JP2000101203A - Ceramics circuit substrate and power module using the same - Google Patents

Ceramics circuit substrate and power module using the same

Info

Publication number
JP2000101203A
JP2000101203A JP10272810A JP27281098A JP2000101203A JP 2000101203 A JP2000101203 A JP 2000101203A JP 10272810 A JP10272810 A JP 10272810A JP 27281098 A JP27281098 A JP 27281098A JP 2000101203 A JP2000101203 A JP 2000101203A
Authority
JP
Japan
Prior art keywords
circuit board
ceramic
metal plate
size
ceramic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10272810A
Other languages
Japanese (ja)
Other versions
JP3779074B2 (en
Inventor
Kenji Kadota
健次 門田
Isao Sugimoto
勲 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP27281098A priority Critical patent/JP3779074B2/en
Publication of JP2000101203A publication Critical patent/JP2000101203A/en
Application granted granted Critical
Publication of JP3779074B2 publication Critical patent/JP3779074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Abstract

PROBLEM TO BE SOLVED: To use an inexpensive and copper heat sink having highly thermal conductivity and suppress cracking of solder by providing a non-jointed part on the joint part and its periphery as well as a part having different thickness in the non-jointed part, in a metallic place for the joint facing a ceramic substrate. SOLUTION: In this ceramic circuit substrate 1, non-jointed parts B and B' are provided on the periphery of a joint part A to allow the joint part A between a metallic plate 3 for joint and the ceramic substrate 1 to share a part of stress, so that a stress concentrating on a solder can be released and the durability to solder cracking be improved. Further, the metallic plate 3 of the non-jointed parts B and B' is provided with a part having different thickness, so that the joint part A of the ceramic substrate 1 can be prevented from breaking due to excessive concentration of stress. Therefore, the non-jointed part B and B' may be provided opposite to the ceramic substrate 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半田クラックに対
する耐久性を向上させた、特に、ICパッケージやIG
BT、GTO等のパワーモジュールに好適なセラミック
ス回路基板とそれを用いたパワーモジュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improved durability against solder cracks,
The present invention relates to a ceramic circuit board suitable for a power module such as a BT and a GTO, and a power module using the same.

【0002】[0002]

【従来の技術】半導体分野において、LSIの集積化や
高速化がすすむことに加え、GTOやIGBT等のパワ
ーデバイスの用途が拡大することなどの事情から、シリ
コンチップの発熱量が増加の一途をたどっている。そし
て、前記パワーモジュールが電鉄や電気自動車などの長
期信頼性が要求される分野に採用されるにつれ、シリコ
ンチップが搭載されている回路基板、あるいは回路基板
が搭載されているモジュールの放熱特性が一層重大な問
題となってきている。
2. Description of the Related Art In the field of semiconductors, the amount of heat generated by silicon chips is increasing steadily due to the fact that LSIs are being integrated and operated at higher speeds, and applications of power devices such as GTOs and IGBTs are expanding. Following. As the power module is adopted in fields requiring long-term reliability, such as electric railways and electric vehicles, the heat radiation characteristics of the circuit board on which the silicon chip is mounted or the module on which the circuit board is mounted are further improved. It is becoming a serious problem.

【0003】これらの用途に於いては、半導体素子を搭
載したセラミックス回路基板が銅等の熱放散性に優れる
金属製ヒートシンクに半田を介して接合され用いられて
いる。しかし、低熱膨張率のセラミックス回路基板と高
熱膨張率の金属製ヒートシンクとの熱膨張差が大きいた
め、前記半導体素子から発生した熱に原因して、セラミ
ックス回路基板とヒートシンクとを接合している半田部
に「半田クラック」と呼ばれるクラックを生じさせ、セ
ラミックス回路基板とヒートシンクとの間の熱の伝導経
路を遮断し、その結果、半導体素子の放熱が充分に行わ
れずに前記半導体素子の温度上昇、熱的劣化を生じさ
せ、機能が停止してしまう問題がある。
In these applications, a ceramic circuit board on which a semiconductor element is mounted is bonded to a metal heat sink having excellent heat dissipation properties, such as copper, via a solder. However, since the difference in thermal expansion between the ceramic circuit board having a low coefficient of thermal expansion and the metal heat sink having a high coefficient of thermal expansion is large, the solder bonding the ceramic circuit board and the heat sink due to the heat generated from the semiconductor element. A crack called a "solder crack" is generated in the portion, and the heat conduction path between the ceramic circuit board and the heat sink is cut off. As a result, the heat of the semiconductor element is not sufficiently released, and the temperature of the semiconductor element rises. There is a problem that thermal degradation occurs and the function stops.

【0004】半田クラックの発生は車両、電気自動車な
どの長期的に信頼性を必要とする用途にとっては致命的
な欠点であり、放熱特性に優れ、電気的信頼性が大幅に
向上したセラミックス回路基板とそれを用いたモジュー
ルが切望されている。
[0004] The occurrence of solder cracks is a fatal defect for applications requiring long-term reliability, such as vehicles and electric vehicles, and has excellent heat dissipation characteristics and greatly improved electrical reliability. And a module using it is eagerly desired.

【0005】最近、前述の熱膨張差の発生を抑制するこ
とを目的に、Al−SiC複合体からなる低熱膨張率の
ヒートシンクを使用したパワーモジュールが開発され、
長期信頼性を必要とするハイブリッドカーや電鉄などに
使用されはじめている。
Recently, a power module using a heat sink having a low coefficient of thermal expansion made of an Al—SiC composite has been developed for the purpose of suppressing the above-mentioned difference in thermal expansion.
It has begun to be used in hybrid cars and railways that require long-term reliability.

【0006】Al―SiC複合体からなる低熱膨張率の
ヒートシンクは、パワーモジュールの長期信頼性に対し
て非常に効果的であり、いろいろな製法によるものが市
販されている。例えば、ダイキャスト法(特開平5−5
08350号公報)や溶湯鍛造法(「まてりあ」第36
巻、第1号、1997年、40−46頁)などの高圧鋳
造法、或いは、自発浸透法(特開平2−197368号
公報)等が知られている。
[0006] A heat sink having a low coefficient of thermal expansion made of an Al-SiC composite is very effective for long-term reliability of a power module, and heat sinks manufactured by various methods are commercially available. For example, a die casting method (Japanese Patent Laid-Open No.
No. 08350) and molten metal forging (“Materia” No. 36)
Vol. 1, No. 1, 1997, pp. 40-46), or a spontaneous infiltration method (Japanese Patent Application Laid-Open No. 2-197368).

【0007】しかし、Al−SiC複合体を用いたヒー
トシンクは、前記のいずれの製法によるものであって
も、従来公知の銅製ヒートシンクよりも製造コストが高
いという欠点がある。その理由として、Al−SiC複
合体の製造法自体から由来する要因や、また板状のヒー
トシンクとしての寸法的な歩留まり要因などが挙げられ
るが、いずれせよ従来から使用されている銅板にはコス
トや寸法精度の点で及ばない。
However, the heat sink using the Al-SiC composite has a disadvantage that the manufacturing cost is higher than that of a conventionally known copper heat sink, regardless of the above-mentioned manufacturing method. The reasons include factors derived from the manufacturing method of the Al-SiC composite itself, and dimensional yield factors as a plate-like heat sink. In any case, the cost and cost of the conventionally used copper plate are high. Inferior in dimensional accuracy.

【0008】また、Al−SiC複合体の熱伝導率は、
SiCの含有量に依存するが、約150W/m・K〜2
00W/m・K程度であり、銅製ヒートシンクの熱伝導
率の約400W/m・Kに対して約半分以下の低熱伝導
率である。従って、半導体素子から発生する熱を効率的
にパワーモジュールから外部に逃すには不利であり、パ
ワーモジュールとしての許容電力量が低くなってしまう
欠点がある。
The thermal conductivity of the Al—SiC composite is as follows:
Although it depends on the content of SiC, about 150 W / m · K to 2
The heat conductivity is about 00 W / m · K, which is about half or less of the heat conductivity of about 400 W / m · K of the copper heat sink. Therefore, it is disadvantageous to efficiently release the heat generated from the semiconductor element to the outside from the power module, and there is a disadvantage that the allowable power amount of the power module is reduced.

【0009】上記理由のために、Al−SiC複合体か
らなるヒートシンクは、その信頼性の高さは認められな
がらも、使用用途は限定され、銅製ヒートシンクからの
Al−SiC複合体からなるヒートシンクへの置き換え
は進んでいない。特に、廉価であることを要求される汎
用品のパワーモジュールについては、銅製ヒートシンク
を今後とも用いる趨勢にある。
For the above reasons, the heat sink made of the Al-SiC composite is recognized for its high reliability, but its use is limited, and the heat sink made of the Al-SiC composite is changed from a copper heat sink. The replacement is not progressing. In particular, there is a tendency to continue using copper heat sinks for general-purpose power modules that are required to be inexpensive.

【0010】[0010]

【発明が解決しようとする課題】即ち、廉価で熱伝導率
の高い銅製ヒートシンクを使用し、しかも、前記半田ク
ラックを抑制し得るセラミックス回路基板、或いはそれ
を用いたモジュールが強く望まれているものの、実用的
に満足できるものは得られていなかった。
That is, although there is a strong demand for a ceramic circuit board or a module using the same, which uses an inexpensive and high-heat-conductivity copper heat sink and suppresses the solder cracks. However, practically satisfactory ones have not been obtained.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記の事
情に鑑み鋭意検討を重ねた結果、セラミックス回路基板
の構造を若干変更することのみで、耐半田クラック性を
大幅に向上させ得ることを実験的に見出し、本発明に至
ったものである。
Means for Solving the Problems The inventors of the present invention have made intensive studies in view of the above circumstances, and as a result, the solder cracking resistance can be greatly improved by only slightly changing the structure of the ceramic circuit board. This has been experimentally found, and the present invention has been accomplished.

【0012】即ち、本発明は、一主面上に回路を、他の
一主面上に放熱部材への接合用金属板を設けてなるセラ
ミックス回路基板であって、前記接合用金属板が、セラ
ミックス基板と対向する面において、接合部分と該接合
分の周囲に設けられた非接合部分とを有し、しかも、非
接合部分で厚みの異なる部分を有することを特徴とする
セラミックス回路基板である。
That is, the present invention is a ceramic circuit board comprising a circuit on one main surface and a metal plate for bonding to a heat radiating member on another main surface, wherein the metal plate for bonding is: A ceramic circuit board having a joint portion and a non-joint portion provided around the joint portion on a surface facing the ceramic substrate, and further having portions having different thicknesses in the non-joint portion. .

【0013】また、本発明は、接合用金属板の大きさが
セラミックス基板の大きさよりも大きく、非接合部分の
大きさが金属板の端部から接合部境界まで0.1mm以
上の距離を有することを特徴とする前記のセラミックス
回路基板、或いは、接合用金属板の大きさがセラミック
ス基板の大きさと同等もしくは小さく、非接合部分の大
きさが金属板の端部から接合部境界まで0.1mm以上
の距離を有することを特徴とする前記のセラミックス回
路基板である。
Further, according to the present invention, the size of the metal plate for bonding is larger than the size of the ceramic substrate, and the size of the non-bonded portion has a distance of 0.1 mm or more from the end of the metal plate to the boundary of the bonded portion. The size of the ceramic circuit board, or the size of the bonding metal plate is equal to or smaller than the size of the ceramic substrate, and the size of the non-bonded portion is 0.1 mm from the end of the metal plate to the boundary of the bonded portion. The above ceramic circuit board is characterized by having the above distance.

【0014】本発明は、前記接合用金属板上にヒートシ
ンクを設けたことを特徴とする前記のセラミックス回路
基板であり、該セラミックス回路基板を用いてなること
を特徴とするパワーモジュールである。
The present invention is the above-described ceramic circuit board, wherein a heat sink is provided on the joining metal plate, and a power module using the ceramic circuit board.

【0015】[0015]

【発明の実施の形態】本発明のセラミックス回路基板
は、図1、図2及び図3に示したとおりに、セラミック
ス基板1の表裏に金属板2、3が接合され、片面(表
面)の金属板2は、パターニングされ回路として使用さ
れ、他の片面(裏面)の金属板3は、ヒートシンクと呼
ばれる放熱部材4に半田5を介して接合された構造を有
し、前記放熱部材4への接合に用いられる金属板3が、
セラミックス基板1と対向する面において、接合部分
(A)と該接合分の周囲に設けられた非接合部分(B、
B’)とを有しており、しかも、非接合部分で厚みの異
なる部分を有することを本質としていて、この構造を採
用することで、耐半田クラック性が極めて優れるという
特徴を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIGS. 1, 2 and 3, a ceramic circuit board according to the present invention has metal plates 2 and 3 joined to the front and back of a ceramic substrate 1 to form a single-side (front) metal. The plate 2 is patterned and used as a circuit, and the other one side (back side) metal plate 3 has a structure in which the metal plate 3 is joined to a heat radiating member 4 called a heat sink via solder 5, and is joined to the heat radiating member 4. The metal plate 3 used for
On the surface facing the ceramic substrate 1, the joining portion (A) and the non-joining portions (B,
B ′), and has a characteristic that it has a portion having a different thickness in the non-joined portion, and adopting this structure has a feature that the solder crack resistance is extremely excellent.

【0016】前記構造を採用するときに耐半田クラック
性が優れるという理由は明らかではないが、本発明者ら
は以下のように推察している。即ち、従来のセラミック
ス回路基板は、放熱部材4への接合に用いられる金属板
3について、セラミックスとの接合界面と金属板端部は
一致しており、セラミックスと金属板の間には隙間、ま
たは銅板のはみ出しがない構造を採用している(図8参
照)。このため、従来のセラミックス回路基板では、セ
ラミックス回路基板と金属製ヒートシンクとの熱膨張差
に起因する応力が、接合用金属板の端部から半田内部に
集中的に加わるため、半田クラックを発生しやすい。
The reason that the solder crack resistance is excellent when the above structure is employed is not clear, but the present inventors speculate as follows. That is, in the conventional ceramic circuit board, with respect to the metal plate 3 used for bonding to the heat radiating member 4, the bonding interface with the ceramic and the end of the metal plate coincide with each other, and there is a gap between the ceramic and the metal plate, or a copper plate. A structure that does not protrude is adopted (see FIG. 8). For this reason, in the conventional ceramic circuit board, the stress due to the difference in thermal expansion between the ceramic circuit board and the metal heat sink is applied intensively from the end of the joining metal plate to the inside of the solder. Cheap.

