JP2004301679A - 温度センサの製造方法 - Google Patents

温度センサの製造方法 Download PDF

Info

Publication number
JP2004301679A
JP2004301679A JP2003095245A JP2003095245A JP2004301679A JP 2004301679 A JP2004301679 A JP 2004301679A JP 2003095245 A JP2003095245 A JP 2003095245A JP 2003095245 A JP2003095245 A JP 2003095245A JP 2004301679 A JP2004301679 A JP 2004301679A
Authority
JP
Japan
Prior art keywords
heat treatment
oxide film
metal
temperature sensor
treatment step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003095245A
Other languages
English (en)
Other versions
JP4203346B2 (ja
Inventor
Takeshi Hanzawa
剛 半沢
Masahiko Nishi
雅彦 西
Masaki Iwatani
雅樹 岩谷
Takaaki Chiyousokabe
孝昭 長曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003095245A priority Critical patent/JP4203346B2/ja
Publication of JP2004301679A publication Critical patent/JP2004301679A/ja
Application granted granted Critical
Publication of JP4203346B2 publication Critical patent/JP4203346B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

【課題】サーミスタ素子周辺に位置する金属部材の表面に十分な膜厚の酸化被膜を形成し、サーミスタ素子の雰囲気中の酸素濃度を安定に保つことを可能にした温度センサの製造方法を提供すること。
【解決手段】第1熱処理工程で、温度センサ1に用いられる金属チューブ3等の表面を大気雰囲気中で酸化させることにより十分な膜厚の酸化被膜を生成し、その上に、第2熱処理工程で、酸化被膜が実質的に酸化クロムより形成され、酸化被膜が十分に厚く連続的になる。従って、この温度センサ1によれば、各金属包囲部材3,4,8の表面に形成された酸化被膜を剥離させながら新たな酸化が進行することがなく、高温時に生じる各金属包囲部材3,4,8の酸化の進行を抑えることができ、金属チューブ3等より形成される密閉空間内に露出したサーミスタ素子2の周囲の雰囲気中の酸素濃度を安定的に保つことができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、高温酸化雰囲気下で使用される温度センサの製造方法に係り、特に詳しくは、サーミスタ素子を有する温度センサの製造方法に関する。
【0002】
【従来の技術】
従来、負の温度係数を持つサーミスタ素子を有する温度センサとして、サーミスタ素子がステンレス合金製の金属チューブに封入され、そのチューブの後端側周囲を取り囲むフランジに締付ナット及び継手等の金属部品が組み付けられたものが知られている。この種の温度センサは、例えば、自動車の排気温度等を検出するために200℃〜1000℃程度の高温雰囲気下で使用されることにより、金属チューブの外面はもとより内面が急速に酸化することから、チューブ内部の酸素が著しく減少することになる。このように、金属チューブ内部の酸素が減少することにより、同チューブに封入されたサーミスタ素子の表面が還元され、同素子に特性変化が生じて温度センサとしての検出精度が低下するおそれがあった。
【0003】
そこで、上記不具合に対処するために、サーミスタ素子周辺に位置する金属部品の表面を還元雰囲気にて加熱処理を行い、当該金属部品の表面に予め連続的な酸化クロムからなる酸化被膜を生成しておき上記金属部品の表面の酸化を抑制することが提案されている(例えば、特許文献1参照)。また、当該金属部品の表面を低酸素雰囲気中で1190℃で1時間、加熱処理し、その後、大気雰囲気中で1050℃で30分間、加熱処理することも提案されている(例えば、特許文献2参照)。
【0004】
【特許文献1】
特開2000−234962号公報
【特許文献2】
特開平6−201487号公報(第4頁、表2)
【0005】
【発明が解決しようとする課題】
ところが、上記従来技術により金属チューブ等の金属部品の表面に形成された酸化被膜は、酸化クロムからなる連続的な酸化被膜であるが、近年要求されている長期間サーミスタ素子の特性が変化しないようにする耐久性を満足させるためには、膜厚が薄く、サーミスタ素子周辺に位置する金属部品の表面の酸化による酸素消費を抑制する能力が不十分であるという問題点があった。
【0006】
さらに、上記従来技術の還元雰囲気中での金属部品の表面の熱処理で、酸化被膜厚を増加させようとすると、管理に手間のかかる還元雰囲気中での加熱処理時間を大幅に増加させる必要があり、また、酸化被膜厚の増加も飽和傾向で効率よく酸化被膜を生成することができないという問題点があった。
【0007】
本発明は、上記課題を解決するためになされたものであり、サーミスタ素子周辺に位置する金属部分の表面に連続的で十分な膜厚の酸化被膜を形成し、高温での使用時にサーミスタ素子の雰囲気中の酸素濃度を安定に保ち、同素子の特性変化を抑えて検出精度の低下を防止することを可能にした温度センサの製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明の温度センサの製造方法は、サーミスタ素子を一又は複数の包囲部材で形成される密閉空間内に収容した温度センサの製造方法において、前記一又は複数の包囲部材のうち、少なくとも前記密閉空間内に露出し前記サーミスタ素子に近接して配置され、少なくともクロム元素を18重量%以上含有する耐熱合金により形成された金属部分の表面を大気雰囲気中で加熱処理して酸化被膜を形成する第1熱処理工程と、少なくとも前記第1熱処理工程にて加熱処理された前記金属部分の表面を、酸素分圧が1×10−22〜1×10−12atmの低酸素雰囲気中で1000℃〜1200℃の処理温度にて加熱処理して、前記金属部分の表面のうちで少なくとも当該酸化被膜が形成されなかった表面に酸化クロムを選択的に生成させて酸化被膜を形成する第2熱処理工程とから成ることを特徴とする。
【0009】
この構成の発明では、包囲部材のうち少なくとも密閉空間内に露出しサーミスタ素子に近接して配置され、少なくともクロム元素を18重量%以上含有する耐熱合金により形成された金属部分の表面が、第1熱処理工程で大気雰囲気下で加熱処理がなされると、不連続ではあるが次述する第2熱処理工程単独で加熱処理した場合に比して膜厚が厚い酸化被膜が形成される。次いで、第2熱処理工程で少なくとも第1熱処理工程にて加熱処理された金属部分の表面が酸素分圧が1×10−22〜1×10−12atmの低酸素雰囲気中で1000℃〜1200℃の処理温度にて加熱処理されると、第1熱処理工程で形成された不連続である酸化被膜の欠落部分に酸化クロムの酸化被膜が生成される。従って、サーミスタ素子に近接して配置された金属部分の表面が連続的で膜厚の十分確保された被膜により覆われることになる。
【0010】
また、請求項2に記載の発明の温度センサの製造方法は、サーミスタ素子を一又は複数の包囲部材で形成される密閉空間内に収容した温度センサの製造方法において、前記一又は複数の包囲部材のうち、少なくとも前記密閉空間内に露出し前記サーミスタ素子に近接して配置され、少なくともクロム元素を18重量%以上含有する耐熱合金により形成された金属部分の表面を大気雰囲気中で加熱処理して酸化被膜を形成する第1熱処理工程と、少なくとも前記第1熱処理工程にて加熱処理された前記金属部分の表面を水素−水蒸気雰囲気中で加熱処理することにより、前記金属部分の表面のうちで少なくとも当該酸化被膜が形成されなかった表面に酸化クロムを選択的に生成させて酸化被膜を形成する第2熱処理工程とから成ることを特徴とする。
【0011】
この構成の発明では、包囲部材のうち少なくとも密閉空間内に露出しサーミスタ素子に近接して配置され、少なくともクロム元素を18重量%以上含有する耐熱合金により形成された金属部分の表面が、第1熱処理工程で大気雰囲気下で熱処理がなされると、不連続ではあるが次述する第2熱処理工程単独で加熱処理した場合に比して膜厚が厚い酸化被膜が形成される。次いで、第2熱処理工程で少なくとも第1熱処理工程にて加熱処理された金属部分の表面が水素−水蒸気雰囲気中で加熱処理されることにより、前記不連続である酸化被膜の欠落部分に酸化クロムの酸化被膜が生成される。従って、サーミスタ素子に近接して配置された金属部分の表面が連続的で膜厚の十分確保された被膜により覆われることになる。
【0012】
また、請求項3に記載の発明の温度センサの製造方法は、請求項2に記載の発明の構成に加えて、前記第2熱処理工程では、前記金属部分の表面を水素−水蒸気雰囲気中で加熱処理するために、前記金属部分を含む前記包囲部材を処理炉に収容し、その処理炉には、20℃〜50℃に保たれた水中を通して水分を含ませた水素ガスよりなるウエットガスと、ドライ水素よりなるドライガスとを1対1〜3の割合で投入し、前記金属部分を1000℃〜1200℃の処理温度で加熱処理したことを特徴とする。
【0013】
この構成の発明では、請求項2に記載の発明の作用に加えて、第2熱処理工程で、金属部分を含む包囲部材を処理炉に収容し、その処理炉には、20℃〜50℃に保たれた水中を通して水分を含ませた水素ガスよりなるウエットガスと、ドライ水素よりなるドライガスとを1対1〜3の割合で投入し、前記金属部分が1000℃〜1200℃の処理温度で加熱処理されるので、第1熱処理工程で形成された不連続である酸化被膜の欠落部分に酸化クロムの酸化被膜が効率良く生成される。従って、サーミスタ素子に近接して配置された金属部分の表面が連続的で膜厚の十分確保された被膜により覆われることになる。
【0014】
また、請求項4に記載の発明の温度センサの製造方法は、請求項1乃至3の何れかに記載の発明の構成に加えて、前記第1熱処理工程では、前記金属部分の表面を、950℃〜1050℃の処理温度で、5時間〜20時間、加熱処理したことを特徴とする。
【0015】
この構成の発明では、請求項1乃至3の何れかに記載の発明の作用に加えて、第1熱処理工程では、金属部分の表面を、950℃〜1050℃の処理温度で、5時間〜20時間、加熱処理するので、膜厚が十分に厚い酸化被膜が形成される。
【0016】
【発明の実施の形態】
[第1の実施の形態]以下、本発明の第1の実施の形態である温度センサ1について、図面を参照しつつ説明する。図1は、本実施の形態の温度センサ1の構造を示す部分破断断面図である。この温度センサ1は、サーミスタ素子2を感温素子として用いたものであり、同温度センサ1を自動車の排気管に装着することにより、サーミスタ素子2を内包した金属チューブ3を排気ガスが流れる排気管内に配置させて、排気ガスの温度検出に使用するものである。
【0017】
この温度センサ1の軸線方向に延びる金属チューブ3は、鋼板の深絞り加工により先端側31が閉塞した筒状に形成されており、この先端側31の内部にサーミスタ素子2が収納される。この金属チューブ3は、後述するようにステンレス合金から形成されている。そして、金属チューブ3の内部であってサーミスタ素子2の周囲には、セメント10が充填されており、これにより使用時の振動等によるサーミスタ素子2の揺動が防止される。金属チューブ3の後端側32は開放されており、この後端側32はステンレス合金製のフランジ4の内側に挿通されている。なお、セメント10は、アルミナ粉末を主体とする骨材と、Siを含むガラス成分とからなる。
【0018】
このフランジ4は、軸線方向に延びる鞘部42と、この鞘部42の先端側に位置し、径方向外側に向かって突出する突出部41とを有している。突出部41は、先端側に図示しない排気管の取付部のテーパ部に対応したテーパ形状を有する座面45を有する環状に形成されており、座面45が上記取付部のテーパ部に密着することで、排気ガスが排気管外部へ漏出するのを防止するようになっている。また、鞘部42は環状に形成される一方、先端側に位置する先端側段部44と先端側段部44よりも小さい外径を有する後端側段部43とを備える二段形状をなしている。
【0019】
金属チューブ3は、自身の後端側32からフランジ4の突出部41の先端側に挿入されて、鞘部42の内側に圧入されている。そして、金属チューブ3の外周面と鞘部42の後端側段部43の内周面との重なり合う部分が、周方向にわたってレーザー溶接されている。このレーザー溶接がなされることにより、図1に示すように、鞘部42の後端側段部43と金属チューブ3とに跨る溶接部LIが形成され、金属チューブ3がフランジ4に対して強固に固定される。
【0020】
フランジ4の周囲には、六角ナット部51及びネジ部52を有するナット5が回動自在に嵌挿されている。温度センサ1は、排気管の取付部にフランジ4の突出部41の座面45を当接させ、ナット5により固定される。また、フランジ4の内で鞘部42の先端側段部44の径方向外側には、筒状の継手6が気密状態で接合されている。具体的には、鞘部42の先端側段部44の外周面に継手6の内周面が重なり合うように、同継手6が鞘部42の先端側段部44に圧入され、継手6と先端側段部44とを周方向にわたってレーザー溶接されている。このレーザー溶接がなされることにより、図1に示すように、鞘部42の先端側段部44と継手6とに跨る溶接部L2が形成される。
【0021】
金属チューブ3、フランジ4及び継手6の内部には、一対の金属芯線7を内包するシース部材8が配置される。金属チューブ3の内部においてシース部材8の先端側から突出する金属芯線7には、サーミスタ素子2の電極線を構成するPt/Rh合金線9を介して接続される。合金線9及び金属芯線7は互いに抵抗溶接される。尚、シース部材8は、詳細は図示しないが、SUS310Sからなる金属製の外筒と、SUS310S等からなる導電性の一対の金属芯線7と、外筒と各金属芯線7の間を絶縁し、金属芯線7を保持する絶縁粉末とから構成される。
【0022】
継手6の内部にてシース部材8の後端側へ突き出す金属芯線7は、加締め端子11を介して一対の外部回路(例えば車両のECU等)接続用のリード線12と接続される。一対の金属芯線7及び一対の加締め端子11は、絶縁チューブ15により互いに絶縁される。リード線12は、ステンレス合金製の導線を絶縁性の被覆材にて被覆したものであり、継手6の後端側開口に備えられる耐熱ゴム製の補助リング13に挿通される。そして、補助リング13は、継手6の上から丸加締め或いは多角加締めされることにより、補助リング13及び継手6が気密性を保ちながら互いに固定される。これにより、サーミスタ素子2が、金属チューブ3、フランジ4及び継手6により形成される密閉空間に収容されることになる。そして、サーミスタ素子2の出力は、シース部材8の金属芯線7からリード線12により、図示しない外部回路に取り出され、排気ガスの温度が検出される。
【0023】
尚、この温度センサ1は1000℃にも達する高温環境下で使用されるため、各々の構成部材は十分な耐熱性を有している必要がある。そのため、金属チューブ3、フランジ4及び金属芯線7は、Feを主成分とし、C、Si、Mn、P、S、Ni及び24.00〜26.00重量%でCrを含有する耐熱合金であるSUS310Sにより形成されている。また、継手6は、SUS304(Fe以外に、C,Si,Mn,P,S,Ni,Crを含有する耐熱合金であって、18.00〜20.00重量%でCrを含有する。)を材質とする。
【0024】
ここで、上記第1の実施の形態の温度センサ1で特徴的なことは、金属チューブ3、シース部材8及びフランジ4のうち少なくとも前記密閉空間内に露出しサーミスタ素子2に近接して配置された金属部分の表面に、後述する第1熱処理及び第2熱処理により形成された十分な膜厚を有する酸化クロム(Cr)を主体とする酸化被膜(図4に示す図面代用写真参照)が形成されることである。即ち、金属チューブ3の少なくとも内面、フランジ4の外面並びにシース部材8の外面には、それぞれ後述する第1熱処理及び第2熱処理により形成された十分な膜厚を有する酸化クロム(Cr)を主体とする酸化被膜が設けられる。この実施の形態では、酸化被膜の連続被膜が上記金属包囲部材3,4,8の表面に設けられる。ここで、酸化クロムを主体とする酸化被膜は、各金属包囲部材3,4,8がそれぞれ耐熱合金としてSUS310Sから形成されることから、酸化クロムを主体として、更に酸化鉄や酸化ニッケル、酸化珪素、酸化マンガン等を若干含むものである。
【0025】
この温度センサ1を製造するには、耐熱合金としてのSUS310Sより各々形成された金属チューブ3、シース部材8及びフランジ4を予め形成する。その他の部品2,5〜7,10〜13も予め形成する。次に、金属包囲部材である金属チューブ3、シース部材8及びフランジ4に後述する第1熱処理工程及び第2熱処理工程による酸化被膜形成のための加熱処理を施す。その後、酸化被膜が形成された各金属包囲部材3,4,8と、その他の部品2,5〜7,10〜13を互いに組み付けることにより、温度センサ1の製造を完了する。
【0026】
[第1実施例]以下、第1熱処理工程及び第2熱処理工程の第1実施例について、図2に示す熱処理の工程図を参照して説明する。上記のように形成された金属包囲部材である金属チューブ3、フランジ4及びシース部材8は、まず、第1熱処理工程として、大気雰囲気中で、950℃〜1050℃で、5時間〜20時間加熱処理される。ここで、大気雰囲気中での加熱を950℃〜1050℃とし、加熱時間を5時間〜20時間とするのは、後述する試験結果に基づくからである。なお、金属チューブ3とフランジ4については、フランジ4の内側に金属チューブ3を圧入した状態で第1熱処理工程及び後述する第2熱処理工程を実施するようにしている。
【0027】
上記第1熱処理工程では、管理が容易な大気雰囲気中で、長時間加熱処理したので、上記金属包囲部材3,4,8の表面に不連続ではあるが比較的膜厚の厚い酸化被膜が形成されることになる。次いで、第2熱処理工程として、酸素分圧が1×10−22〜1×10−12atmの低酸素雰囲気中で、1000℃〜1200℃の処理温度にて、第1熱処理工程で酸化被膜が形成された上記金属包囲部材3,4,8を1時間加熱処理して、当該金属包囲部材3,4,8の表面のうちで少なくとも第1熱処理工程で形成された不連続である酸化被膜の欠落部分(換言すれば、酸化被膜が形成されなかった表面)に酸化クロムを選択的に生成させて酸化被膜を形成する。尚、酸素分圧を1×10−22〜1×10−12atmとしているのは、後述する1000℃のクロムの平衡酸素分圧と1200℃の鉄の平衡酸素分圧に基づいて、クロムは酸化するが鉄は酸化しない酸素分圧を求めたものである。
【0028】
詳細には、クロムと鉄の平衡酸素分圧は次式で求められる。
クロム:Po(Cr−Cr)=exp(2/3ΔG°(Cr−Cr)/RT )
鉄 :Po(Fe−FeO)=exp(2ΔG°(Fe−FeO)/RT )
ここで、R:8.31J/kmol
T:絶対温度
ΔG°:標準自由エネルギー変化量
とする。
それぞれ
2Cr+3/2O=Cr
Fe+1/2O=FeO と想定しており、
1000℃のクロムについて平衡酸素分圧を求めると
Figure 2004301679
1200℃の鉄について平衡酸素分圧を求めると
Figure 2004301679
従って、クロムは酸化するが、鉄が酸化しない酸素分圧として、1×10−22〜1×10−12atm が求められる。
【0029】
以上説明したように、大気雰囲気中で加熱処理を行い、その後低酸素雰囲気中で加熱処理を行うといった二段階の熱処理を行うことにより、当該金属包囲部材3,4,8の表面に形成された厚い酸化被膜に切れ目無く、酸化クロムを主体とする酸化被膜を連続的に形成することが可能となる。
【0030】
[第2実施例]以下、第1熱処理工程及び第2熱処理工程の第2実施例について、図3に示す熱処理の工程図を参照して説明する。上記金属包囲部材3,4,8は、まず、第1熱処理工程として、大気雰囲気中で、950℃〜1050℃で、5時間〜20時間加熱処理される。ここで、大気雰囲気中での加熱を950℃〜1050℃とし、加熱時間を5時間〜20時間とするのは、後述する試験結果に基づくからである。この第1熱処理工程では、管理が容易な大気雰囲気中で、加熱処理したので、上記金属包囲部材3,4,8の表面に不連続ではあるが比較的膜厚の厚い酸化被膜が形成されることになる。この第1熱処理工程は、第1実施例と同様である。次いで、第2熱処理工程として、20℃〜50℃に保たれた水中を通して水分を含ませた水素ガスよりなるウエットガスと、ドライ水素よりなるドライガスとを1対1〜3の割合で処理炉に投入し、当該処理炉内に第1熱処理工程で酸化被膜が形成された金属包囲部材3,4,8を収納し、1000℃〜1200℃の処理温度で、望ましくは1100℃〜1200℃の処理温度で、0.5〜2時間ほど、望ましくは1時間加熱する。これにより、金属包囲部材3,4,8の表面のうちで、少なくとも第1熱処理工程で形成された酸化被膜の欠落部分(換言すれば酸化被膜が形成されなかった表面)に酸化クロムが選択的に生成された酸化被膜が形成される。
【0031】
耐熱合金において主に用いられる鉄、ニッケル、クロムの三つの元素について考えた場合、1000℃〜1200℃の温度範囲では、クロムの酸化物の平衡酸素分圧は、鉄及びニッケルのそれよりも低い。ここで、上記雰囲気中の酸素分圧が平衡酸素分圧以上であれば各金属元素の酸化物は安定に存在することができる。即ち、各金属元素が酸化されることになる。1000℃〜1200℃の温度雰囲気でクロム元素のみを酸化させようとした場合、その温度での酸化クロムの平衡酸素分圧以上、酸化鉄及び酸化ニッケルの平衡酸素分圧以下の雰囲気で処理することにより、クロム元素を選択的に酸化させて酸化クロムを生成し酸化被膜を形成することができる。
【0032】
この実施例において、第2の熱処理工程の処理温度が1000℃〜1200℃の範囲に設定されるのは、温度センサ1が1000℃前後の高温条件下で使用されることから、少なくともその使用温度に耐えられることが必要だからである。処理温度の下限を1000℃としたのは、それより低い温度では、酸化被膜の生成速度が遅く効率的でないからであり、クロム元素を選択的に酸化させるのに必要な酸素分圧が低くなり過ぎて酸素分圧のコントロールが難しいからである。一方、処理温度の上限を1200℃としたのは、それより高い温度では、耐熱合金に変質を生じるおそれがあり、クロム元素の酸化が急激に進行して酸化被膜の緻密さが失われるおそれがあるからである。
【0033】
ここで、酸化クロムよりなる酸化被膜として有効な膜厚は0.5〜5.0μmであった。そして、上記範囲の膜厚を得るのに必要な温度が1000℃〜1200℃であり、その温度範囲において酸化クロムよりなる酸化被膜を得るのに必要な酸素分圧は、酸化鉄及び酸化ニッケルを得るのに必要な酸素分圧よりも低く、1×10−22〜1×10−12atmと考えられる。つまり、鉄元素及びニッケル元素が酸化しない酸素分圧で耐熱合金を酸化させることにより、クロム元素のみを選択的に酸化させて酸化被膜を生成することができるのである。
【0034】
[第3実施例] 次に、図4に示す酸化被膜の断面の走査型電子顕微鏡写真を参照して第3実施例について説明する。図4は、酸化被膜が形成された金属包囲部材3(金属チューブ3)を自身の長手方向に沿って切断したときの断面を3500倍に拡大した走査型電子顕微鏡写真である。この第3実施例では、第1熱処理工程として、上記金属包囲部材3,4,8の表面を大気雰囲気中にて、1000℃で10時間加熱処理し、その後、第2熱処理工程として、35℃に保たれた水中を通して水分を含ませた水素ガスよりなるウエットガスと、ドライ水素よりなるドライガスとを1対2.2の割合で処理炉に投入し、当該処理炉内に第1熱処理工程で酸化被膜が形成された上記金属包囲部材3,4,8を収納し、1150℃の処理温度で、1時間加熱処理したものである。図4に示す酸化被膜の断面図のように、金属包囲部材3,4,8の表面に形成された酸化被膜は、膜厚表面が凸凹しているが、略5μm程度の十分な厚みの膜厚で連続的に付着している。
【0035】
[比較例] 本発明の発明者は、上記第3実施例と比較するために、図5乃至図8に示す第1比較例乃至第4比較例を行った。図5は、第1比較例の酸化被膜の断面を3500倍に拡大した走査型電子顕微鏡写真であり、図6は、第2比較例の酸化被膜の断面を3500倍に拡大した走査型電子顕微鏡写真であり、図7は、第3比較例の酸化被膜の断面を3500倍に拡大した走査型電子顕微鏡写真であり、図8は、第4比較例の酸化被膜の断面を3500倍に拡大した走査型電子顕微鏡写真である。なお、図6〜図8は、いずれも酸化被膜が形成された金属包囲部材3(金属チューブ3)を自身の長手方向に沿って切断したときの断面を対象にした走査型電子顕微鏡写真である。
【0036】
まず、図5を参照して、第1比較例の酸化被膜について説明する。第1比較例の酸化被膜は、上記金属包囲部材3,4,8に対して、第1熱処理工程を行わず、第2熱処理工程のみを行ったものである。具体的には、35℃に保たれた水中を通して水分を含ませた水素ガスよりなるウエットガスと、ドライ水素よりなるドライガスとを1対2.2の割合で処理炉に投入し、当該処理炉内に上記金属包囲部材3,4,8を収納し、1150℃の処理温度で、1時間加熱処理したものである。図5に示す酸化被膜の断面図のように、酸化被膜は、非常に薄いものとなっている。
【0037】
次に、図6を参照して、第2比較例の酸化被膜について説明する。第2比較例では、上記金属包囲部材3,4,8に対して、第1熱処理工程を行わず、第1比較例と同様の第2熱処理工程のみを行い、加熱時間を3時間に延長したものである。この第2比較例の酸化被膜では、図6に示す酸化被膜の断面図のように、酸化被膜は、第1比較例に対しては僅かに厚くなっているが、大幅に被膜の厚み増加に至っていない。
【0038】
次に、図7を参照して、第3比較例の酸化被膜について説明する。第3比較例は、上記金属包囲部材3,4,8に対して、先に、上記の比較例同様の第2熱処理工程を1時間行い、その後、上記金属包囲部材3,4,8に対して、第1熱処理工程として、1000℃で10時間加熱処理したものである。図7に示す酸化被膜の断面図のように、金属包囲部材3の表面に形成された酸化被膜は、厚みが十分でなく、かつ不連続に形成されて金属包囲部材3の表面が所々露出しており、酸化を防ぐ保護膜としては、十分でない。また、この場合に形成されている酸化被膜では、例えば、1000℃に5分、次いで、常温(20℃)に5分を1サイクルとする熱サイクルを繰り返し受けると、酸化被膜に剥離が生ずる。
【0039】
次に、図8を参照して、第4比較例の酸化被膜について説明する。第4比較例は、上記の金属包囲部材3,4,8に対して、第1熱処理工程のみを行ったものである。具体的には、上記金属包囲部材3,4,8の表面を大気雰囲気中にて、1000℃で10時間加熱処理したものである。図8に示す酸化被膜の断面図のように、金属包囲部材3の表面に形成された酸化被膜は、厚みは十分あるが、凹凸が激しく、かつ不連続に形成されて金属包囲部材3の表面が所々露出しており、酸化を防ぐ保護膜としては、十分でない。
【0040】
次に、本実施の形態の温度センサによる効果の確認を、まず、以下の熱衝撃試験に基づいて行った。この熱衝撃試験の方法及び結果については、図9、図10及び表1を参照して説明する。
【0041】
まず、熱衝撃試験を行うための温度センサとして、表1に示すように、第1熱処理工程にて、大気雰囲気中で処理温度を900℃、950℃、1000℃、1050℃、1100℃と変化させると共に、処理時間を2時間、5時間、10時間、15時間、20時間、50時間と変化させて加熱処理したそれぞれの金属包囲部材3、4、8を用いて30本の温度センサを作製した。なお、各金属包囲部材3、4、8は、第1熱処理工程後に第2熱処理工程を行ったが、この第2熱処理工程としては、35℃に保たれた水中を通して水分を含ませた水素ガスよりなるウエットガスと、ドライ水素よりなるドライガスとを1対2.2の割合で処理炉に投入し、当該処理炉内に各金属包囲部材3、4、8を収納し、1150℃の処理温度で、1時間加熱処理するようにして行った。また、この試験用の温度センサは、図1と同じ構造を有するものとした。
【0042】
次に、下記熱衝撃試験を行う前段階として、30通りの加熱処理条件を有する第1熱処理工程と、加熱処理条件を共通化した第2熱処理工程を経て得られた各温度センサについて、初期の900℃における電気抵抗値(Rb)を測定した。その後、30本の温度センサの各々を、図9に示すように、測定盤203に取り付ける。そして、内部に電気ヒータ201が設けられた電気炉200内に温度測定のための熱電対202を設けて電気炉200内の温度を1000±10℃に安定させる。次いで、図10に示すタイミングチャートのように、1000±10℃に設定された電気炉200内に、温度センサの感熱部であるフランジ4の先端より突出した金属チューブ3の先端側を挿入して5分間放置した後に、温度センサを電気炉200内から退出させて大気温度(20℃)で5分間自然冷却させる。これを1サイクルとして、同工程を300サイクル繰り返した。
【0043】
その後、300サイクル耐久後の900℃における各温度センサの抵抗値(Ra)を測定した。そして、各温度センサについて、対応する300サイクル耐久後の抵抗値;(Ra)と初期の抵抗値(Rb)とから次式(1)に基づいて熱衝撃に伴う抵抗値の変化率を算出した。
抵抗値の変化率(単位:%)=(Ra−Rb)/Rb×100 :式(1)
そして、算出された各温度センサの抵抗値の変化率が±5.0%以内であったものは、サーミスタ素子2の特性変動が許容範囲内として「○」と判断し、同抵抗値の変化率が±5.0%の範囲内を逸脱したものは、サーミスタ素子2の特性変動が大きいと判断して「×」とした。表1にその評価結果を示す。
【表1】
Figure 2004301679
【0044】
表1の結果より、第1熱処理工程での加熱処理条件において、1100℃で15時間、20時間、50時間の場合と、1050℃で50時間の場合と、1000℃で50時間の場合と、950℃で50時間の場合に設定して作製した温度センサについては、熱衝撃に伴う温度センサの抵抗値の変化率が±5.0%の範囲内を逸脱し、不可となっている。これらの場合は、酸化被膜の膜厚が厚くなりすぎて逆に剥離等を誘発したためと考えられる。
【0045】
次に、本実施の形態の温度センサによる効果の確認を、以下の連続耐久試験に基づいて行った。この連続耐久試験の方法及び結果については、図9及び表2を参照して説明する。
【0046】
まず、連続耐久試験を行うための温度センサとして、上述した熱衝撃試験にて作製した30本の温度センサ(第1熱処理工程にて6種の処理時間と5種の処理温度を用いて作製した30本の温度センサ)を、同様の手法により作製した。
【0047】
次に、下記連続耐久試験を行う前段階として、30通りの加熱処理条件を有する第1熱処理工程と、加熱処理条件を共通化した第2熱処理工程を経て得られた各温度センサについて、初期の900℃における電気抵抗値(Rb)を測定した。その後、30本の温度センサの各々を、図9に示すように、測定盤203に取り付ける。そして、内部に電気ヒータ201が設けられた電気炉200内に温度測定のための熱電対202を設けて電気炉200内の温度を1000±10℃に安定させる。次いで、1000±10℃に設定された電気炉200内に、温度センサの感熱部であるフランジ4の先端より突出した金属チューブ3の先端側を挿入して200時間連続して維持する。
【0048】
その後、1000℃で連続200時間の耐久試験を行った各温度センサの900℃における抵抗値(Ra)を測定した。そして、各温度センサについて、対応する連続200時間耐久後の抵抗値(Ra)と初期の抵抗値(Rb)から、上述した式(1)に基づいて熱衝撃に伴う抵抗値の変化率を算出した。そして、算出された各温度センサの抵抗値の変化率が±5.0%以内であったものは、サーミスタ素子2の特性変動が許容範囲内として「○」と判断し、同抵抗値の変化率が±5.0%の範囲内を逸脱したものは、サーミスタ素子2の特性変動が大きいと判断して「×」とした。表2にその評価結果を示す。
【表2】
Figure 2004301679
【0049】
表2の結果より、第1熱処理工程で処理温度が900℃〜1100℃では、処理時間が2時間の場合は、温度センサの抵抗値の変化率が±5.0%の範囲内を逸脱し、不可となっている。また、第1熱処理工程での処理温度が900℃では、処理時間が5時間の場合は、同抵抗値の変化率が±5.0%の範囲内を逸脱し、不可となっている。これら以外は、何れも同抵抗値の変化率が±5.0%の範囲内に入っており、良好の結果が得られた。
【0050】
上記の表1及び表2に示す試験結果に基づいて判断すると、前記第1熱処理工程では、金属チューブ3、フランジ4、シース部材8を、大気雰囲気中にて950℃〜1050℃の処理温度で、5時間〜20時間加熱処理すると、金属包囲部材3、4、8の少なくとも密閉空間内に露出し、サーミスタ素子2に近接し配置された金属部分の表面が不連続ながら良好な厚みにより覆われ、前記第2熱処理工程を経ることで最終的に連続的な酸化被膜が形成されて、温度センサ1に用いられるサーミスタ素子2の温度特性が損なわれることがないことが分かる。従って、本実施の形態では、前記第2熱処理工程に先立つ、前記第1熱処理工程では、金属包囲部材3、4、8を、950℃〜1050℃の処理温度で、5時間〜20時間加熱処理することにした。
【0051】
以上説明したように、本実施の形態の温度センサの製造方法では、サーミスタ素子2が金属チューブ3、フランジ4及び継手6により形成される密閉空間に収容されるものにおいて、金属チューブ3、シース部材8及びフランジ4のうち少なくとも当該密閉空間内に露出しサーミスタ素子2に近接して配置された金属部分の表面が、前記第1熱処理工程では、950℃〜1050℃の処理温度で5時間〜20時間、望ましくは、1000℃で10時間、加熱処理されるので、金属チューブ3、フランジ4、シース部材8の表面に不連続ながら十分な膜厚の酸化被膜を生成することができる。そして、本実施の形態の温度センサの製造方法では、少なくとも当該第1熱処理工程で不連続に生成された酸化被膜の欠落部分に、第2熱処理工程で酸化クロムの被膜を選択的に生成することができる。
【0052】
従って、温度センサ1が1000℃前後の高温下で使用され、サーミスタ素子2に近接して配置された金属チューブ3、シース部材8及びフランジ4等の金属包囲部材が酸化しようとしても、既にこれらの金属包囲部材3,4,8の表面に十分な膜厚で連続的な酸化クロム等から成る酸化被膜が形成されているため、金属チューブ3等の金属包囲部材の表面の酸化の進行が抑えられ、サーミスタ素子2の周囲の酸素濃度の低下が抑えられる。この結果、サーミスタ素子2の特性変化を抑えることができ、温度センサ1による温度検出の精度低下を抑えることができる。
【0053】
[第2の実施の形態]
次に、本発明の第2の実施の形態である温度センサ100について、図面を参照して説明する。尚、本別実施形態の温度センサ100は、第1の実施形態の温度センサ1と比較して、サーミスタ素子2を収容するための部材、及びフランジの鞘部にレーザー溶接される部材が主に異なるものであり、その他の部分についてはほぼ同様である。従って、実施形態と異なる部分を中心に説明し、同様な部分については、説明を省略または簡略化する。
【0054】
まず、温度センサ100の構造を示す部分破断断面図を図11に示す。第1の実施形態の温度センサ1では、サーミスタ素子2を金属チューブ3の内側に収納すると共に、その金属チューブ3をフランジ4にレーザー溶接により固定していた(図1参照)。これに対し、図11に示す本別実施形態の温度センサ100では、サーミスタ素子2を金属キャップ14に収納し、この金属キャップ14をシース部材8に接合した状態で、シース部材8をフランジ4にレーザー溶接により固定している。
【0055】
軸線方向に延びる金属キャップ14は、自身の先端側131が閉塞された筒状をなしており、この先端側131の内部にサーミスタ素子2が収納されている。この金属キャップ14は、SUS310S等のステンレス合金から形成されている。尚、サーミスタ素子2は、自身の電極線(Pt/Rh合金線)9を介してシース部材8の先端側から突出する金属芯線7に接続される。そして、金属キャップ14の後端側132は開放されており、この後端側132の内周面が一対の金属芯線7を内包するシース部材8(詳細にはシース部材8の外筒)の外周面に重なり合った状態で、周方向にわたってレーザー溶接されている。これにより、金属キャップ14がシース部材8に固定される。
【0056】
フランジ4は、上述したように、軸線方向に延びる鞘部42と、この鞘部42の先端側に位置し、径方向外側に向かって突出する突出部41とを有している。また、鞘部42は、先端側に位置する先端側段部44と先端側段部44よりも小さい外径を有する後端側段部43とを備える二段形状をなしている。
【0057】
シース部材8は、自身の後端側がフランジ4の内側に挿通された状態で、鞘部42の外周面の所定位置において径方向内側に向かって加締められ、フランジ4に対して固定されている。さらに、シース部材8の外周面と鞘部42の後端側段部43の内周面との重なり合う部分が、周方向にわたってレーザー溶接されている。このレーザー溶接がなされることにより、図11に示すように、鞘部42の後端側段部43とシース部材8(詳細にはシース部材8の外筒)とに跨る溶接部L3が形成され、シース部材8がフランジ4に対して強固に固定される。
【0058】
このように、シース部材8をフランジ4の鞘部42に加締め固定しつつ、鞘部42の後端側段部43にレーザー溶接を行うことにより、フランジ4とシース部材8との溶接強度に優れると共に、フランジ4とシース部材8との密着強度に優れる温度センサ100とすることができる。したがって、自動車等の振動の激しい環境下において温度センサ100が強い振動を受けても、シース部材8が振れ難く、シース部材8の折損等を抑制することができる。また、排気ガスに対する気密の信頼性を向上させることができる。
【0059】
尚、上記構成の温度センサ100でも、サーミスタ素子2が、シース部材8及び金属キャップ14により形成される密閉空間に収容されることになる。このシース部材8及び金属キャップ14は、1000℃にも達する高温環境下に晒されるため、十分な耐熱性を有している必要がある。そのため、シース部材8及び金属キャップ14は、SUS310Sにより形成されている。このシース部材8及び金属キャップ14にも第1の実施の形態と同様に第1熱処理工程では、950℃〜1050℃の処理温度で5時間〜20時間、望ましくは、1000℃で10時間、加熱処理されるので、シース部材8及び金属キャップ14に不連続ながら十分な厚みの酸化被膜が生成され、少なくとも当該第1熱処理工程で生成された酸化被膜の欠落部分に、第1の実施の形態と同様の第2熱処理工程で酸化クロムの被膜を選択的に生成する。酸化クロムの被膜が形成された金属キャップ14がシース部材8に溶接されて、その他の部品2,5〜7,11〜13を互いに組み付けることにより、温度センサ100の製造が完了する。この温度センサ100では、シース部材8及び金属キャップ14の表面が連続的で十分な膜厚の酸化被膜により覆われるので、1000℃以上の高温に長時間晒されても、シース部材8及び金属キャップ14の表面の酸化の進行を抑えることができ、シース部材8及び金属キャップ14により形成される密閉空間内に露出したサーミスタ素子2の周囲、即ち素子雰囲気中の酸素濃度を安定的に保つことができるようになる。
従って、温度センサ100に用いられるサーミスタ素子2の温度特性が損なわれることがない。
【0060】
尚、本発明においては、上述した具体的な実施形態に限られず、目的、用途に応じて本発明の範囲内で種々変更した実施形態とすることができる。例えば、第1の実施の形態の温度センサ1において、金属チューブ3の先端部の厚さを他の部分よりも薄くすることにより、温度センサの応答性をさらに向上させることもできる。
【0061】
また、フランジ4の突出部41よりも先端側に、同突出部41よりも外径が小径の外径を有し、金属チューブ3あるいはシース部材8の外径よりも大径の内径を有する筒状部を一体に形成し、この筒状部の外周面を径方向内側に加締めることで、筒状部と金属チューブ3あるいはシース部材8とを加締め固定してもよい。これにより、金属チューブ3あるいはシース部材8の折損がより一層起こり難い耐震性に優れた温度センサとすることができる。さらに、本発明の温度センサは、排気温センサのみならず、被測定流体として水や油等の液体が流れる流通路に取り付けられる温度センサにも適用可能である。
【0062】
尚、各金属包囲部材3,4,8に使用される耐熱合金としては、SUS310Sに限られず、SUS309SやInconel601等を用いても良い。また、耐熱合金としては、クロムを18重量%以上含む耐熱合金であれば、各種のものが使用可能である。クロム元素を少なくとも18重量%含む耐熱合金として、例えば、SUS304、SUS304L、SUS304N1を使用することもできる。
【0063】
【発明の効果】
以上説明したように、請求項1に記載の発明の温度センサの製造方法によれば、管理が容易な大気雰囲気下での加熱処理である第1熱処理工程で、サーミスタ素子に近接して配置され、少なくともクロム元素を18重量%以上含有する耐熱合金により形成された金属部分の表面に第2熱処理工程単独で加熱処理した場合に比して厚い酸化被膜を形成し、次いで、第2熱処理工程で、少なくとも第1熱処理工程にて加熱処理された金属部分の表面が酸素分圧が1×10−22〜1×10−12atmの低酸素雰囲気中で1000℃〜1200℃の処理温度にて加熱処理されると、第1熱処理工程で形成された不連続である酸化被膜の欠落部分に酸化クロムの酸化被膜を形成することができる。従って、サーミスタ素子に近接して配置された金属部分の表面に効率良く連続的で膜厚の十分確保された被膜を形成することができる。このため、高温使用時にサーミスタ素子を囲む雰囲気中の酸素濃度を安定に保ち、サーミスタ素子の特性変化を抑えて検出精度の低下を抑えることのできる温度センサを製造することができる。
【0064】
また、請求項2に記載の発明の温度センサの製造方法によれば、管理が容易な大気雰囲気下での加熱処理である第1熱処理工程で、サーミスタ素子に近接して配置され、少なくともクロム元素を18重量%以上含有する耐熱合金により形成された金属部分の表面に第2熱処理工程単独で加熱処理した場合に比して厚い酸化被膜を形成し、次いで、第2熱処理工程で、少なくとも第1熱処理工程にて加熱処理された金属部分の表面が水素−水蒸気雰囲気中で加熱処理されると、前記金属部分の表面のうちで第1熱処理工程で少なくとも当該酸化被膜が形成されなかった表面に酸化クロムの酸化被膜を形成することができる。従って、サーミスタ素子に近接して配置された金属部分の表面に効率良く連続的で膜厚の十分確保された被膜を形成することができる。このため、高温使用時にサーミスタ素子を囲む雰囲気中の酸素濃度を安定に保ち、サーミスタ素子の特性変化を抑えて検出精度の低下を抑えることのできる温度センサを製造することができる。
【0065】
また、請求項3に記載の発明の温度センサの製造方法では、請求項2に記載の発明の効果に加えて、第2熱処理工程で、金属部分を含む包囲部材を処理炉に収容し、その処理炉には、20℃〜50℃に保たれた水中を通して水分を含ませた水素ガスよりなるウエットガスと、ドライ水素よりなるドライガスとを1対1〜3の割合で投入し、前記金属部分の表面が1000℃〜1200℃の処理温度で加熱処理されるので、第1熱処理工程で形成された不連続である酸化被膜の欠落部分に酸化クロムの酸化被膜が生成される。従って、サーミスタ素子に近接して配置された金属部分の表面が連続的で膜厚の十分確保された被膜により覆われることになる。
【0066】
また、請求項4に記載の発明の温度センサの製造方法は、請求項1乃至3の何れかに記載の発明の効果に加えて、第1熱処理工程では、金属部分の表面を、950℃〜1050℃の処理温度で、5時間〜20時間、加熱処理するので、管理の用意である大気雰囲気下で膜厚が十分に厚い酸化被膜を容易に形成することができる。このため、十分に厚い酸化被膜を形成するために、管理の難しい水素−水蒸気雰囲気中で長時間熱処理する必要がなく、温度センサの製造時間の短縮化を図ることができる。
【図面の簡単な説明】
【図1】図1は、第1の実施の形態の温度センサ1の構造を示す部分破断断面図である。
【図2】図2は、温度センサ1の熱処理の第1実施例の工程図である。
【図3】図3は、温度センサ1の熱処理の第2実施例の工程図である。
【図4】図4は、酸化被膜が形成された金属包囲部材3を自身の長手方向に沿って切断したときの断面を3500倍に拡大した走査型電子顕微鏡写真である。
【図5】図5は、第1比較例の酸化被膜が形成された金属包囲部材3を自身の長手方向に沿って切断したときの断面を3500倍に拡大した走査型電子顕微鏡写真である。
【図6】図6は、第2比較例の酸化被膜が形成された金属包囲部材3を自身の長手方向に沿って切断したときの断面を3500倍に拡大した走査型電子顕微鏡写真である。
【図7】図7は、第3比較例の酸化被膜が形成された金属包囲部材3を自身の長手方向に沿って切断したときの断面を3500倍に拡大した走査型電子顕微鏡写真である。
【図8】図8は、第4比較例の酸化被膜が形成された金属包囲部材3を自身の長手方向に沿って切断したときの断面を3500倍に拡大した走査型電子顕微鏡写真である。
【図9】図9は、熱衝撃試験の測定装置の中央断面図である。
【図10】図10は、熱衝撃試験のタイミングチャートである。
【図11】図11は、第2の実施の形態の温度センサ100の構造を示す部分破断断面図である。
【符号の説明】
1 温度センサ
2 サーミスタ素子
3 金属チューブ(包囲部材)
4 フランジ(包囲部材)
8 シース部材(包囲部材)
14 キャップ(包囲部材)
100 温度センサ

Claims (4)

  1. サーミスタ素子を一又は複数の包囲部材で形成される密閉空間内に収容した温度センサの製造方法において、
    前記一又は複数の包囲部材のうち、少なくとも前記密閉空間内に露出し前記サーミスタ素子に近接して配置され、少なくともクロム元素を18重量%以上含有する耐熱合金により形成された金属部分の表面を大気雰囲気中で加熱処理して酸化被膜を形成する第1熱処理工程と、
    少なくとも前記第1熱処理工程にて加熱処理された前記金属部分の表面を、酸素分圧が1×10−22〜1×10−12atmの低酸素雰囲気中で1000℃〜1200℃の処理温度にて加熱処理して、前記金属部分の表面のうちで少なくとも当該酸化被膜が形成されなかった表面に酸化クロムを選択的に生成させて酸化被膜を形成する第2熱処理工程とから成ることを特徴とする温度センサの製造方法。
  2. サーミスタ素子を一又は複数の包囲部材で形成される密閉空間内に収容した温度センサの製造方法において、
    前記一又は複数の包囲部材のうち、少なくとも前記密閉空間内に露出し前記サーミスタ素子に近接して配置され、少なくともクロム元素を18重量%以上含有する耐熱合金により形成された金属部分の表面を大気雰囲気中で加熱処理して酸化被膜を形成する第1熱処理工程と、
    少なくとも前記第1熱処理工程にて加熱処理された前記金属部分の表面を水素−水蒸気雰囲気中で加熱処理することにより、前記金属部分の表面のうちで少なくとも当該酸化被膜が形成されなかった表面に酸化クロムを選択的に生成させて酸化被膜を形成する第2熱処理工程とから成ることを特徴とする温度センサの製造方法。
  3. 前記第2熱処理工程では、前記金属部分の表面を水素−水蒸気雰囲気中で加熱処理するために、前記金属部分を含む前記包囲部材を処理炉に収容し、
    その処理炉には、20℃〜50℃に保たれた水中を通して水分を含ませた水素ガスよりなるウエットガスと、ドライ水素よりなるドライガスとを1対1〜3の割合で投入し、
    前記金属部分を1000℃〜1200℃の処理温度で加熱処理したことを特徴とする請求項2に記載の温度センサの製造方法。
  4. 前記第1熱処理工程では、前記金属部分の表面を、950℃〜1050℃の処理温度で、5時間〜20時間、加熱処理したことを特徴とする請求項1乃至3の何れかに記載の温度センサの製造方法。
JP2003095245A 2003-03-31 2003-03-31 温度センサの製造方法 Expired - Fee Related JP4203346B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095245A JP4203346B2 (ja) 2003-03-31 2003-03-31 温度センサの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095245A JP4203346B2 (ja) 2003-03-31 2003-03-31 温度センサの製造方法

Publications (2)

Publication Number Publication Date
JP2004301679A true JP2004301679A (ja) 2004-10-28
JP4203346B2 JP4203346B2 (ja) 2008-12-24

Family

ID=33407620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095245A Expired - Fee Related JP4203346B2 (ja) 2003-03-31 2003-03-31 温度センサの製造方法

Country Status (1)

Country Link
JP (1) JP4203346B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2008070A2 (en) 2006-03-28 2008-12-31 Stoneridge, Inc. Temperature sensor
EP2075557A2 (en) 2007-12-26 2009-07-01 NGK Spark Plug Co., Ltd. Temperature sensor and method of producing the same
JP2009174969A (ja) * 2008-01-23 2009-08-06 Mitsubishi Materials Corp 温度センサ及びその製造方法
JP2009258082A (ja) * 2008-03-19 2009-11-05 Ngk Spark Plug Co Ltd 温度センサおよびその製造方法
US8177427B2 (en) 2007-12-26 2012-05-15 Ngk Spark Plug Co., Ltd. Temperature sensor and method of producing the same
CN103308207A (zh) * 2012-03-06 2013-09-18 株式会社电装 温度传感器
KR20220034444A (ko) * 2020-09-11 2022-03-18 주식회사 에스엠에스 자동차 배기가스 측정용 온도센서의 제조방법
WO2022091169A1 (ja) * 2020-10-26 2022-05-05 日本電信電話株式会社 金属部材

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2008070A4 (en) * 2006-03-28 2016-01-27 Stoneridge Inc TEMPERATURE SENSOR
EP2008070A2 (en) 2006-03-28 2008-12-31 Stoneridge, Inc. Temperature sensor
EP2008070B1 (en) 2006-03-28 2018-08-01 Stoneridge, Inc. Temperature sensor and method of reducing degradation thereof
EP2075557A2 (en) 2007-12-26 2009-07-01 NGK Spark Plug Co., Ltd. Temperature sensor and method of producing the same
US8177427B2 (en) 2007-12-26 2012-05-15 Ngk Spark Plug Co., Ltd. Temperature sensor and method of producing the same
JP2009174969A (ja) * 2008-01-23 2009-08-06 Mitsubishi Materials Corp 温度センサ及びその製造方法
JP2009258082A (ja) * 2008-03-19 2009-11-05 Ngk Spark Plug Co Ltd 温度センサおよびその製造方法
JP2013185878A (ja) * 2012-03-06 2013-09-19 Denso Corp 温度センサ
US9417135B2 (en) 2012-03-06 2016-08-16 Denso Corporation Temperature sensor
CN103308207A (zh) * 2012-03-06 2013-09-18 株式会社电装 温度传感器
KR20220034444A (ko) * 2020-09-11 2022-03-18 주식회사 에스엠에스 자동차 배기가스 측정용 온도센서의 제조방법
KR102449907B1 (ko) * 2020-09-11 2022-09-30 주식회사 에스엠에스 자동차 배기가스 측정용 온도센서의 제조방법
WO2022091169A1 (ja) * 2020-10-26 2022-05-05 日本電信電話株式会社 金属部材
JP7420282B2 (ja) 2020-10-26 2024-01-23 日本電信電話株式会社 金属部材

Also Published As

Publication number Publication date
JP4203346B2 (ja) 2008-12-24

Similar Documents

Publication Publication Date Title
JPH0969417A (ja) 温度センサ及びその製造方法
JP3819537B2 (ja) 電気抵抗温度センサー
US20040101028A1 (en) Temperature sensor
JP4203346B2 (ja) 温度センサの製造方法
CN111684246A (zh) 温度传感器以及温度测定装置
US7066009B2 (en) Gas sensor
JP2838346B2 (ja) セラミックスヒータおよびその製造方法
JP3148433B2 (ja) 金属ケース封止型センサ及びその製造方法
JP2006059794A (ja) セラミックヒータ
JP5260236B2 (ja) 温度センサおよびその製造方法
JP2000234962A (ja) 温度センサ及びその製造方法
EP1448023B1 (en) Method for manufacturing sheathed heater and method for manufacturing glow plug
JP2007187562A (ja) 温度センサ素子および温度センサ
JP4350436B2 (ja) 温度センサ
JP2004157052A (ja) 温度センサ
JP5931692B2 (ja) ガスセンサ
JPH09126910A (ja) 温度検出装置
JP2009099662A (ja) 高温用センサ
JP3826099B2 (ja) 温度センサ
JPH10318850A (ja) 温度検出装置
JP3003567B2 (ja) 温度検出装置
JP2009174969A (ja) 温度センサ及びその製造方法
JP3000910B2 (ja) 温度検出装置
JP2019095131A (ja) グロープラグ
JP3641759B2 (ja) 熱電対と保護管が一体となった測温センサーの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081010

R150 Certificate of patent or registration of utility model

Ref document number: 4203346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees