JP2004300570A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2004300570A
JP2004300570A JP2004063023A JP2004063023A JP2004300570A JP 2004300570 A JP2004300570 A JP 2004300570A JP 2004063023 A JP2004063023 A JP 2004063023A JP 2004063023 A JP2004063023 A JP 2004063023A JP 2004300570 A JP2004300570 A JP 2004300570A
Authority
JP
Japan
Prior art keywords
plating layer
layer
electroless
metal
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004063023A
Other languages
Japanese (ja)
Other versions
JP4699704B2 (en
Inventor
Haruhiko Murata
晴彦 村田
Kazuhisa Sato
和久 佐藤
Tomonori Matsuura
友紀 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004063023A priority Critical patent/JP4699704B2/en
Publication of JP2004300570A publication Critical patent/JP2004300570A/en
Application granted granted Critical
Publication of JP4699704B2 publication Critical patent/JP4699704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05571Disposition the external layer being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13022Disposition the bump connector being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds

Landscapes

  • Chemically Coating (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board hardly causing the dispersion and reaction between a barrier metal layer and a Cu plating layer or an Au plating layer thereafter, capable of remarkably reducing the connection failure due to the shortage of solder wetting at a metal terminal pad and the probability of the fault generation such as peeling/breaking by arranging between the Cu coating layer and the Au plating layer of the metal terminal pad the barrier metal layer capable of effectively suppressing the constituent dispersion between the Cu coating layer and the Au plating layer. <P>SOLUTION: In the metal terminal pads 10, 110, 17 and 117, the Cu plating layer 52, the barrier metal layer 20 and the Au plating layer 54 are arranged in this order from a first main surface CP on a wiring board 1. A Ni-B based electroless Ni plating layer or a platinum group metal based electroless plating layer is used as the barrier metal layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は配線基板に関する。   The present invention relates to a wiring board.

特開2002−4098号公報JP-A-2002-4098 特開平6−330336号公報JP-A-6-330336 特開2003−13248号公報JP-A-2003-13248 「均一液滴噴霧法により作製したPbフリーはんだボールの評価」 日立金属技報 Vol.18(2002)43頁"Evaluation of Pb-free solder balls produced by uniform droplet spray method" Hitachi Metals Technical Report Vol. 18 (2002) p. 43 「高信頼性Sn−Ag系鉛フリーはんだの開発」 豊田中央研究所R&Dレビュー Vol.35 No.2 (2000) 39頁"Development of Highly Reliable Sn-Ag Lead-Free Solder" R & D Review, Toyota Central R & D Laboratories, Vol. 35 No. 2 (2000) p. 39

ICあるいはLSI等のチップ接続用として使用される多層配線基板のうち、オーガニックパッケージ基板と称されるものは、高分子材料からなる誘電体層と導体層とが交互に積層された配線積層部を有し、該配線積層部の誘電体層にて形成された第一主表面上に、フリップチップ接続用あるいはマザーボード接続用(例えばBGAあるいはPGAによる)の複数の金属端子パッドが配置される。これら金属端子パッドは、配線積層部内に位置する内層導体層にビアを介して導通する。内層導体層及びビアは導電率の良好なCu系金属で構成されるのが一般的であり、金属端子パッドも、これらと接続する本体部分がCuメッキ層として形成される。しかし、金属端子パッドにはチップやマザーボードと接続するための半田が接触するので、半田との結合力及びぬれ性を向上させるため、Auメッキが施される。   Among multi-layer wiring boards used for connecting chips such as ICs or LSIs, those called organic package boards include a wiring laminated portion in which dielectric layers and conductive layers made of a polymer material are alternately laminated. A plurality of metal terminal pads for flip-chip connection or motherboard connection (for example, by BGA or PGA) are arranged on the first main surface formed of the dielectric layer of the wiring laminated portion. These metal terminal pads are electrically connected via vias to an inner conductor layer located in the wiring laminated portion. The inner conductor layer and the via are generally made of a Cu-based metal having good conductivity, and the metal terminal pad is also formed as a Cu plating layer in a main body portion connected to the metal terminal pad. However, since the solder for connecting to the chip or the mother board is in contact with the metal terminal pad, Au plating is applied to improve the bonding strength with the solder and the wettability.

ところで、金属端子パッドの本体部分をなすCuメッキ層は耐食性がそれほど良好であるとはいえず、表面が酸化層などで覆われているとAuメッキ層の密着性が悪化する可能性がある。また、リフロー時等の加熱によりCuメッキ層からAuメッキ層表面にCuが拡散により湧き上がり、Auメッキ層表面がCuの酸化層で覆われて半田ぬれ性や半田接合性が大幅に損なわれる問題がある。また、半田のSn成分がAuメッキ層を経てCuメッキ層に拡散し、脆いCu−Sn系金属間化合物層を生じやすくなり、特に熱応力等が加わった場合に、該Cu−Sn系金属間化合物層とCuメッキ層の下地部分との間で剥離を生じやすくなる問題がある。特に、基板をマザーボードに半田ボールを介して接続するためのBGA(Ball Grid Allay)用の金属端子パッドにおいては、パッド面積が大きく熱応力も付加されやすいため、上記の問題を生じやすい。   By the way, the Cu plating layer forming the main body of the metal terminal pad is not so good in corrosion resistance. If the surface is covered with an oxide layer or the like, the adhesion of the Au plating layer may be deteriorated. In addition, there is a problem that Cu rises from the Cu plating layer to the Au plating layer surface by diffusion due to heating during reflow or the like, and the Au plating layer surface is covered with an oxide layer of Cu, so that solder wettability and solder jointability are significantly impaired. There is. In addition, the Sn component of the solder diffuses into the Cu plating layer via the Au plating layer, and tends to form a brittle Cu-Sn-based intermetallic compound layer. Particularly, when thermal stress or the like is applied, the Cu-Sn-based There is a problem that separation easily occurs between the compound layer and the underlying portion of the Cu plating layer. In particular, in a metal terminal pad for BGA (Ball Grid Allay) for connecting a substrate to a motherboard via a solder ball, the pad area is large and thermal stress is easily applied, so that the above-described problem is likely to occur.

そこで、Cuメッキ層を形成した後、バリア金属層として、Cuとの密着性が良好なNiメッキ層を形成し、そのNiメッキ層上にAuメッキ層を形成するパッド構造が広く採用されている。このNiメッキ層の形成方法には電解Niメッキを用いる方法と、無電解Niメッキを用いる方法(特許文献1)との2種類がある。しかし、電解Niメッキを用いたパッド形成工程では、パッドが形成される誘電体層面(パッド形成面)上に、パッドに接続するメッキ用の導通路(タイバー)を複雑に入り組んだ形で形成する必要がある。この方式では、パッド間にメッキタイバー挿入用のスペースを確保しなければならないので、パッドの配列間隔を一定以上には縮小できなくなり、基板面積の増大を引き起こしやすくなるとともに、設計上の制約も非常に大きくなる問題がある。他方、無電解Niメッキを用いる場合は、メッキタイバーが不要であるから、上記のごとき問題は生じないし、誘電体層上に互いに絶縁された複数のパッドに対しても、メッキ液への浸漬により簡単にNiメッキ層を形成できる利点がある。   Therefore, a pad structure in which a Ni plating layer having good adhesion to Cu is formed as a barrier metal layer after a Cu plating layer is formed, and an Au plating layer is formed on the Ni plating layer is widely used. . There are two types of methods for forming the Ni plating layer: a method using electrolytic Ni plating and a method using electroless Ni plating (Patent Document 1). However, in the pad forming step using electrolytic Ni plating, conductive paths (tie bars) for plating connected to the pads are formed in a complicated and complicated manner on the dielectric layer surface (pad forming surface) on which the pads are formed. There is a need. In this method, the space for inserting the plating tie bar must be secured between the pads, so that the arrangement interval of the pads cannot be reduced beyond a certain value. There is a problem that becomes large. On the other hand, in the case of using electroless Ni plating, the above-mentioned problem does not occur because the plating tie bar is unnecessary, and even for a plurality of pads that are insulated from each other on the dielectric layer, immersion in the plating solution is performed. There is an advantage that the Ni plating layer can be easily formed.

しかしながら、配線基板のパッド用メッキとして一般に使用されている無電解Niメッキ浴には、還元剤として次亜リン酸ソーダなどのリン酸化合物が使用されるため、得られるNiメッキ層に4〜8質量%もの比較的多量のPが必然的に含有されたものしか得ることができない。Niメッキ層中にPが多量に含まれていると、半田リフロー時に、Niとともに共析出したP等によりPが濃化したNi系層が形成され、半田とのぬれ性が阻害し、接続不良を生ずる惧れがある。また、このPが濃化したNi系層に、半田側のSnとNiとの反応により形成されるNi−Sn合金層が接して形成されることもあり、それら層の界面での剥離・破断等が生じやすくなる問題もある。   However, since a phosphate compound such as sodium hypophosphite is used as a reducing agent in an electroless Ni plating bath generally used for plating a pad of a wiring board, the obtained Ni plating layer has a thickness of 4 to 8%. It is possible to obtain only those containing a relatively large amount of P by mass. If a large amount of P is contained in the Ni plating layer, at the time of solder reflow, a Ni-based layer in which P is concentrated by P co-precipitated with Ni or the like is formed, impairing wettability with solder, and poor connection. May occur. Further, the Ni-Sn alloy layer formed by the reaction between Sn and Ni on the solder side may be formed in contact with the Ni-based layer in which P is concentrated, and peeling / breaking at the interface between these layers may occur. There is also a problem that such a situation is likely to occur.

本発明の課題は、金属端子パッドのCuメッキ層とAuメッキ層との間に、Cuメッキ層とAuメッキ層との間の成分拡散を効果的に抑制できるバリア金属層を配置するとともに、バリア金属層とCuメッキ層ないしAuメッキ層との間の拡散や反応も生じにくく、ひいては金属端子パッドにおける半田ぬれ不足による接続不良や、剥離・破断等の不具合発生確率を大幅に低減できる配線基板を提供することにある。   An object of the present invention is to dispose a barrier metal layer between a Cu plating layer and an Au plating layer of a metal terminal pad that can effectively suppress component diffusion between the Cu plating layer and the Au plating layer. Diffusion and reaction between the metal layer and the Cu plating layer or the Au plating layer hardly occur, and as a result, a wiring board that can greatly reduce the probability of occurrence of failures such as poor connection due to insufficient solder wetting of metal terminal pads and peeling / breaking. To provide.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明の配線基板は、第一主表面が誘電体層にて形成されるように、高分子材料からなる誘電体層と導体層とが交互に積層された配線積層部と、該配線積層部の誘電体層にて形成された第一主表面上に配置される複数の金属端子パッドとを有し、金属端子パッドは、第一主表面側にCuメッキ層が配置され、他方最表層部にAuメッキ層が配置された構造を有し、それらCuメッキ層とAuメッキ層との間にバリア金属層が介挿される。バリア金属層は、Cuメッキ層からAuメッキ層表面にCuが拡散により湧き上がることを抑制し、また、半田成分(Pb−Sn系半田などのSnを含有する半田の場合は、特にSn成分)がAuメッキ層を経てCuメッキ層に拡散することを抑制する役割を果たす。   The wiring board according to the present invention includes a wiring laminated portion in which dielectric layers and conductive layers made of a polymer material are alternately laminated so that the first main surface is formed by the dielectric layer; A plurality of metal terminal pads arranged on the first main surface formed of the dielectric layer of the first, the metal terminal pad, the Cu plating layer is arranged on the first main surface side, the other outermost layer portion Has a structure in which an Au plating layer is disposed, and a barrier metal layer is interposed between the Cu plating layer and the Au plating layer. The barrier metal layer suppresses diffusion of Cu from the Cu plating layer to the surface of the Au plating layer due to diffusion. In addition, a solder component (particularly, in the case of a solder containing Sn such as a Pb-Sn-based solder, the Sn component) Plays a role in suppressing diffusion to the Cu plating layer via the Au plating layer.

そして、本発明の配線基板の第一は、金属端子パッドに配置される上記バリア金属層として、P含有率が3質量%以下の無電解Niメッキ層が配置されてなることを特徴とする。バリア金属層として用いる無電解Niメッキ層のP含有率を3質量%以下にすることにより、金属端子パッドに対する半田(特にSn−Pb系半田)ぬれ性が大幅に改善されるので、接続不良等の不具合が発生しにくくなる。また、半田側のSnとNiとの反応によりNi−Sn合金層が形成されても、剥離や破断等の不具合を生じにくくなり、ひいては高強度の接合状態を容易に得ることができる。なお、無電解Niメッキ層のリンの含有率は、望ましくは1質量%以下となっているのがよく、さらに望ましくは検出限界以下となっているのがよい。   The first aspect of the wiring board of the present invention is characterized in that an electroless Ni plating layer having a P content of 3% by mass or less is disposed as the barrier metal layer disposed on the metal terminal pad. By setting the P content of the electroless Ni plating layer used as the barrier metal layer to 3% by mass or less, the wettability of the solder to the metal terminal pad (particularly, Sn-Pb-based solder) is greatly improved, so that the connection failure etc. Is less likely to occur. Further, even if the Ni-Sn alloy layer is formed by the reaction between Sn and Ni on the solder side, defects such as peeling and breakage are less likely to occur, and a high-strength bonded state can be easily obtained. The phosphorus content of the electroless Ni plating layer is desirably 1% by mass or less, and more desirably the detection limit or less.

この場合、無電解Niメッキ層としては、Ni−B系無電解Niメッキ層を用いることができる。Ni−B系無電解Niメッキは、還元剤として水素化ホウ素化合物を用いる非リン酸系浴であり、Niメッキ層のP濃度を大幅に低減できる。なお、Ni−B系無電解Niメッキは、Ni析出の還元反応時に水素ガスが発生し、この水素ガスがNiメッキ層中に取り込まれた場合に、半田リフロー時に吸蔵された水素が放出され、半田接続部との間に気泡や膨れを生ずる可能性もある。この場合、Ni−B系無電解Niメッキを形成後、半田リフロー工程に入る前に、脱水素のためのベーキングを行なうとよい。このベーキングは、半田リフロー温度と同等又は高温で行なうことが望ましい。   In this case, a Ni-B-based electroless Ni plating layer can be used as the electroless Ni plating layer. Ni-B electroless Ni plating is a non-phosphoric acid bath using a borohydride compound as a reducing agent, and can significantly reduce the P concentration of the Ni plating layer. In the Ni-B electroless Ni plating, hydrogen gas is generated during a reduction reaction of Ni deposition, and when this hydrogen gas is taken into the Ni plating layer, hydrogen occluded during solder reflow is released, Bubbles and blisters may be generated between the solder joints. In this case, it is preferable to perform baking for dehydrogenation after forming the Ni-B-based electroless Ni plating and before entering the solder reflow step. This baking is desirably performed at a temperature equal to or higher than the solder reflow temperature.

本発明の配線基板の第二は、金属端子パッドに配置される上記バリア金属層として、白金族金属系無電解メッキ層が配置されてなることを特徴とする。白金族金属系無電解メッキ層からなるバリア金属層は、Cuメッキ層からAuメッキ層表面へのCu拡散の遮断効果、及び半田成分(特にSn成分)のAuメッキ層を経たCuメッキ層側への拡散遮断効果がとりわけ良好である。その結果、金属端子パッドに対する半田(特にSn−Pb系半田)ぬれ性が改善され、接続不良等の不具合発生率を大幅に低減できる。また、半田側のSnとNiとの反応によりNi−Sn合金層が形成されても、剥離や破断等の不具合を生じにくくなり、ひいては高強度の接合状態を容易に得ることができる。また、本発明の第一におけるNi−B系無電解Niメッキを用いた場合は、前述の通り、半田リフロー時に吸蔵された水素が放出され、半田接続部との間に気泡や膨れを生ずるけ懸念があるが、白金族金属系無電解メッキ層の場合はメッキ反応時に水素発生を伴わないので、該不具合発生の心配もない。さらに、白金族金属系無電解メッキ層は耐食性が極めて良好であり、またCuメッキ層及びAuメッキ層との密着性も向上する。   A second aspect of the wiring board of the present invention is characterized in that a platinum group metal-based electroless plating layer is disposed as the barrier metal layer disposed on the metal terminal pad. The barrier metal layer made of a platinum group metal-based electroless plating layer has an effect of blocking the diffusion of Cu from the Cu plating layer to the surface of the Au plating layer, and the Cu plating layer side of the Au component of the solder component (particularly, the Sn component). Has a particularly good diffusion blocking effect. As a result, the wettability of solder (particularly, Sn-Pb-based solder) to the metal terminal pads is improved, and the occurrence rate of defects such as poor connection can be significantly reduced. Further, even if the Ni-Sn alloy layer is formed by the reaction between Sn and Ni on the solder side, defects such as peeling and breakage are less likely to occur, and a high-strength bonded state can be easily obtained. Further, when the Ni-B-based electroless Ni plating according to the first aspect of the present invention is used, as described above, the occluded hydrogen is released at the time of solder reflow, and bubbles and swelling are generated between the solder and the solder connection part. Although there is a concern, in the case of the platinum group metal-based electroless plating layer, there is no fear of occurrence of the problem because hydrogen is not generated during the plating reaction. Further, the platinum group metal-based electroless plating layer has extremely good corrosion resistance, and also has improved adhesion with the Cu plating layer and the Au plating layer.

バリア金属層をなす白金族金属系無電解メッキ層は、Ru、Rh、Pd、Os、Ir及びPtのいずれかを主成分(最も質量含有率が高い成分)とするものを採用できる。具体的には無電解Pdメッキ層からなるバリア金属層が比較的安価であり、形成も容易で性能的にも優れているので、本発明に好適に採用できる。一方、無電解Irメッキ層、無電解Ptメッキ層、無電解Rhメッキ層及び無電解Ruメッキ層からなるバリア金属層は無電解Pdメッキ層に比べれば多少高価であるが、耐食性にはより優れ、下地をなすCuメッキ層や上層のNiメッキ層との密着力をより高めることができる場合がある。また、無電解Ptメッキ層、無電解Rhメッキ層及び無電解Ruメッキ層は、Cuに対する拡散係数が無電解Pdメッキ層よりも小さく、バリア効果がより高められる場合がある。   As the platinum group metal-based electroless plating layer constituting the barrier metal layer, a layer containing any of Ru, Rh, Pd, Os, Ir and Pt as a main component (a component having the highest mass content) can be adopted. Specifically, a barrier metal layer made of an electroless Pd plating layer is relatively inexpensive, easy to form, and excellent in performance, so that it can be suitably used in the present invention. On the other hand, the barrier metal layer composed of the electroless Ir plating layer, the electroless Pt plating layer, the electroless Rh plating layer, and the electroless Ru plating layer is slightly more expensive than the electroless Pd plating layer, but is more excellent in corrosion resistance. In some cases, the adhesion to the underlying Cu plating layer or the upper Ni plating layer can be further enhanced. Further, the electroless Pt plating layer, the electroless Rh plating layer, and the electroless Ru plating layer have a smaller diffusion coefficient with respect to Cu than the electroless Pd plating layer, and the barrier effect may be further enhanced.

本発明の配線基板の第三は、金属端子パッドに配置される上記バリア金属層として、Cuメッキ層と接するNi−P系無電解Niメッキ層と、該Ni−P系無電解Niメッキ層とAuメッキ層との間に配置され、Ni−P系無電解Niメッキ層からAuメッキ層へのP拡散を阻止又は抑制するPバリア用無電解金属メッキ層とが配置されてなることを特徴とする。この構成によると、既に実績のあるNi−P系無電解Niメッキ層を用いるので、Cuメッキ層からAuメッキ層表面へのCu拡散の遮断効果、及び半田成分(特にSn成分)のAuメッキ層を経たCuメッキ層側への拡散遮断効果については問題なく担保できる。そして、そのNi−P系無電解Niメッキ層とAuメッキ層との間に、Ni−P系無電解Niメッキ層からAuメッキ層へのP拡散を阻止又は抑制するPバリア用無電解金属メッキ層を配置したから、P濃化層が仮に形成されても、Pバリア用無電解金属メッキ層によりAuメッキ層からは隔離されるので、金属端子パッドに対する半田(特にSn−Pb系半田)ぬれ性を大幅に改善でき、接続不良等の不具合発生率を低減できる。また、半田側のSnとNiとの反応によりNi−Sn合金層が形成されても、剥離や破断等の不具合を生じにくくなり、ひいては高強度の接合状態を容易に得ることができる。   A third aspect of the wiring board of the present invention is a Ni-P-based electroless Ni plating layer in contact with the Cu plating layer as the barrier metal layer disposed on the metal terminal pad, and the Ni-P-based electroless Ni plating layer. And a P barrier electroless metal plating layer disposed between the Au plating layer and preventing or suppressing P diffusion from the Ni-P based electroless Ni plating layer to the Au plating layer. I do. According to this configuration, since the Ni-P-based electroless Ni plating layer that has already been used is used, the effect of blocking the diffusion of Cu from the Cu plating layer to the surface of the Au plating layer and the Au plating layer of the solder component (particularly, the Sn component) are used. The effect of blocking diffusion to the Cu plating layer after passing through can be ensured without any problem. Then, between the Ni-P-based electroless Ni plating layer and the Au plating layer, P barrier electroless metal plating for preventing or suppressing P diffusion from the Ni-P-based electroless Ni plating layer to the Au plating layer. Since the layers are arranged, even if a P-concentrated layer is formed, it is isolated from the Au plating layer by the P-barrier electroless metal plating layer. Performance can be greatly improved, and the rate of occurrence of problems such as poor connection can be reduced. Further, even if the Ni-Sn alloy layer is formed by the reaction between Sn and Ni on the solder side, defects such as peeling and breakage are less likely to occur, and a high-strength bonded state can be easily obtained.

Pバリア用無電解金属メッキ層は、Ni−B系無電解Ni層にて構成することができる。Niメッキ層同士なので、Ni−P系無電解Niメッキ層との密着性が良好である。   The P barrier electroless metal plating layer can be constituted by a Ni-B based electroless Ni layer. Since the Ni plating layers are formed, the adhesion to the Ni-P-based electroless Ni plating layer is good.

また、Pバリア用無電解金属メッキ層は、白金族金属系無電解メッキ層とすることもできる。白金族金属系無電解メッキ層からなるバリア金属層は、Cuメッキ層からAuメッキ層表面へのCu拡散の遮断効果、及び半田成分(特にSn成分)のAuメッキ層を経たCuメッキ層側への拡散遮断効果がとりわけ良好である。また、メッキ反応時に水素発生を伴わないので、該不具合発生の心配もない。さらに、白金族金属系無電解メッキ層は耐食性が極めて良好であり、またCuメッキ層及びAuメッキ層との密着性も向上する。白金族金属系無電解メッキ層は、Ru、Rh、Pd、Os、Ir及びPtのいずれかを主成分(最も質量含有率が高い成分)とするものを採用できる。具体的には無電解Irメッキ層又は無電解Pdメッキ層を、本発明に好適に採用できる。   Further, the P barrier electroless metal plating layer may be a platinum group metal-based electroless plating layer. The barrier metal layer made of a platinum group metal-based electroless plating layer has an effect of blocking the diffusion of Cu from the Cu plating layer to the surface of the Au plating layer, and the Cu plating layer side of the Au component of the solder component (particularly, the Sn component). Has a particularly good diffusion blocking effect. Further, since no hydrogen is generated during the plating reaction, there is no fear of the occurrence of the problem. Further, the platinum group metal-based electroless plating layer has extremely good corrosion resistance, and also has improved adhesion with the Cu plating layer and the Au plating layer. As the platinum group metal-based electroless plating layer, a layer containing any of Ru, Rh, Pd, Os, Ir and Pt as a main component (a component having the highest mass content) can be adopted. Specifically, an electroless Ir plating layer or an electroless Pd plating layer can be suitably used in the present invention.

本発明の配線基板の第四は、金属端子パッドに配置される上記バリア金属層として、Cuメッキ層と接するNi−B系無電解Niメッキ層と、該Ni−B系無電解Niメッキ層とAuメッキ層との間に配置され、該Ni−B系無電解Niメッキ層よりも薄いNi−P系無電解金属メッキ層とが配置されてなることを特徴とする。Ni−B系無電解Niメッキを用いることで、本発明の第一と同様、属端子パッドに対する半田(特にSn−Pb系半田)ぬれ性が大幅に改善されるので、接続不良等の不具合が発生しにくくなる。また、半田側のSnとNiとの反応によりNi−Sn合金層が形成されても、剥離や破断等の不具合を生じにくくなり、ひいては高強度の接合状態を容易に得ることができる。また、上記のように、Ni−P系無電解金属メッキ層をAuメッキ層との間に介在させることで、半田リフロー時にNi−B系無電解Niメッキ層に吸蔵された水素がもし放出されても、半田接続部との間には、水素放出しないNi−P系無電解Niメッキ層がAuメッキ層との間に介在していることで、半田接続部との界面に気泡等が残留したりする心配もない。また、Ni−P系無電解金属メッキ層はNi−B系無電解Niメッキ層よりも薄く形成するので、P濃化層形成の程度も小さく、半田ぬれ不良や密着不良等の懸念も少ない。この観点において、Ni−P系無電解金属メッキ層の厚さは、2μm以下、望ましくは1μm以下に調整することが望ましい(下限値は、上記効果が顕著となるよう、例えば0.5μm以上とする)。   A fourth aspect of the wiring board according to the present invention includes, as the barrier metal layer disposed on the metal terminal pad, a Ni—B-based electroless Ni plating layer in contact with the Cu plating layer, An Ni-P-based electroless metal plating layer that is disposed between the Au-plated layer and thinner than the Ni-B-based electroless Ni-plating layer is disposed. By using Ni-B-based electroless Ni plating, the wettability of solder (particularly, Sn-Pb-based solder) to the auxiliary terminal pads is greatly improved, as in the first aspect of the present invention. Less likely to occur. Further, even if the Ni-Sn alloy layer is formed by the reaction between Sn and Ni on the solder side, defects such as peeling and breakage are less likely to occur, and a high-strength bonded state can be easily obtained. Further, as described above, by interposing the Ni-P-based electroless metal plating layer between the Ni-P-based electroless Ni plating layer and the Au plating layer, hydrogen absorbed in the Ni-B-based electroless Ni plating layer during the solder reflow is released. However, since the Ni-P-based electroless Ni plating layer that does not release hydrogen is interposed between the solder connection portion and the Au plating layer, bubbles and the like remain at the interface with the solder connection portion. No worries. Further, since the Ni-P-based electroless metal plating layer is formed thinner than the Ni-B-based electroless Ni plating layer, the degree of formation of the P-enriched layer is small, and there is little concern about poor solder wetting or poor adhesion. From this viewpoint, it is desirable that the thickness of the Ni—P-based electroless metal plating layer is adjusted to 2 μm or less, preferably 1 μm or less (the lower limit is set to, for example, 0.5 μm or more so that the above-described effect becomes remarkable). Do).

なお、半田ボールを介してマザーボード側の端子パッドに接続される金属端子パッド(例えばBGA用の金属端子パッド)は、パッド面積が大きく熱応力も付加されやすいため、上記本発明を適用した場合の効果が特に顕著である。   A metal terminal pad (for example, a metal terminal pad for BGA) connected to a terminal pad on the motherboard side via a solder ball has a large pad area and is likely to be subjected to thermal stress. The effect is particularly remarkable.

Auメッキ層と直接接するのがNiメッキ層である場合、Auメッキ層は無電解還元Auメッキ層であることが望ましい。本発明者が詳細に検討を行なったところ、Niメッキ層上に従来の置換Auメッキを施すと、置換Auメッキ層とNiメッキ層との間にごく薄い酸化皮膜が形成されることがわかった。酸化皮膜と半田との密着強度が低いため、従来の構成において、半田との界面剥離を生じやすくなっていたと考えられるのである。   When the Ni plating layer directly contacts the Au plating layer, the Au plating layer is preferably an electroless reduced Au plating layer. The present inventor has conducted a detailed study and found that when a conventional substitutional Au plating is applied on the Ni plating layer, a very thin oxide film is formed between the substitutional Au plating layer and the Ni plating layer. . It is considered that the interface between the oxide film and the solder was easily peeled off due to the low adhesion strength between the oxide film and the solder in the conventional configuration.

無電解置換Auメッキは、水素化ホウ素カリウムやジメチルアミンボランを還元剤に用いるとともに、少なくとも反応初期においては、被メッキ側の下地金属との置換反応によりメッキ金属を析出させる。該置換反応を進行させるには、下地金属であるNiがメッキ浴中に溶出する必要があるが、この溶出は、メッキ金属に覆われていない下地金属の露出部にメッキ浴が接触することにより起こる。このとき、下地金属の表面には水系のメッキ浴との接触により酸化皮膜が形成される。他方、周囲に析出するメッキ金属は該酸化皮膜上にも回り込んで成長するため、形成されるメッキ層と下地金属との界面に酸化皮膜が残留しやすくなるのである。しかし、本発明のように無電解還元Au系メッキを採用すれば、Auメッキ中においてNiメッキ層との界面に酸化皮膜が残留しにくく、半田接続した後においても、半田とNiメッキ層との間の密着力が増し、半田との界面剥離を大幅に抑制することができる。   In the electroless displacement Au plating, potassium borohydride or dimethylamine borane is used as a reducing agent, and at least at the beginning of the reaction, a plating metal is deposited by a substitution reaction with a base metal on the side to be plated. In order for the substitution reaction to proceed, the underlying metal Ni needs to be eluted into the plating bath, but this elution is caused by the plating bath contacting the exposed portion of the underlying metal not covered by the plating metal. Occur. At this time, an oxide film is formed on the surface of the base metal by contact with the aqueous plating bath. On the other hand, since the plating metal deposited on the periphery goes around and grows on the oxide film, the oxide film tends to remain at the interface between the formed plating layer and the base metal. However, if the electroless reduced Au-based plating is employed as in the present invention, an oxide film is unlikely to remain at the interface with the Ni plating layer during the Au plating, so that even after the solder connection, the solder and the Ni plating layer are in contact with each other. Adhesion between them can be increased, and peeling at the interface with the solder can be greatly suppressed.

次に、近年、環境汚染の問題から、従来のSn−Pb共晶半田に代えて、Pbを含有しない(あるいは含有されても3質量%までの)、いわゆるPbフリー半田が使用されるようになってきた。Pbフリー半田の多くは従来の共晶半田と同様にSnを主成分に構成されているが、共晶半田で使用されているPbに代え、Ag、Cu、Zn、Biなどを副成分として含有する。副成分の主体をこれら元素で構成しつつも、多少のPbの含有を残した折衷的な半田も使用されている。Pbフリー半田は、Sn−Pb共晶半田と比較して延性に乏しいので、半田接合部における界面剥離をより生じやすい。   Next, in recent years, so-called Pb-free solder, which does not contain Pb (or even contains up to 3% by mass), has been used instead of the conventional Sn-Pb eutectic solder due to the problem of environmental pollution. It has become. Most of Pb-free solders are mainly composed of Sn as in the conventional eutectic solder, but contain Ag, Cu, Zn, Bi, etc. as sub-components instead of Pb used in eutectic solder. I do. An eclectic solder is also used in which the main component of the subcomponent is composed of these elements, but some Pb is left. Since Pb-free solder has poor ductility compared to Sn-Pb eutectic solder, interface peeling at solder joints is more likely to occur.

一般に多用されているSn−Pb共晶半田は、Sn−38質量%Pbの共晶組成を有し、融点は183℃である。この組成からPbリッチ側にシフトしても、Snリッチ側にシフトしても合金の融点(液相線)は上昇する。単体のSn金属は、共晶半田から単純に全てのPbを削減したものに相当するが、融点が232℃と共晶半田の融点よりも50℃近くも高く、そのままでは代替半田としての採用は難しい。   A commonly used Sn-Pb eutectic solder has a eutectic composition of Sn-38% by mass Pb, and has a melting point of 183 ° C. The melting point (liquidus) of the alloy increases even if the composition shifts to the Pb-rich side or the Sn-rich side. Simple Sn metal is equivalent to a simple reduction of all Pb from eutectic solder, but its melting point is 232 ° C, which is almost 50 ° C higher than the melting point of eutectic solder. difficult.

そこで、Pbフリー半田については、Snをベースとして、Pb以外の共晶形成成分を模索することになる。その条件としては、融点低下効果がなるべく大きいことに加え、価格が安価であるか、多少高価であっても添加量が少なくて済むこと、半田付け性や流れ性が良好であること、耐食性に優れていること、などがある。しかし、これらをバランスよく具備した副成分の種類は案外限られており、Zn、Bi、Ag及びCuなど数元素に過ぎない。Sn−Zn系は15質量%Zn付近に共晶点を有し、該組成で195℃程度まで融点が下がる。ただ、Znは耐食性に難点があり、通常は7〜10質量%前後の添加量が留められるが、該組成付近の二元系では215℃前後までしか融点が下がらない。そこで、1〜5質量%のBiを添加して融点調整を行なうが、最終的に200℃未満の融点を得ることは難しい。さらに、Biは高価であり、戦略物質でもあるため供給の安定性にも難がある。   Therefore, for Pb-free solder, a eutectic component other than Pb is searched for based on Sn. The conditions are that the effect of lowering the melting point is as large as possible, and that the price is low or the amount of addition is small even if somewhat expensive, that the solderability and flowability are good, and that the corrosion resistance is high. It is excellent. However, the types of subcomponents having these components in a well-balanced manner are unexpectedly limited, and are only a few elements such as Zn, Bi, Ag, and Cu. The Sn-Zn system has a eutectic point near 15% by mass Zn, and the melting point of the composition is reduced to about 195 ° C. However, Zn has a problem in corrosion resistance. Usually, the addition amount is about 7 to 10% by mass, but in a binary system near the composition, the melting point decreases only to about 215 ° C. Therefore, the melting point is adjusted by adding 1 to 5% by mass of Bi, but it is difficult to finally obtain a melting point of less than 200 ° C. Further, Bi is expensive and is a strategic substance, so that the supply stability is also difficult.

一方、AgやCuは、単独ではSnよりもはるかに高融点であるが、Sn−Ag系については5質量%Ag付近の、Sn−Cu系については2質量%Cu付近の、いずれもSnリッチ側に共晶点が存在する。また、Ag−Cu系も共晶系であり、Sn−Ag−Cuの三元共晶を利用することでさらに融点を下げることができる。しかし、Sn−Ag系もSn−Cu系も、いずれも二元共晶温度は220℃前後であり、3元共晶系を採用しても200℃以下に融点を下げることは不可能である。なお、Sn−Ag系合金の場合、低融点化の観点からの推奨組成は、Snに対しAg含有率が3質量%以上6質量%以下である。同様に、Sn−Cu系合金の場合、Snに対しCu含有率が1質量%以上3質量%以下である。さらに、Sn−Ag−Cu合金の場合は、Ag+Cuが3質量%以上6質量%以下であり、Cu/(Ag+Cu)が質量比にて0.1以上0.5以下である。   On the other hand, Ag and Cu alone have a much higher melting point than Sn, but Sn-Ag-based materials have a Sn melting point of around 5% by mass Ag and Sn-Cu-based materials have a melting point of around 2% by mass Cu. There is a eutectic point on the side. The Ag-Cu system is also a eutectic system, and the melting point can be further reduced by using a ternary eutectic of Sn-Ag-Cu. However, both the Sn-Ag system and the Sn-Cu system have a binary eutectic temperature of about 220 ° C., and it is impossible to lower the melting point to 200 ° C. or less even if a ternary eutectic system is employed. . In the case of a Sn-Ag alloy, the recommended composition from the viewpoint of lowering the melting point has an Ag content of 3% by mass or more and 6% by mass or less with respect to Sn. Similarly, in the case of a Sn—Cu alloy, the Cu content is 1% by mass or more and 3% by mass or less with respect to Sn. Further, in the case of a Sn-Ag-Cu alloy, Ag + Cu is 3% by mass or more and 6% by mass or less, and Cu / (Ag + Cu) is 0.1% or more and 0.5 or less by mass ratio.

以上の議論からも明らかなように、Sn−Pb共晶半田からPb含有率を大幅に下げたSn合金により半田ボールを構成しようとした場合、半田の融点は200℃を超える高温半田ボールとなることが不可避となる(上限は、Sn単体の232℃である)。例えば、非特許文献2の表1に列挙されている各種組成のPbフリー半田においても、融点(液相線温度)Tsは全て200℃以上である。環境保護の観点からは、上記高温半田ボールを構成するSn合金は、Pb含有率が5質量%以下であること(より望ましくは1質量%以下であること、さらに望ましくは、不可避的不純物レベルのものを除き、Pbが可及的に含有されていないこと)がよい、ということになる。   As is clear from the above discussion, when an attempt is made to form a solder ball using a Sn alloy having a significantly reduced Pb content from Sn-Pb eutectic solder, the melting point of the solder becomes a high-temperature solder ball exceeding 200 ° C. (The upper limit is 232 ° C. for Sn alone). For example, even in Pb-free solders having various compositions listed in Table 1 of Non-Patent Document 2, the melting points (liquidus temperatures) Ts are all 200 ° C. or higher. From the viewpoint of environmental protection, the Sn alloy constituting the high-temperature solder ball has a Pb content of 5% by mass or less (more preferably 1% by mass or less, and still more preferably an unavoidable impurity level. Except that Pb is not contained as much as possible).

この場合、半田接合温度が高くなる分、SnとNiとの化合物形成もより進みやすくなり、半田接合強度の観点からは不利となる。しかし、本発明を採用すれば、少なくともPリッチ層形成による接合強度低下をあまり心配しなくてもよいので、化合物形成による強度低下のマージンを広げることができ、信頼性の高い半田接合構造を得ることができる。該効果は、高温半田ボールは金属端子パッドに直接接合されている場合に、特に顕著である。   In this case, the higher the solder joining temperature, the easier the formation of the compound between Sn and Ni becomes, and this is disadvantageous from the viewpoint of the solder joining strength. However, if the present invention is adopted, it is not necessary to worry at all about the decrease in the bonding strength due to the formation of the P-rich layer, so that the margin of the reduction in the strength due to the formation of the compound can be widened and a highly reliable solder bonding structure can be obtained. be able to. This effect is particularly remarkable when the high-temperature solder balls are directly bonded to the metal terminal pads.

発明の実施の形態Embodiment of the Invention

以下、本発明の実施の形態を、図面を用いて説明する。
図3は本発明の一実施形態に係る配線基板1の断面構造を模式的に示すものである。該配線基板は、耐熱性樹脂板(例えばビスマレイミド−トリアジン樹脂板)や、繊維強化樹脂板(例えばガラス繊維強化エポキシ樹脂)等で構成された板状コア2の両表面に、所定のパターンに配線金属層をなすコア導体層M1,M11がそれぞれ形成される。これらコア導体層M1,M11は板状コア2の表面の大部分を被覆する面導体パターンとして形成され、電源層又は接地層として用いられるものである。他方、板状コア2には、ドリル等により穿設されたスルーホール12が形成され、その内壁面にはコア導体層M1,M11を互いに導通させるスルーホール導体30が形成されている。また、スルーホール12は、エポキシ樹脂等の樹脂製穴埋め材31により充填されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 3 schematically shows a cross-sectional structure of a wiring board 1 according to one embodiment of the present invention. The wiring board has a predetermined pattern on both surfaces of a plate-like core 2 made of a heat-resistant resin plate (for example, a bismaleimide-triazine resin plate) or a fiber-reinforced resin plate (for example, a glass fiber-reinforced epoxy resin). Core conductor layers M1 and M11 forming the wiring metal layer are respectively formed. These core conductor layers M1 and M11 are formed as surface conductor patterns that cover most of the surface of the plate-like core 2, and are used as power supply layers or ground layers. On the other hand, a through-hole 12 formed by a drill or the like is formed in the plate-shaped core 2, and a through-hole conductor 30 that connects the core conductor layers M1 and M11 to each other is formed on the inner wall surface. The through hole 12 is filled with a resin filling material 31 such as an epoxy resin.

また、コア導体層M1,M11の上層には、感光性樹脂組成物6にて構成された第一ビア層(ビルドアップ層:誘電体層)V1,V11がそれぞれ形成されている。さらに、その表面にはそれぞれ金属配線7を有する第一導体層M2,M12がCuメッキにより形成されている。なお、コア導体層M1,M11と第一導体層M2,M12とは、それぞれビア34により層間接続がなされている。同様に、第一導体層M2,M12の上層には、感光性樹脂組成物6を用いた第二ビア層(ビルドアップ層:誘電体層)V2,V12がそれぞれ形成されている。その表面には、金属端子パッド8,18を有する第二導体層M3,M13が形成されている。これら第一導体層M2,M12と第二導体層M3,M13とは、それぞれビア34により層間接続がなされている。ビア34は、図3に示すように、ビアホール34hとその内周面に設けられたビア導体34sと、底面側にてビア導体34sと導通するように設けられたビアパッド34pと、ビアパッド34pと反対側にてビア導体34hの開口周縁から外向きに張り出すビアランド34lとを有している。   On the upper layers of the core conductor layers M1 and M11, first via layers (build-up layers: dielectric layers) V1 and V11 made of the photosensitive resin composition 6 are formed, respectively. Further, first conductive layers M2 and M12 each having a metal wiring 7 are formed on the surface thereof by Cu plating. The core conductor layers M1 and M11 and the first conductor layers M2 and M12 are connected to each other by vias 34. Similarly, second via layers (build-up layers: dielectric layers) V2 and V12 using the photosensitive resin composition 6 are formed on the first conductor layers M2 and M12, respectively. On the surface thereof, second conductor layers M3 and M13 having metal terminal pads 8 and 18 are formed. The first conductor layers M2, M12 and the second conductor layers M3, M13 are interconnected by vias 34, respectively. As shown in FIG. 3, the via 34 includes a via hole 34h, a via conductor 34s provided on the inner peripheral surface thereof, a via pad 34p provided on the bottom surface so as to be electrically connected to the via conductor 34s, and a via pad 34p. And a via land 341 projecting outward from the peripheral edge of the opening of the via conductor 34h.

板状コア2の第一主表面MP1においては、コア導体層M1、第一ビア層V1、第一導体層M2及び第二ビア層V2が第一の配線積層部L1を形成している。また、板状コア2の第二主表面MP2においては、コア導体層M11、第一ビア層V11、第一導体層M12及び第二ビア層V12が第二の配線積層部L2を形成している。いずれも、第一主表面CPが誘電体層6にて形成されるように、誘電体層と導体層とが交互に積層されたものであり、該第一主表面CP上には、複数の金属端子パッド10ないし17がそれぞれ形成されている。第一配線積層部L1側の金属端子パッド10は、集積回路チップなどをフリップチップ接続するためのパッドである半田ランドを構成する。また、第二配線積層部L2側の金属端子パッド17は、配線基板自体をマザーボード等にピングリッドアレイ(PGA)あるいはボールグリッドアレイ(BGA)により接続するための裏面ランド(パッド)として利用されるものである。図4は、金属端子パッド17をBGAパッドとして構成した例であり、半田ボール(例えば、亜共晶組成のPb−Sn合金や、既に詳述したPbフリー半田などの高温半田で構成される)140を介してマザーボードMB側の端子パッド41に、半田接続層42(例えば共晶組成のPb−Sn合金からなる)を介して接続される。   On the first main surface MP1 of the plate-shaped core 2, the core conductor layer M1, the first via layer V1, the first conductor layer M2, and the second via layer V2 form a first wiring laminated portion L1. Further, on the second main surface MP2 of the plate-shaped core 2, the core conductor layer M11, the first via layer V11, the first conductor layer M12, and the second via layer V12 form a second wiring laminated portion L2. . In each case, the dielectric layers and the conductor layers are alternately laminated so that the first main surface CP is formed by the dielectric layer 6. Metal terminal pads 10 to 17 are formed respectively. The metal terminal pads 10 on the first wiring laminated portion L1 side constitute solder lands which are pads for flip-chip connection of an integrated circuit chip or the like. Further, the metal terminal pads 17 on the second wiring laminated portion L2 side are used as back surface lands (pads) for connecting the wiring substrate itself to a motherboard or the like by a pin grid array (PGA) or a ball grid array (BGA). Things. FIG. 4 shows an example in which the metal terminal pad 17 is configured as a BGA pad, and is formed of a solder ball (for example, a high-temperature solder such as a Pb-Sn alloy having a hypoeutectic composition or a Pb-free solder described in detail above). It is connected to the terminal pad 41 on the motherboard MB side via 140 via a solder connection layer 42 (for example, made of a eutectic Pb-Sn alloy).

図1に示すように、半田ランド10は配線基板1の第一主表面の略中央部分に格子状に配列し、各々その上に形成された半田バンプ11(図3)とともにチップ搭載部40を形成している。また、図2に示すように、第二導体層M13内の裏面ランド17も、格子状に配列形成されている。そして、各第二導体層M3,M13上には、それぞれ、感光性樹脂組成物よりなるソルダーレジスト層8,18(SR1,SR11)が形成されている。いずれも半田ランド10あるいは裏面ランド17を露出させるために、各ランドに一対一に対応する形で開口部が形成されている。   As shown in FIG. 1, the solder lands 10 are arranged in a grid at substantially the center of the first main surface of the wiring board 1, and the chip mounting portion 40 is formed together with the solder bumps 11 (FIG. 3) formed thereon. Has formed. Further, as shown in FIG. 2, the back lands 17 in the second conductor layer M13 are also arranged in a grid pattern. Then, on each of the second conductor layers M3 and M13, solder resist layers 8 and 18 (SR1 and SR11) made of a photosensitive resin composition are formed, respectively. In each case, an opening is formed in a one-to-one correspondence with each land in order to expose the solder land 10 or the back surface land 17.

ビア層V1,V11,V2,V12、及びソルダーレジスト層8,18は例えば以下のようにして製造されたものである。すなわち、感光性樹脂組成物ワニスをフィルム化した感光性接着フィルムをラミネート(貼り合わせ)し、ビアホール34hに対応したパターンを有する透明マスク(例えばガラスマスクである)を重ねて露光する。ビアホール34h以外のフィルム部分は、この露光により硬化する一方、ビアホール34h部分は未硬化のまま残留するので、これを溶剤に溶かして除去すれば、所期のパターンにてビアホール34hを簡単に形成することができる(いわゆるフォトビアプロセス)。   The via layers V1, V11, V2, V12 and the solder resist layers 8, 18 are manufactured, for example, as follows. That is, a photosensitive adhesive film obtained by forming a photosensitive resin composition varnish into a film is laminated (laminated), and a transparent mask (for example, a glass mask) having a pattern corresponding to the via hole 34h is overlaid and exposed. The film portion other than the via hole 34h is cured by this exposure, while the via hole 34h remains uncured. If this is dissolved in a solvent and removed, the via hole 34h can be easily formed in an intended pattern. (A so-called photo via process).

図5は、本発明の第一に係る配線基板の、半田ランド10ないし裏面ランド17(以下、両者を総称して金属端子パッド10,17という:メッキ層の積層構造は同じなので、統合的に説明を行なう)の具体例を示すものであり、各配線積層部L1,L2の第一主表面CP側から、Cuメッキ層52、バリア金属層としてのP含有率が3質量%以下の無電解Niメッキ層121(厚さ:2μm以上7μm以下)及びAuメッキ層54(無電解Auメッキによる:厚さ0.03μm以上0.1μm以下)がこの順序で積層されている。   FIG. 5 shows the solder lands 10 to the back lands 17 (hereinafter referred to collectively as metal terminal pads 10 and 17) of the wiring board according to the first embodiment of the present invention. The following description shows a specific example, in which the P content of the Cu plating layer 52 and the barrier metal layer is 3% by mass or less from the first main surface CP side of each of the wiring laminated portions L1 and L2. The Ni plating layer 121 (thickness: 2 μm or more and 7 μm or less) and the Au plating layer 54 (by electroless Au plating: 0.03 μm or more and 0.1 μm or less) are stacked in this order.

無電解Niメッキ層53は、Ni−B系無電解Niメッキ層とされている。メッキ金属源として硫酸Niが配合され、還元剤として水素化ホウ素化合物(例えばNaBHなど)を添加した浴が使用される。Ni−B系無電解Niメッキ層53を形成した後、例えば半田リフロー温度付近もしくはこれよりも若干高め(+50℃程度まで)の温度で、脱水素のベーキングを行なうとよい。 The electroless Ni plating layer 53 is a Ni-B-based electroless Ni plating layer. A bath containing Ni sulfate as a plating metal source and a borohydride compound (eg, NaBH 4 or the like) added as a reducing agent is used. After the formation of the Ni-B-based electroless Ni plating layer 53, baking of dehydrogenation may be performed, for example, at a temperature near the solder reflow temperature or slightly higher (up to about + 50 ° C.).

なお、各配線積層部L1,L2の第一主表面CPはソルダーレジスト層8,18にて覆われてなり、それらソルダーレジスト層8,18の開口の内周縁が、金属端子パッド10,17の主表面外周縁よりも内側に張り出して位置している。そして、金属端子パッド10,17は、Cuメッキ層52の外周縁部52pがソルダーレジスト層8,18と直接接し、ここに面粗し処理が施されている。また、金属端子パッド10,17の電解Niメッキ層53は、ソルダーレジスト層8,18の開口8a,18aの内側に位置する領域のみAuメッキ層54にて覆われている。   The first main surface CP of each of the wiring laminated portions L1 and L2 is covered with solder resist layers 8 and 18, and the inner peripheral edges of the openings of the solder resist layers 8 and 18 correspond to the metal terminal pads 10 and 17. It protrudes inward from the outer peripheral edge of the main surface. The outer peripheral edge 52p of the Cu plating layer 52 is in direct contact with the solder resist layers 8, 18, and the metal terminal pads 10, 17 are subjected to surface roughening. The electrolytic Ni plating layer 53 of the metal terminal pads 10 and 17 is covered with the Au plating layer 54 only in regions located inside the openings 8a and 18a of the solder resist layers 8 and 18.

図6は、本発明の第二に係る配線基板の、金属端子パッド10,17の具体例を示すものであり、バリア金属層を、白金族金属系無電解メッキ層21にて構成している(それ以外の構造は、図5と同様である)。白金族金属系無電解メッキ層21は、無電解Pdメッキ層(無電解Irメッキ層、無電解Ptメッキ層、無電解Rhメッキ層あるいは無電解Ruメッキ層であってもよい)であり、厚さは0.05〜1μm(例えば0.1μm)である。メッキ金属源として例えばPd(あるいはIr、Pd、Rh、Ru)の塩化物が配合され、還元剤として次亜リン酸Naあるいはヒドラジンを添加した浴が使用される。   FIG. 6 shows a specific example of the metal terminal pads 10 and 17 of the wiring board according to the second embodiment of the present invention. The barrier metal layer is formed of a platinum group metal-based electroless plating layer 21. (Other structures are the same as those in FIG. 5). The platinum group metal-based electroless plating layer 21 is an electroless Pd plating layer (may be an electroless Ir plating layer, an electroless Pt plating layer, an electroless Rh plating layer, or an electroless Ru plating layer), The length is 0.05 to 1 μm (for example, 0.1 μm). A bath containing, for example, a chloride of Pd (or Ir, Pd, Rh, Ru) as a plating metal source and adding sodium hypophosphite or hydrazine as a reducing agent is used.

図7は、本発明の第三に係る配線基板の、金属端子パッド10,17の具体例を示すものであり、バリア金属層を、Cuメッキ層52と接するNi−P系無電解Niメッキ層22(厚さ:2μm以上7μm以下)と、該Ni−P系無電解Niメッキ層22とAuメッキ層54との間に配置されるPバリア用無電解金属メッキ層としての、Ni−B系無電解Niメッキ層121(厚さ:0.05μm以上2μm以下、例えば1μm)にて構成している(それ以外の構造は、図5と同様である)。Ni−B系無電解Niメッキ層20は、Ni−P系無電解Niメッキ層22からAuメッキ層54へのP拡散を阻止又は抑制する。また、図8は、図7のPバリア用無電解金属メッキ層としてのNi−B系無電解Niメッキ層20を、白金族金属系無電解メッキ層21(無電解Irメッキ層又は無電解Pdメッキ層)で置き換えた構成を示す。   FIG. 7 shows a specific example of the metal terminal pads 10 and 17 of the wiring board according to the third embodiment of the present invention, in which the barrier metal layer is made of a Ni—P-based electroless Ni plating layer in contact with the Cu plating layer 52. 22 (thickness: 2 μm or more and 7 μm or less) and a Ni-B-based electroless metal plating layer for a P barrier disposed between the Ni-P-based electroless Ni plating layer 22 and the Au plating layer 54. It is composed of an electroless Ni plating layer 121 (thickness: 0.05 μm or more and 2 μm or less, for example, 1 μm) (other structures are the same as in FIG. 5). The Ni—B-based electroless Ni plating layer 20 prevents or suppresses the diffusion of P from the Ni—P-based electroless Ni plating layer 22 to the Au plating layer 54. FIG. 8 shows a Ni-B-based electroless Ni plating layer 20 as a P barrier electroless metal plating layer of FIG. 7 replaced with a platinum group metal-based electroless plating layer 21 (an electroless Ir plating layer or an electroless Pd layer). (Plating layer).

図9は、本発明の第四に係る配線基板の、金属端子パッド10,17の具体例を示すものであり、バリア金属層を、Cuメッキ層52と接するNi−B系無電解Niメッキ層121(厚さ:2μm以上7μm以下)と、該Ni−B系無電解Niメッキ層121とAuメッキ層54との間に配置される、該Ni−B系無電解Niメッキ層121よりも薄いNi−P系無電解金属メッキ層22(厚さ:0.05μm以上2μm以下、例えば1μm)にて構成している(それ以外の構造は、図5と同様である)。薄いNi−P系無電解金属メッキ層22をAuメッキ層54との間に介在させることで、半田リフロー時にNi−B系無電解Niメッキ層121に吸蔵された水素がもし放出されても、Ni−P系無電解金属メッキ層22が水素をブロックするので、半田接続部との界面に気泡等が残留したりする心配がない。また、Ni−P系無電解金属メッキ層22は薄いので、P濃化層形成の程度も小さく、半田ぬれ不良や密着不良等の懸念も少ない。   FIG. 9 shows a specific example of the metal terminal pads 10 and 17 of the wiring board according to the fourth embodiment of the present invention, in which the barrier metal layer is made of a Ni—B-based electroless Ni plating layer in contact with the Cu plating layer 52. 121 (thickness: 2 μm or more and 7 μm or less) and thinner than the Ni—B-based electroless Ni plating layer 121 disposed between the Ni—B-based electroless Ni plating layer 121 and the Au plating layer 54. It is composed of a Ni-P-based electroless metal plating layer 22 (thickness: 0.05 μm or more and 2 μm or less, for example, 1 μm) (other structures are the same as in FIG. 5). By interposing the thin Ni-P-based electroless metal plating layer 22 between the Ni-P-based electroless Ni plating layer 121 and the Au plating layer 54, even if hydrogen absorbed in the Ni-B-based electroless Ni plating layer 121 is released during solder reflow, Since the Ni-P-based electroless metal plating layer 22 blocks hydrogen, there is no fear that air bubbles and the like remain at the interface with the solder connection portion. Further, since the Ni-P-based electroless metal plating layer 22 is thin, the degree of formation of the P-enriched layer is small, and there is little concern about poor solder wetting or poor adhesion.

なお、上記いずれの実施形態においても、図10に示すように、金属端子パッド17には半田ボール140を直接接合することができる。この場合、工程3に示すように、半田ボール140’をパッド17上に載置し、その状態で、工程4に示すように、半田ボール140を、ボールを構成している半田の融点以上に加熱して溶融させ、パッド17に接合すればよい。   In any of the above embodiments, as shown in FIG. 10, a solder ball 140 can be directly bonded to the metal terminal pad 17. In this case, as shown in step 3, the solder ball 140 'is placed on the pad 17, and in this state, as shown in step 4, the solder ball 140 is set to a temperature higher than the melting point of the solder constituting the ball. What is necessary is just to heat and fuse | melt, and just to bond to the pad 17.

また、亜共晶半田からなる半田ボールに代え、Sn−Ag−Cu合金(例えばSn−3質量%Ag−0.5質量%Cu)、Sn−Cu合金(例えばSn−2質量%Cu)、Sn−Ag−Pb合金、Sn−Zn合金(例えばSn−10質量%Zn)、Sn−Zn−Bi合金(例えばSn−8質量%Zn−3質量%Bi)などのSn合金からなる、融点(液相線温度)が200℃以上の高温半田ボールを用いることもできる。   Also, instead of solder balls made of hypoeutectic solder, Sn-Ag-Cu alloy (for example, Sn-3 mass% Ag-0.5 mass% Cu), Sn-Cu alloy (for example, Sn-2 mass% Cu), The melting point of a Sn alloy such as a Sn-Ag-Pb alloy, a Sn-Zn alloy (for example, Sn-10 mass% Zn), and a Sn-Zn-Bi alloy (for example, Sn-8 mass% Zn-3 mass% Bi). A high-temperature solder ball having a liquidus temperature of 200 ° C. or more can also be used.

半田ボール140の接合を行なうと、パッド17にもともと形成されていた最表層部のAuメッキ層54は半田に溶融吸収され、下地のNiメッキ層53と半田ボール140とが触する形となる。図5、図7、図9のように、Auメッキ層54と接するのが、図10に示すごとくNiメッキ層53(121,22)である場合、Auメッキ層54を無電解還元型Auメッキ層とすることで、半田ボール140とNiメッキ層53との密着力を大幅に高めることができる。無電解還元型Auメッキは、下地のNi金属との置換反応が主体とならない一種の自己触媒型無電解Auメッキである。Auメッキ浴に使用する、Au金属源となる水溶性Au塩としては、ジシアノAu(I)酸ナトリウム、ジシアノAu(I)酸アンモニウム等のジシアノAu(I)酸塩;テトラシアノAu(III)酸カリウム、テトラシアノAu(III)酸ナトリウム、テトラシアノAu(III)酸アンモニウム等のテトラシアノAu(III)酸塩;シアン化Au(I)、シアン化Au(III);ジクロロAu(I)酸塩;テトラクロロAu(III)酸、テトラクロロAu(III)酸ナトリウム等のテトラクロロAu(III)酸化合物;亜硫酸Auアンモニウム、亜硫酸Auカリウム、亜硫酸Auナトリウム等の亜硫酸Au塩;酸化Au、水酸化Au及びこれらのアルカリ金属塩等が挙げられるがこれらに限定されない。好ましくは、水溶性Au化合物はジシアノAu(I)酸カリウム、テトラシアノAu(III)酸カリウム、テトラクロロAu(III)酸ナトリウム、亜硫酸Auアンモニウム、亜硫酸Auカリウム、亜硫酸Auナトリウムである。水溶性Au化合物は、一種類のみを使用しても二種類以上を混合してもよい。これら水溶性Au化合物をAuイオンとして、例えば、0.1〜10g/L好ましくは1〜5g/L含有することが適当である。この濃度が0.1g/L未満であるとメッキ反応が遅いか又は起こり難くなり、一方、10g/Lを越えて多く配合してもそれに見合う効果の著しい向上は少なく、また、経済的ではない。   When the solder balls 140 are joined, the outermost Au plating layer 54 originally formed on the pad 17 is melted and absorbed by the solder, and the underlying Ni plating layer 53 and the solder balls 140 come into contact with each other. As shown in FIG. 5, FIG. 7, and FIG. 9, when the Au plating layer 54 is in contact with the Ni plating layer 53 (121, 22) as shown in FIG. By forming a layer, the adhesion between the solder ball 140 and the Ni plating layer 53 can be greatly increased. The electroless reduction type Au plating is a kind of autocatalytic electroless Au plating in which a substitution reaction with the underlying Ni metal is not mainly performed. Examples of the water-soluble Au salt serving as an Au metal source used in the Au plating bath include dicyano Au (I) salts such as sodium dicyano Au (I) and ammonium dicyano Au (I); tetracyano Au (III) acid Tetracyano Au (III) salts such as potassium, sodium tetracyano Au (III), ammonium tetracyano Au (III); Au (I) cyanide, Au (III) cyanide; DichloroAu (I) salt; TetrachloroAu (III) acid compounds such as chloroAu (III) acid and sodium tetrachloroAu (III); Au sulfites such as Au ammonium sulfite, Au potassium sulfite and Au sodium sulfite; Au oxide, Au hydroxide and These include alkali metal salts, but are not limited thereto. Preferably, the water-soluble Au compound is potassium dicyano Au (I), potassium tetracyano Au (III), sodium tetrachloroau (III), ammonium ammonium sulfite, potassium potassium sulfite, and sodium sodium sulfite. As the water-soluble Au compound, only one kind may be used, or two or more kinds may be mixed. It is appropriate to contain these water-soluble Au compounds as Au ions, for example, at 0.1 to 10 g / L, preferably 1 to 5 g / L. If the concentration is less than 0.1 g / L, the plating reaction is slow or difficult to occur, whereas if the concentration is more than 10 g / L, the effect corresponding thereto is not significantly improved and it is not economical. .

また、錯化剤は、メッキ浴中にAuイオンを安定に保持するが、ニッケルをメッキ浴中に実質的に溶解しないものである。このような錯化剤としては、例えばエチレンジアミン四酢酸などの公知のキレート剤や、特許文献2に開示された亜硝酸Au塩類、さらには、特許文献3に開示された分子内にホスホン酸基又はその塩を複数有する有機ホスホン酸又はその塩が挙げられる。錯化剤は、例えば、0.005〜0.5モル/L、好ましくは0.02〜0.2モル/Lの範囲で使用することが適当である。特に、メッキ浴に含有されるAuイオンに対して等モル以上の量で含有するのが好適である。また、Auメッキ浴には、特許文献3に開示されたポリエチレンイミンを添加することも、前述の酸化皮膜形成抑制を図る上で有効である。   The complexing agent stably holds Au ions in the plating bath but does not substantially dissolve nickel in the plating bath. Such complexing agents include, for example, known chelating agents such as ethylenediaminetetraacetic acid, Au nitrites disclosed in Patent Literature 2, and further, a phosphonic acid group or An organic phosphonic acid having a plurality of salts thereof or a salt thereof is exemplified. The complexing agent is used in a range of, for example, 0.005 to 0.5 mol / L, preferably 0.02 to 0.2 mol / L. In particular, it is preferable to contain it in an amount equal to or more than the mole of Au ions contained in the plating bath. It is also effective to add the polyethyleneimine disclosed in Patent Document 3 to the Au plating bath in order to suppress the formation of the oxide film.

具体的な浴組成を以下に例示する:
シアン化第1金カリウム:2g/L(金イオンとして)
エチレンジアミンテトラメチレンホスホン酸:0.15モル/L
ポリエチレンイミン(分子量2000):5g/L
pH:7.0
Specific bath compositions are exemplified below:
Gold potassium cyanide: 2 g / L (as gold ion)
Ethylenediaminetetramethylenephosphonic acid: 0.15 mol / L
Polyethyleneimine (molecular weight 2000): 5 g / L
pH: 7.0

以下、Auメッキ層として上記のような還元型無電解Auメッキ層を用いることで、パッド17に対する半田ボール140の接合強度を著しく高めることができることの、推定される理由について説明する。   Hereinafter, the reason why the use of the above-described reduced electroless Au plating layer as the Au plating layer can significantly increase the bonding strength of the solder ball 140 to the pad 17 will be described.

図11において、Niメッキ層53上にAuメッキ層を従来の置換Auメッキ層54’として形成すると、メッキ浴中のAuとNiメッキ層53側のNiとの置換反応は、析出したAuに覆われていない下地Niの露出部にメッキ浴が接触し、Niが浴中に溶出することで進行する。このとき、図中左下に示すように、Niメッキ層53の表面には水系のメッキ浴との接触により酸化皮膜56が形成される。他方、周囲に析出するAuは該酸化皮膜56上にも回り込んで成長するため、形成されるAuメッキ層54’とNiメッキ層との界面にも酸化皮膜56が残留する。   In FIG. 11, when an Au plating layer is formed on the Ni plating layer 53 as a conventional substituted Au plating layer 54 ', the substitution reaction between Au in the plating bath and Ni on the Ni plating layer 53 side is covered by the deposited Au. The plating bath comes in contact with the exposed portion of the uncovered base Ni, and the process proceeds as Ni elutes into the bath. At this time, as shown in the lower left of the figure, an oxide film 56 is formed on the surface of the Ni plating layer 53 by contact with an aqueous plating bath. On the other hand, since the Au deposited on the periphery goes around and grows on the oxide film 56, the oxide film 56 remains at the interface between the formed Au plating layer 54 'and the Ni plating layer.

このようにして形成されたパッド17上に半田ボール140を接合すると、図13に示すように、Auメッキ層54’が溶融した半田ボール140に溶け込み、Niメッキ層53と半田140とが接触する。Niメッキ層53中のNi成分は、薄い酸化皮膜56を透過して半田140側に拡散し、そのSn成分と反応して幾分脆いNi−Sn化合物層140cを形成すし、Auメッキ層54’の下側に形成されていた酸化皮膜56と接することになる。該酸化皮膜56とNi−Sn化合物層140cとの密着強度が低いため、半田140との接合強度は低下しやすくなる。   When the solder ball 140 is joined to the pad 17 thus formed, as shown in FIG. 13, the Au plating layer 54 'melts into the molten solder ball 140, and the Ni plating layer 53 and the solder 140 come into contact with each other. . The Ni component in the Ni plating layer 53 penetrates the thin oxide film 56 and diffuses to the solder 140 side, reacts with the Sn component to form a somewhat brittle Ni-Sn compound layer 140c, and forms the Au plating layer 54 '. Is in contact with the oxide film 56 formed on the lower side. Since the adhesion strength between the oxide film 56 and the Ni—Sn compound layer 140c is low, the bonding strength with the solder 140 tends to decrease.

しかしながら、図12に示すように、還元型無電解Auメッキ層からなるAuメッキ層54を用いれば酸化皮膜の形成が抑制され、Niメッキ層53と半田ボール140との接合強度を高めることができる。   However, as shown in FIG. 12, the use of the Au plating layer 54 made of a reduced electroless Au plating layer suppresses the formation of an oxide film, and can increase the bonding strength between the Ni plating layer 53 and the solder ball 140. .

本発明の配線基板の一実施形態を示す平面図。FIG. 1 is a plan view showing an embodiment of a wiring board of the present invention. 同じく裏面図。FIG. 本発明の配線基板の断面構造の一例を示す図。FIG. 2 is a diagram illustrating an example of a cross-sectional structure of a wiring board according to the present invention. BGAパッドによる接続構造を模式的に示す図。The figure which shows the connection structure by a BGA pad typically. 本発明の第一における金属端子パッドの要部を示す断面模式図。FIG. 2 is a schematic cross-sectional view showing a main part of a metal terminal pad according to the first embodiment of the present invention. 本発明の第二における金属端子パッドの要部を示す断面模式図。FIG. 4 is a schematic cross-sectional view showing a main part of a metal terminal pad according to a second embodiment of the present invention. 本発明の第三における金属端子パッドの要部を示す断面模式図。FIG. 9 is a schematic cross-sectional view illustrating a main part of a metal terminal pad according to a third embodiment of the present invention. 本発明の第三における金属端子パッドの別例の要部を示す断面模式図。FIG. 13 is a schematic cross-sectional view illustrating a main part of another example of the metal terminal pad according to the third embodiment of the present invention. 本発明の第四における金属端子パッドの要部を示す断面模式図。FIG. 9 is a schematic cross-sectional view illustrating a main part of a metal terminal pad according to a fourth embodiment of the present invention. 半田ボールを直接接合する工程を示す説明図。Explanatory drawing which shows the process of directly joining a solder ball. Auメッキ層を形成する工程を、置換Auメッキと還元Auメッキとで対比して示す説明図。Explanatory drawing which shows the process of forming an Au plating layer in comparison with substitution Au plating and reduction Au plating. 還元Auメッキの効果発生機構を推定して説明する図。FIG. 4 is a diagram for estimating and explaining an effect generation mechanism of reduced Au plating. Ni−Sn化合物層の、半田との接合強度に及ぼす影響を説明する図。The figure explaining the influence which the Ni-Sn compound layer has on the joining strength with solder.

符号の説明Explanation of reference numerals

1 配線基板
6 誘電体層
7 内層導体層
8,18 ソルダーレジスト層
8a,18a 開口
L1,L2 配線積層部
CP 第一主表面
10,17 金属端子パッド
34 ビア
51 メッキ用下地導電層
52 Cuメッキ層
53 Niメッキ層
20,21,22,121 バリア金属層
54 Auメッキ層
DESCRIPTION OF SYMBOLS 1 Wiring board 6 Dielectric layer 7 Inner conductor layer 8, 18 Solder resist layer 8a, 18a Opening L1, L2 Wiring laminated part CP First main surface 10, 17 Metal terminal pad 34 Via 51 Plating base conductive layer
52 Cu plating layer 53 Ni plating layer 20, 21, 22, 121 Barrier metal layer 54 Au plating layer

Claims (16)

第一主表面が誘電体層にて形成されるように、高分子材料からなる誘電体層と導体層とが交互に積層された配線積層部と、該配線積層部の前記誘電体層にて形成された前記第一主表面上に配置される複数の金属端子パッドとを有し、
前記金属端子パッドは、前記第一主表面側にCuメッキ層が配置され、他方最表層部にAuメッキ層が配置された構造を有し、それらCuメッキ層とAuメッキ層との間にバリア金属層として、P含有率が3質量%以下の無電解Niメッキ層が配置されてなることを特徴とする配線基板。
As the first main surface is formed of a dielectric layer, a wiring laminated portion in which dielectric layers made of a polymer material and a conductive layer are alternately laminated, and the dielectric layer of the wiring laminated portion Having a plurality of metal terminal pads arranged on the first main surface formed,
The metal terminal pad has a structure in which a Cu plating layer is disposed on the first main surface side and an Au plating layer is disposed on the outermost layer, and a barrier is provided between the Cu plating layer and the Au plating layer. A wiring board comprising an electroless Ni plating layer having a P content of 3% by mass or less as a metal layer.
前記無電解Niメッキ層がNi−B系無電解Niメッキ層である請求項1記載の配線基板。   The wiring board according to claim 1, wherein the electroless Ni plating layer is a Ni-B-based electroless Ni plating layer. 第一主表面が誘電体層にて形成されるように、高分子材料からなる誘電体層と導体層とが交互に積層された配線積層部と、該配線積層部の前記誘電体層にて形成された前記第一主表面上に配置される複数の金属端子パッドとを有し、
前記金属端子パッドは、前記第一主表面側にCuメッキ層が配置され、他方最表層部にAuメッキ層が配置された構造を有し、それらCuメッキ層とAuメッキ層との間にバリア金属層として、白金族金属系無電解メッキ層が配置されてなることを特徴とする配線基板。
As the first main surface is formed of a dielectric layer, a wiring laminated portion in which dielectric layers made of a polymer material and a conductive layer are alternately laminated, and the dielectric layer of the wiring laminated portion Having a plurality of metal terminal pads arranged on the first main surface formed,
The metal terminal pad has a structure in which a Cu plating layer is disposed on the first main surface side and an Au plating layer is disposed on the outermost layer, and a barrier is provided between the Cu plating layer and the Au plating layer. A wiring board, wherein a platinum group metal-based electroless plating layer is disposed as a metal layer.
前記白金族金属系無電解メッキ層が無電解Pdメッキ層である請求項3記載の配線基板。   The wiring board according to claim 3, wherein the platinum group metal-based electroless plating layer is an electroless Pd plating layer. 前記白金族金属系無電解メッキ層が、無電解Irメッキ層、無電解Ptメッキ層、無電解Rhメッキ層及び無電解Ruメッキ層のいずれかである請求項3記載の配線基板。   The wiring board according to claim 3, wherein the platinum group metal-based electroless plating layer is any one of an electroless Ir plating layer, an electroless Pt plating layer, an electroless Rh plating layer, and an electroless Ru plating layer. 第一主表面が誘電体層にて形成されるように、高分子材料からなる誘電体層と導体層とが交互に積層された配線積層部と、該配線積層部の前記誘電体層にて形成された前記第一主表面上に配置される複数の金属端子パッドとを有し、
前記金属端子パッドは、前記第一主表面側にCuメッキ層が配置され、他方最表層部にAuメッキ層が配置された構造を有し、それらCuメッキ層とAuメッキ層との間にバリア金属層として、前記Cuメッキ層と接するNi−P系無電解Niメッキ層と、該Ni−P系無電解Niメッキ層と前記Auメッキ層との間に配置され、前記Ni−P系無電解Niメッキ層から前記Auメッキ層へのP拡散を阻止又は抑制するPバリア用無電解金属メッキ層とが配置されてなることを特徴とする配線基板。
As the first main surface is formed of a dielectric layer, a wiring laminated portion in which dielectric layers made of a polymer material and a conductive layer are alternately laminated, and the dielectric layer of the wiring laminated portion Having a plurality of metal terminal pads arranged on the first main surface formed,
The metal terminal pad has a structure in which a Cu plating layer is disposed on the first main surface side and an Au plating layer is disposed on the outermost layer, and a barrier is provided between the Cu plating layer and the Au plating layer. The metal layer is a Ni-P-based electroless Ni plating layer in contact with the Cu-plated layer, and is disposed between the Ni-P-based electroless Ni-plated layer and the Au-plated layer, and the Ni-P-based electroless A wiring board, comprising: a P barrier electroless metal plating layer for preventing or suppressing P diffusion from a Ni plating layer to the Au plating layer.
前記Pバリア用無電解金属メッキ層がNi−B系無電解Ni層である請求項6記載の配線基板。   The wiring board according to claim 6, wherein the electroless metal plating layer for a P barrier is a Ni-B-based electroless Ni layer. 前記Pバリア用無電解金属メッキ層が白金族金属系無電解メッキ層である請求項6記載の配線基板。   The wiring board according to claim 6, wherein the P barrier electroless metal plating layer is a platinum group metal-based electroless plating layer. 第一主表面が誘電体層にて形成されるように、高分子材料からなる誘電体層と導体層とが交互に積層された配線積層部と、該配線積層部の前記誘電体層にて形成された前記第一主表面上に配置される複数の金属端子パッドとを有し、
前記金属端子パッドは、前記第一主表面側にCuメッキ層が配置され、他方最表層部にAuメッキ層が配置された構造を有し、それらCuメッキ層とAuメッキ層との間にバリア金属層として、前記Cuメッキ層と接するNi−B系無電解Niメッキ層と、該Ni−B系無電解Niメッキ層と前記Auメッキ層との間に配置され、該Ni−B系無電解Niメッキ層よりも薄い前記Ni−P系無電解金属メッキ層とが配置されてなることを特徴とする配線基板。
As the first main surface is formed of a dielectric layer, a wiring laminated portion in which dielectric layers made of a polymer material and a conductive layer are alternately laminated, and the dielectric layer of the wiring laminated portion Having a plurality of metal terminal pads arranged on the first main surface formed,
The metal terminal pad has a structure in which a Cu plating layer is disposed on the first main surface side and an Au plating layer is disposed on the outermost layer, and a barrier is provided between the Cu plating layer and the Au plating layer. As a metal layer, a Ni-B-based electroless Ni plating layer that is in contact with the Cu-plated layer, and is disposed between the Ni-B-based electroless Ni-plated layer and the Au-plated layer; A wiring board, comprising the Ni-P-based electroless metal plating layer thinner than the Ni plating layer.
前記Ni−P系無電解金属メッキ層の厚さが2μm以下である請求項9記載の配線基板。   The wiring board according to claim 9, wherein the thickness of the Ni—P-based electroless metal plating layer is 2 μm or less. 前記Auメッキ層と直接接するのがNiメッキ層であり、かつ、前記Auメッキ層が無電解還元Auメッキ層からなる請求項1、2、4、5、6、7、9及び10のいずれか1項に記載の配線基板。   The Ni plating layer directly in contact with the Au plating layer, and the Au plating layer is an electroless reduced Au plating layer, any one of claims 1, 2, 4, 5, 6, 7, 9, and 10. 2. The wiring board according to claim 1. 前記金属端子パッドは、半田ボールを介してマザーボード側の端子パッドに接続されるものである請求項1ないし請求項10のいずれか1項に記載の配線基板。   The wiring board according to any one of claims 1 to 10, wherein the metal terminal pad is connected to a terminal pad on the motherboard side via a solder ball. 前記半田ボールは、液相線温度が200℃以上のSn合金からなる高温半田ボールである請求項12記載の半田部材つき配線基板。   13. The wiring board with a solder member according to claim 12, wherein the solder ball is a high-temperature solder ball made of a Sn alloy having a liquidus temperature of 200 ° C. or higher. 前記高温半田ボールは前記金属端子パッドに直接接合されている請求項13記載の半田部材つき配線基板。   14. The wiring board with a solder member according to claim 13, wherein the high-temperature solder balls are directly bonded to the metal terminal pads. 前記高温半田ボールはSnAg系合金又はSnCu合金からなる請求項14記載の半田部材つき配線基板。   15. The wiring board with a solder member according to claim 14, wherein the high-temperature solder balls are made of a SnAg-based alloy or a SnCu alloy. 前記高温半田部材はPb含有率が5質量%以下のSn合金からなる請求項14記載の半田部材つき配線基板。   The wiring board with a solder member according to claim 14, wherein the high-temperature solder member is made of a Sn alloy having a Pb content of 5% by mass or less.
JP2004063023A 2003-03-18 2004-03-05 Wiring board Expired - Fee Related JP4699704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004063023A JP4699704B2 (en) 2003-03-18 2004-03-05 Wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003073767 2003-03-18
JP2003073767 2003-03-18
JP2004063023A JP4699704B2 (en) 2003-03-18 2004-03-05 Wiring board

Publications (2)

Publication Number Publication Date
JP2004300570A true JP2004300570A (en) 2004-10-28
JP4699704B2 JP4699704B2 (en) 2011-06-15

Family

ID=33421802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004063023A Expired - Fee Related JP4699704B2 (en) 2003-03-18 2004-03-05 Wiring board

Country Status (1)

Country Link
JP (1) JP4699704B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216744A (en) * 2005-02-03 2006-08-17 Toppan Printing Co Ltd Wiring board
JP2007067147A (en) * 2005-08-31 2007-03-15 Shinko Electric Ind Co Ltd Printed circuit board and its manufacturing method
JP2007208243A (en) * 2006-02-01 2007-08-16 Samsung Electro Mech Co Ltd Ltcc module, and method of fabricating same
JP2008141070A (en) * 2006-12-04 2008-06-19 Shinko Electric Ind Co Ltd Wiring board and method of manufacturing the same
JP2008147495A (en) * 2006-12-12 2008-06-26 Hitachi Chem Co Ltd Connecting terminal, substrate for mounting semiconductor chip using same, semiconductor package, its manufacturing method, wiring board, and its manufacturing method
JP2010056232A (en) * 2008-08-27 2010-03-11 Seiko Instruments Inc Electronic component package and method for manufacturing the same
JP2012182288A (en) * 2011-03-01 2012-09-20 Ngk Insulators Ltd Formation method of terminal electrode and manufacturing method of piezoelectric/electrostrictive element using the same
JP2015076598A (en) * 2013-10-07 2015-04-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. Package substrate
JP2017216365A (en) * 2016-05-31 2017-12-07 Shマテリアル株式会社 Wiring member for multi-row type semiconductor device, and method of manufacturing the same
JP2017216364A (en) * 2016-05-31 2017-12-07 Shマテリアル株式会社 Wiring member for multi-row type semiconductor device, and method of manufacturing the same
DE102023103317A1 (en) 2023-02-10 2024-08-14 Plasma Innovations GmbH Process for producing a solderable printed circuit board with aluminum connection surfaces

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104085A (en) * 1984-10-26 1986-05-22 Kyocera Corp Coated structure on metallized metallic layer for electronic parts
JPH09270342A (en) * 1996-03-29 1997-10-14 Tokin Corp Electronic part and method of producing the same
JPH10242640A (en) * 1996-12-27 1998-09-11 Ibiden Co Ltd Printed wiring board
JPH11140659A (en) * 1997-11-05 1999-05-25 Hitachi Chem Co Ltd Substrate for mounting semiconductor and its production
JP2000340951A (en) * 1999-05-31 2000-12-08 Ngk Spark Plug Co Ltd Printed wiring board
JP2001177254A (en) * 1999-12-21 2001-06-29 Ibiden Co Ltd Filling method for through-hole and manufacturing method for multilayer printed wiring board
JP2002203925A (en) * 2000-12-28 2002-07-19 Fujitsu Ltd External connection terminal and semiconductor device
JP2002327279A (en) * 2001-05-02 2002-11-15 Furukawa Electric Co Ltd:The Method for joining electronic components
JP2002374058A (en) * 2001-06-13 2002-12-26 Yazaki Corp Mounting structure for electronic component

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104085A (en) * 1984-10-26 1986-05-22 Kyocera Corp Coated structure on metallized metallic layer for electronic parts
JPH09270342A (en) * 1996-03-29 1997-10-14 Tokin Corp Electronic part and method of producing the same
JPH10242640A (en) * 1996-12-27 1998-09-11 Ibiden Co Ltd Printed wiring board
JPH11140659A (en) * 1997-11-05 1999-05-25 Hitachi Chem Co Ltd Substrate for mounting semiconductor and its production
JP2000340951A (en) * 1999-05-31 2000-12-08 Ngk Spark Plug Co Ltd Printed wiring board
JP2001177254A (en) * 1999-12-21 2001-06-29 Ibiden Co Ltd Filling method for through-hole and manufacturing method for multilayer printed wiring board
JP2002203925A (en) * 2000-12-28 2002-07-19 Fujitsu Ltd External connection terminal and semiconductor device
JP2002327279A (en) * 2001-05-02 2002-11-15 Furukawa Electric Co Ltd:The Method for joining electronic components
JP2002374058A (en) * 2001-06-13 2002-12-26 Yazaki Corp Mounting structure for electronic component

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216744A (en) * 2005-02-03 2006-08-17 Toppan Printing Co Ltd Wiring board
JP2007067147A (en) * 2005-08-31 2007-03-15 Shinko Electric Ind Co Ltd Printed circuit board and its manufacturing method
JP2007208243A (en) * 2006-02-01 2007-08-16 Samsung Electro Mech Co Ltd Ltcc module, and method of fabricating same
EP2479788A3 (en) * 2006-12-04 2015-02-25 Shinko Electric Industries Co., Ltd. Wiring substrate and method for manufacturing the same
JP2008141070A (en) * 2006-12-04 2008-06-19 Shinko Electric Ind Co Ltd Wiring board and method of manufacturing the same
US8476536B2 (en) 2006-12-04 2013-07-02 Shinko Electric Industries Co., Ltd. Wiring substrate and method for manufacturing the same
JP2008147495A (en) * 2006-12-12 2008-06-26 Hitachi Chem Co Ltd Connecting terminal, substrate for mounting semiconductor chip using same, semiconductor package, its manufacturing method, wiring board, and its manufacturing method
JP2010056232A (en) * 2008-08-27 2010-03-11 Seiko Instruments Inc Electronic component package and method for manufacturing the same
JP2012182288A (en) * 2011-03-01 2012-09-20 Ngk Insulators Ltd Formation method of terminal electrode and manufacturing method of piezoelectric/electrostrictive element using the same
JP2015076598A (en) * 2013-10-07 2015-04-20 サムソン エレクトロ−メカニックス カンパニーリミテッド. Package substrate
JP2017216365A (en) * 2016-05-31 2017-12-07 Shマテリアル株式会社 Wiring member for multi-row type semiconductor device, and method of manufacturing the same
JP2017216364A (en) * 2016-05-31 2017-12-07 Shマテリアル株式会社 Wiring member for multi-row type semiconductor device, and method of manufacturing the same
DE102023103317A1 (en) 2023-02-10 2024-08-14 Plasma Innovations GmbH Process for producing a solderable printed circuit board with aluminum connection surfaces

Also Published As

Publication number Publication date
JP4699704B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
US7067918B2 (en) Wiring board
US7122894B2 (en) Wiring substrate and process for manufacturing the same
CN100421861C (en) Soldering flux
EP2017031B1 (en) Solder paste
CN100440471C (en) Method for manufacturing electronic device
US8378485B2 (en) Solder interconnect by addition of copper
WO2010122764A1 (en) Soldering material and electronic component assembly
KR100567611B1 (en) Solder for use on surfaces coated with nickel by electroless plating
WO2013132942A1 (en) Bonding method, bond structure, and manufacturing method for same
US20100127047A1 (en) Method of inhibiting a formation of palladium-nickel-tin intermetallic in solder joints
US9883586B2 (en) Wiring substrate for bonding using solder having a low melting point and method for manufacturing same
JP4699704B2 (en) Wiring board
JP2003230980A (en) Leadless solder alloy, solder ball and electronic member having solder bump
JP4211828B2 (en) Mounting structure
JP2003290974A (en) Joining structure of electronic circuit device and electronic parts used for the same
JP2002185130A (en) Electronic circuit device and electronic part
JP2005286323A (en) Wiring substrate, wiring substrate with solder member, and manufacturing method of the same
JP3719624B2 (en) Solder for mounting electronic components and mounting method of electronic components
JP2005054267A (en) Electroless gold plating method
JP2000015479A (en) Solder alloy and mounting method of electronic part
JP2000277897A (en) Terminal for solder-ball connection and its formation method and as manufacture of board for semiconductor mounting
JP2005252109A (en) Wiring board and wiring board with solder member
JP2003347716A (en) Wiring board
JPH08191126A (en) Manufacture of circuit board with i/o pin
JP2006086424A (en) Wiring board and wiring board with solder member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

R150 Certificate of patent or registration of utility model

Ref document number: 4699704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees