1, and the metal plate 2 on one side (front surface) is patterned to form a circuit. The other one side (back side) metal plate 3 has a structure joined to a heat radiating member 4 called a heat sink via a solder 5, and the metal plate 3 used for joining to the heat radiating member 4 is The surface facing the ceramic substrate 1 has a bonded portion (A) and non-bonded portions (B, B ′) provided around the bonded portion, and the non-bonded portions have different thicknesses. It has the characteristics that the solder crack resistance is extremely excellent by adopting this structure based on the essence of having a portion.
[0016]
The reason why the solder crack resistance is excellent when the above structure is adopted is not clear, but the present inventors presume as follows. That is, in the conventional ceramic circuit board, for the metal plate 3 used for joining to the heat radiating member 4, the joining interface with the ceramic and the end of the metal plate are coincident, and there is a gap between the ceramic and the metal plate, or the copper plate. A structure with no protrusion is adopted (see FIG. 8). For this reason, in a conventional ceramic circuit board, stress due to the difference in thermal expansion between the ceramic circuit board and the metal heat sink is concentrated on the inside of the solder from the end of the joining metal plate, so that a solder crack occurs. Cheap.
[0017]
On the other hand, in the ceramic circuit board of the present invention, by providing a non-joining portion around the joining portion, a part of the stress is shared by the joining portion of the joining metal plate 3 and the ceramic substrate 1, Stress concentration applied to the solder can be relaxed, and as a result, durability against solder cracks can be improved. In addition, since the metal plate of the non-bonded portion has portions having different thicknesses, the bonded portion end portion of the ceramic substrate 1 is also prevented from being broken due to excessive stress concentration.
[0018]
Therefore, the non-joining portion may be provided so as to face the ceramic substrate as illustrated in FIG. 1, or may be provided so as to protrude from the ceramic substrate as illustrated in FIG. As illustrated, it may be provided so that there is a portion protruding from the portion facing the ceramic substrate. Furthermore, even if the non-joined portions of the metal plate having different thicknesses are provided by notches as illustrated in FIG. 4, the notches are processed into grooves with a width as shown in FIG. Even if it is provided by a taper as illustrated in FIG. 6, it may be provided by a step as illustrated in FIG.
[0019]
In this invention, it is preferable that the distance from the edge part of a metal plate to a junction part is 0.1 mm or more about the magnitude | size of a non-joining part (B, B '). If the thickness is less than 0.1 mm, the effect may not be significant, and as a result, the object of the present invention may not be achieved. Further, there is no technical reason to determine the upper limit distance, but it is meaningless even if it is unnecessarily large, because it leads to an increase in the substrate size, and the ceramic substrate has a general size of 70 mm × 35 mm. In such a case, the non-joined portion may be 10.0 mm or less.
[0020]
The present invention is a ceramic circuit board in which a heat sink is provided on the metal plate for bonding via solder, and a power module in which electronic and electrical components such as semiconductor elements are mounted on the circuit of the ceramic circuit board. All of them have the feature that the ceramic circuit board is excellent in solder crack resistance, so that it has a long-term reliability.
[0021]
As a method of obtaining the ceramic circuit board of the present invention, it can be obtained by combining conventionally known methods. However, there is a method of joining a metal plate for joining to a ceramic substrate through an active metal-containing brazing material as exemplified below. The size of the non-bonded portion (B, B ′) is easy to control, and it is easy to manufacture, and the manufacturing cost is increased without greatly changing the conventional substrate size and process. Has the advantage of being small.
[0022]
That is, on the main surface of the ceramic substrate, the metal plate to be a circuit and the metal plate 3 to be joined to the heat radiating member are joined by the brazing material. As the ceramic substrate, aluminum nitride, silicon nitride, aluminum oxide, silicon carbide and the like are known. However, the present invention is applied to nitride ceramics having a low thermal expansion coefficient such as aluminum nitride and silicon nitride, and the effect is remarkable. . In addition, when a metal plate such as copper is joined to these nitride ceramic substrates via a brazing material, a brazing material containing an active metal that reacts with a component of nitride ceramics such as Ti, Zr, and Hf is contained in the brazing material. It is preferable to use it.
[0023]
Further, as described above, copper having excellent thermal conductivity is often used as a heat radiating member such as a heat sink, and copper is preferably used as a bonding metal. However, the present invention is limited to this. As long as the effects of the present invention are not impaired, a metal such as aluminum, tungsten, or molybdenum, or the above-described metal-ceramic composite material can also be used.
[0024]
In joining the metal plate to the ceramic substrate, an active metal-containing brazing material is applied to the entire main surface of the ceramic substrate, and a circuit metal plate is joined to this surface. On the other main surface, the active metal-containing brazing material is applied to the ceramic substrate in a size smaller than the size of the joining metal plate by a desired dimension so that a non-joined portion (B) exists after joining. Just do it.
[0025]
In addition, as another method for joining the metal plate to the ceramic substrate, the active metal-containing brazing material is coated on both sides of the ceramic substrate, and the circuit metal plate is operated in the same manner as above, but on the other main surface. A method of joining a metal plate having a size larger than that of the ceramic substrate and providing a protruding portion (B ′) of the metal plate can also be adopted.
[0026]
Regarding the joining method, the ceramic substrate and the metal plate are joined by heating by a conventionally known method to melt and react the brazing material. Thereafter, a ceramic circuit board is easily obtained in the present invention by covering the metal plate for circuit, if necessary, with an etching mask and etching to adjust the dimensions of the metal plate for circuit formation and bonding. I can do it.
[0027]
【Example】
[Example 1]
75 parts by weight of silver powder, 25 parts by weight of copper powder, 15 parts by weight of zirconium powder, 15 parts by weight of terpineol, and 1 part by weight of a toluene solution of polyisobutyl methacrylate were added and kneaded well to prepare a brazing material paste. . This brazing material paste was applied to one side of a silicon nitride plate having a size of 60 × 35 mm and a thickness of 0.635 mm, and applied to the other side by a screen printer with a size of 55 × 30 mm in the center. The coating amount (after drying) at that time was 6 to 8 mg / cm 2 .
[0028]
An oxygen-free copper plate having a size of 60 × 35 mm and a thickness of 0.3 mm was placed in contact with the surface side of the silicon nitride plate coated with the brazing material paste on the entire surface. On the back side, a notch with a depth of 0.05 mm is processed around one side of an oxygen-free copper plate with a size of 60 x 35 mm and a thickness of 0.25 mm at a position 2 mm from the end, and the processed surface is in contact with the ceramic side Arranged. This was heated at 900 ° C. for 30 minutes under a vacuum of 1 × 10 −5 Torr or less, and then cooled in a furnace to prepare a joined body.
[0029]
The joined body is formed into a circuit pattern on a 0.3 mm thick copper plate, and a UV curable etching resist is applied to the entire copper plate by screen printing on another copper plate and cured, and a ferric chloride aqueous solution is used. A copper circuit pattern was formed by etching. Furthermore, unnecessary brazing material and reaction products of active metal components and silicon nitride remain between the copper circuits, so that the residue is removed by immersing in a 10% ammonium fluoride aqueous solution at a temperature of 60 ° C. for 10 minutes. Then, a ceramic circuit board was produced.
[0030]
Using the ceramic circuit board obtained by the above operation, a lead-tin eutectic solder was used at the center of a 50 × 90 × 3 mm copper plate, and soldering was performed by reflowing at a temperature of 230 ° C. to form an integrated structure, thereby producing a module. . The module was subjected to a heat cycle test.
[0031]
The heat cycle test was held at −40 ° C. for 30 minutes in the gas phase, then left at room temperature for 10 minutes, and then held at 125 ° C. for 30 minutes in the gas phase and then left at room temperature for 10 minutes. After passing this test 100, 300, and 500 times, the occurrence of cracks in the solder existing between the ceramic circuit board and the copper heat sink was investigated using an ultrasonic image survey device (Hitachi Construction Machinery mi-scope). It was. As a result, as shown in Table 1, there was no abnormality even after 500 times, and it was good.
[0032]
[Table 1]
Figure 0003779074
[0033]
[Example 2]
The brazing paste used in Example 1 was prepared. This brazing material paste was applied on both surfaces of a silicon nitride plate having a size of 60 × 35 mm and a thickness of 0.635 mm, and then applied by a screen printer. The coating amount (after drying) at that time was 6 to 8 mg / cm 2 .
[0034]
An oxygen-free copper plate having a size of 60 mm × 35 mm and a thickness of 0.3 mm is provided on one side of a silicon nitride plate coated with a brazing material paste on the entire surface, and a surface of the oxygen-free copper plate having a size of 70 mm × 35 mm and a thickness of 0.25 mm is provided on the back side A notch with a depth of 0.05 mm was processed at a position 3 mm from the end, and the processed surface was placed in contact with the ceramic side. After the contact arrangement, a joined body was produced under the same conditions as in Example 1.
[0035]
On the copper plate with a thickness of 0.3 mm, a circuit pattern is formed. On the 0.15 mm copper plate, a UV curable etching resist is applied to the entire surface of the copper plate by screen printing, and the 0.15 mm copper plate protrudes. Similarly, an etching resist was applied to a portion of the substrate side with a small roller and UV cured, and a copper circuit pattern was formed by performing an etching process using a ferric chloride solution. Furthermore, unnecessary brazing materials and reaction products of active metal components and silicon nitride remain between the copper circuits, so that the residue is removed by immersion in a 10% ammonium fluoride solution at a temperature of 60 ° C. for 10 minutes. A ceramic circuit board was produced. The results of the same evaluation as in Example 1 are shown in Table 1, but good results were obtained as in Example 1.
[0036]
Example 3
The brazing paste used in Example 1 was prepared. This brazing material paste was applied to one side of a silicon nitride plate having a size of 60 × 35 mm and a thickness of 0.635 mm, and applied to the other side by a screen printer with a size of 55 × 30 mm in the center. The coating amount (after drying) at that time was 6 to 8 mg / cm 2 .
[0037]
An oxygen-free copper plate having a size of 60 mm × 35 mm and a thickness of 0.3 mm is provided on one side of a silicon nitride plate coated with a brazing material paste on the entire surface, and a surface of the oxygen-free copper plate having a size of 70 mm × 35 mm and a thickness of 0.25 mm is provided on the back side A notch with a depth of 0.05 mm was processed at a position 3 mm from the end, and the processed surface was placed in contact with the ceramic side. After the contact arrangement, a joined body was produced under the same conditions as in Example 1.
[0038]
On the copper plate with a thickness of 0.3 mm, a circuit pattern is formed. On the 0.15 mm copper plate, a UV curable etching resist is applied to the entire surface of the copper plate by screen printing, and the 0.15 mm copper plate protrudes. Similarly, an etching resist was applied to a portion of the substrate side with a small roller and UV cured, and a copper circuit pattern was formed by performing an etching process using a ferric chloride solution. Furthermore, unnecessary brazing materials and reaction products of active metal components and silicon nitride remain between the copper circuits, so that the residue is removed by immersion in a 10% ammonium fluoride solution at a temperature of 60 ° C. for 10 minutes. A ceramic circuit board was produced. The results of the same evaluation as in Example 1 are shown in Table 1, but good results were obtained as in Example 1.
[0039]
Example 4
The brazing paste used in Example 1 was prepared. This brazing material paste was applied to one side of a silicon nitride plate having a size of 60 × 35 mm and a thickness of 0.635 mm, and applied to the other side by a screen printer with a size of 55 × 30 mm in the center. The coating amount (after drying) at that time was 6 to 8 mg / cm 2 .
[0040]
An oxygen-free copper plate with a size of 60 mm x 35 mm and a thickness of 0.3 mm on one side of a silicon nitride plate coated with a brazing filler paste on the entire surface, and a single-side periphery of an oxygen-free copper plate with a size of 70 mm x 35 mm and a thickness of 0.25 mm A groove having a depth of 0.05 mm and a width of 0.5 mm was processed at a position 5 mm from the end, and the processed surface was placed in contact with the ceramic side. After the contact arrangement, a joined body was produced under the same conditions as in Example 1.
[0041]
On the copper plate with a thickness of 0.3 mm, a circuit pattern is formed. On the 0.15 mm copper plate, a UV curable etching resist is applied to the entire surface of the copper plate by screen printing, and the 0.15 mm copper plate protrudes. Similarly, an etching resist was applied to a portion of the substrate side with a small roller and UV cured, and a copper circuit pattern was formed by performing an etching process using a ferric chloride solution. Furthermore, unnecessary brazing materials and reaction products of active metal components and silicon nitride remain between the copper circuits, so that the residue is removed by immersion in a 10% ammonium fluoride solution at a temperature of 60 ° C. for 10 minutes. A ceramic circuit board was produced. The results of the same evaluation as in Example 1 are shown in Table 1, but good results were obtained as in Example 1.
[0042]
Example 5
The brazing paste used in Example 1 was prepared. This brazing material paste was applied to the entire surface of one side of a silicon nitride plate having a size of 60 × 35 mm and a thickness of 0.635 mm, and applied to the other side by a screen printer at a size of 50 × 30 mm. The coating amount (after drying) at that time was 6 to 8 mg / cm 2 .
[0043]
An oxygen-free copper plate having a size of 60 × 35 mm and a thickness of 0.3 mm was placed in contact with the surface side of the silicon nitride plate coated with the brazing material paste on the entire surface. On the back surface, an oxygen-free copper plate tapered so as to have a size of 60 × 35 mm, a size of 50 × 30 mm at the center and a thickness of 0.25 mm and a thickness of the end portion of 0.15 mm was placed in contact. This was heated at 900 ° C. for 30 minutes under a vacuum of 1 × 10 −5 Torr or less, and then cooled in a furnace to prepare a joined body.
[0044]
The joined body is formed into a circuit pattern on a 0.3 mm thick copper plate, and a UV curable etching resist is applied to the entire copper plate by screen printing on another copper plate and cured, and a ferric chloride aqueous solution is used. A copper circuit pattern was formed by etching. Furthermore, unnecessary brazing material and reaction products of active metal components and silicon nitride remain between the copper circuits, so that the residue is removed by immersing in a 10% ammonium fluoride aqueous solution at a temperature of 60 ° C. for 10 minutes. Then, a ceramic circuit board was produced. The results of the same evaluation as in Example 1 are shown in Table 1, but good results were obtained as in Example 1.
[0045]
Example 6
The brazing paste used in Example 1 was prepared. This brazing material paste was applied on both surfaces of a silicon nitride plate having a size of 60 × 35 mm and a thickness of 0.635 mm, and then applied by a screen printer. The coating amount (after drying) at that time was 6 to 8 mg / cm 2 .
[0046]
An oxygen-free copper plate having a size of 60 mm × 35 mm and a thickness of 0.3 mm is provided on one side of a silicon nitride plate coated with a brazing filler paste on the entire surface, and a size of 60 × 30 mm at the center of a size of 70 mm × 35 mm is 0 mm on the back side. An oxygen-free copper plate processed to a thickness of 0.15 mm at an outer thickness of 0.15 mm was placed in contact with the processed surface on the ceramic side. After the contact arrangement, a joined body was produced under the same conditions as in Example 1.
[0047]
On the copper plate with a thickness of 0.3 mm, a circuit pattern is formed. On the 0.15 mm copper plate, a UV curable etching resist is applied to the entire surface of the copper plate by screen printing, and the 0.15 mm copper plate protrudes. Similarly, an etching resist was applied to a portion of the substrate side with a small roller and UV cured, and a copper circuit pattern was formed by performing an etching process using a ferric chloride solution. Furthermore, unnecessary brazing materials and reaction products of active metal components and silicon nitride remain between the copper circuits, so that the residue is removed by immersion in a 10% ammonium fluoride solution at a temperature of 60 ° C. for 10 minutes. A ceramic circuit board was produced. The results of the same evaluation as in Example 1 are shown in Table 1, but good results were obtained as in Example 1.
[0048]
Example 7
For Example 7, a sample was obtained by the method shown in Example 1 except that an aluminum nitride plate was used as the ceramic substrate. The results of the same evaluation as in Example 1 are shown in Table 1, but were satisfactory without any abnormality after 500 times.
[0049]
Example 8
For Example 8, a sample was obtained by the method shown in Example 2 except that an aluminum nitride plate was used as the ceramic substrate. The results of the same evaluation as in Example 1 are shown in Table 1, but were satisfactory without any abnormality after 500 times.
[0050]
[Comparative Example 1]
The same brazing material as in Example 1 was applied to the entire front and back surfaces of the aluminum nitride plate, and then a ceramic circuit board was also produced by the same operation as in Example 1. The same evaluation as in Example 1 was performed. The results are shown in Table 1. Partial cracking was observed after 300 times, and cracking and peeling were observed in a considerable portion after 500 times.
[0051]
【The invention's effect】
The ceramic circuit board of the present invention has a feature of greatly suppressing solder cracks that tend to occur between a ceramic circuit board and a metal heat sink that are generated during a thermal cycle, and is very useful industrially. is there. In addition, the power module using the ceramic circuit board is characterized in that the reliability under actual use conditions that undergo a thermal cycle is greatly improved while using a metal heat sink that is inexpensive and has high heat dissipation.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a ceramic circuit board according to Example 1 of the present invention.
FIG. 2 is a schematic cross-sectional view of a ceramic circuit board according to Example 2 of the present invention.
FIG. 3 is a schematic cross-sectional view of a ceramic circuit board according to Example 3 of the present invention.
FIG. 4 is an enlarged schematic cross-sectional view of an end of a metal plate for joining ceramic circuit boards according to Examples 1, 2, and 3 of the present invention.
FIG. 5 is a schematic enlarged cross-sectional view of a bonding metal plate end portion of a ceramic circuit board according to a fourth embodiment of the present invention.
FIG. 6 is an enlarged schematic cross-sectional view of an end of a metal plate for bonding of a ceramic circuit board according to a fifth embodiment of the present invention.
FIG. 7 is an enlarged schematic cross-sectional view of an end part of a metal plate for bonding of a ceramic circuit board according to Example 6 of the present invention.
FIG. 8 is a cross-sectional view of a conventionally known ceramic circuit board as a comparative example.
[Explanation of symbols]
1 Ceramic substrate 2 Metal plate (for circuit)
3 Metal plate (for joining)
4 Heat dissipation member (heat sink)
5 Solder 6 Semiconductor component A Joint part B, B 'Non-joint part

Claims (5)

一主面上に回路を、他の一主面上に放熱部材への接合用金属板を設けてなるセラミックス回路基板であって、前記接合用金属板が、セラミックス基板と対向する面において、接合部分と該接合部分の周囲に設けられた非接合部分とを有し、しかも、非接合部分で厚みの異なる部分を有することを特徴とするセラミックス回路基板。A ceramic circuit board having a circuit on one main surface and a metal plate for bonding to a heat radiating member on the other main surface, wherein the bonding metal plate is bonded on the surface facing the ceramic substrate. A ceramic circuit board having a portion and a non-joined portion provided around the joint portion, and having a non-joined portion having a different thickness. 接合用金属板の大きさがセラミックス基板の大きさよりも大きく、非接合部分の大きさが金属板の端部から接合部境界まで0.1mm以上の距離を有することを特徴とする請求項1記載のセラミックス回路基板。The size of the metal plate for joining is larger than the size of the ceramic substrate, and the size of the non-joined portion has a distance of 0.1 mm or more from the end of the metal plate to the boundary of the joined portion. Ceramic circuit board. 接合用金属板の大きさがセラミックス基板の大きさと同等もしくは小さく、非接合部分の大きさが金属板の端部から接合部境界まで0.1mm以上の距離を有することを特徴とする請求項1記載のセラミックス回路基板。The size of the metal plate for bonding is equal to or smaller than the size of the ceramic substrate, and the size of the non-bonded portion has a distance of 0.1 mm or more from the end of the metal plate to the boundary of the bonded portion. The ceramic circuit board described. 請求項1、請求項2、又は請求項3記載のセラミックス回路基板の接合用金属板上にヒートシンクを設けたことを特徴とするセラミックス回路基板。A ceramic circuit board comprising a heat sink provided on a metal plate for bonding the ceramic circuit board according to claim 1, 2, or 3. 請求項4記載のセラミックス回路基板を用いてなることを特徴とするパワーモジュール。A power module comprising the ceramic circuit board according to claim 4.
JP27281098A 1998-09-28 1998-09-28 Ceramic circuit board and power module using it Expired - Fee Related JP3779074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27281098A JP3779074B2 (en) 1998-09-28 1998-09-28 Ceramic circuit board and power module using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27281098A JP3779074B2 (en) 1998-09-28 1998-09-28 Ceramic circuit board and power module using it

Publications (2)

Publication Number Publication Date
JP2000101203A JP2000101203A (en) 2000-04-07
JP3779074B2 true JP3779074B2 (en) 2006-05-24

Family

ID=17519079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27281098A Expired - Fee Related JP3779074B2 (en) 1998-09-28 1998-09-28 Ceramic circuit board and power module using it

Country Status (1)

Country Link
JP (1) JP3779074B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334959A (en) * 2001-05-10 2002-11-22 Denki Kagaku Kogyo Kk Module structure
JP4498966B2 (en) * 2005-03-31 2010-07-07 Dowaホールディングス株式会社 Metal-ceramic bonding substrate
JP4722514B2 (en) * 2005-03-16 2011-07-13 三菱電機株式会社 Semiconductor device and insulating substrate for semiconductor device
JP2006351988A (en) * 2005-06-20 2006-12-28 Denki Kagaku Kogyo Kk Ceramic substrate, ceramic circuit board and power control component using same
JP4549287B2 (en) * 2005-12-07 2010-09-22 三菱電機株式会社 Semiconductor module
JP5266508B2 (en) * 2011-06-17 2013-08-21 Dowaメタルテック株式会社 Metal-ceramic bonding substrate
CN107978530B (en) * 2017-11-28 2024-03-26 西安中车永电电气有限公司 Method for reducing injection molding flash of IPM module and DBC substrate

Also Published As

Publication number Publication date
JP2000101203A (en) 2000-04-07

Similar Documents

Publication Publication Date Title
KR102300972B1 (en) Substrate unit for power modules, and power module
EP2980844B1 (en) Substrate for power modules, substrate with heat sink for power modules, and power module
TWI600126B (en) Power module substrate having heatsink, power module having heatsink, and producing method of power module substrate having heatsink
JP4969738B2 (en) Ceramic circuit board and semiconductor module using the same
EP1667508B1 (en) Ceramic circuit board, method for making the same, and power module
KR20140147090A (en) Power module substrate, power module substrate with heat sink, and power module
JPH07202063A (en) Ceramic circuit board
KR20170044105A (en) Joined body, substrate for power module provided with heat sink, heat sink, method for manufacturing joined body, method for manufacturing substrate for power module provided with heat sink, and method for manufacturing heat sink
JP2008235852A (en) Ceramic substrate and semiconductor module using the same
KR20170046649A (en) Assembly, power-module substrate provided with heat sink, heat sink, method for manufacturing assembly, method for manufacturing power-module substrate provided with heat sink, and method for manufacturing heat sink
JP5966512B2 (en) Manufacturing method of power module substrate with heat sink
JP3779074B2 (en) Ceramic circuit board and power module using it
JP7151583B2 (en) Insulated circuit board with heat sink
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
JP2005011922A (en) Double-sided copper clad substrate equipped with heat sink, and semiconductor device using it
JP2006351988A (en) Ceramic substrate, ceramic circuit board and power control component using same
JP2004055576A (en) Circuit board and power module using it
TW201813027A (en) Method for producing insulating circuit substrate, insulating circuit substrate, and thermoelectric conversion module
JP6221590B2 (en) Bonding structure of insulating substrate and cooler, manufacturing method thereof, power semiconductor module, and manufacturing method thereof
JP3308883B2 (en) Board
JP4013423B2 (en) Bonded body of ceramic layer and metal conductor layer
JP2004307307A (en) Ceramic circuit board and method of manufacturing the same
JP2000049425A (en) Ceramics circuit board, its manufacture and power module using the same
JP2011210745A (en) Substrate for power module, and method of manufacturing the same
JP6561883B2 (en) Circuit board manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees