JP2004306683A - 磁気掃海装置及び磁気掃海システム - Google Patents

磁気掃海装置及び磁気掃海システム Download PDF

Info

Publication number
JP2004306683A
JP2004306683A JP2003100065A JP2003100065A JP2004306683A JP 2004306683 A JP2004306683 A JP 2004306683A JP 2003100065 A JP2003100065 A JP 2003100065A JP 2003100065 A JP2003100065 A JP 2003100065A JP 2004306683 A JP2004306683 A JP 2004306683A
Authority
JP
Japan
Prior art keywords
current
magnetic
electric wire
magnetic field
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003100065A
Other languages
English (en)
Other versions
JP4269311B2 (ja
Inventor
Akiteru Ogura
明輝 小倉
Masatoshi Fujimoto
雅敏 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Shipbuilding Corp
Original Assignee
Universal Shipbuilding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Shipbuilding Corp filed Critical Universal Shipbuilding Corp
Priority to JP2003100065A priority Critical patent/JP4269311B2/ja
Publication of JP2004306683A publication Critical patent/JP2004306683A/ja
Application granted granted Critical
Publication of JP4269311B2 publication Critical patent/JP4269311B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

【課題】簡単かつ短時間に、しかも安全に、広い掃海幅で高知能磁気機雷を誘爆して取り除く。
【解決手段】開示される磁気掃海装置は、直接供給される電流又は電線29及び29を介して供給される電流を海中に放電して磁気機雷を掃海するための磁場を発生する電極30〜30と、各端末に接続された対応する電極30〜30に流すべき電流を中継するとともに、自身に流れる電流によって磁気機雷を掃海するための磁場を発生する電線29及び29とを有する電線・電極部27を備えている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、磁気掃海装置及び磁気掃海システムに関し、詳しくは、磁性体で作製され特有の磁場を有する船舶の航行により発生する磁気の変化を感知して作動する磁気機雷を誘爆して取り除く磁気掃海装置及びこの磁気掃海装置を備えた磁気掃海システムに関する。
【0002】
【従来の技術】
従来の磁気掃海システムでは、図20に示すように、抗張材と浮力体とをあわせて絶縁処理した浮上掃海電線からなる200〜300m程度の長ケーブル1及び消磁界ケーブル2の各端末に図示せぬ電極が取り付けられている。また、この磁気掃海システムでは、長ケーブル1と消磁界ケーブル2との間にCLケーブル3を接続して閉回路を作製している。そして、上記した閉回路又は開回路に掃海艇4に搭載された発電機で発生させた数千アンペアの電流を通電することにより磁場又は磁気信号(磁気シグネチャ(signature))を発生して磁気機雷5を誘爆している。なお、長ケーブル1は、フロート6から海中に吊り下げられている展開器7及び掃海索8を用いて左舷展開され、半径50m程度のループを発生している(例えば、特許文献1、非特許文献1及び2参照。)。このタイプの掃海方法は、マインセッティング法と呼ばれている。以下、この技術を第1の従来例と呼ぶ。
【0003】
また、従来の磁気掃海システムには、複数の永久磁石を連結し、掃海艇の後方に曳航するものもある(例えば、非特許文献2参照。)。以下、この技術を第2の従来例と呼ぶ。
さらに、従来の磁気掃海システムは、図21に示すように、図示せぬ掃海艇の進行方向に対して一列に配置された一連の磁気筏11を備えている。この磁気筏11は、互いに直交して配置された2つの誘導コイル(図示略)を有している。各磁気筏11は、個別に電源装置12から電流が供給されることにより互いに直交する磁界を発生する。各電流の強度は、磁場又は磁気シグネチャをシミュレートしようとする船舶の特性を表すパラメータ群に基づいて制御手段13により自動的に決定される。この磁気シグネチャは、船舶の長さ、速度及び水位の関数である(例えば、特許文献2参照。)。以下、この技術を第3の従来例と呼ぶ。
【0004】
【特許文献1】
特開2001−80576号公報(第2頁、図12)
【特許文献2】
特開平6−24381号公報(第1−3頁、図2)
【非特許文献1】
森恒英著,「続艦船メカニズム図鑑」,第5刷,グランプリ出版,1993年10月1日,p.178−179
【非特許文献2】
航路啓開史編纂会編,「日本の掃海−航路啓開五十年の歩み」,株式会社国書刊行会,平成4年3月5日,p.152−154
【0005】
【発明が解決しようとする課題】
ところで、上記した第1の従来例では、1本の長ケーブル1及び消磁界ケーブル2の各端末に取り付けられた2本の電極により磁場を発生しているに過ぎないため、発生可能な磁場のパターンが単純であり、磁場を模擬(エミュレーション)することができる船舶のタイプが極めて限られてしまうという課題があった。このため、上記した第1の従来例は、古いタイプの磁気機雷を誘爆して取り除くことには有効であっても、このような第1の従来例が発生する単純な磁場と実際の船舶が発生する磁場とを識別する高度な判断回路を備え、実際の船舶が発生する磁場にのみ感応する新式の高知能磁気機雷を誘爆して取り除くことができないという課題があった。また、上記した第1の従来例では、発生する磁場は掃海に必要な掃海艇の進行方向に対する後方左右方向よりも掃海艇の進行方向に巨大であるため、場合によっては、掃海艇の前方や至近距離で磁気機雷を誘爆してしまうという危険な事態を引き起こすこともある。
【0006】
一方、上記した第2の従来例は、上記した高知能磁気機雷を誘爆して取り除くことができる反面、個々の永久磁石が極めて巨大であるため、掃海艇に搭載することが不可能なうえ、常時磁場を発生しており、掃海の現場まで移動させる途中に安全な消磁状態を実現することができないという課題があった。また、永久磁石は磁気モーメントに限界がある(現在の技術で製造できる最も強い磁気モーメントは例えば、200,000ATm)ため、上記した第2の従来例における、磁気機雷を掃海できる掃海艇の進行方向に対する後方左右方向の範囲(以下、掃海幅という)は極めて小さいものである。したがって、上記した第2の従来例では、所定の海域を掃海するためには非常に多くの掃海回数を必要とするという課題があった。
【0007】
また、上記した第2及び第3の従来例では、永久磁石や磁気筏11の連結間隔や個数、あるいは永久磁石の場合にはその向き、すなわち、極性を変えることにより、磁気機雷から防護すべき船舶の磁気シグネチャをそれぞれ模擬(エミュレーション)することができる。しかし、永久磁石や磁気筏11の連結間隔や個数、あるいは永久磁石の極性を変えるためには、掃海艇は、磁気機雷が敷設されていない安全な海域に一旦退去した後に、例えば、図21に示すウインチ系14等を用いて永久磁石や磁気筏11が取り付けられたロープを巻き上げて掃海艇の甲板に引き上げ、それらの連結間隔や個数、あるいは永久磁石の極性を変える必要がある。このため、磁気機雷の掃海に手間と時間がかかるという課題があった。
【0008】
この発明は、上述の事情に鑑みてなされたもので、簡単かつ短時間に、しかも安全に、広い掃海幅で高知能磁気機雷を誘爆して取り除くことができる磁気掃海装置及び磁気掃海システムを提供することを目的としている。
【0009】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明に係る磁気掃海装置は、供給される電流を海中に放電して磁気機雷を掃海するための磁場を発生する少なくとも3本の電極と、各端末に接続された対応する上記電極に流すべき上記電流を中継するとともに、自身に流れる電流によって上記磁気機雷を掃海するための磁場を発生する少なくとも2本の電線とを有する電線・電極部とを備えていることを特徴としている。
【0010】
また、請求項2記載の発明は、請求項1記載の磁気掃海装置に係り、エミュレーションすべき船舶が有する磁場シグネチャと、上記磁気シグネチャに対応する磁場を発生させるために必要な電極数と、上記電線及び上記電極に流す上記電流の向きである極性の配列である極性配列と、上記各電極間に流す電流の量である通電量とを入力変数とする磁場シグネチャモデルとの差を最小とする上記電極数と、上記極性配列と、上記通電量とからなる組を構成する上記電極数を有する上記電線・電極部の上記電線及び上記電極に、上記極性配列及び上記通電量の上記電流を流す電流供給部を備えていることを特徴としている。
【0011】
また、請求項3記載の発明は、請求項1又は2記載の磁気掃海装置に係り、上記電線・電極部には、その上記電流の供給側の領域及びその近傍で発生する磁場が、上記電流の供給側以外の領域及びその近傍で発生する磁場が上記電流の供給側の領域及びその近傍に与える影響を弱めるような向き及び通電量で上記電流を供給することを特徴としている。
【0012】
また、請求項4記載の発明は、請求項1乃至3のいずれか1に記載の磁気掃海装置に係り、上記電線及び上記電極の電圧及び電流を監視するとともに、海水の導電率を測定し、上記海水の導電率の変化に応じて上記電線・電極部の上記電流の供給側以外の領域及びその近傍に流れる電流の通電量が変化した場合には、上記電線・電極部には、上記通電量の変化に応じて、その電流の供給側の領域及びその近傍に、上記電流の供給側以外の領域及びその近傍に流す上記電流とは逆向きの上記電流を流すことを特徴としている。
【0013】
また、請求項5記載の発明に係る磁気掃海システムは、請求項1乃至4のいずれか1に記載の磁気掃海装置を備えていることを特徴としている。
【0014】
【発明の実施の形態】
図1は、この発明の実施の形態における磁気掃海装置を示すものである。
この例の磁気掃海装置は、主管制部21と、制御部22と、電源部23と、整流部24と、切換部25と、接続部26と、電線・電極部27とから構成されている。
主管制部21は、各種船舶が有する特有の磁気シグネチャに関するデータと、磁気シグネチャを発生させるためのアルゴリズム(以下、磁気シグネチャ発生アルゴリズムという)を内部に設けられた記憶部に予め記憶している。この磁気シグネチャ発生アルゴリズムは、入力されるエミュレーションすべき船舶の磁気シグネチャに基づいて、当該磁気シグネチャに対応する磁場を発生させるために必要な電極の数(以下、必要電極数NEという)、電線及び電極に流す電流の向き(以下、極性という)の配列(以下、極性配列APという)、各電極間に流す電流の量(以下、通電量VEという)を計算するものである。
【0015】
ここで、磁気シグネチャ発生アルゴリズムの具体的な手法について説明する。この磁気シグネチャ発生アルゴリズムでは、ビオ・サバールの法則に電極磁場の計算手法を組み合わせた磁気シグネチャモデルSMFを用いる。この磁気シグネチャモデルSMFは、上記した必要電極数NE、極性配列AP及び通電量VEを入力変数とする関数である(すなわち、SMF(NE,AP,VE)である。)。
そこで、これらの入力変数、必要電極数NE、極性配列AP及び通電量VEを、電線及び電極に流す電流の合計を一定値以内に抑えるという制約条件下で変化させた場合に、式(1)で表される値SDを最小とする入力変数、必要電極数NE、極性配列AP及び通電量VEを求めるのである。
SD={SMF−SMF(NE,AP,VE)}・・・(1)
【0016】
式(1)において、SMFは、エミュレーションすべき船舶が有する磁気シグネチャである。
最小の2乗誤差へ迅速に収束させるためにラグランジュの微分傾斜手法等の良く知られた数値解析手法を用いた場合、約200回の演算で値SDの収束が完了することが確認されており、上記した磁気シグネチャ発生アルゴリズムは、十分に実用的な演算手法として使用することができる。
主管制部21は、制御部22に対して、上記した磁気シグネチャ発生アルゴリズムにより計算した各電線及び電極の極性及び通電量VEを供給するとともに、磁気機雷を安全に掃海するための電流制御(以下、安全電流制御という。)を行う。この安全電流制御については、後述する。
【0017】
制御部22は、磁気シグネチャを発生するために電線及び電極に流す電流を制御するためのアルゴリズム(以下、電流制御アルゴリズムという。)を内部に設けられた記憶部に予め記憶している。この電流制御アルゴリズムは、主管制部21から供給される各電線及び電極の極性及び通電量VEに基づいて、整流部24を制御するための制御信号を発生するものである。この制御信号は、電線及び電極に流す電流の波高及び位相を調整するためのものである。
電源部23は、図示せぬ掃海艇等が備えた交流発電機から供給される交流電流を直流電流に変換するとともに、この変換に伴う高中調波成分を除去して整流部24に供給する。整流部24は、電源部23から供給される直流電流を整流するとともに、制御部22から供給される制御信号に基づいて電線及び電極に流す電流の通電電流制御を行う。
【0018】
切換部25は、整流部24により制御され、電線及び電極のそれぞれの極性を、上記した磁気シグネチャ発生アルゴリズムにより計算された極性とするために、整流部24と接続部26との接続を切り換える。接続部26は、ウインチを構成するリール(いずれも図示略)に巻き取られた消磁界電線28と切換部25との接続を行う。
電線・電極部27は、消磁界電線28と、電線29及び29と、電極30〜30とから構成されている。消磁界電線28は、例えば、200mの長さを有し、接続部26側から電線及び電極側に向かう電流が流れる往路線(図示略)と、電線及び電極側から接続部26側に向かう電流が流れる復路線(図示略)とが撚り合わされている。これにより、往路線に流れる電流が発生する磁場と、復路線に流れる電流が発生する磁場とが互いに打ち消し合うため、掃海艇等の近傍で磁場がほとんど発生しない。
【0019】
電線29及び29は、例えば、最大長が300mであり、各端末に接続された電極30及び30に流すべき電流を中継するとともに、自身に流れる電流によって磁気機雷を掃海するための磁場を発生する。電極30〜30は、消磁界電線28から直接供給される電流又は電線29及び29を介して供給される電流を海中に放電して磁場を発生する。電極30〜30は、等間隔又は適宜の間隔で配置されている。電線29並びに29及び電極30〜30の最大通電能力は、例えば、2000Aである。
【0020】
図2は、上記構成の磁気掃海装置を適用した磁気掃海システムの一例を示している。図2に示す例では、図1に示す磁気掃海装置の構成要素のうち、主管制部21、制御部22、電源部23、整流部24、切換部25及び接続部26が掃海艇31に搭載されるとともに、掃海艇31が備えた交流発電機から電源部23に交流電流が供給される。一方、掃海艇31の船尾には、図示せぬウインチが設けられており、掃海具を使用しない時には、ウインチを構成するリールに消磁界電線28を含むすべての電線と電極が巻かれている。
掃海具を使用する時は、消磁界電線28、電線29並びに29及び電極30〜30は、海面上に浮上している。そして、掃海艇31が消磁界電線28、電線29並びに29及び電極30〜30を曳航するとともに、接続部26から電線・電極部27に電流を供給することにより磁場32を発生させ、磁気機雷33を誘爆させて取り除くのである。
【0021】
次に、上記構成の磁気掃海システムの動作について説明する。まず、掃海艇31の乗組員は、上記した磁気掃海装置を搭載した掃海艇31を磁気機雷が敷設されていると思われる海域まで航行させる。次に、掃海艇31の乗組員は、図2に示すように、掃海艇31の船尾から、消磁界電線28、電線29並びに29及び電極30〜30を海面上に浮上させる。
次に、乗務員は、主管制部21の図示せぬ操作部を操作して、エミュレーションすべき船舶の磁気シグネチャとして、例えば、大型クレーンを搭載した船舶の磁気シグネチャを入力する。これにより、主管制部21は、内部に設けられた記憶部から磁気シグネチャ発生アルゴリズムを読み出し、上記した大型クレーンを搭載した船舶の磁気シグネチャに基づいて、当該磁気シグネチャに対応する磁場を発生させるための必要電極数NE、電線及び電極の極性配列AP、各電極間に流す通電量VEを計算する。次に、主管制部21は、制御部22に対して、上記した磁気シグネチャ発生アルゴリズムにより計算した各電線及び電極の極性及び通電量VEを供給するとともに、安全電流制御を行う。
【0022】
したがって、制御部22は、内部に設けられた記憶部から電流制御アルゴリズムを読み出し、主管制部21から供給された各電線及び電極の極性及び通電量VEに基づいて、整流部24を制御するための制御信号を発生する。一方、電源部23は、掃海艇31が備えた交流発電機から供給される交流電流を直流電流に変換するとともに、この変換に伴う高中調波成分を除去して整流部24に供給する。これにより、整流部24は、電源部23から供給される直流電流を整流するとともに、制御部22から供給される制御信号に基づいて電線及び電極に流す電流の通電電流制御を行う。
【0023】
したがって、切換部25は、整流部24により制御され、電線及び電極のそれぞれの極性を、上記した磁気シグネチャ発生アルゴリズムにより計算された極性とするために、整流部24と接続部26との接続を切り換える。これにより、電線・電極部27では、図3に実線の矢印で示すように、消磁界電線28から電極30、海中、電極30には、1000Aの電流が流れる。一方、図3に破線の矢印で示すように、消磁界電線28から電線29、電極30、海中、電極30には、1000Aの電流が流れる。
【0024】
以下、電線・電極部27における電流の流れ方について詳細に説明する。まず、消磁界電線28には、図示せぬ往路線にx方向に2000Aの電流が流れる一方、図示せぬ復路線にx方向に2000Aの電流が流れる。ここで、x方向とは、掃海艇31の船首と船尾とを結ぶ線に平行な方向であるx方向であって、掃海艇の進行方向とは反対の方向をいい、x方向とは、上記x方向であって、掃海艇の進行方向をいう。また、第1電線領域TEでは、電線29にx方向に1000Aの電流が流れ、第2電線領域TEでは、電線29にx方向に1000Aの電流が流れるとともに、図3に1点鎖線の矢印で示すように、電線29にx方向に2000Aの電流が流れる。一方、第1海中領域TSではx方向に1000Aの電流が流れ、第2海中領域TSではx方向に1000Aの電流が流れる。
【0025】
この結果、海中には、図4〜図6に示す磁場が発生する。図4は磁場のx成分、図5は磁場のy成分、図6は磁場のz成分である。図4〜図6において、各矢印の先の部分が掃海艇31の位置であり、掃海艇は各図において、x方向に進行する。ここで、x方向とは、図3と同様、掃海艇31の船首と船尾とを結ぶ線に平行な方向をいい、x方向は掃海艇31の進行方向をいう。y方向とは、掃海艇31の左舷と右舷とを結ぶ線に平行な方向をいい、y方向は右舷から左舷に向かう方向をいう。z方向とは、海面に垂直な方向をいい、z方向は海面から海中に向かう方向をいう。
【0026】
実際の船舶も、上記したx成分、y成分及びz成分の磁場を発生しているが、上記した高知能磁気機雷には、この実際の船舶が有する磁場のx成分、y成分及びz成分を合成したスカラー量である全磁場を検知することができるタイプのものや、垂直成分(z成分)と水平成分(x成分とy成分との和)のベクトル値をそれぞれ検知することができるタイプのもの、あるいはこの両方を検知することができるタイプのものがある。
【0027】
しかし、この実施の形態の磁気掃海システムによれば、進行方向に沿ってy成分やz成分の極性が反転するような複雑な磁場を発生する実際の船舶(今の場合、大型クレーンを搭載した船舶)が発生する磁場に酷似した磁場を模擬(エミュレーション)することができるので、上記した高知能磁気機雷を誘爆して取り除くことができる。
【0028】
この例の電線・電極部27は、3つの電極30〜30を有するので、掃海艇31の進行方向に沿って磁場のy成分の極性が反転しやすい船舶(例えば、大型クレーンを搭載した船舶)の他、進行方向に沿って磁場のz成分の極性が反転しやすい船舶(例えば、中央付近に船橋を有する船舶)や、進行方向に沿って磁場のy成分の極性及びz成分の極性がともに反転しやすい船舶(例えば、磁性体貨物(鉄製品)を搭載した船舶)が発生する磁場に酷似した磁場を模擬(エミュレーション)することができる。また、この例の電線・電極部27を用いてエミュレーションすることができる磁場のタイプの数TCは、式(2)で示すように6種類である。
TC=2×=6・・・(2)
式(2)において、は、3つの電極30〜30の中から正極1個及び負極1個を選び出すこと(数学上の組み合わせ(コンビネーション))を表しており、これを2倍にしているのは正極と負極を入れ替えているからである。
【0029】
ここで、図1に示す接続部26に、図3に示す電線・電極部27に換えて、図7に示す電線・電極部41を取り付けた第1の従来例について説明する。電線・電極部41は、消磁界電線42と、電線43と、電極44及び44とから構成されている。消磁界電線42は、例えば、200mの長さを有し、消磁界電線28と同様、図示せぬ往路線と、図示せぬ復路線とが撚り合わされている。電線43は、例えば、最大長が300mであり、端末に接続された電極44に流すべき電流を中継するとともに、自身に流れる電流によって磁気機雷を掃海するための磁場を発生する。電極44及び44は、消磁界電線42から直接供給される電流又は電線43を介して供給される電流を海中に放電して磁場を発生する。電線43及び電極44並びに44の最大通電能力は、例えば、2000Aである。
【0030】
そして、電線・電極部41には、図7に矢印で示すように、消磁界電線42から電極44、海中、電極44、電線43には、2000Aの電流を流す。詳細には、消磁界電線42には、図示せぬ往路線にx方向に2000Aの電流を流す一方、図示せぬ復路線にx方向に2000Aの電流を流す。これにより、電線領域TEでは、電線43にx方向に2000Aの電流が流れる一方、海中領域TSではx方向に2000Aの電流が流れる。この結果、海中には、図8〜図10に示す磁場が発生する。図8は磁場のx成分、図9は磁場のy成分、図10は磁場のz成分である。図8〜図10において、各矢印の先の部分が掃海艇41の位置であり、掃海艇は各図において、x方向に進行する。
【0031】
図4と図8とを比較して分かるように、磁場のx成分についてはほとんど異なる点はない。すなわち、2つの電極を有する電線・電極部41を用いた第1の従来例の場合であっても、ほとんどの船舶が発生する磁場のx成分については、精度良くエミュレーションすることができる。しかし、図5と図9及び図6と図10とを比較して分かるように、2つの電極を有する電線・電極部41を用いた場合には、掃海艇31の進行方向に沿って磁場のy成分の極性やz成分の極性が反転するような複雑な船舶(例えば、上記した、大型クレーンを搭載した船舶、中央付近に船橋を有する船舶、あるいは磁性体貨物(鉄製品)を搭載した船舶)が発生する磁場をエミュレーションすることはできない。
【0032】
さらに、この例の電線・電極部41を用いてエミュレーションすることができる磁場のタイプの数TCは、式(3)で示すように2種類に過ぎない。
TC=2×=2・・・(3)
式(3)において、は、2つの電極44及び44の中から正極1個及び負極1個を選び出すコンビネーションを表しており、これを2倍にしているのは正極と負極を入れ替えているからである。
したがって、この例の電線・電極部41を用いた場合には、上記した高知能磁気機雷を誘爆して取り除くことができる場合は極めて希であるが、磁針式又は誘導式の感応部を有する古いタイプの磁気機雷を誘爆して取り除くマインセッティング法には用いることができる。
【0033】
次に、安全電流制御について、図3を参照して説明する。上記したように、消磁界電線28には、図示せぬ往路線にx方向に2000Aの電流が流れる一方、図示せぬ復路線にx方向に2000Aの電流が流れる。このため、往路線に流れる電流が発生する磁場と、復路線に流れる電流が発生する磁場とが互いに打ち消し合うため、掃海艇31の近傍では磁場がほとんど発生しない。また、電線29及び29は互いに極めて接近した状態で掃海艇31に曳航されるので、第1電線領域TEでは、x方向に流れる1000Aの電流が磁場の発生に寄与しているが、第2電線領域TEでは、(1000−2000)A=−1000Aのx方向に流れる電流だけが磁場の発生に寄与している。すなわち、掃海艇31に近い第2電線領域TEでは、掃海艇31の進行方向とは逆向きの電流−1000Aによって第1電線領域TEで発生された磁場が掃海艇31に与える影響を弱める働きをする。同様に、掃海艇31に近い第2海中領域TSでは、掃海艇31の進行方向とは逆向きの電流−1000Aによって第1海中領域TSで発生された磁場が掃海艇31に与える影響を弱める働きをする。掃海艇31に近い第2電線領域TE及び第2海中領域TSに流す電流(これを安全電流という。)の値をどれだけにするかは海水の導電率により異なる。
【0034】
そこで、主管制部21は、電線29並びに29及び電極30〜30の電圧及び電流を監視するとともに、導電計のセンサ部を海水に浸して海水の導電率を測定し、海水の導電率の変化等に応じて第1電線領域TE及び第1海中領域TSの通電量が変化した場合には、その通電量の変化に応じて、第2電線領域TE及び第2海中領域TSには、第1電線領域TE及び第1海中領域TSに流す電流とは逆極性の電流の通電を指示する安全電流制御を行う。
【0035】
なお、後述する電線・電極部51及び61を用いる場合であっても、同様に安全電流制御を行う。すなわち、電線及び電極の電圧及び電流を監視するとともに、海水の導電率を測定し、海水の導電率の変化に応じて電流の供給側以外の領域及びその近傍(電極間の海中)に流れる電流の通電量が変化した場合には、電線・電極部には、この通電量の変化に応じて、電流の供給側の領域及びその近傍に、電流の供給側以外の領域及びその近傍に流す電流とは逆向きの電流の通電を指示する安全電流制御を行う。
【0036】
次に、図1に示す接続部26に、図1に示す電線・電極部27に換えて、図11に示す電線・電極部51を取り付けた場合について説明する。電線・電極部51は、消磁界電線52と、電線53〜53と、電極54〜54とから構成されている。消磁界電線52は、例えば、200mの長さを有し、消磁界電線28と同様、図示せぬ往路線と、図示せぬ復路線とが撚り合わされている。
【0037】
電線53〜53は、例えば、最大長が300mであり、各端末に接続された電極54〜54に流すべき電流を中継するとともに、自身に流れる電流によって磁気機雷を掃海するための磁場を発生する。電極54〜54は、消磁界電線52から直接供給される電流又は電線53〜53を介して供給される電流を海中に放電して磁場を発生する。電極54〜54は、等間隔又は適宜の間隔で配置されている。電線53〜53及び電極54〜54の最大通電能力は、例えば、2000Aである。
【0038】
そして、電線・電極部51には、図11に実線の矢印で示すように、消磁界電線52から電線53、電極54、第3海中領域TSの海中、電極54には、1000Aの電流を流すとともに、図11に破線の矢印で示すように、消磁界電線52から電線53、電極54、第2海中領域TSの海中、電極54、電線53には、1000Aの電流を流す。また、図11に実線の矢印で示すように、消磁界電線52から電線53、電極54、第1海中領域TSの海中、電極54には、1000Aの電流を流す。
【0039】
詳細には、消磁界電線52には、図示せぬ往路線にx方向に3000Aの電流を流す一方、図示せぬ復路線にx方向に2000Aの電流を流す。これにより、往路線に流れる電流が発生する磁場と、復路線に流れる電流が発生する磁場とが互いに打ち消し合うため、掃海艇31の近傍で磁場がほとんど発生しない。また、第1電線領域TEでは、電線53にx方向に1000Aの電流が流れ、第2電線領域TEでは、電線53にx方向に1000Aの電流が流れるとともに、図11に1点鎖線の矢印で示すように、電線53にx方向に2000Aの電流が流れる。さらに、第3電線領域TEでは、電線53にx方向に1000Aの電流が流れ、電線53にx方向に2000Aの電流が流れるとともに、図11に1点鎖線の矢印で示すように、電線53にx方向に2000Aの電流が流れる。一方、第1海中領域TSではx方向に1000Aの電流が流れ、第2海中領域TSではx方向に1000Aの電流が流れ、第3海中領域TSではx方向に1000Aの電流が流れる。
【0040】
この結果、海中には、図12〜図14に示す磁場が発生する。図12は磁場のx成分、図13は磁場のy成分、図14は磁場のz成分である。図12〜図14において、各矢印の先の部分が掃海艇31の位置であり、掃海艇は各図において、x方向に進行する。
図4と図12とを比較して分かるように、磁場のx成分についてはほとんど異なる点はない。しかし、図5と図13及び図6と図14とを比較して分かるように、4つの電極を有する電線・電極部51を用いた場合には、掃海艇31の進行方向に沿って磁場のy成分の極性やz成分の極性が複数回反転するような複雑な船舶(例えば、自動車運搬船やフェリー等のように自動車や鉄鉱石等の磁性体の貨物を搭載した船舶、武器を多数搭載した軍艦等)が発生する磁場をエミュレーションすることができる。また、4つの電極を有する電線・電極部51を用いた場合には、掃海艇31の進行方向に沿って磁場のy成分の極性又はz成分の極性のいずれか一方だけが反転するような複雑な船舶が発生する磁場をエミュレーションすることもできる。
【0041】
さらに、この例の電線・電極部51を用いてエミュレーションすることができる磁場のタイプの数TCは、式(4)で示すように12種類にもなる。
TC=2×=12・・・(4)
式(4)において、は、4つの電極54〜54の中から正極1個及び負極1個を選び出すコンビネーションを表しており、これを2倍にしているのは正極と負極を入れ替えているからである。
したがって、この例の電線・電極部51を用いた場合には、高精度で実際の船舶が発生する磁場をエミュレーションすることができる。
【0042】
次に、4つの電極を有する電線・電極部51を用いた場合の安全電流制御について、図15〜図18を参照して説明する。図15において、図11の各部に対応する部分には同一の符号を付け、その説明を省略する。
この場合、電線・電極部51には、図15に1点鎖線の矢印で示すように、消磁界電線52から電線53及び電極54には、1980Aの電流を流すとともに、図15に実線の矢印で示すように、電極54、第3海中領域TSの海中及び電極54には、660Aの電流を流す。また、図15に実線の矢印で示すように、電極54、第2海中領域TSの海中及び電極54には、660Aの電流を流すとともに、図15に実線の矢印で示すように、電極54、第2海中領域TS海中、第1海中領域TSの海中、電極54及び電線53には、660Aの電流を流す。
【0043】
詳細には、消磁界電線52には、図示せぬ往路線にx方向に1980Aの電流が流れる一方、図示せぬ復路線にx方向に1980Aの電流が流れる。また、第1電線領域TEでは、電線53にx方向に660Aの電流が流れ、第2電線領域TEでは、電線53にx方向に660Aの電流が流れるとともに、電線53にx方向に660Aの電流が流れる。さらに、第3電線領域TEでは、電線53にx方向に660Aの電流が流れ、電線53にx方向に660Aの電流が流れるとともに、図15に1点鎖線の矢印で示すように、電線53にx方向に1980Aの電流が流れる。一方、第1海中領域TSではx方向に660Aの電流が流れ、第2海中領域TSではx方向に1320Aの電流が流れ、第3海中領域TSではx方向に660Aの電流が流れる。
【0044】
上記したように、消磁界電線52には、図示せぬ往路線にx方向に1980Aの電流が流れる一方、図示せぬ復路線にx方向に1980Aの電流が流れる。このため、往路線に流れる電流が発生する磁場と、復路線に流れる電流が発生する磁場とが互いに打ち消し合うため、掃海艇31の近傍では磁場がほとんど発生しない。また、電線53〜53は互いに極めて接近した状態で掃海艇31に曳航されるので、第1電線領域TEでは、x方向に流れる660Aの電流が磁場の発生に寄与し、第2電線領域TEでは、x方向に流れる1320Aの電流が磁場の発生に寄与しているが、第3電線領域TEでは、(1320−1980)A=−660Aのx方向に流れる電流だけが磁場の発生に寄与している。すなわち、中央部である第2電線領域TEでは、x方向に流れる1320Aの電流により磁場が発生し、第2電線領域TEの後方である第1電線領域TEでは、第2電線領域TEの磁場を発生させている電流と同じ方向であるx方向に流れる660Aの電流により磁場が発生するため、第2電線領域TEで発生している磁場を強める働きをしている。一方、掃海艇31に近い第3電線領域TEでは、第2電線領域TEの磁場を発生させている電流とは逆向きに流れる660Aの電流によって第2電線領域TEで発生している磁場が掃海艇31に与える影響を弱める働きをする。
【0045】
同様に、第1海中領域TSでは、x方向に流れる660Aの電流が磁場の発生に寄与し、第2海中領域TSでは、x方向に流れる1320Aの電流が磁場の発生に寄与しているが、第3海中領域TSでは、x方向に流れる660Aの電流だけが磁場の発生に寄与している。すなわち、中央部である第2海中領域TSでは、x方向に流れる1320Aの電流により磁場が発生し、第2海中領域TSの後方である第1海中領域TSでは、第2海中領域TSの磁場を発生させている電流と同じ方向であるx方向に流れる660Aの電流により磁場が発生するため、第2海中領域TSで発生している磁場を強める働きをしている。一方、掃海艇31に近い第3海中領域TSでは、第2海中領域TSの磁場を発生させている電流とは逆向きに流れる660Aの電流によって第2海中領域TSで発生している磁場が掃海艇31に与える影響を弱める働きをする。この結果、掃海艇31の進行方向における発生磁場を弱めることができる。
【0046】
この結果、海中には、図16〜図18に示す磁場が発生する。図16は磁場のx成分、図17は磁場のy成分、図18は磁場のz成分である。図16〜図18において、各矢印の先の部分が掃海艇31の位置であり、掃海艇は各図において、x方向に進行する。
上記したように、図11に示す電流の流し方によっても安全電流制御をすることができるが、図12と図16、図13と図17、図14と図18とをそれぞれ比較して分かるように、掃海艇の近傍における磁場の強さは、図16〜図18に示す磁場の方が小さい。これにより、図15に示す電流の流し方の方がより安全に掃海をすることができることが分かる。
【0047】
次に、図1に示す接続部26に、図1に示す電線・電極部27に換えて、図19に示す電線・電極部61を取り付けた場合について説明する。電線・電極部61は、消磁界電線62と、電線63〜63と、電極64〜64とから構成されている。消磁界電線62は、例えば、200mの長さを有し、消磁界電線28と同様、図示せぬ往路線と、図示せぬ復路線とが撚り合わされている。
【0048】
電線63〜63は、例えば、最大長が300mであり、各端末に接続された電極64〜64に流すべき電流を中継するとともに、自身に流れる電流によって磁気機雷を掃海するための磁場を発生する。電極64〜64は、消磁界電線62から直接供給される電流又は電線63〜63を介して供給される電流を海中に放電して磁場を発生する。電極64〜64は、等間隔又は適宜の間隔で配置されている。電線63〜63及び電極64〜64の最大通電能力は、例えば、2000Aである。
【0049】
そして、電線・電極部61には、図19に実線の矢印で示すように、消磁界電線62から電線63、電極64、第4海中領域TSの海中、電極64には、1000Aの電流を流すとともに、図19に破線の矢印で示すように、消磁界電線62から電線63、電極64、第3海中領域TSの海中、電極64、電線63には、1000Aの電流を流す。また、図19に実線の矢印で示すように、消磁界電線62から電線63、電極64、第2海中領域TSの海中、電極64には、1000Aの電流を流すとともに、図19に破線の矢印で示すように、消磁界電線62から電線63、電極64、第1海中領域TSの海中、電極64、電線63には、1000Aの電流を流す。
【0050】
詳細には、消磁界電線62には、図示せぬ往路線にx方向に4000Aの電流が流れる一方、図示せぬ復路線にx方向に4000Aの電流が流れる。これにより、往路線に流れる電流が発生する磁場と、復路線に流れる電流が発生する磁場とが互いに打ち消し合うため、掃海艇31の近傍で磁場がほとんど発生しない。また、第1電線領域TEでは、電線63にx方向に1000Aの電流が流れ、第2電線領域TEでは、電線63にx方向に1000Aの電流が流れるとともに、図19に1点鎖線の矢印で示すように、電線63にx方向に2000Aの電流が流れる。さらに、第3電線領域TEでは、電線63にx方向に1000Aの電流が流れ、電線63にx方向に2000Aの電流が流れるとともに、図19に1点鎖線の矢印で示すように、電線63にx方向に2000Aの電流が流れる。また、第4電線領域TEでは、電線63にx方向に1000Aの電流が流れ、電線63にx方向に2000Aの電流が流れ、電線63にx方向に2000Aの電流が流れるとともに、図19に1点鎖線の矢印で示すように、電線63にx方向に2000Aの電流が流れる。一方、第1海中領域TSではx方向に1000Aの電流が流れ、第2海中領域TSではx方向に1000Aの電流が流れ、第3海中領域TSではx方向に1000Aの電流が流れ、第4海中領域TSではx方向に1000Aの電流が流れる。
【0051】
さらに、この例の電線・電極部61を用いてエミュレーションすることができる磁場のタイプの数TCは、式(5)で示すように20種類にもなる。
TC=2×=20・・・(5)
式(5)において、は、5つの電極64〜64の中から正極1個及び負極1個を選び出すコンビネーションを表しており、これを2倍にしているのは正極と負極を入れ替えているからである。
したがって、この例の電線・電極部61を用いた場合には、垂直成分(z成分)や水平成分(x成分とy成分との和)がより複雑な形状(例えば、山や谷が3つ以上現れる形状)を有する磁場をエミュレーションすることができる。また、5つの電極を有する電線・電極部61を用いた場合には、掃海艇31の進行方向に沿って磁場のy成分の極性又はz成分の極性のいずれか一方だけが反転するような複雑な船舶が発生する磁場をエミュレーションすることもできる。
【0052】
このように、この例の構成によれば、3本の電極30〜30を有する電線・電極部27、4本の電極54〜54を有する電線・電極部51、5本の電極64〜64を有する電線・電極部61を適宜取り替えて通電することにより、船舶固有の磁場に酷似した複数のタイプの磁場を模擬(エミュレーション)することができ、上記した高知能磁気機雷を安全に誘爆して取り除くことができる。さらに、電線・電極部27を用いた場合には6種類、電線・電極部51を用いた場合には12種類、電線・電極部61を用いた場合には20種類の船舶の磁場を模擬することができるので、同一の組み合わせの電線・電極部で取り除くことができる種類の磁気機雷については、他の電線・電極部と取り替えることなく、磁気シグネチャ発生アルゴリズムを順次選択して、それぞれ対応する磁気機雷を誘爆して取り除くことができる。したがって、簡単かつ短時間に、高知能磁気機雷を誘爆して取り除くことができる。また、この例の構成によれば、2本の電極44及び44を有する電線・電極部41を取り付けることにより、磁針式又は誘導式の感応部を有する古いタイプの磁気機雷を誘爆して取り除くこともできる。
【0053】
また、この例の構成によれば、主管制部21は、電線及び電極の電圧及び電流を監視するとともに、導電計のセンサ部を海水に浸して海水の導電率を測定し、海水の導電率等の変化に応じて、掃海艇31の後方の電線領域及び海中領域、すなわち、電流の供給側以外の領域及びその近傍(電極間の海中)に流れる電流の通電量が変化した場合には、電線・電極部には、この通電量の変化に応じて、電流の供給側の領域及びその近傍に、電流の供給側以外の領域及びその近傍に流す電流とは逆向きの電流の通電を指示する安全電流制御を行っている。特に、図15に示すような通電方法によれば、より一層掃海艇31近傍の磁場を小さくすることができる。したがって、安全に機雷を掃海することができる。
【0054】
また、この例の構成によれば、通電量によって掃海幅を決定することができるので、上記した第2の従来例に比べて掃海幅を広くすることができる。上記した第2の従来例で使用される永久磁石の磁気モーメントを、現在の技術で製造できる最も強い200,000ATmとし、この例の構成で電線の通電量を通常値である2,000Aとした場合、1,000nTの磁場を与える掃海幅の比は1対6程度になる。したがって、広い海域でも少ない掃海回数で掃海することができる。
【0055】
以上、この実施の形態を図面を参照して詳述してきたが、具体的な構成はこの実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。
例えば、上述の実施の形態においては、この例の磁気掃海装置の構成要素のうち、主管制部21、制御部22、電源部23、整流部24、切換部25及び接続部26を掃海艇31に搭載するとともに、掃海艇31が備えた交流発電機から電源部23に交流電流を供給する一方、掃海艇31の船尾に図示せぬウインチを構成するリールにすべての電線を巻いて収納し、掃海実施時に消磁界電線、電線及び電極を海面上に浮上させて曳航する例を示したが、これに限定されない。この発明は、ボートに、この例の磁気掃海装置と、電源部23に交流電流を供給する交流発電機とを搭載するとともに、消磁界電線、電線及び電極を海面上に浮上させ、牽引ワイヤーでボートをヘリコプターやタグボートで曳航する場合にも適用することができる。
【0056】
また、上述の実施の形態においては、乗務員が主管制部21の図示せぬ操作部を操作して、エミュレーションすべき船舶磁気シグネチャを入力することにより、主管制部21が内部に設けられた記憶部から磁気シグネチャ発生アルゴリズムを読み出し、入力された船舶磁気シグネチャに基づいて、当該磁気シグネチャに対応する磁場を発生させるための必要電極数NE、電線及び電極の極性配列AP、各電極間に流す通電量VEを計算する例を示したが、これに限定されない。例えば、エミュレーションすべき各船舶の磁気シグネチャに対応した必要電極数NE、電線及び電極の極性配列AP、各電極間に流す通電量VEをそれぞれ予め計算して主管制部21の内部に設けられた記憶部に予め記憶しておき、乗務員が各艦船のタイプを操作部を操作して入力することにより、対応する電線及び電極の極性配列AP、各電極間に流す通電量VEが上記記憶部から読み出されるように構成しても良い。
【0057】
また、上述の実施の形態においては、エミュレーションすべき船舶の磁気シグネチャに応じて電線・電極部27、41、51、あるいは61を適宜取り替える例を示したが、これに限定されず、当初からこの例の磁気掃海装置を構成する接続部26に電線・電極部61を取り付けておくとともに、使用しない電線及び電極は、例えば、掃海艇31の船尾に設けられているウインチを構成するリールに巻き付けておき、必要な電線及び電極だけを取り付けて展張して通電するように構成しても良い。さらに、大型の掃海艇を使用する場合には、その船尾に自動で駆動されるウインチを設け、必要な電線及び電極だけを自動的に展張して通電するように構成しても良い。このように構成すれば、電線・電極部41が誘爆可能な2個のタイプの磁気機雷、電線・電極部27が誘爆可能な6個のタイプの磁気機雷、電線・電極部51が誘爆可能な12個のタイプの磁気機雷、電線・電極部61が誘爆可能な20個のタイプの磁気機雷を順次自動的に誘爆して取り除くことができる。したがって、簡単かつ短時間に、様々なタイプの磁気機雷を誘爆して取り除くことができる。
【0058】
【発明の効果】
以上説明したように、この発明の構成によれば、供給される電流を海中に放電して磁気機雷を掃海するための磁場を発生する少なくとも3本の電極と、各端末に接続された対応する電極に流すべき電流を中継するとともに、自身に流れる電流によって磁気機雷を掃海するための磁場を発生する少なくとも2本の電線とを有する電線・電極部を備えている。したがって、簡単かつ短時間に、しかも安全に、広い高知能磁気機雷を誘爆して取り除くことができる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す磁気掃海装置の構成を示すブロック図である。
【図2】同装置を適用した磁気掃海システムの一例を示す概略図である。
【図3】同装置を構成する電線・電極部27に流す電流の一例を示す概念図である。
【図4】図3に示す電流を流した電線・電極部27が海中に発生させる磁場のx成分の一例を示す図である。
【図5】図3に示す電流を流した電線・電極部27が海中に発生させる磁場のy成分の一例を示す図である。
【図6】図3に示す電流を流した電線・電極部27が海中に発生させる磁場のz成分の一例を示す図である。
【図7】電線・電極部41の構成及びこれに流す電流の一例を示す概念図である。
【図8】図7に示す電流を流した電線・電極部41が海中に発生させる磁場のx成分の一例を示す図である。
【図9】図7に示す電流を流した電線・電極部41が海中に発生させる磁場のx成分の一例を示す図である。
【図10】図7に示す電流を流した電線・電極部41が海中に発生させる磁場のx成分の一例を示す図である。
【図11】電線・電極部51の構成及びこれに流す電流の一例を示す概念図である。
【図12】図11に示す電流を流した電線・電極部51が海中に発生させる磁場のx成分の一例を示す図である。
【図13】図11に示す電流を流した電線・電極部51が海中に発生させる磁場のx成分の一例を示す図である。
【図14】図11に示す電流を流した電線・電極部51が海中に発生させる磁場のx成分の一例を示す図である。
【図15】電線・電極部51に流す電流の他の例を示す概念図である。
【図16】図15に示す電流を流した電線・電極部51が海中に発生させる磁場のx成分の一例を示す図である。
【図17】図15に示す電流を流した電線・電極部51が海中に発生させる磁場のx成分の一例を示す図である。
【図18】図15に示す電流を流した電線・電極部51が海中に発生させる磁場のx成分の一例を示す図である。
【図19】電線・電極部61の構成及びこれに流す電流の一例を示す概念図である。
【図20】第1の従来例である磁気掃海システムの構成例を示す概略図である。
【図21】第3の従来例である磁気掃海システムの構成例を示す概略図である。
【符号の説明】
21 主管制部(電流供給部)、22 制御部(電流供給部)、23 電源部(電流供給部)、24 整流部(電流供給部)、25 切換部(電流供給部)、26 接続部(電流供給部)、27,41、51,61 電線・電極部、28,42、52,62 消磁界電線、29,29,43,53〜53,63〜63 電線、30〜30,44,44,54〜54,64〜64 電極、31 掃海艇、32 磁場、33 磁気機雷。

Claims (5)

  1. 供給される電流を海中に放電して磁気機雷を掃海するための磁場を発生する少なくとも3本の電極と、各端末に接続された対応する前記電極に流すべき前記電流を中継するとともに、自身に流れる電流によって前記磁気機雷を掃海するための磁場を発生する少なくとも2本の電線とを有する電線・電極部とを備えていることを特徴とする磁気掃海装置。
  2. エミュレーションすべき船舶が有する磁場シグネチャと、前記磁気シグネチャに対応する磁場を発生させるために必要な電極数と、前記電線及び前記電極に流す前記電流の向きである極性の配列である極性配列と、前記各電極間に流す電流の量である通電量とを入力変数とする磁場シグネチャモデルとの差を最小とする前記電極数と、前記極性配列と、前記通電量とからなる組を構成する前記電極数を有する前記電線・電極部の前記電線及び前記電極に、前記極性配列及び前記通電量の前記電流を流す電流供給部を備えていることを特徴とする請求項1記載の磁気掃海装置。
  3. 前記電線・電極部には、その前記電流の供給側の領域及びその近傍で発生する磁場が、前記電線・電極部の前記電流の供給側以外の領域及びその近傍で発生する磁場が前記電流の供給側の領域及びその近傍に与える影響を弱めるような向き及び通電量で前記電流を供給することを特徴とする請求項1又は2記載の磁気掃海装置。
  4. 前記電線及び前記電極の電圧及び電流を監視するとともに、海水の導電率を測定し、前記海水の導電率の変化に応じて前記電線・電極部の前記電流の供給側以外の領域及びその近傍に流れる電流の通電量が変化した場合には、前記電線・電極部には、前記通電量の変化に応じて、その電流の供給側の領域及びその近傍に、前記電流の供給側以外の領域及びその近傍に流す前記電流とは逆向きの前記電流を流すことを特徴とする請求項1乃至3のいずれか1に記載の磁気掃海装置。
  5. 請求項1乃至4のいずれか1に記載の磁気掃海装置を備えていることを特徴とする磁気掃海システム。
JP2003100065A 2003-04-03 2003-04-03 磁気掃海装置及び磁気掃海システム Expired - Fee Related JP4269311B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003100065A JP4269311B2 (ja) 2003-04-03 2003-04-03 磁気掃海装置及び磁気掃海システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100065A JP4269311B2 (ja) 2003-04-03 2003-04-03 磁気掃海装置及び磁気掃海システム

Publications (2)

Publication Number Publication Date
JP2004306683A true JP2004306683A (ja) 2004-11-04
JP4269311B2 JP4269311B2 (ja) 2009-05-27

Family

ID=33464305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100065A Expired - Fee Related JP4269311B2 (ja) 2003-04-03 2003-04-03 磁気掃海装置及び磁気掃海システム

Country Status (1)

Country Link
JP (1) JP4269311B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199144A (ja) * 2010-03-23 2011-10-06 Toshiba Mitsubishi-Electric Industrial System Corp 磁気制御装置及び方法
JP2018032844A (ja) * 2016-05-17 2018-03-01 テールズ ホールディングス ユーケー ピーエルシーThales Uk Plc 電磁石強化のための磁気相転移利用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199144A (ja) * 2010-03-23 2011-10-06 Toshiba Mitsubishi-Electric Industrial System Corp 磁気制御装置及び方法
JP2018032844A (ja) * 2016-05-17 2018-03-01 テールズ ホールディングス ユーケー ピーエルシーThales Uk Plc 電磁石強化のための磁気相転移利用
US10894588B2 (en) 2016-05-17 2021-01-19 Thales Holdings Uk Plc Magnetic phase transition exploitation for enhancement of electromagnets

Also Published As

Publication number Publication date
JP4269311B2 (ja) 2009-05-27

Similar Documents

Publication Publication Date Title
KR20110082478A (ko) 자가-추진 선박
AU559371B2 (en) Improvements in or relating to magnetic assemblies
KR101089118B1 (ko) 기뢰 제거 장치
JP4269311B2 (ja) 磁気掃海装置及び磁気掃海システム
KR100897957B1 (ko) 개방 루프 자기장 마인스위핑 시스템 및 개방 루프 자기장 마인스위핑 시스템에서 사용하기 위한 복수의 페어링
US3613629A (en) Buoyant cable towing system
JP2005162117A (ja) 航海計画支援システム
US6286431B1 (en) Open loop minesweeping system
ES2381101T3 (es) Compensación activa de ruidos
JPH0624381A (ja) 磁気掃海システム
CN102530208B (zh) 一种舰船退磁方法
CN113195356B (zh) 一种退磁和特征测量装置
US2386950A (en) Means for protecting ships at sea
US4993345A (en) Floating degaussing cable system
JP6823781B2 (ja) 水上作業方法
US7000546B1 (en) Underwater mine countermeasure warfare system
CN110844034B (zh) 一种波浪能发电的变体式高速运输船
US11673637B2 (en) System for underwater exploration using a submerged device having local production of electrical energy and towed by a surface vessel
Way et al. Prospects for the electromagnetic submarine
CN203780755U (zh) 高机动水上测量船
KR101971854B1 (ko) 트윈-스케그형 컨테이너선의 샤프트 제너레이터 운영 시스템 및 그 방법
RU2119690C1 (ru) Многофункциональная система размагничивания ферромагнитных объектов
US2407850A (en) Subaqueous electric cutting
Wickham et al. Scuba diving methods for fishing systems evaluation
US408778A (en) Electro-magnetic mooring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees