JPH08191126A - Manufacture of circuit board with i/o pin - Google Patents

Manufacture of circuit board with i/o pin

Info

Publication number
JPH08191126A
JPH08191126A JP308095A JP308095A JPH08191126A JP H08191126 A JPH08191126 A JP H08191126A JP 308095 A JP308095 A JP 308095A JP 308095 A JP308095 A JP 308095A JP H08191126 A JPH08191126 A JP H08191126A
Authority
JP
Japan
Prior art keywords
metal layer
circuit board
pin
electroless
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP308095A
Other languages
Japanese (ja)
Inventor
Tomoko Yoda
智子 依田
Takashi Inoue
隆史 井上
Kiyoshi Matsui
清 松井
Setsuo Ando
節夫 安藤
Takayoshi Watabe
隆好 渡部
Toshihiko Ota
敏彦 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP308095A priority Critical patent/JPH08191126A/en
Publication of JPH08191126A publication Critical patent/JPH08191126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE: To reduce the effect of impurities, specially lead, in a reaction metal layer, which cause reduction in the bonding strength of an I/O pin, by a method wherein a surface metal layer is formed on the reaction metal layer, which consists of an electroless Ni plated film formed on the surface of the conductor of a circuit board, and the I/O pin is connected with the circuit board via both metal layers of the reaction metal layer and the surface metal layer. CONSTITUTION: The surface of a conductor 2 of a ceramic circuit board is degreased, an activation treatment is performed and an electroless Ni-B plated film is formed on a a reaction metal layer 5. Then, an electroless Au plated film is formed as a surface metal layer 9 and the layers 5 and 9 are formed into junction metal layers. After this, an inter-diffusion is made to perform between the surface of the conductor 2, the plated film 5 and the plated film 9 by a heat treatment of the board and the adhesion between the junction metal layers is increased. After this heat treatment, an I/O pin 1 mounted previously with an Au-Ge brazing metal 3 is positioned on a metal layer formed on a board conductor part 6 and thereafter, the pin 1 is heated to a junction temperature and the I/O pin formed with an Ni-Ge intermetallic compound film is connected with the board.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、I/Oピンを有する電子
回路基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an electronic circuit board having I / O pins.

【0002】[0002]

【従来の技術】従来、多層セラミック回路基板の組立
は、半導体素子、I/Oピン等をセラミック基板の両面に
設けられた端子パット上に取り付け、冷却部、封止部等
を接続して行なわれる。これら組立には、組立工程で他
のはんだ材を溶かさずに接合を行う必要があるため、融
点の異なる複数のろう材を用いた温度階層を有する接合
技術を用いる。この組立工程の中でI/Oピンとセラミッ
ク回路基板の接合は最初に行うため、I/Oピン付け用ろ
う材は、その後の組立工程に用いられるはんだ材料の融
点よりも、融点の高いものを選定しなければならない。
また、I/Oピン接合後ろう付け温度から室温に冷却する
過程で、ろう材の熱収縮応力によって接合部のセラミッ
ク破壊や、残留応力による製品の信頼性の低下の問題も
回避しなければならない。これらの条件と、電子回路部
品の他の接合に使用される軟ろう材(183℃〜320
℃の融点からなるPb−Sn系合金)の接合温度条件を
考慮したI/Oピンの接合方法が、特願平1−12430
4号明細書に記載されている。即ち、356℃から45
0℃という高い融点を有する金−ゲルマニウム合金がI
/Oピン用ろう材として有効に使える。この接合方法に
よれば、セラミック基板の低残留応力、高強度接続、高
い信頼性が得られる。
2. Description of the Related Art Conventionally, a multilayer ceramic circuit board is assembled by mounting semiconductor elements, I / O pins, etc. on terminal pads provided on both sides of the ceramic board, and connecting a cooling section, a sealing section, etc. Be done. For these assembling, it is necessary to perform the joining without melting other solder materials in the assembling process. Therefore, a joining technique having a temperature hierarchy using a plurality of brazing materials having different melting points is used. Since the I / O pins and the ceramic circuit board are joined first in this assembly process, the I / O pin soldering material should have a melting point higher than the melting point of the solder material used in the subsequent assembly process. Must be selected.
Also, in the process of cooling from the brazing temperature to room temperature after joining the I / O pins, it is necessary to avoid the problems of ceramic destruction of the joint due to heat shrinkage stress of the brazing material and deterioration of product reliability due to residual stress. . These conditions and soft brazing filler metals (183 ° C to 320 ° C) used for other joining of electronic circuit components.
The bonding method of the I / O pin in consideration of the bonding temperature condition of Pb—Sn alloy having a melting point of ℃ is disclosed in Japanese Patent Application No. 12430/1989.
No. 4 specification. That is, 356 ° C to 45
A gold-germanium alloy having a high melting point of 0 ° C. is I
Can be effectively used as a brazing material for / O pins. According to this joining method, low residual stress, high strength connection and high reliability of the ceramic substrate can be obtained.

【0003】また、多層セラミック回路基板にI/Oピン
を良好に接続させるため、回路基板上の導体表面に金属
層を形成する。この金属層材料として、従来技術では特
開平1−1060号公報に記載のように、基板のモリブ
デン導体部上にニッケル、金層を設ける方法が述べらて
いる。金属膜形成方法として、スパッタ法、めっき法が
知られている。スパッタ膜の特徴は、緻密で下地との密
着性が高いことであるが、パターン分離工程が必要なた
め、コスト高になるという欠点がある。めっき法の特徴
は、低コストで成膜が可能である利点を持つが、基板上
の導体表面と密着力を得る工程が必要となる。めっき法
の中で電気めっき法は、高純度の皮膜が得られるが、そ
れぞれの被めっきパターンに電極またはそれに変わる配
線の取り付けができない場合、電気的に独立したパター
ン上には膜形成できない欠点かある。一方、無電解めっ
き法は、目的の金属以外の不純物が同時に析出してしま
う欠点を持つが、複雑で微細な独立パターン上に均一に
膜形成が可能であり、最も低コストなプロセスである。
以上の理由より、回路基板上の微細パターンである導体
表面上の金属層形成には無電解めっき法を用いた。ここ
で、電子部品に用いられる無電解ニッケルめっきは、無
電解ニッケル−ホウ素合金めっきおよび無電解ニッケル
−リン合金めっきが代表的である。この両者を比較し
て、融点が高く、はんだ付け性が良好で、低温めっきの
できる、無電解ニッケル−ホウ素合金めっきを用いた。
このめっき膜は、ホウ素含有量が0.5重量%以下と少
なく比較的純度の高いニッケル膜を与える。しかし、無
電解ニッケル−ホウ素合金めっきには市販の溶液を使用
するため、めっき液中の必要成分すなわち安定化剤とし
て添加されている鉛(実際は鉛化合物として)が、膜形
成と同時にめっき膜中に取り込まれてしまう。同様に、
無電解ニッケル−ホウ素合金めっき反応を開始させるた
めの活性化処理液中にも、液の安定化の目的で鉛(実際
は鉛化合物)が添加されている。従って、この市販溶液
で生成しためっき膜は、活性化処理液起源および無電解
ニッケル−ホウ素合金めっき液起源の鉛不純物を含むも
のである。この反応金属層の上に無電解金めっきで表面
金属層を形成した。
Further, a metal layer is formed on the conductor surface of the circuit board in order to properly connect the I / O pins to the multilayer ceramic circuit board. As the metal layer material, a method of providing a nickel or gold layer on a molybdenum conductor portion of a substrate is described in the prior art as described in JP-A-1-1060. As a metal film forming method, a sputtering method and a plating method are known. The characteristic of the sputtered film is that it is dense and has high adhesiveness to the underlying layer, but it has a drawback that the cost is high because a pattern separation step is required. The feature of the plating method is that it can form a film at low cost, but it requires a step of obtaining an adhesive force with the conductor surface on the substrate. Among the plating methods, electroplating provides a high-purity coating, but if electrodes or wiring that replaces it cannot be attached to each pattern to be plated, it may not be possible to form a film on an electrically independent pattern. is there. On the other hand, the electroless plating method has the drawback that impurities other than the target metal are simultaneously deposited, but it is the lowest cost process because it can uniformly form a film on a complicated and fine independent pattern.
For the above reasons, the electroless plating method was used for forming the metal layer on the conductor surface which is a fine pattern on the circuit board. Here, electroless nickel plating used for electronic parts is typically electroless nickel-boron alloy plating and electroless nickel-phosphorus alloy plating. Comparing the two, electroless nickel-boron alloy plating having a high melting point, good solderability, and low temperature plating was used.
This plated film provides a nickel film having a relatively high purity with a boron content of 0.5 wt% or less. However, since a commercially available solution is used for electroless nickel-boron alloy plating, the necessary component in the plating solution, that is, lead added as a stabilizer (actually as a lead compound), is not formed in the plating film at the same time as the film formation. Will be taken into. Similarly,
Lead (actually a lead compound) is also added to the activation treatment liquid for starting the electroless nickel-boron alloy plating reaction for the purpose of stabilizing the liquid. Therefore, the plating film produced with this commercially available solution contains lead impurities originating from the activation treatment solution and the electroless nickel-boron alloy plating solution. A surface metal layer was formed on the reaction metal layer by electroless gold plating.

【0004】上記の従来技術を組合せて、セラミック基
板上の導体表面に形成したニッケル/金層を形成し、金
−ゲルマニウムろう材を用いてI/Oピンの接合を試み
た。この結果、この回路素子が次工程の組立て、修正、
修理等の理由で行なわれる回路基板との数回の脱着に耐
えるには、I/Oピン接合強度は、不十分であった。この
原因を調べた結果、無電解ニッケル−ホウ素合金めっき
層に含まれる不純物がI/Oピンと基板との強度低下に大
きな影響を及ぼすことが判明した。その不純物の中で
も、無電解ニッケル−ホウ素合金めっき膜中の微量な鉛
が接合強度を低くしている原因であることが判った。
By combining the above-mentioned conventional techniques, a nickel / gold layer formed on the surface of a conductor on a ceramic substrate was formed, and an attempt was made to bond I / O pins by using a gold-germanium brazing material. As a result, this circuit element is assembled in the next step, modified,
The I / O pin bonding strength was insufficient to withstand several times of attachment / detachment with the circuit board for repair or other reasons. As a result of investigating the cause, it was found that the impurities contained in the electroless nickel-boron alloy plating layer had a great influence on the strength reduction between the I / O pin and the substrate. Among the impurities, it has been found that a trace amount of lead in the electroless nickel-boron alloy plating film is the cause of lowering the bonding strength.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術により、
多階層接合を必要とする回路基板上の導体表面に形成し
たニッケル/金接合金属層に、I/Oピンを金−ゲルマニ
ウムろう材を用いてピン付けを行なった。これらのI/O
ピンの引張り試験を行い接合強度を評価した結果、基板
上の無電解ニッケル−ホウ素合金めっき層とろう材との
接合界面で破断する不良現象が発生した。解析により、
この接合強度劣化は、無電解ニッケル−ホウ素合金めっ
き層に含まれる鉛不純物の接合界面偏析が原因で起こる
ことが判った。そのため、I/Oピンのコネクタへ挿抜に
対して十分な強度が得られず、組立工程や使用中の信頼
性に関する障害となっていた。
According to the above conventional technique,
I / O pins were pinned using a gold-germanium brazing material to the nickel / gold bonding metal layer formed on the conductor surface on the circuit board requiring multi-layer bonding. These I / O
As a result of performing a tensile test on the pins and evaluating the bonding strength, a defective phenomenon of breaking at the bonding interface between the electroless nickel-boron alloy plating layer on the substrate and the brazing material occurred. By analysis,
It has been found that the deterioration of the bonding strength is caused by segregation of the bonding interface of lead impurities contained in the electroless nickel-boron alloy plating layer. Therefore, sufficient strength cannot be obtained for insertion / removal of the I / O pin connector, which is an obstacle to the assembly process and reliability during use.

【0006】本発明の目的は、I/Oピン接合強度低下の
原因となる反応金属層中の不純物特に鉛を吸収する表面
金属層の膜厚や、反応金属層の膜厚を新たに規定するこ
とにある。
The object of the present invention is to newly define the film thickness of the surface metal layer which absorbs impurities, especially lead, in the reaction metal layer which causes a decrease in I / O pin junction strength, and the film thickness of the reaction metal layer. Especially.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
には、I/Oピンの接合強度低下を引き起こす反応金属層
中の不純物特に鉛の影響を低減させなくてはならない。
前述のように、無電解めっき液の安定化の目的で鉛化合
物が添加されている。このため、市販溶液で生成しため
っき膜は、活性化処理液起源およびニッケル−ホウ素合
金めっき液起源の鉛不純物を含む。従って、無電解ニッ
ケル−ホウ素合金めっき膜に鉛不純物が含まれていて
も、接合強度に悪影響を与えない必要がある。本発明の
解決手段は、ピン付け工程において、反応金属層すなわ
ちニッケル−ホウ素合金めっき膜に含まれる不純物特に
鉛を安定化させるのに最適な各金属層の膜厚を規定する
ものである。反応金属層/表面金属層の構成は、無電解
ニッケル−ホウ素合金めっき膜/無電解金めっき膜、ま
たは無電解ニッケル−ホウ素合金めっき膜/無電解パラ
ジウムめっき膜からなる。この表面金属層の従来の目的
は、反応金属層の酸化防止とはんだ濡れ性の確保であ
る。本発明では、表面金属層に対して反応金属層に含ま
れる不純物特に鉛を安定化させる役割を持つように、そ
の効果が最も表われるそれぞれの膜厚の範囲を規定し
た。
In order to solve the above problems, it is necessary to reduce the influence of impurities, especially lead, in the reaction metal layer which causes a decrease in the bonding strength of the I / O pin.
As described above, the lead compound is added for the purpose of stabilizing the electroless plating solution. Therefore, the plating film produced with the commercially available solution contains lead impurities originating from the activation treatment solution and the nickel-boron alloy plating solution. Therefore, even if the electroless nickel-boron alloy plating film contains lead impurities, it is necessary that the bonding strength is not adversely affected. The solution means of the present invention is to define the optimum film thickness of each metal layer for stabilizing the impurities contained in the reaction metal layer, that is, the nickel-boron alloy plating film, especially lead in the pinning step. The composition of the reaction metal layer / surface metal layer is composed of an electroless nickel-boron alloy plating film / electroless gold plating film or an electroless nickel-boron alloy plating film / electroless palladium plating film. The conventional purpose of this surface metal layer is to prevent oxidation of the reaction metal layer and to secure solder wettability. In the present invention, the respective ranges of film thickness at which the effect is most exhibited are defined so that the surface metal layer has a role of stabilizing impurities contained in the reaction metal layer, particularly lead.

【0008】[0008]

【作用】従来技術を用いた回路基板とI/Oピンの接合方
法は、反応金属層中の不純物特に鉛が原因で、接合強度
を低下させている。この問題を解決するために、回路基
板の導体表面に形成する各金属層の膜厚を規定した。I/
Oピン付け工程では大きく分けて、各金属層との密着性
を上げる熱処理工程と、I/Oピン付け工程の二つの熱処
理工程がある。前者は、基板の導体表面と各金属膜とを
相互拡散させることにより密着性を上げる。反応金属層
/表面金属層の膜厚構成を適切に規定すると、密着性を
上げる各層(導体表面−ニッケル、ニッケル−金)の相
互拡散と同時に、表面金属層の成分が、無電解ニッケル
めっき膜に含まれる鉛不純物を、鉛−金合金または鉛−
パラジウム合金の形で固溶もしくは合金化できる。同様
に、I/Oピン付けの熱処理工程でも金もしくはパラジウ
ムが鉛を安定化してもよい。しかし、反応金属層/表面
金属層の膜厚構成が鉛安定化には不十分で、ニッケル金
属と相性の悪い鉛がめっき膜中に不安定な形で存在する
と、鉛不純物は熱処理工程で以下のような挙動を示す。
Pb不純物原子はNi格子中に存在するよりも、エネル
ギ的に安定である空孔と対になり存在する。このPb不
純物原子と空孔の対は、熱処理工程のニッケル−金相互
拡散と同時に集まり、成長しながらNi−Ge層下の接
合界面に移動しボイドを形成する。接合界面への鉛偏析
とともに、場合によってはそのボイドが集積してクラッ
クを発生する。これが接合強度低下の原因である。
According to the conventional method of joining the circuit board and the I / O pin, the joining strength is lowered due to the impurities in the reaction metal layer, especially lead. In order to solve this problem, the film thickness of each metal layer formed on the conductor surface of the circuit board is specified. I /
The O pin attachment process is roughly divided into two heat treatment processes, namely, a heat treatment process for improving adhesion with each metal layer and an I / O pin attachment process. The former enhances adhesion by mutually diffusing the conductor surface of the substrate and each metal film. When the film thickness composition of the reaction metal layer / surface metal layer is properly specified, the mutual diffusion of each layer (conductor surface-nickel, nickel-gold) that enhances the adhesion, and at the same time, the component of the surface metal layer is the electroless nickel plating film. The lead impurities contained in lead-gold alloy or lead-
It can be solid-solved or alloyed in the form of a palladium alloy. Similarly, gold or palladium may stabilize lead in the heat treatment step of I / O pin attachment. However, if the thickness of the reaction metal layer / surface metal layer is not sufficient to stabilize lead and lead that is incompatible with nickel metal is present in the plated film in an unstable form, lead impurities will Behaves like.
Pb impurity atoms are present in pairs with energetically stable vacancies rather than in the Ni lattice. The Pb impurity atom and vacancy pair gather together with the nickel-gold interdiffusion in the heat treatment step and move to the bonding interface under the Ni-Ge layer while growing and form a void. Along with segregation of lead to the joint interface, the voids sometimes accumulate and cracks occur. This is the cause of the decrease in bonding strength.

【0009】このように、反応金属層および表面金属層
の膜厚を規定し、熱処理時の相互拡散により不純物特に
鉛を安定化させる。すなわち、本発明は、表面金属層に
対して反応金属層の保護とはんだ濡れ性の確保だけでは
なく、不純物特に鉛を安定化の役割を持たせる膜厚を規
定し、I/Oピン接合界面への鉛偏析を解消し、高い接合
強度と信頼性が得られることを特徴とする。
As described above, the film thicknesses of the reaction metal layer and the surface metal layer are regulated, and the impurities, especially lead are stabilized by mutual diffusion during the heat treatment. That is, the present invention not only protects the reaction metal layer and secures the solder wettability with respect to the surface metal layer, but also defines the film thickness that has the role of stabilizing impurities, especially lead, and defines the I / O pin bonding interface. It is characterized by eliminating lead segregation to the steel and obtaining high bonding strength and reliability.

【0010】[0010]

【実施例】【Example】

(実施例1)本発明の実施例について、回路基板とI/O
ピンの接合方法を図1を用いて以下説明する。図1中の
No.1はI/Oピン、No.2はセラミック基板内の導
体部分、No.3は金−ゲルマニウム(以下Au−Ge
と記す)ろう材、No.4はI/Oピン付け時の拡散接合
により生成したニッケル−ゲルマニウム(以下Ni−G
eと記す)金属化合物層、No.5は無電解ニッケル−
ホウ素合金(以下Ni−Bと記す)めっき膜反応金属
層、No.6は回路基板表面の導体部、No.7はスル
ーホールである。まず、本発明の実験に用いた回路基板
とI/Oピン接合用金属層の作成方法について述べる。図
2(a)にはI/Oピン接合用金属層形成前の回路基板の説
明図を、図2(b)には基板表面のI/Oピン接合用導体部
の説明図を示した。図3はI/Oピン接合用金属層の作成
工程図である。図3(a)は図2(b)に示した基板の導体
部およびスルーホールの断面図で、基板はセラミック回
路基板を用いた。前処理として、導体表面をアルカリ溶
液でソフトエッチし、酸で中和処理し、脱脂を行なっ
た。次に、安定化剤として鉛化合物を含む溶液を用いて
活性化処理した(図3(b))。その後、反応金属層とし
て無電解Ni−Bめっき膜(No.5)を形成し(図3
(c))、表面金属層として無電解Auめっき膜(No.
9)を形成し(図3(d))、接合金属層とした。成膜
後、基板の熱処理により導体表面/無電解Ni−Bめっ
き膜/無電解Auめっき膜間を相互拡散させ、接合金属
層間の密着性を上げる(図3(e))。熱処理の後、あら
かじめAu−Geろう材が搭載されているI/Oピンを、
基板導体部に形成した金属層の上に位置決めした後(図
3(f))、接合温度まで加熱した。Au−Geろう材が
接合金属層表面に濡れ拡がると同時に、無電解Ni−B
めっき層に拡散してNi−Ge金属化合物を形成しI/O
ピンは基板に接続される。
(Embodiment 1) Regarding the embodiment of the present invention, a circuit board and I / O
The pin joining method will be described below with reference to FIG. No. 1 in FIG. No. 1 is I / O pin, No. No. 2 is a conductor portion in the ceramic substrate, No. 3 is gold-germanium (hereinafter Au-Ge
Brazing filler metal, No. 4 is nickel-germanium (hereinafter Ni-G) produced by diffusion bonding when I / O pins are attached.
a metal compound layer, No. 5 is electroless nickel
Boron alloy (hereinafter referred to as Ni-B) plating film reactive metal layer, No. No. 6 is a conductor portion on the surface of the circuit board. 7 is a through hole. First, a method of forming the circuit board and the I / O pin bonding metal layer used in the experiment of the present invention will be described. FIG. 2A shows an explanatory view of the circuit board before the formation of the I / O pin joining metal layer, and FIG. 2B shows an illustration of the I / O pin joining conductor portion on the board surface. FIG. 3 is a process drawing of a metal layer for joining I / O pins. FIG. 3A is a sectional view of the conductor portion and through hole of the substrate shown in FIG. 2B, and the substrate is a ceramic circuit substrate. As a pretreatment, the conductor surface was soft-etched with an alkaline solution, neutralized with an acid, and degreased. Next, activation treatment was performed using a solution containing a lead compound as a stabilizer (FIG. 3 (b)). Then, an electroless Ni-B plating film (No. 5) was formed as a reactive metal layer (see FIG. 3).
(c)), an electroless Au plating film (No.
9) was formed (FIG. 3 (d)) to form a bonding metal layer. After the film formation, the conductor surface / electroless Ni—B plating film / electroless Au plating film is mutually diffused by heat treatment of the substrate to improve the adhesion between the joining metal layers (FIG. 3 (e)). After the heat treatment, I / O pins on which Au-Ge brazing material is mounted in advance
After positioning on the metal layer formed on the board conductor portion (FIG. 3 (f)), it was heated to the bonding temperature. At the same time that the Au-Ge brazing material wets and spreads on the surface of the joining metal layer, electroless Ni-B
I / O by diffusing into the plating layer to form a Ni-Ge metal compound
The pins are connected to the substrate.

【0011】上記の工程で接続したI/Oピンと基板上導
体部との接合状態を評価するために、I/Oピンの引張り
強度を測定した。接合状態が良好な場合、I/Oピン接合
部(ろう付け部)が破断せず、I/Oピンそのものが一定
強度(約5kg/ピン)以上で破断する。すなわち、I/O
ピン1本あたりのろう付け部分の接合強度が、I/Oピン
軸部分の材料の引張り強度よりも高い条件である。そこ
で、接合強度の評価は界面破断率、すなわち、一定強度
以下で界面破断を起こしたI/Oピンの数を、引張り試験
を行ったI/Oピンの総数で割った値として表1から表3
に示した。
The tensile strength of the I / O pin was measured in order to evaluate the bonding state between the I / O pin connected in the above process and the conductor portion on the substrate. When the joining condition is good, the I / O pin joint part (brazing part) does not break, and the I / O pin itself breaks at a certain strength (about 5 kg / pin) or more. I / O
The condition is that the joint strength of the brazed part per pin is higher than the tensile strength of the material of the I / O pin shaft part. Therefore, the bond strength was evaluated from Table 1 as the interface rupture rate, that is, the value obtained by dividing the number of I / O pins that caused interface rupture at a certain strength or less by the total number of I / O pins subjected to the tensile test. Three
It was shown to.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】比較例として、表1中No.1に示す従来
方法の膜構成に接合しI/Oピンの接合強度を評価したと
ころ、界面破断率は100%であり、極めて低い値であ
った。接合強度が低い原因を解析したところ、界面破断
を起こしたI/Oピンの破断面に鉛が偏析していた。
As a comparative example, No. 1 in Table 1 was used. When the bonding strength of the I / O pin was evaluated by bonding to the film structure of the conventional method shown in 1, the interfacial fracture rate was 100%, which was an extremely low value. Analysis of the cause of the low bonding strength revealed that lead was segregated on the fracture surface of the I / O pin where interface fracture occurred.

【0016】従来技術を用いた際のI/Oピン接合不良、
すなわち、Pb偏析による接合強度劣化のメカニズムを
推察する。Pbに対して接合に用いられる金属のそれぞ
れの相性を合金の状態図より考察した。図4、図5はそ
れぞれNi−Pb2元系状態図およびGe−Pb2元系
状態図(Thaddeus B. Massalski, Ed.; BINARY ALLOY
PHASE DIAGRAMS, 1986)を示している。この状態図から
わかるように、接合温度領域(400℃付近)でPbは
極微量Niに固溶するが、室温では全く固溶しない。同
様Ge−Pb2元系状態図から、PbはGeに対しても
接合温度付近から室温までの範囲で全く固溶しないこと
がわかる。回路基板を形成する温度条件では、接合材料
金属に対し不純物Pbは安定な金属化合物もしくは合金
として存在しないことがわかる。このようにNi、Ge
金属と相性の悪い鉛不純物が接合部材料中に存在する
と、I/Oピン付け後に以下のように鉛が偏析が起こる。
これは、原子半径がNiより1.4倍も大きいPb不純
物原子はNi格子中に存在するよりも空孔と対になり存
在するほうがエネルギ的に安定なことに起因する。図1
に示した接合部の、特にろう付け部と金属層の微小接合
部断面を拡大して模式的に示したのが図6である。この
Pb不純物原子と空孔の対は、熱処理工程の拡散接合時
に寄り集まり、成長しながらNi−Ge層下の接合界面
に移動しボイドを形成する。鉛の偏析(No.12)と
ともに、場合によってはそのボイドが集積してクラック
(No.13)を発生する。I/Oピンの接合強度を測定
したとき、このようにして脆くなった接合界面で破断を
起こす。これがI/Oピン接合強度低下の原因である。
I / O pin joint failure when using the prior art,
That is, the mechanism of deterioration of the bonding strength due to Pb segregation is inferred. The compatibility of each metal used for joining with Pb was considered from the phase diagram of the alloy. 4 and 5 are the Ni-Pb binary phase diagram and the Ge-Pb binary phase diagram (Thaddeus B. Massalski, Ed .; BINARY ALLOY, respectively).
PHASE DIAGRAMS, 1986). As can be seen from this state diagram, Pb is solid-dissolved in an extremely small amount of Ni in the joining temperature region (around 400 ° C.), but is not solid-soluted at room temperature. Similarly, from the Ge-Pb binary system phase diagram, it can be seen that Pb does not form a solid solution with Ge at a temperature near the bonding temperature to room temperature. It can be seen that the impurity Pb does not exist as a stable metal compound or alloy with respect to the bonding material metal under the temperature condition for forming the circuit board. In this way, Ni, Ge
If lead impurities, which are incompatible with metals, are present in the joint material, lead segregation occurs as follows after I / O pinning.
This is because the Pb impurity atom having an atomic radius 1.4 times larger than that of Ni is more energetically stable when it is present in a pair with the vacancy than in the Ni lattice. FIG.
FIG. 6 is an enlarged schematic view of a cross section of the micro-joint portion of the joint portion shown in FIG. The Pb impurity atom and vacancy pairs gather at the time of diffusion bonding in the heat treatment step, move to the bonding interface under the Ni—Ge layer while growing, and form a void. Along with the segregation of lead (No. 12), the voids are sometimes accumulated to generate cracks (No. 13). When the bond strength of the I / O pin is measured, fracture occurs at the bond interface thus brittle. This is the cause of the decrease in I / O pin joint strength.

【0017】反応金属層/表面金属層の膜厚を規定する
ことにより、表面金属層成分である金が反応金属層中の
効果的に鉛不純物を安定化できる理由を以下に示す。図
7はAu−Pb2元系状態図(Thaddeus B. Massalski,
Ed.; BINARY ALLOY PHASEDIAGRAMS, 1986)を示して
いる。この状態図からわかるように、I/Oピン接合部温
度が熱処理温度に上がり、室温に冷える間にAuは鉛を
固溶し金属化合物もしくは合金を作ることがわかる。表
面金属層のAuが熱処理の際の拡散により不純物Pbを
固溶するか、不純物Pbと合金を作り、Au−Pb合金
の安定な形にする。また、I/Oピン付け用Au−Geろ
う剤中のAuも同様な役割を果たす。
The reason why gold as the surface metal layer component can effectively stabilize lead impurities in the reaction metal layer by defining the film thickness of the reaction metal layer / surface metal layer is shown below. FIG. 7 is a phase diagram of the Au-Pb binary system (Thaddeus B. Massalski,
Ed .; BINARY ALLOY PHASEDIAGRAMS, 1986). As can be seen from this state diagram, while the I / O pin junction temperature rises to the heat treatment temperature and cools to room temperature, Au solid-dissolves lead and forms a metal compound or alloy. The Au of the surface metal layer diffuses during the heat treatment to form a solid solution with the impurity Pb or forms an alloy with the impurity Pb to form a stable Au-Pb alloy. Au in the Au-Ge brazing agent for I / O pinning also plays a similar role.

【0018】接合金属層膜厚を規定する理由を説明す
る。ある条件で形成されためっき膜中には、めっき膜の
底に存在する活性化処理剤起源のPbと一定膜厚のめっ
き膜中に均一に存在するめっき液起源のPbとの合計の
一定量が含まれている。このPb不純物を接合に悪影響
を及ぼさないまでに安定化させる金の最低量、すなわ
ち、金めっき最低膜厚は、このPb不純物量と対応す
る。したがって、ある熱処理条件の下でPb不純物を安
定化するAuめっき膜厚の最小値は決まる。次に、反応
金属層の膜厚最大値が決まるのは、膜厚が厚いほど以下
の二つの理由で鉛の安定化が不十分になることによる。
無電解めっきの核を形成する活性化処理剤起源の鉛は、
導体表面と無電解Ni−Bめっき膜の界面に存在する。
温度条件と時間条件が同じ場合、熱処理工程での表面金
属層成分の金と鉛不純物の拡散距離は一定である。無電
解Ni−Bめっき膜厚が厚いほど、めっき膜の底に存在
する鉛が完全に金と合金を作る可能性は低くなる。もう
一つの理由は、めっき液起源の鉛は無電解Ni−Bめっ
き膜中に均一に存在するため、めっき膜厚が厚いほど鉛
不純物の総量は増え、金が鉛を完全に安定化できなくな
る。これらの理由で、Pb−Au合金化し十分に安定化
させることにより界面偏析を防止できる効果は、反応金
属層/表面金属層の構成が最適な膜厚の場合にのみ有効
である。
The reason for defining the thickness of the bonding metal layer will be described. In the plating film formed under a certain condition, a certain amount of the total of Pb originating from the activation treatment agent existing at the bottom of the plating film and Pb originating from the plating solution uniformly existing in the plating film having a certain thickness. It is included. The minimum amount of gold that stabilizes the Pb impurities until they do not adversely affect the junction, that is, the minimum gold plating film thickness, corresponds to this Pb impurity amount. Therefore, the minimum value of the Au plating film thickness that stabilizes the Pb impurities under a certain heat treatment condition is determined. Next, the maximum value of the film thickness of the reactive metal layer is determined because the thicker the film, the less stable lead is for the following two reasons.
Lead from the activation treatment agent that forms the core of electroless plating is
It exists at the interface between the conductor surface and the electroless Ni-B plating film.
When the temperature condition and the time condition are the same, the diffusion distances of the gold and lead impurities of the surface metal layer component in the heat treatment process are constant. The thicker the electroless Ni-B plating film, the lower the possibility that lead existing at the bottom of the plating film will completely alloy with gold. Another reason is that the lead derived from the plating solution is uniformly present in the electroless Ni-B plating film, so that the thicker the plating film is, the larger the total amount of lead impurities is and the gold cannot completely stabilize the lead. . For these reasons, the effect of preventing interfacial segregation by forming a Pb-Au alloy and sufficiently stabilizing it is effective only when the structure of the reaction metal layer / surface metal layer has an optimum film thickness.

【0019】以上のように、接合強度向上には、接合界
面にPb偏析を起させないような、 反応金属層の保護、はんだ濡れ性の確保のほかに、I/
Oピン接合時に不純物特にPbを吸収する表面金属層の
役割として、効果的なAuめっき膜厚を規定し、 Ni−Bめっきめっき膜中の鉛の量に対応する膜厚を
変えて最適のNi−Bめっき膜厚を規定することが有効
な手段である。
As described above, in order to improve the bonding strength, in addition to protecting the reaction metal layer and ensuring the solder wettability so as not to cause Pb segregation at the bonding interface, I /
As the role of the surface metal layer that absorbs impurities, especially Pb, at the time of O-pin bonding, the effective Au plating film thickness is defined, and the optimum Ni film is formed by changing the film thickness corresponding to the amount of lead in the Ni-B plating plating film. -Defining the B plating film thickness is an effective means.

【0020】例えば、無電解Ni−Bめっき膜厚を3.
5μm一定にし、すなわち、膜中のPb不純物の量を一
定にして、無電解Auめっき膜厚を変化させ、I/Oピン
の接合強度を測定した。その結果を表1に示す。なお、
無電解Ni−Bめっき膜厚および無電解Auめっき膜厚
は、それぞれ工程図、図2(c)および図2(d)で形成した
めっき膜厚を表す。無電解Auめっき厚が従来方法の場
合の0.05μmでは、界面破断率は76%と高く、無
電解Auめっき厚が0.5μmでは21%、Auめっき
厚が1μm以上では0%となる。従って、無電解Auめ
っき厚は1μm以上あれば、界面破断を起こさない。ゆ
えに、無電解Auめっき膜厚が1μm以上であれば、無
電解Ni−Bめっき膜の保護とはんだ濡れ性の確保がで
きる上に、無電解Ni−Bめっき膜3.5μmの中のP
bを吸収して、I/Oピンの界面破断防止に効果があるこ
とが判明した。
For example, the electroless Ni-B plating film thickness is set to 3.
The bonding strength of the I / O pin was measured while keeping the Pb impurity amount in the film constant at 5 μm, that is, by changing the electroless Au plating film thickness. Table 1 shows the results. In addition,
The electroless Ni-B plating film thickness and the electroless Au plating film thickness represent the plating film thickness formed in the process drawings, FIG. 2 (c) and FIG. 2 (d), respectively. When the electroless Au plating thickness is 0.05 μm in the case of the conventional method, the interface fracture rate is as high as 76%, when the electroless Au plating thickness is 0.5 μm, it is 21%, and when the Au plating thickness is 1 μm or more, it is 0%. Therefore, if the electroless Au plating thickness is 1 μm or more, no interface breakage occurs. Therefore, if the electroless Au plating film thickness is 1 μm or more, the electroless Ni—B plating film can be protected and solder wettability can be secured, and the P content in the electroless Ni—B plating film of 3.5 μm can be ensured.
It was found that it absorbs b and is effective in preventing interfacial rupture of I / O pins.

【0021】次に、無電解Auめっき膜厚一定の場合に
ついて説明する。前述のように、無電解Ni−Bめっき
膜中のPbはi)Pd活性化処理液、ii)めっき液から混
入する。i)には最適処理時間が存在するため活性化処
理剤からのPb混入量は一定である。ii)より混入する
Pbは、めっき液中の安定化剤であるPb化合物量もめ
っき液成分として最適量が決まっているため、めっき膜
中にほぼ均一に取り込まれる。膜厚を変えることで、め
っき膜中の総Pb量は変わってくる。そこで、例えば、
無電解Auめっき膜厚を1.0μmにし、無電解Ni−
Bめっき膜中に含まれるPbの量を変化させて、接合強
度を測定した結果を表2に示す。無電解Ni−Bめっき
膜厚が2.0μm以下では、全く界面破断が起こらなか
った。しかし、無電解Auめっき膜厚が1.0μm以上
あっても、無電解Ni−Bめっき膜厚が2.2μm以上
では、界面破断率が増大した。ゆえに、無電解Ni−B
めっき膜厚が2.2μm以下、すなわちその膜に含まれ
Pb量であれば、1.0μmのAuめっき膜がPbを吸
収して、I/Oピンの界面破断防止に効果があることが判
った。また、比較のためにPbが含まれていない純Ni
板にI/Oピンを接合した評価結果を表3に示したが、無
電解金めっき膜の厚さに関係なく接合状態が十分であっ
た。この実験により、無電解Ni−Bめっき膜中のPb
不純物が接合強度劣化に寄与していることは明らかにな
った。
Next, the case where the electroless Au plating film thickness is constant will be described. As described above, Pb in the electroless Ni-B plating film is mixed from i) Pd activation treatment liquid and ii) plating liquid. Since i) has the optimum treatment time, the amount of Pb mixed from the activation treatment agent is constant. Since the optimum amount of Pb compound which is a stabilizer in the plating solution is determined as a plating solution component, Pb mixed in from ii) is taken into the plating film almost uniformly. By changing the film thickness, the total Pb amount in the plating film changes. So, for example,
Electroless Au plating film thickness is 1.0 μm and electroless Ni-
Table 2 shows the results of measuring the bonding strength by changing the amount of Pb contained in the B plating film. When the electroless Ni-B plating film thickness was 2.0 μm or less, no interface rupture occurred. However, even if the electroless Au plating film thickness is 1.0 μm or more, the interface fracture rate increases when the electroless Ni—B plating film thickness is 2.2 μm or more. Therefore, electroless Ni-B
It was found that if the plating film thickness is 2.2 μm or less, that is, if the amount of Pb contained in the film is 1.0 μm, the Au plating film of 1.0 μm absorbs Pb and is effective in preventing the interface breakage of the I / O pin. It was For comparison, pure Ni containing no Pb is used.
The evaluation results of joining the I / O pins to the plate are shown in Table 3, and the joining state was sufficient regardless of the thickness of the electroless gold plating film. By this experiment, Pb in the electroless Ni-B plating film
It has been clarified that the impurities contribute to the deterioration of the bonding strength.

【0022】このように、無電解Ni−Bめっき膜中に
Pb不純物が存在しても、界面破断を起こすことなく十
分な接合強度が確保できるように表面金属層、すなわ
ち、Pb不純物を吸収可能な金めっき膜を適切な厚さに
規定して、接合強度向上を図った。
As described above, even if Pb impurities are present in the electroless Ni-B plating film, the surface metal layer, that is, Pb impurities can be absorbed so that sufficient bonding strength can be secured without causing interface rupture. The gold plating film was regulated to have an appropriate thickness to improve the bonding strength.

【0023】このように、実施例により、接合強度低下
の原因である接合界面への鉛の偏析を解消し、高強度の
I/Oピン接合が達成できた。そこで、この方法を用い
て、セラミック回路基板にI/Oピンを接合し、一連の組
立てを行なった。
As described above, according to the embodiment, the segregation of lead to the joint interface, which is the cause of the decrease in joint strength, is eliminated, and high strength is obtained.
I / O pin connection was achieved. Therefore, using this method, I / O pins were joined to the ceramic circuit board and a series of assembling was performed.

【0024】(実施例2)つぎに、貴金属である金に替
わる金属として、無電解パラジウムめっき膜を用いて同
様な測定を行なった。すなわち、基板導体表面上に、反
応金属層として無電解Ni−Bめっき膜、表面金属層と
して無電解パラジウムめっき膜を用いて、Au−Geろ
う材にてI/Oピンを接合し接合強度を測定した。その結
果、表面金属層として金めっき膜と同様の結果が得ら
れ、金めっきに替わりコスト低減を可能とするめっき膜
として使用できることが判った。
(Example 2) Next, the same measurement was performed using an electroless palladium plating film as a metal in place of gold which is a noble metal. That is, using an electroless Ni-B plated film as a reactive metal layer and an electroless palladium plated film as a surface metal layer on the surface of a substrate conductor, I / O pins are joined with an Au-Ge brazing material to improve the joint strength. It was measured. As a result, it was found that the same result as the gold plating film was obtained as the surface metal layer, and that it could be used as a plating film that can replace gold plating and reduce costs.

【0025】このように、本実施例により、接合強度低
下の原因である接合界面への鉛の偏析を解消し、高強度
のI/Oピン接合が達成できた。そこで、この方法を用い
て、セラミック回路基板にI/Oピンを接合し、一連の組
立てを行なった。
As described above, according to the present embodiment, the segregation of lead to the bonding interface, which is the cause of the decrease in the bonding strength, was eliminated, and high-strength I / O pin bonding was achieved. Therefore, using this method, I / O pins were joined to the ceramic circuit board and a series of assembling was performed.

【0026】[0026]

【発明の効果】本発明によれば、反応金属層中の不純物
である鉛を吸収する表面金属層を接合電極表面にもう
け、その膜厚を規定することにより、接合強度低下の原
因である接合界面への鉛の偏析を解消できる。ゆえに、
回路基板とI/Oピン接合部の界面破断が防止できる新た
な接合方法である。これにより、回路基板とI/Oピンの
間の高接合強度が得られるため、温度階層を有するセラ
ミック回路基板のパッケージング構造に高い信頼性が得
られ、生産性が向上できる。また、接合金属層形成に用
いるめっき法、および表面金属層材料の選定によりコス
ト低減に効果がある。
According to the present invention, a surface metal layer that absorbs lead, which is an impurity in the reaction metal layer, is provided on the surface of the bonding electrode, and the thickness of the surface metal layer is regulated. Segregation of lead to the interface can be eliminated. therefore,
This is a new joining method that can prevent the interface rupture between the circuit board and the I / O pin joint. As a result, a high bonding strength between the circuit board and the I / O pin can be obtained, so that the packaging structure of the ceramic circuit board having a temperature hierarchy can be highly reliable and the productivity can be improved. Further, the cost can be reduced by the plating method used for forming the joining metal layer and the selection of the surface metal layer material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のI/Oピン付き回路基板およびその製造
方法を用いて回路基板とI/Oピンを接合した接合部の断
面図。
FIG. 1 is a cross-sectional view of a joint portion in which a circuit board and an I / O pin are joined by using a circuit board with an I / O pin of the present invention and a method for manufacturing the same.

【図2】本発明のI/Oピン付け前の回路基板の概略図(a)
とその表面に形成されている導体部の説明図。
FIG. 2 is a schematic view of a circuit board before attaching I / O pins of the present invention (a).
And explanatory drawing of the conductor part formed in the surface.

【図3】本発明のI/Oピン付け前の回路基板上の導体表
面に接合金属を形成する工程を模式的に示す説明図。
FIG. 3 is an explanatory view schematically showing a step of forming a bonding metal on a conductor surface on a circuit board before I / O pin attachment according to the present invention.

【図4】本発明に係るニッケル−鉛二元系状態図。FIG. 4 is a nickel-lead binary phase diagram according to the present invention.

【図5】本発明に係るゲルマニウム−鉛二元系状態図。FIG. 5 is a phase diagram of a germanium-lead binary system according to the present invention.

【図6】従来方法により、回路基板の導体表面上に形成
した金属層にI/Oピンを接合した際の接合部の断面図。
FIG. 6 is a cross-sectional view of a joint portion when an I / O pin is joined to a metal layer formed on a conductor surface of a circuit board by a conventional method.

【図7】本発明に係る金−鉛二元系状態図。FIG. 7 is a gold-lead binary system phase diagram according to the present invention.

【符号の説明】[Explanation of symbols]

1…I/Oピン、 2…回路基板、 3…金−ゲルマニウムろう材、 4…ニッケル−ゲルマニウム金属化合物層、 5…無電解ニッケル−ホウ素合金めっき反応金属層、 6…基板表面導体部、 7…スルーホール。 DESCRIPTION OF SYMBOLS 1 ... I / O pin, 2 ... Circuit board, 3 ... Gold-germanium brazing material, 4 ... Nickel-germanium metal compound layer, 5 ... Electroless nickel-boron alloy plating reaction metal layer, 6 ... Substrate surface conductor part, 7 … Through holes.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年4月6日[Submission date] April 6, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のI/Oピン付き回路基板およびその製造
方法を用いて回路基板とI/Oピンを接合した接合部の断
面図。
FIG. 1 is a cross-sectional view of a joint portion in which a circuit board and an I / O pin are joined by using a circuit board with an I / O pin of the present invention and a method for manufacturing the same.

【図2】本発明のI/Oピン付け前の回路基板の概略図(a)
とその表面に形成されている導体部の説明図(b)。
FIG. 2 is a schematic view of a circuit board before attaching I / O pins of the present invention (a).
And (b) an explanatory view of a conductor portion formed on the surface thereof.

【図3】本発明のI/Oピン付け前の回路基板上の導体表
面に接合金属を形成する工程を模式的に示す説明図。
FIG. 3 is an explanatory view schematically showing a step of forming a bonding metal on a conductor surface on a circuit board before I / O pin attachment according to the present invention.

【図4】本発明に係るニッケル−鉛二元系状態図。FIG. 4 is a nickel-lead binary phase diagram according to the present invention.

【図5】本発明に係るゲルマニウム−鉛二元系状態図。FIG. 5 is a phase diagram of a germanium-lead binary system according to the present invention.

【図6】従来方法により、回路基板の導体表面上に形成
した金属層にI/Oピンを接合した際の接合部の断面図。
FIG. 6 is a cross-sectional view of a joint portion when an I / O pin is joined to a metal layer formed on a conductor surface of a circuit board by a conventional method.

【図7】本発明に係る金−鉛二元系状態図。FIG. 7 is a gold-lead binary system phase diagram according to the present invention.

【符号の説明】 1…I/Oピン、 2…回路基板、 3…金−ゲルマニウムろう材、 4…ニッケル−ゲルマニウム金属化合物層、 5…無電解ニッケル−ホウ素合金めっき反応金属層、 6…基板表面導体部、 7…スルーホール。[Explanation of reference numerals] 1 ... I / O pin, 2 ... Circuit board, 3 ... Gold-germanium brazing material, 4 ... Nickel-germanium metal compound layer, 5 ... Electroless nickel-boron alloy plating reaction metal layer, 6 ... Substrate Surface conductor, 7 ... through hole.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 節夫 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 渡部 隆好 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内 (72)発明者 太田 敏彦 神奈川県秦野市堀山下1番地株式会社日立 製作所汎用コンピュータ事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Setsuo Ando 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa, Ltd.Institute of Industrial Science and Technology, Hitachi, Ltd. (72) Inventor Takayoshi Watanabe 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Ltd. Production Engineering Laboratory, Hitachi, Ltd. (72) Inventor Toshihiko Ota 1 Horiyamashita, Horiyamashita, Hadano-shi, Kanagawa Hitachi General Computer Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】I/Oピンと回路基板を接合させるために、
前記回路基板の導体表面上に(1)反応金属層を無電解
ニッケルめっき膜で形成し、さらに前記反応金属層の上
に、(2)前記反応金属層の酸化防止、I/Oピンを接合
するろう材との濡れ性の確保、および前記反応金属層中
に含有されて接合強度低下原因となる不純物を吸収の三
つの役割を果たす表面金属層を形成し、(3)前記反応
金属層と前記表面金属層を介して、I/Oピンを回路基板
に接合させることを特徴とするI/Oピン付き回路基板の
製造方法。
1. A method for joining an I / O pin and a circuit board,
(1) A reaction metal layer is formed by an electroless nickel plating film on the conductor surface of the circuit board, and (2) oxidation of the reaction metal layer and I / O pins are joined on the reaction metal layer. A surface metal layer that plays three roles of ensuring wettability with the brazing filler metal and absorbing impurities that are contained in the reaction metal layer and cause a decrease in bonding strength, and (3) the reaction metal layer and A method for manufacturing a circuit board with I / O pins, comprising bonding I / O pins to a circuit board via the surface metal layer.
【請求項2】請求項1において、前記ろう材が、金−ゲ
ルマニウム合金からなるI/Oピン付き回路基板の製造方
法。
2. The method for manufacturing a circuit board according to claim 1, wherein the brazing material is a gold-germanium alloy.
【請求項3】請求項1において、前記表面金属層が金ま
たはパラジウムからなり、その形成方法として無電解め
っき方を用いるI/Oピン付き回路基板の製造方法。
3. The method for manufacturing a circuit board with I / O pins according to claim 1, wherein the surface metal layer is made of gold or palladium, and an electroless plating method is used as a forming method thereof.
【請求項4】請求項1において、前記反応金属層/前記
表面金属層の構成が、ニッケル/金またはニッケル/パ
ラジウムからなり、この積層金属膜に対して熱処理を行
うことにより、回路基板の導体表面と密着性を上げると
同時に、無電解ニッケルめっき膜に含まれる微量の不純
物の一部もしくは全部を不純物−金合金または不純物−
パラジウム合金の形で合金化させることにより、高強度
にI/Oピン接合を得るI/Oピン付き回路基板の製造方法。
4. The conductor of the circuit board according to claim 1, wherein the reaction metal layer / the surface metal layer is composed of nickel / gold or nickel / palladium, and the laminated metal film is heat-treated. At the same time as improving the adhesion to the surface, some or all of the trace amount of impurities contained in the electroless nickel plating film are impurities-gold alloy or impurities-
A method for manufacturing a circuit board with I / O pins, which obtains high strength I / O pin bonding by alloying in the form of a palladium alloy.
JP308095A 1995-01-12 1995-01-12 Manufacture of circuit board with i/o pin Pending JPH08191126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP308095A JPH08191126A (en) 1995-01-12 1995-01-12 Manufacture of circuit board with i/o pin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP308095A JPH08191126A (en) 1995-01-12 1995-01-12 Manufacture of circuit board with i/o pin

Publications (1)

Publication Number Publication Date
JPH08191126A true JPH08191126A (en) 1996-07-23

Family

ID=11547370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP308095A Pending JPH08191126A (en) 1995-01-12 1995-01-12 Manufacture of circuit board with i/o pin

Country Status (1)

Country Link
JP (1) JPH08191126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660946B2 (en) * 2000-04-10 2003-12-09 Ngk Spark Plug Co., Ltd. Pin standing resin-made substrate, method of making pin standing resin-made substrate, pin and method of making pin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660946B2 (en) * 2000-04-10 2003-12-09 Ngk Spark Plug Co., Ltd. Pin standing resin-made substrate, method of making pin standing resin-made substrate, pin and method of making pin

Similar Documents

Publication Publication Date Title
KR101704030B1 (en) Improvement of solder interconnect by addition of copper
JP2528617B2 (en) Multilayer interconnect metal structure and method of forming same
TWI505899B (en) A bonding method, a bonding structure, and a method for manufacturing the same
US6130479A (en) Nickel alloy films for reduced intermetallic formation in solder
JPH09283878A (en) Ceramic board having pad, ceramic board having terminal member and their manufacture
KR20030081172A (en) Semiconductor device and method for fabricating the same
JP3796181B2 (en) Electronic member having lead-free solder alloy, solder ball and solder bump
US4465223A (en) Process for brazing
JP4011214B2 (en) Semiconductor device and joining method using solder
JP4765099B2 (en) Semiconductor device and manufacturing method thereof
JP4699704B2 (en) Wiring board
JP2001060760A (en) Circuit electrode and formation process thereof
US20230126663A1 (en) Layer structure and chip package that includes the layer structure
JPH0366492A (en) Solder connected electronic circuit device and solder connecting method and solder for gold plated connecting terminal
JPH1093004A (en) Electronic component and manufacture thereof
US6742248B2 (en) Method of forming a soldered electrical connection
JP2002111188A (en) Wiring board
EP0055368B1 (en) Process for brazing
JPH08191126A (en) Manufacture of circuit board with i/o pin
JP2007194630A (en) Solder joint layer
JP2007031740A (en) Electronic component, and its manufacturing method
JP2002057444A (en) Wiring board
JP4369643B2 (en) Solder joint layer
EP1956114A1 (en) A layer assembly, a method of forming said layer assembly and a circuit carrier comprising said layer assembly
JP2003223945A (en) LEAD PIN WITH Au-Ge SYSTEM BRAZING MATERIAL