【0017】これに対して、本発明のセラミックス回路
基板では、非接合部を接合部の周囲に設けることによ
り、応力の一部を接合用金属板3とセラミックス基板1
の接合部分に分担させるようになり、半田に加わる応力
集中を緩和させることができ、その結果、半田クラック
に対する耐久性を向上させることができるものである。
加えて、非接合部分の金属板が厚みの異なる部分を有す
ることによって、セラミックス基板1の接合部分端部
が、過度の応力集中によって破壊することをも防いでい
る。
On the other hand, in the ceramic circuit board of the present invention, by providing the non-joining portion around the joining portion, a part of the stress is reduced to the joining metal plate 3 and the ceramic substrate 1.
And the stress concentration applied to the solder can be reduced, and as a result, the durability against solder cracks can be improved.
In addition, since the non-joined portions of the metal plate have portions having different thicknesses, it is possible to prevent the ends of the joined portions of the ceramic substrate 1 from being broken by excessive stress concentration.

【0018】従って、非接合部は、図1に例示したとお
りにセラミックス基板と対向するように設けられていて
も、図2に例示したとおりにセラミックス基板からはみ
出すように設けられていても、或いは図3に例示したと
おりセラミックス基板と対向する部分とはみ出す部分が
あるように設けられていても構わない。更に、非接合部
分の金属板の厚みの異なる部分は、図4に例示したとお
りに切り欠きにより設けられていても、図5に示したと
おりに切り欠きに幅を持たせて溝に加工していても、図
6に例示したとおりにテーパーにより設けられていて
も、図7に例示したとおりに段差により設けられていて
も構わない。
Therefore, the non-joined portion may be provided so as to face the ceramic substrate as illustrated in FIG. 1, may be provided so as to protrude from the ceramic substrate as illustrated in FIG. 2, or As illustrated in FIG. 3, the portion may protrude from the portion facing the ceramic substrate. Further, even if the non-joined portions of the metal plate having different thicknesses are provided with cutouts as illustrated in FIG. 4, the cutouts have a width as shown in FIG. It may be provided by a taper as illustrated in FIG. 6, or may be provided by a step as illustrated in FIG. 7.

【0019】本発明において、非接合部分(B、B’)
の大きさが、金属板の端部より接合部までの距離が0.
1mm以上であることが好ましい。0.1mm未満の場
合には、前記効果が顕著でない場合があり、その結果、
本発明の目的を達成できないことがある。また、その上
限の距離については、特に定めるべき技術的な理由はな
いが、不必要に大きくても基板サイズの増大につながる
ので意味がなく、セラミックス基板の一般的な70mm
×35mmの大きさの場合には、非接合部が10.0m
m以下であれば良い。
In the present invention, the non-joined portion (B, B ')
Is smaller than the distance from the end of the metal plate to the joint.
It is preferably 1 mm or more. If less than 0.1 mm, the effect may not be remarkable, and as a result,
In some cases, the object of the present invention cannot be achieved. Although there is no technical reason to determine the upper limit distance, it is meaningless even if it is unnecessarily large because it leads to an increase in substrate size.
In the case of a size of × 35 mm, the non-joined portion is 10.0 m
m or less.

【0020】本発明は、前記の接合用金属板上に半田を
介してヒートシンクを設けたセラミックス回路基板であ
り、前記セラミックス回路基板の回路上に半導体素子等
の電子、電気部品を搭載したパワーモジュールである。
いずれも、前記セラミックス回路基板の耐半田クラック
性に優れるという特徴を有するので、長期的な信頼性に
優れるという特徴を有している。
The present invention is a ceramic circuit board having a heat sink provided on the joining metal plate via solder, and a power module having electronic and electric components such as semiconductor elements mounted on a circuit of the ceramic circuit board. It is.
Each of them has a feature that the ceramic circuit board has excellent solder crack resistance, and thus has a feature that it has excellent long-term reliability.

【0021】本発明のセラミックス回路基板を得る方法
としては、従来公知の方法を組み合わせて得ることがで
きるが、次に例示する、活性金属含有ろう材を介して接
合用金属板をセラミックス基板に接合する方法が、前記
非接合部分(B、B’)の大きさを制御しやすいという
特徴があるし、また、作製しやすいこと、更に、従来の
基板寸法やプロセスを大きく変えることがなく、製造コ
ストの上昇も小さいといった利点がある。
The method for obtaining the ceramic circuit board of the present invention can be obtained by combining conventionally known methods. A metal plate for bonding to a ceramic substrate via an active metal-containing brazing material is exemplified below. This method is characterized in that the size of the non-joined portion (B, B ′) is easily controlled, is easy to manufacture, and can be manufactured without greatly changing the conventional substrate dimensions and processes. There is an advantage that a rise in cost is small.

【0022】即ち、セラミックス基板の主面上に、回路
となる金属板と、放熱部材に接合される金属板3を、ろ
う材により接合する。セラミックス基板としては、窒化
アルミニウム、窒化珪素、酸化アルミニウム、炭化珪素
等が知られているが、本発明は窒化アルミニウム、窒化
珪素等の熱膨張率の小さな窒化物セラミックスにおいて
適用され、その効果が著しい。また、これら窒化物セラ
ミックス基板に銅等の金属板をろう材を介して接合する
場合、ろう材中にTi、Zr、Hf等の窒化物セラミッ
クスの成分と反応する活性金属を含有するろう材を用い
ることが好ましい。
That is, on the main surface of the ceramic substrate, a metal plate to be a circuit and a metal plate 3 to be joined to a heat radiating member are joined by a brazing material. As the ceramic substrate, aluminum nitride, silicon nitride, aluminum oxide, silicon carbide, etc. are known, but the present invention is applied to nitride ceramics having a small coefficient of thermal expansion such as aluminum nitride, silicon nitride, etc., and the effect is remarkable. . When a metal plate such as copper is joined to these nitride ceramic substrates via a brazing material, a brazing material containing an active metal that reacts with a component of the nitride ceramics such as Ti, Zr, and Hf is used in the brazing material. Preferably, it is used.

【0023】また、ヒートシンクなどの放熱部材は、前
記したとおりに、熱伝導性に優れる銅が用いられること
が多く、接合用金属としても銅が好ましく使用される
が、本発明においては、これに限定されるものでなく、
本発明の効果を阻害しない限り、アルミニウム、タング
ステン、モリブデン等の金属、もしくは前述の金属−セ
ラミックス複合材などを用いることも出来る。
As described above, copper having excellent thermal conductivity is often used for a heat radiating member such as a heat sink, and copper is preferably used as a joining metal. Not limited
As long as the effects of the present invention are not impaired, metals such as aluminum, tungsten, and molybdenum, and the above-described metal-ceramic composite materials can also be used.

【0024】金属板のセラミックス基板への接合に当た
っては、活性金属含有ろう材をセラミックス基板の一主
面の全面に塗布し、この面には回路用金属板を接合す
る。他の一主面には、接合用金属板の大きさよりも所望
の寸法だけ小さな大きさで前記活性金属含有ろう材をセ
ラミックス基板に塗布し、接合後に非接合部分(B)が
存在するようにすれば良い。
In joining the metal plate to the ceramic substrate, an active metal-containing brazing material is applied to the entire main surface of the ceramic substrate, and a circuit metal plate is joined to this surface. On the other main surface, the active metal-containing brazing material is applied to the ceramic substrate in a size smaller than the size of the joining metal plate by a desired dimension, so that a non-joining portion (B) exists after joining. Just do it.

【0025】また、金属板のセラミックス基板への他の
接合方法として、活性金属含有ろう材をセラミックス基
板両面に前面塗付し、回路用金属板については上記と同
一操作とするが、他の一主面にはセラミックス基板より
も大きな寸法の金属板を接合し、金属板のはみ出し部分
(B’)を設ける方法を採用することもできる。
As another joining method of the metal plate to the ceramic substrate, an active metal-containing brazing material is applied to the front surface of both surfaces of the ceramic substrate, and the same operation is performed for the circuit metal plate. It is also possible to adopt a method in which a metal plate larger in size than the ceramic substrate is joined to the main surface, and a protruding portion (B ′) of the metal plate is provided.

【0026】接合の方法に関しては、従来公知の方法で
加熱し、前記ろう材を溶融、反応せしめて、セラミック
ス基板と金属板とを接合する。その後、回路用金属板、
必要ならば接合用金属板にエッチングマスクを被せ、エ
ッチングすることで、回路形成、接合用金属板の寸法調
整を行うことで、本発明にセラミックス回路基板を容易
に得ることが出来る。
Regarding the joining method, the ceramic substrate and the metal plate are joined by heating and melting and reacting the brazing material by a conventionally known method. After that, metal plate for circuit,
If necessary, a ceramic circuit board according to the present invention can be easily obtained by forming a circuit and adjusting the dimensions of the metal plate for bonding by covering the metal plate for bonding with an etching mask and performing etching.

【0027】[0027]

【実施例】〔実施例1〕銀粉末75重量部、銅粉末25
重量部、ジルコニウム粉末15重量部、テルピネオール
15重量部、及びポリイソブチルメタアクリレートのト
ルエン溶液を固形分で1重量部加えて良く混練し、ろう
材ペーストを調整した。このろう材ペーストを大きさ6
0×35mm、厚み0.635mmの窒化珪素板の片面
に全面塗布し、もう片面には55×30mmの大きさで
中心にスクリーン印刷機により塗布した。その際の塗布
量(乾燥後)は6〜8mg/cm2とした。
EXAMPLES Example 1 75 parts by weight of silver powder, 25 of copper powder
1 part by weight of a solid solution of a toluene solution of polyisobutyl methacrylate and 15 parts by weight of zirconium powder, 15 parts by weight of terpineol, and 1 part by weight of a solid solution were kneaded well to prepare a brazing material paste. This brazing paste is size 6
The entire surface was coated on one side of a silicon nitride plate having a size of 0 × 35 mm and a thickness of 0.635 mm, and the other side was coated with a screen printer having a size of 55 × 30 mm at the center. The coating amount (after drying) at that time was 6 to 8 mg / cm 2 .

【0028】ろう材ペーストが全面に塗布された窒化珪
素板の表面側に大きさ60×35mm、厚み0.3mm
の無酸素銅板を接触配置した。裏面には、大きさ60×
35mm、厚み0.25mmの無酸素銅板の片面周囲に
端部から2mmの位置に深さ0.05mmの切れ込みを
加工し、加工面をセラミックス側になるように接触配置
した。これを、圧力1×10-5Torr以下の真空下、
900℃で30分加熱した後、炉冷し、接合体を作製し
た。
On the surface side of the silicon nitride plate on which the brazing material paste is applied on the entire surface, a size of 60 × 35 mm and a thickness of 0.3 mm
Oxygen-free copper plate was placed in contact. On the back, size 60x
A cut having a depth of 0.05 mm was formed at a position 2 mm from the end around one surface of an oxygen-free copper plate having a thickness of 35 mm and a thickness of 0.25 mm, and the cut surface was placed in contact with the ceramic side. This is performed under vacuum at a pressure of 1 × 10 −5 Torr or less.
After heating at 900 ° C. for 30 minutes, the furnace was cooled to produce a joined body.

【0029】前記接合体の厚み0.3mmの銅板上には
回路パターンの形状で、別の銅板上には銅板全面にUV
硬化タイプのエッチングレジストをスクリーン印刷で塗
布、硬化させ、塩化第2鉄水溶液を用いてエッチング処
理を行なうことにより銅回路パターンを形成した。さら
に、銅回路間には不要なろう材や活性金属成分と窒化珪
素との反応生成物が残留するので、温度60℃、10%
フッ化アンモニウム水溶液に10分間浸漬して、前記残
留物を除去し、セラミックス回路基板を作製した。
A circuit pattern is formed on a copper plate having a thickness of 0.3 mm of the joined body.
A hardening type etching resist was applied by screen printing and hardened, and an etching process was performed using an aqueous ferric chloride solution to form a copper circuit pattern. Further, since unnecessary brazing material or a reaction product of the active metal component and silicon nitride remains between the copper circuits, the temperature is 60 ° C. and the temperature is 10%.
The residue was removed by immersion in an aqueous solution of ammonium fluoride for 10 minutes to produce a ceramic circuit board.

【0030】上記操作で得たセラミックス回路基板を用
いて、50×90×3mmの銅板中央部に鉛−錫共晶半
田を用い、230℃の温度でリフローにより半田付けを
行ない一体構造とし、モジュールを作製した。このモジ
ュールについて、ヒートサイクル試験を行なった。
Using the ceramic circuit board obtained by the above operation, using a lead-tin eutectic solder at the center of a 50 × 90 × 3 mm copper plate, soldering was performed by reflow at a temperature of 230 ° C. to form an integrated structure. Was prepared. This module was subjected to a heat cycle test.

【0031】ヒートサイクル試験は気相中において−4
0℃で30分保持した後に室温で10分放置し、次に気
相中125℃で30分保持した後に室温で10分放置す
ることを1回とした。この試験を100、300、50
0回経過させた後に、超音波映像探査装置(日立建機製
mi−scope)を用いて、セラミックス回路基板と
銅製ヒートシンクとの間に存在する半田のクラック発生
状態を調べた。その結果、表1に示したとおりに、50
0回経過後にも何ら異常がなく、良好であった。
The heat cycle test was carried out in the gas phase at -4.
It was once held at 0 ° C. for 30 minutes, left at room temperature for 10 minutes, then held at 125 ° C. for 30 minutes in the gas phase, and then left at room temperature for 10 minutes. This test was performed for 100, 300, 50
After the elapse of 0 times, the crack generation state of the solder existing between the ceramic circuit board and the copper heat sink was examined using an ultrasonic image search device (mi-scope manufactured by Hitachi Construction Machinery). As a result, as shown in Table 1, 50
There was no abnormality even after 0 times, and it was good.

【0032】[0032]

【表1】 [Table 1]

【0033】〔実施例2〕実施例1で用いたろう材ペー
ストを準備した。このろう材ペーストを60×35m
m、厚み0.635mmの窒化珪素板の両面に全面塗布
しスクリーン印刷機により塗布した。その際の塗布量
(乾燥後)は6〜8mg/cm2とした。
Example 2 The brazing material paste used in Example 1 was prepared. 60 × 35m of this brazing material paste
m, applied to both sides of a silicon nitride plate having a thickness of 0.635 mm and applied by a screen printing machine. The coating amount (after drying) at that time was 6 to 8 mg / cm 2 .

【0034】ろう材ペーストが全面に塗布された窒化珪
素板の片面に大きさ60mm×35mm厚み0.3mm
の無酸素銅板を、その裏面に大きさ70mm×35mm
厚み0.25mmの無酸素銅板の片面周囲に端部から3
mmの位置に深さ0.05mmの切れ込みを加工し、加
工面をセラミックス側になるように接触配置した。接触
配置してから、実施例1と同一条件で接合体を作製し
た。
A size of 60 mm × 35 mm and a thickness of 0.3 mm is formed on one side of a silicon nitride plate coated with a brazing material paste on the entire surface.
Oxygen-free copper plate, size 70mm × 35mm on the back
It is 3 from the end around one side of the oxygen-free copper plate with a thickness of 0.25 mm.
A notch having a depth of 0.05 mm was machined at a position of mm, and the machined surface was placed in contact with the ceramic side. After the contact arrangement, a joined body was produced under the same conditions as in Example 1.

【0035】前記接合体の厚み0.3mmの銅板上には
回路パターンの形状で、0.15mmの銅板上には銅板
全面にUV硬化タイプのエッチングレジストをスクリー
ン印刷で塗布、更に0.15mmの銅板のはみ出し部分
の基板側にも小型ローラーにて同様にエッチングレジス
トを塗布してUV硬化させ、塩化第2鉄溶液を用いてエ
ッチング処理を行なうことにより銅回路パターンを形成
した。さらに、銅回路間には不要なろう材や活性金属成
分と窒化珪素との反応生成物が残留するので、温度60
℃、10%フッ化アンモニウム溶液に10分間浸漬して
前記残留物を除去し、セラミックス回路基板を作製し
た。実施例1と同じ評価を行った結果を表1に示した
が、実施例1と同様に良好な結果が得られた。
A UV-curable etching resist is applied by screen printing over the entire surface of the copper plate in the form of a circuit pattern on a copper plate having a thickness of 0.3 mm, and on the entire surface of the copper plate by 0.15 mm. An etching resist was similarly applied to the protruding portion of the copper plate on the substrate side with a small roller, UV-cured, and etched using a ferric chloride solution to form a copper circuit pattern. Furthermore, since unnecessary brazing material or a reaction product of the active metal component and silicon nitride remains between the copper circuits, the temperature is reduced to 60 ° C.
The residue was removed by immersion in a 10% ammonium fluoride solution at 10 ° C. for 10 minutes to produce a ceramic circuit board. The results of the same evaluation as in Example 1 are shown in Table 1, and good results were obtained as in Example 1.

【0036】〔実施例3〕実施例1で用いたろう材ペー
ストを準備した。このろう材ペーストを大きさ60×3
5mm、厚み0.635mmの窒化珪素板の片面に全面
塗布し、もう片面には55×30mmの大きさで中心に
スクリーン印刷機により塗布した。その際の塗布量(乾
燥後)は6〜8mg/cm2とした。
Example 3 The brazing material paste used in Example 1 was prepared. This brazing material paste has a size of 60 × 3
The whole surface was coated on one side of a silicon nitride plate having a thickness of 5 mm and a thickness of 0.635 mm, and the other side was coated with a screen printer having a size of 55 × 30 mm at the center. The coating amount (after drying) at that time was 6 to 8 mg / cm 2 .

【0037】ろう材ペーストが全面に塗布された窒化珪
素板の片面に大きさ60mm×35mm厚み0.3mm
の無酸素銅板を、その裏面に大きさ70mm×35mm
厚み0.25mmの無酸素銅板の片面周囲に端部から3
mmの位置に深さ0.05mmの切れ込みを加工し、加
工面をセラミックス側になるように接触配置した。接触
配置してから、実施例1と同一条件で接合体を作製し
た。
A size of 60 mm × 35 mm and a thickness of 0.3 mm is formed on one side of a silicon nitride plate coated with a brazing material paste on the entire surface.
Oxygen-free copper plate, size 70mm × 35mm on the back
It is 3 from the end around one side of the oxygen-free copper plate with a thickness of 0.25 mm.
A notch having a depth of 0.05 mm was machined at a position of mm, and the machined surface was placed in contact with the ceramic side. After the contact arrangement, a joined body was produced under the same conditions as in Example 1.

【0038】前記接合体の厚み0.3mmの銅板上には
回路パターンの形状で、0.15mmの銅板上には銅板
全面にUV硬化タイプのエッチングレジストをスクリー
ン印刷で塗布、更に0.15mmの銅板のはみ出し部分
の基板側にも小型ローラーにて同様にエッチングレジス
トを塗布してUV硬化させ、塩化第2鉄溶液を用いてエ
ッチング処理を行なうことにより銅回路パターンを形成
した。さらに、銅回路間には不要なろう材や活性金属成
分と窒化珪素との反応生成物が残留するので、温度60
℃、10%フッ化アンモニウム溶液に10分間浸漬して
前記残留物を除去し、セラミックス回路基板を作製し
た。実施例1と同じ評価を行った結果を表1に示した
が、実施例1と同様に良好な結果が得られた。
A UV-curable etching resist is applied to the entire surface of the copper plate by screen printing in the form of a circuit pattern on a copper plate having a thickness of 0.3 mm. An etching resist was similarly applied to the protruding portion of the copper plate on the substrate side with a small roller, UV-cured, and etched using a ferric chloride solution to form a copper circuit pattern. Furthermore, since unnecessary brazing material or a reaction product of the active metal component and silicon nitride remains between the copper circuits, the temperature is reduced to 60 ° C.
The residue was removed by immersion in a 10% ammonium fluoride solution at 10 ° C. for 10 minutes to produce a ceramic circuit board. The results of the same evaluation as in Example 1 are shown in Table 1, and good results were obtained as in Example 1.

【0039】〔実施例4〕実施例1で用いたろう材ペー
ストを準備した。このろう材ペーストを大きさ60×3
5mm、厚み0.635mmの窒化珪素板の片面に全面
塗布し、もう片面には55×30mmの大きさで中心に
スクリーン印刷機により塗布した。その際の塗布量(乾
燥後)は6〜8mg/cm2とした。
Example 4 The brazing material paste used in Example 1 was prepared. This brazing material paste has a size of 60 × 3
The whole surface was coated on one side of a silicon nitride plate having a thickness of 5 mm and a thickness of 0.635 mm, and the other side was coated with a screen printer having a size of 55 × 30 mm at the center. The coating amount (after drying) at that time was 6 to 8 mg / cm 2 .

【0040】ろう材ペーストが全面に塗布された窒化珪
素板の片面に大きさ60mm×35mm厚み0.3mm
の無酸素銅板を、その裏面に、大きさ70mm×35m
m厚み0.25mmの無酸素銅板の片面周囲に端部から
5mmの位置に深さ0.05mm幅0.5mmの溝を加
工し、加工面をセラミックス側になるように接触配置し
た。接触配置してから、実施例1と同一条件で接合体を
作製した。
A size of 60 mm × 35 mm and a thickness of 0.3 mm is formed on one side of a silicon nitride plate coated with a brazing material paste on the entire surface.
Oxygen-free copper plate, on its back, size 70mm × 35m
A groove having a depth of 0.05 mm and a width of 0.5 mm was machined at a position 5 mm from the end around one surface of an oxygen-free copper plate having a thickness of 0.25 mm, and the machined surface was placed in contact with the ceramic side. After the contact arrangement, a joined body was produced under the same conditions as in Example 1.

【0041】前記接合体の厚み0.3mmの銅板上には
回路パターンの形状で、0.15mmの銅板上には銅板
全面にUV硬化タイプのエッチングレジストをスクリー
ン印刷で塗布、更に0.15mmの銅板のはみ出し部分
の基板側にも小型ローラーにて同様にエッチングレジス
トを塗布してUV硬化させ、塩化第2鉄溶液を用いてエ
ッチング処理を行なうことにより銅回路パターンを形成
した。さらに、銅回路間には不要なろう材や活性金属成
分と窒化珪素との反応生成物が残留するので、温度60
℃、10%フッ化アンモニウム溶液に10分間浸漬して
前記残留物を除去し、セラミックス回路基板を作製し
た。実施例1と同じ評価を行った結果を表1に示した
が、実施例1と同様に良好な結果が得られた。
A UV-curable etching resist is applied by screen printing on the entire surface of the copper plate in the form of a circuit pattern on the copper plate having a thickness of 0.3 mm, and on the entire surface of the copper plate by 0.15 mm. An etching resist was similarly applied to the protruding portion of the copper plate on the substrate side with a small roller, UV-cured, and etched using a ferric chloride solution to form a copper circuit pattern. Furthermore, since unnecessary brazing material or a reaction product of the active metal component and silicon nitride remains between the copper circuits, the temperature is reduced to 60 ° C.
The residue was removed by immersion in a 10% ammonium fluoride solution at 10 ° C. for 10 minutes to produce a ceramic circuit board. The results of the same evaluation as in Example 1 are shown in Table 1, and good results were obtained as in Example 1.

【0042】〔実施例5〕実施例1で用いたろう材ペー
ストを準備した。このろう材ペーストを大きさ60×3
5mm、厚み0.635mmの窒化珪素板の片面に全面
塗布し、もう片面には50×30mmの大きさで中心に
スクリーン印刷機により塗布した。その際の塗布量(乾
燥後)は6〜8mg/cm2とした。
Example 5 The brazing material paste used in Example 1 was prepared. This brazing material paste has a size of 60 × 3
The whole surface was coated on one surface of a silicon nitride plate having a thickness of 5 mm and a thickness of 0.635 mm, and the other surface was coated by a screen printer at a size of 50 × 30 mm at the center. The coating amount (after drying) at that time was 6 to 8 mg / cm 2 .

【0043】ろう材ペーストが全面に塗布された窒化珪
素板の表面側に大きさ60×35mm、厚み0.3mm
の無酸素銅板を接触配置した。その裏面には、大きさ6
0×35mm、中心部の50×30mmの大きさは厚み
0.25mmで、端部の厚みは0.15mmになるよう
にテーパー加工した無酸素銅板を接触配置した。これ
を、圧力1×10-5Torr以下の真空下、900℃で
30分加熱した後、炉冷し、接合体を作製した。
A size of 60 × 35 mm and a thickness of 0.3 mm are formed on the surface of the silicon nitride plate coated with the brazing material paste on the entire surface.
Oxygen-free copper plate was placed in contact. On its back, size 6
An oxygen-free copper plate tapered so that the size of 0 × 35 mm, the size of 50 × 30 mm at the center part was 0.25 mm, and the thickness of the end part was 0.15 mm was placed in contact. This was heated at 900 ° C. for 30 minutes under a vacuum of a pressure of 1 × 10 −5 Torr or less, and then cooled in a furnace to produce a joined body.

【0044】前記接合体の厚み0.3mmの銅板上には
回路パターンの形状で、別の銅板上には銅板全面にUV
硬化タイプのエッチングレジストをスクリーン印刷で塗
布、硬化させ、塩化第2鉄水溶液を用いてエッチング処
理を行なうことにより銅回路パターンを形成した。さら
に、銅回路間には不要なろう材や活性金属成分と窒化珪
素との反応生成物が残留するので、温度60℃、10%
フッ化アンモニウム水溶液に10分間浸漬して、前記残
留物を除去し、セラミックス回路基板を作製した。実施
例1と同じ評価を行った結果を表1に示したが、実施例
1と同様に良好な結果が得られた。
A circuit pattern is formed on a copper plate having a thickness of 0.3 mm of the joined body.
A hardening type etching resist was applied by screen printing and hardened, and an etching process was performed using an aqueous ferric chloride solution to form a copper circuit pattern. Further, since unnecessary brazing material or a reaction product of the active metal component and silicon nitride remains between the copper circuits, the temperature is 60 ° C. and the temperature is 10%.
The residue was removed by immersion in an aqueous solution of ammonium fluoride for 10 minutes to produce a ceramic circuit board. The results of the same evaluation as in Example 1 are shown in Table 1, and good results were obtained as in Example 1.

【0045】〔実施例6〕実施例1で用いたろう材ペー
ストを準備した。このろう材ペーストを60×35m
m、厚み0.635mmの窒化珪素板の両面に全面塗布
しスクリーン印刷機により塗布した。その際の塗布量
(乾燥後)は6〜8mg/cm2とした。
Example 6 The brazing material paste used in Example 1 was prepared. 60 × 35m of this brazing material paste
m, applied to both sides of a silicon nitride plate having a thickness of 0.635 mm and applied by a screen printing machine. The coating amount (after drying) at that time was 6 to 8 mg / cm 2 .

【0046】ろう材ペーストが全面に塗布された窒化珪
素板の片面に大きさ60mm×35mm厚み0.3mm
の無酸素銅板を、その裏面に大きさ70mm×35mm
中心部の60×30mmの大きさは厚み0.25mm
で、その外側の厚みは0.15mmに加工した無酸素銅
板を加工面がセラミックス側になるように接触配置し
た。接触配置してから、実施例1と同一条件で接合体を
作製した。
A size of 60 mm × 35 mm and a thickness of 0.3 mm is formed on one surface of a silicon nitride plate coated with a brazing material paste on the entire surface.
Oxygen-free copper plate, size 70mm × 35mm on the back
The size of 60 × 30mm at the center is 0.25mm thick
An oxygen-free copper plate processed to have an outer thickness of 0.15 mm was placed in contact with the ceramic so that the processed surface was on the ceramic side. After the contact arrangement, a joined body was produced under the same conditions as in Example 1.

【0047】前記接合体の厚み0.3mmの銅板上には
回路パターンの形状で、0.15mmの銅板上には銅板
全面にUV硬化タイプのエッチングレジストをスクリー
ン印刷で塗布、更に0.15mmの銅板のはみ出し部分
の基板側にも小型ローラーにて同様にエッチングレジス
トを塗布してUV硬化させ、塩化第2鉄溶液を用いてエ
ッチング処理を行なうことにより銅回路パターンを形成
した。さらに、銅回路間には不要なろう材や活性金属成
分と窒化珪素との反応生成物が残留するので、温度60
℃、10%フッ化アンモニウム溶液に10分間浸漬して
前記残留物を除去し、セラミックス回路基板を作製し
た。実施例1と同じ評価を行った結果を表1に示した
が、実施例1と同様に良好な結果が得られた。
A UV-curable etching resist is applied by screen printing on the entire surface of the copper plate in the form of a circuit pattern on a copper plate having a thickness of 0.3 mm and on a copper plate having a thickness of 0.15 mm. An etching resist was similarly applied to the protruding portion of the copper plate on the substrate side with a small roller, UV-cured, and etched using a ferric chloride solution to form a copper circuit pattern. Furthermore, since unnecessary brazing material or a reaction product of the active metal component and silicon nitride remains between the copper circuits, the temperature is reduced to 60 ° C.
The residue was removed by immersion in a 10% ammonium fluoride solution at 10 ° C. for 10 minutes to produce a ceramic circuit board. The results of the same evaluation as in Example 1 are shown in Table 1, and good results were obtained as in Example 1.

【0048】〔実施例7〕実施例7については、セラミ
ックス基板として窒化アルミニウム板を用いた以外は実
施例1に示す方法で試料を得た。実施例1と同じ評価を
行った結果を表1に示したが、500回経過後にも何ら
異常がなく、良好であった。
Example 7 In Example 7, a sample was obtained by the method shown in Example 1 except that an aluminum nitride plate was used as a ceramic substrate. The results of the same evaluation as in Example 1 are shown in Table 1. The results were good without any abnormality even after 500 times.

【0049】〔実施例8〕実施例8については、セラミ
ックス基板として窒化アルミニウム板を用いた以外は実
施例2に示す方法で試料を得た。実施例1と同じ評価を
行った結果を表1に示したが、500回経過後にも何ら
異常がなく、良好であった。
Example 8 In Example 8, a sample was obtained by the method shown in Example 2 except that an aluminum nitride plate was used as a ceramic substrate. The results of the same evaluation as in Example 1 are shown in Table 1. The results were good without any abnormality even after 500 times.

【0050】〔比較例1〕窒化アルミニウム板の裏表両
面の全面に実施例1と同様のろう材を塗布し、その後は
実施例1と同じ操作でセラミックス回路基板も作製し、
実施例1と同じ評価を行った。その結果を表1に示した
が、300回後に部分的にクラックが認められ、500
回後にはかなりの部分にクラック、剥離が認められた。
[Comparative Example 1] The same brazing material as in Example 1 was applied to the entire surface of both the front and back surfaces of the aluminum nitride plate. Thereafter, a ceramic circuit board was produced in the same manner as in Example 1.
The same evaluation as in Example 1 was performed. The results are shown in Table 1. After 300 times, cracks were partially observed, and 500
After the rotation, cracks and peeling were observed in a considerable part.

【0051】[0051]

【発明の効果】本発明のセラミックス回路基板は、熱サ
イクル時に発生するセラミックス回路基板と金属製ヒー
トシンクとの間に発生しがちな半田クラックを大幅に抑
制しているという特徴を有し産業上非常に有用なもので
ある。また、該セラミックス回路基板を用いたパワーモ
ジュールは、安価で放熱性が高い金属製ヒートシンク用
いながらも、熱サイクルを被る実使用条件下での信頼性
が大幅に向上しているという特徴がある。
Industrial Applicability The ceramic circuit board of the present invention has a feature that solder cracks, which are likely to occur between the ceramic circuit board and a metal heat sink during a heat cycle, are greatly suppressed, and are industrially very important. It is useful for In addition, the power module using the ceramic circuit board has a feature that the reliability under the actual use condition which is subjected to a heat cycle is greatly improved while using a metal heat sink which is inexpensive and has high heat dissipation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係るセラミックス回路基板
の断面模式図。
FIG. 1 is a schematic cross-sectional view of a ceramic circuit board according to a first embodiment of the present invention.

【図2】本発明の実施例2に係るセラミックス回路基板
の断面模式図。
FIG. 2 is a schematic cross-sectional view of a ceramic circuit board according to Embodiment 2 of the present invention.

【図3】本発明の実施例3に係るセラミックス回路基板
の断面模式図。
FIG. 3 is a schematic sectional view of a ceramic circuit board according to Embodiment 3 of the present invention.

【図4】本発明の実施例1、2、3に係るセラミックス
回路基板の接合用金属板端部断面拡大模式図。
FIG. 4 is an enlarged schematic cross-sectional view of an end portion of a joining metal plate of a ceramic circuit board according to Examples 1, 2, and 3 of the present invention.

【図5】本発明の実施例4に係るセラミックス回路基板
の接合用金属板端部断面拡大模式図。
FIG. 5 is an enlarged schematic cross-sectional view of an end portion of a joining metal plate of a ceramic circuit board according to Embodiment 4 of the present invention.

【図6】本発明の実施例5に係るセラミックス回路基板
の接合用金属板端部断面拡大模式図。
FIG. 6 is an enlarged schematic cross-sectional view of a joining metal plate end of a ceramic circuit board according to Embodiment 5 of the present invention.

【図7】本発明の実施例6に係るセラミックス回路基板
の接合用金属板端部断面拡大模式図。
FIG. 7 is an enlarged schematic cross-sectional view of an end portion of a joining metal plate of a ceramic circuit board according to a sixth embodiment of the present invention.

【図8】比較例である従来公知のセラミックス回路基板
の断面図。
FIG. 8 is a sectional view of a conventionally known ceramic circuit board as a comparative example.

【符号の説明】[Explanation of symbols]

1 セラミックス基板 2 金属板(回路用) 3 金属板(接合用) 4 放熱部材(ヒートシンク) 5 半田 6 半導体部品 A 接合部分 B、B’ 非接合部分 Reference Signs List 1 ceramic substrate 2 metal plate (for circuit) 3 metal plate (for bonding) 4 heat dissipation member (heat sink) 5 solder 6 semiconductor component A bonding part B, B 'non-bonding part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】一主面上に回路を、他の一主面上に放熱部
材への接合用金属板を設けてなるセラミックス回路基板
であって、前記接合用金属板が、セラミックス基板と対
向する面において、接合部分と該接合部分の周囲に設け
られた非接合部分とを有し、しかも、非接合部分で厚み
の異なる部分を有することを特徴とするセラミックス回
路基板。
1. A ceramic circuit board comprising a circuit on one main surface and a metal plate for bonding to a heat radiating member on another main surface, wherein the metal plate for bonding is opposed to the ceramic substrate. A ceramic circuit board, comprising: a joining portion, a non-joining portion provided around the joining portion, and a portion having a different thickness in the non-joining portion.
【請求項2】接合用金属板の大きさがセラミックス基板
の大きさよりも大きく、非接合部分の大きさが金属板の
端部から接合部境界まで0.1mm以上の距離を有する
ことを特徴とする請求項1記載のセラミックス回路基
板。
2. The method according to claim 1, wherein the size of the joining metal plate is larger than the size of the ceramic substrate, and the size of the non-joining portion has a distance of 0.1 mm or more from the end of the metal plate to the boundary of the joining portion. The ceramic circuit board according to claim 1, wherein
【請求項3】接合用金属板の大きさがセラミックス基板
の大きさと同等もしくは小さく、非接合部分の大きさが
金属板の端部から接合部境界まで0.1mm以上の距離
を有することを特徴とする請求項1記載のセラミックス
回路基板。
3. The size of the metal plate for bonding is equal to or smaller than the size of the ceramic substrate, and the size of the non-bonded portion has a distance of 0.1 mm or more from the end of the metal plate to the boundary of the bonded portion. The ceramic circuit board according to claim 1, wherein
【請求項4】請求項1、請求項2、又は請求項3記載の
セラミックス回路基板の接合用金属板上にヒートシンク
を設けたことを特徴とするセラミックス回路基板。
4. A ceramic circuit board according to claim 1, wherein a heat sink is provided on the bonding metal plate of the ceramic circuit board according to claim 1.
【請求項5】請求項4記載のセラミックス回路基板を用
いてなることを特徴とするパワーモジュール。
5. A power module comprising the ceramic circuit board according to claim 4.
JP27281098A 1998-09-28 1998-09-28 Ceramic circuit board and power module using it Expired - Fee Related JP3779074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27281098A JP3779074B2 (en) 1998-09-28 1998-09-28 Ceramic circuit board and power module using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27281098A JP3779074B2 (en) 1998-09-28 1998-09-28 Ceramic circuit board and power module using it

Publications (2)

Publication Number Publication Date
JP2000101203A true JP2000101203A (en) 2000-04-07
JP3779074B2 JP3779074B2 (en) 2006-05-24

Family

ID=17519079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27281098A Expired - Fee Related JP3779074B2 (en) 1998-09-28 1998-09-28 Ceramic circuit board and power module using it

Country Status (1)

Country Link
JP (1) JP3779074B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334959A (en) * 2001-05-10 2002-11-22 Denki Kagaku Kogyo Kk Module structure
JP2006261293A (en) * 2005-03-16 2006-09-28 Mitsubishi Electric Corp Semiconductor device and insulation substrate for use thereof
JP2006286897A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Metal-ceramic bonding substrate
JP2006351988A (en) * 2005-06-20 2006-12-28 Denki Kagaku Kogyo Kk Ceramic substrate, ceramic circuit board and power control component using same
JP2007158156A (en) * 2005-12-07 2007-06-21 Mitsubishi Electric Corp Semiconductor module
JP2011199315A (en) * 2011-06-17 2011-10-06 Dowa Holdings Co Ltd Metal/ceramic bonding substrate
CN107978530A (en) * 2017-11-28 2018-05-01 西安中车永电电气有限公司 A kind of method and DBC substrates of reduction IPM modules injection flash

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334959A (en) * 2001-05-10 2002-11-22 Denki Kagaku Kogyo Kk Module structure
JP4722514B2 (en) * 2005-03-16 2011-07-13 三菱電機株式会社 Semiconductor device and insulating substrate for semiconductor device
JP2006261293A (en) * 2005-03-16 2006-09-28 Mitsubishi Electric Corp Semiconductor device and insulation substrate for use thereof
DE102006011689B4 (en) * 2005-03-16 2014-11-06 Mitsubishi Denki K.K. Semiconductor device and insulating substrate for the same
US7919852B2 (en) 2005-03-16 2011-04-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and insulating substrate utilizing a second conductor with a non-joint area
JP2006286897A (en) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd Metal-ceramic bonding substrate
JP4498966B2 (en) * 2005-03-31 2010-07-07 Dowaホールディングス株式会社 Metal-ceramic bonding substrate
JP2006351988A (en) * 2005-06-20 2006-12-28 Denki Kagaku Kogyo Kk Ceramic substrate, ceramic circuit board and power control component using same
JP4549287B2 (en) * 2005-12-07 2010-09-22 三菱電機株式会社 Semiconductor module
JP2007158156A (en) * 2005-12-07 2007-06-21 Mitsubishi Electric Corp Semiconductor module
JP2011199315A (en) * 2011-06-17 2011-10-06 Dowa Holdings Co Ltd Metal/ceramic bonding substrate
CN107978530A (en) * 2017-11-28 2018-05-01 西安中车永电电气有限公司 A kind of method and DBC substrates of reduction IPM modules injection flash
CN107978530B (en) * 2017-11-28 2024-03-26 西安中车永电电气有限公司 Method for reducing injection molding flash of IPM module and DBC substrate

Also Published As

Publication number Publication date
JP3779074B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
EP2980844B1 (en) Substrate for power modules, substrate with heat sink for power modules, and power module
JP2006240955A (en) Ceramic substrate, ceramic circuit board, and power control component using the same
KR20150067177A (en) Substrate for power module with heat sink, power module with heat sink, and method for producing substrate for power module with heat sink
JP2004115337A (en) Aluminum-ceramic bonded body
KR20170044105A (en) Joined body, substrate for power module provided with heat sink, heat sink, method for manufacturing joined body, method for manufacturing substrate for power module provided with heat sink, and method for manufacturing heat sink
KR102336484B1 (en) Assembly, power-module substrate provided with heat sink, heat sink, method for manufacturing assembly, method for manufacturing power-module substrate provided with heat sink, and method for manufacturing heat sink
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
JP2004022973A (en) Ceramic circuit board and semiconductor module
JP3779074B2 (en) Ceramic circuit board and power module using it
JP6904094B2 (en) Manufacturing method of insulated circuit board
JP2006351988A (en) Ceramic substrate, ceramic circuit board and power control component using same
JP2002064169A (en) Heat radiating structure
JP2004055576A (en) Circuit board and power module using it
JP5467407B2 (en) Aluminum-ceramic bonded body
JP6221590B2 (en) Bonding structure of insulating substrate and cooler, manufacturing method thereof, power semiconductor module, and manufacturing method thereof
JPH11121889A (en) Circuit board
JP6259625B2 (en) Bonding structure of insulating substrate and cooler, manufacturing method thereof, power semiconductor module, and manufacturing method thereof
JP3308883B2 (en) Board
JP2000049425A (en) Ceramics circuit board, its manufacture and power module using the same
JP2004307307A (en) Ceramic circuit board and method of manufacturing the same
JP4013423B2 (en) Bonded body of ceramic layer and metal conductor layer
JP3934966B2 (en) Ceramic circuit board
JPH08274423A (en) Ceramic circuit board
JP2004327732A (en) Ceramic circuit board and electrical circuit module
JP2001267447A (en) Ceramic circuit board and semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees