JP2005054267A - Electroless gold plating method - Google Patents

Electroless gold plating method Download PDF

Info

Publication number
JP2005054267A
JP2005054267A JP2004106494A JP2004106494A JP2005054267A JP 2005054267 A JP2005054267 A JP 2005054267A JP 2004106494 A JP2004106494 A JP 2004106494A JP 2004106494 A JP2004106494 A JP 2004106494A JP 2005054267 A JP2005054267 A JP 2005054267A
Authority
JP
Japan
Prior art keywords
nickel
plating
gold plating
solder
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004106494A
Other languages
Japanese (ja)
Inventor
Hiroshi Wachi
弘 和知
Takashi Totsuka
崇志 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EEJA Ltd
Original Assignee
Electroplating Engineers of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electroplating Engineers of Japan Ltd filed Critical Electroplating Engineers of Japan Ltd
Priority to JP2004106494A priority Critical patent/JP2005054267A/en
Publication of JP2005054267A publication Critical patent/JP2005054267A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroless gold plating technique for performing electroless gold plating on a nickel plating under-layer formed on a conductor circuit, which effectively inhibits separation phenomenon at solder/nickel interface formed through soldering of the gold plating and the nickel plating under-layer. <P>SOLUTION: In the electroless gold plating method, the nickel plating for forming the under-layer is performed on the conductor circuit, and the electroless gold plating is performed on the nickel plating under-layer. After the nickel plating, the surface of the nickel plating under-layer is subjected to gold- or palladium-catalyzed activation treatment and subsequently to reductive gold plating. Alternatively, after the nickel plating, reductive palladium plating and electroless gold plating are successively performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、無電解金めっき処理方法に関し、特に、導体回路へ形成したニッケル系下地めっき上に無電解金めっき処理を行い、該ニッケル系下地めっき及び金めっきと、半田との接合をして導体回路と半田との電気的な接続を確保した場合における、半田の剥離現象を有効に防止することが可能となる無電解金めっき処理方法に関する。   The present invention relates to an electroless gold plating method, in particular, an electroless gold plating process is performed on a nickel-based undercoat formed on a conductor circuit, and the nickel-based undercoat and gold plating are joined to solder. The present invention relates to an electroless gold plating method capable of effectively preventing a solder peeling phenomenon when electrical connection between a conductor circuit and solder is ensured.

近年、超高集積回路素子のパッケージとして、超小型で且つ超多ピン化に対応したCSP(Chip Scale Package)やBGA(Ball Grid Array)等の超小型半導体パッケージの開発が盛んに行われている。   In recent years, development of ultra-small semiconductor packages such as CSP (Chip Scale Package) and BGA (Ball Grid Array), which are ultra-small and compatible with ultra-high pin count, has been actively conducted as ultra-high integrated circuit device packages. .

この超小型半導体パッケージの一つであるBGAでは、プリント配線基板等のパッドとパッケージとを接続するために、BGAの搭載面に半田ボールと呼ばれる面格子端子が形成される。そして、この半田ボールを接続対象のパッドとに対向配置してリフロー処理をすることで、プリント配線基板等へ表面実装するのである。このBGAのような超小型半導体パッケージは、近年の高密度、高信頼性の要求に対応できるものであり、広く普及している。   In the BGA, which is one of the ultra-small semiconductor packages, surface lattice terminals called solder balls are formed on the BGA mounting surface in order to connect a pad such as a printed wiring board and the package. Then, the solder balls are disposed opposite to the pads to be connected and subjected to a reflow process to be surface-mounted on a printed wiring board or the like. An ultra-small semiconductor package such as BGA can meet the recent demands for high density and high reliability, and is widely used.

ところで、このBGAの半田ボールは、BGAの搭載面側に露出した金めっき部分へ接合されるのが一般的である。BGAは、半導体素子と接続された導体回路、例えば、銅などの金属で形成された導体回路を備えており、それに半田ボールを接続する必要がある。そして、この半田ボールを接合する部分の金めっき処理としては、通常、無電解金めっき処理が採用されている。   By the way, this BGA solder ball is generally joined to a gold-plated portion exposed on the BGA mounting surface side. The BGA includes a conductor circuit connected to a semiconductor element, for example, a conductor circuit formed of a metal such as copper, and a solder ball needs to be connected thereto. And as a gold plating process of the part which joins this solder ball, the electroless gold plating process is normally employ | adopted.

ここで、BGAの半田ボールについての形成工程を、図1に示すBGAの搭載面側の一部分を拡大した概略断面図を参照しながら説明する。まず、BGAの導体回路1表面の一部には、厚み3〜10μmのニッケル系下地めっき2が無電解めっき処理される。また、その周囲はレジスト3により被覆されている。そして、このニッケル系下地めっき2上に、0.01〜0.20μm厚みの金めっき4を形成する無電解金めっき処理が行われる。BGAの半田ボール5は、この金めっき4及びニッケル下地めっき2の部分へ接合される。このようにして、BGAの搭載面側に複数の面格子端子としての半田ボール5を備えたものが製造される(例えば特許文献1参照)。   Here, a process of forming a BGA solder ball will be described with reference to an enlarged schematic cross-sectional view of a part of the BGA mounting surface shown in FIG. First, a nickel-based base plating 2 having a thickness of 3 to 10 μm is subjected to electroless plating treatment on a part of the surface of the BGA conductor circuit 1. Further, the periphery thereof is covered with a resist 3. Then, an electroless gold plating process for forming a gold plating 4 having a thickness of 0.01 to 0.20 μm is performed on the nickel base plating 2. BGA solder balls 5 are joined to the gold plating 4 and nickel base plating 2 portions. In this way, a product having solder balls 5 as a plurality of surface grid terminals on the BGA mounting surface side is manufactured (for example, see Patent Document 1).

特開2000−349419号公報JP 2000-349419 A

このBGAは、高密度、高信頼性を実現できる表面実装に好適なものとして広く普及しているものであるが、更なる小型、多ピン化に対応したパッケージとしての開発が進行しており、その特性要求も従来にまして非常に高いレベルのものとなっている。また、最近は環境問題の配慮から、半田材料として鉛フリー半田を用いることが多くなっており、錫−銀系、錫−亜鉛系等の種々の鉛フリー半田が使用されている。そのため、BGAの製造の際に鉛フリー半田を使用する場合にあっては、従来の錫−鉛系半田材料と同様な特性を実現することが必要となる。   This BGA is widely used as a surface mountable one that can achieve high density and high reliability, but development as a package that supports further miniaturization and increased pin count is in progress. The characteristic requirements are also at a very high level than before. Recently, in consideration of environmental problems, lead-free solder is often used as a solder material, and various lead-free solders such as tin-silver and tin-zinc are used. Therefore, when lead-free solder is used in the manufacture of BGA, it is necessary to realize the same characteristics as those of conventional tin-lead solder materials.

BGAにおいては、図1で説明したようにその搭載面側に半田ボールを形成する場合、BGAの導体回路表面にニッケル系下地めっきをし、その上に置換による金めっき処理を行うことが、一般的に行われている。しかしながら、近年、このような無電解金めっき処理方法により製造したBGAにリフロー処理を行うと、半田/ニッケル界面の剥離現象を生じることが指摘され始めたのである。特に、近年の過酷なリフロー処理条件に曝される場合や鉛フリー半田を使用している場合では、半田/ニッケル界面の剥離現象が顕著になる傾向が指摘され、その改善を強く求められているのが現状である。   In the case of BGA, when solder balls are formed on the mounting surface side as described in FIG. 1, it is common to perform nickel-based base plating on the conductor circuit surface of BGA and to perform gold plating treatment on the surface thereof. Has been done. However, in recent years, it has begun to be pointed out that when a reflow treatment is performed on a BGA manufactured by such an electroless gold plating method, a peeling phenomenon of the solder / nickel interface occurs. In particular, when exposed to harsh reflow conditions in recent years or when using lead-free solder, the tendency of the solder / nickel interface delamination to be prominent has been pointed out, and there is a strong need for improvement. is the current situation.

本発明は、以上のような事情を背景になされたものであり、導体回路に形成したニッケル系下地めっきに無電解により金めっき処理を行う場合、該金めっき及びニッケル系下地めっきと半田との接合を行っても、半田/ニッケル界面の剥離現象を有効に防止できる無電解金めっき処理技術を提供することを目的とする。   The present invention has been made in the background as described above, and in the case of performing electroless gold plating on the nickel-based base plating formed on the conductor circuit, the gold plating, the nickel-based base plating, and the solder It is an object of the present invention to provide an electroless gold plating technique that can effectively prevent the peeling phenomenon of the solder / nickel interface even when bonding is performed.

本発明者らは、上記したBGAの半田剥離現象について検討したところ、従来から行われている無電解金めっき処理方法では、ニッケル系下地めっきの組成が変化し、その結果、半田の接合特性を低下させているのではないかとの推測をした。このニッケル系下地めっきは、導体回路のバリアーとして形成されるものであるとともに、良好な半田/ニッケル接合が出来るように施されるものである。そして、この半田/ニッケル接合が良好になるように半田濡れ性を向上させるためにニッケル系下地めっき表面には、無電解金めっきとして置換金めっきが施される。   The present inventors examined the solder peeling phenomenon of the above-mentioned BGA. In the conventional electroless gold plating method, the composition of the nickel-based undercoating was changed, and as a result, the solder bonding characteristics were improved. I guessed that it was decreasing. This nickel base plating is formed as a barrier for the conductor circuit, and is applied so as to achieve good solder / nickel bonding. Then, in order to improve the solder wettability so that the solder / nickel bonding is good, the nickel base plating surface is subjected to substitution gold plating as electroless gold plating.

このようにニッケル系下地めっきに対して置換金めっき処理を行うと、ニッケルと金とが置換反応することによりニッケル系下地めっき表面に金が析出することになるが、この置換現象の結果、ニッケル系下地めっき表層では、ニッケルの酸化溶出が起こる。また、無電解ニッケル−リン合金めっき或いはニッケル−ホウ素合金めっきなどの場合は、ニッケルが溶出することにより、ニッケルに対するリンやホウ素の濃度が相対的に高くなる状態が生じるものと考えられる。このことを図1の拡大図である図2を参照して説明すると、置換金めっき処理を行った結果、ニッケル−リン合金めっき或いはニッケル−ホウ素合金めっき等のニッケル系下地めっき2の断面で見ると、ニッケル系下地めっき2の表層側にリンやホウ素等が相対的に高濃度となった部分21が形成され、その下方側ではニッケルに対するリンやホウ素等の相対濃度が低い部分22が形成されるのである。   When the substitutional gold plating treatment is performed on the nickel-based undercoating as described above, gold is deposited on the surface of the nickel-based underplating due to a substitution reaction between nickel and gold. In the surface layer of the system base plating, oxidation elution of nickel occurs. Further, in the case of electroless nickel-phosphorus alloy plating or nickel-boron alloy plating, it is considered that a state in which the concentration of phosphorus or boron relative to nickel becomes relatively high due to elution of nickel. This will be described with reference to FIG. 2 which is an enlarged view of FIG. 1. As a result of the substitution gold plating treatment, it is seen in a cross section of a nickel-based undercoat 2 such as nickel-phosphorus alloy plating or nickel-boron alloy plating. Then, a portion 21 having a relatively high concentration of phosphorus, boron or the like is formed on the surface layer side of the nickel base plating 2, and a portion 22 having a low relative concentration of phosphorus, boron or the like with respect to nickel is formed on the lower side thereof. It is.

そして、このような状態となったニッケル系下地めっき上の置換金めっきの表面に、半田を接合し、その後リフロー処理による熱履歴がBGAに加えられると、リンやホウ素が相対的に高濃度となったニッケル系下地めっきの表層部分において剥離現象が生じ、半田の接合不良を生じさせると考えられるのである。特に、熱履歴の条件が厳しい場合には、このリンやホウ素が相対的に高濃度となったニッケル系下地めっきの表層部分の存在やニッケル系下地めっき表層部の酸化が、半田の剥離現象の大きな要因と本発明者らは推測した。   And when solder is joined to the surface of the displacement gold plating on the nickel-based undercoating that has been in such a state, and then a thermal history due to the reflow treatment is added to the BGA, phosphorus and boron have a relatively high concentration. It is thought that a peeling phenomenon occurs in the surface layer portion of the nickel-based base plating thus formed, resulting in poor solder joints. In particular, when the conditions of the thermal history are severe, the presence of the surface layer portion of the nickel-based undercoating with a relatively high concentration of phosphorus and boron and the oxidation of the nickel-based undercoating surface layer cause solder delamination. The present inventors speculated that this was a major factor.

このような考察の結果、本発明者らは、BGAを製造する際に、ニッケル系下地めっきの組成変化が生じない金めっき処理方法、即ち、ニッケル系下地めっきに、置換反応によるニッケル系下地めっき表層の酸化溶出を極力抑制し、リンやホウ素等が相対的に高濃度となる状態及びニッケル系下地めっき表面層部の酸化を生じさせない無電解金めっき方法について検討した。   As a result of such considerations, the inventors of the present invention have proposed a gold plating method that does not cause a change in composition of the nickel-based undercoating when manufacturing the BGA, that is, a nickel-based undercoating by a substitution reaction in the nickel-based undercoating. An electroless gold plating method that suppresses oxidation elution of the surface layer as much as possible, and does not cause oxidation of the surface layer portion of the nickel-based undercoating and a state in which phosphorus, boron, and the like are at a relatively high concentration was studied.

そこで、まず、このニッケル系下地めっきに、置換反応によるニッケルの酸化溶出を抑え、リンやホウ素等が相対的に高濃度となる部分を形成しない手法の一つとして、本発明者らは置換金めっき処理を行わないで金めっき処理することを考えた。つまり、ニッケル系下地めっき表面に電解金めっき処理をすることにより金めっきを形成するのである。この電解金めっき処理を採用したBGAについて、半田の剥離現象を確認したところ、従来の無電解金めっき処理方法で生じた剥離現象は全く見られなかった。しかしながら、現在行われているBGAの製造工程においては、電解金めっき処理を採用することが全く不可能ではないにしても、そのために必要となる製造設備の大幅な変更、或いはBGA自体の設計変更を伴うことになり、現状においては電解金めっき処理方法を採用し得ないという結論に至った。   Therefore, first, as one of the methods for suppressing the nickel elution due to the substitution reaction and not forming a portion with a relatively high concentration of phosphorus, boron, etc., in the nickel-based undercoating, the present inventors have used substitution gold. The gold plating process was considered without performing the plating process. That is, gold plating is formed by performing electrolytic gold plating treatment on the nickel base plating surface. When the peeling phenomenon of the solder was confirmed for the BGA adopting this electrolytic gold plating treatment, no peeling phenomenon caused by the conventional electroless gold plating treatment method was found. However, in the current manufacturing process of BGA, even if it is not impossible to adopt electrolytic gold plating, it is possible to make a major change in manufacturing equipment or design change of BGA itself. Therefore, the present inventors have concluded that the electrolytic gold plating method cannot be adopted in the present situation.

そのため、本発明者らは、既存のBGA製造設備でも対応可能な方法をさらに検討した結果、本発明を想到するに至った。まず、第一の本発明として、導体回路上にニッケル系下地めっき処理をし、該ニッケル系下地めっき上に無電解金めっきをする無電解金めっき処理方法において、前記ニッケル系下地めっき処理後、該ニッケル系下地めっき表面を金触媒活性化処理又はパラジウム触媒活性化処理をし、還元金めっき処理を行うものとした。   For this reason, the present inventors have come up with the present invention as a result of further studying a method that can be handled by existing BGA manufacturing facilities. First, as the first aspect of the present invention, in the electroless gold plating method in which a nickel-based undercoating treatment is performed on a conductor circuit and electroless gold plating is performed on the nickel-based undercoating, after the nickel-based undercoating treatment, The nickel-based base plating surface was subjected to a gold catalyst activation treatment or a palladium catalyst activation treatment to perform a reduced gold plating treatment.

この第一の本発明に係る無電解金めっき処理方法は、ニッケル系下地めっき表面を金又はパラジウムの触媒活性化処理することにより、半田の剥離現象が効果的に防止できることが判明したことによるものである。第一の本発明の無電解金めっき処理方法における金触媒活性化処理又はパラジウム触媒活性化処理は、従来の置換金めっきのように0.01〜0.20μm厚みの金めっきを析出させるものではなく、極薄い触媒金属の析出、即ち極薄い金又はパラジウムの析出を行う。本発明者らの研究によると、ニッケル系下地めっき表面への置換金めっきの厚みが0.01μm以上になると、わずかに金色の表面を呈するようになり半田/ニッケル界面の剥離現象を生じ始めるのであるが、本発明の金又はパラジウムの触媒活性化処理での極薄い触媒金属の析出であれば、半田/ニッケル界面の剥離現象が生じなくなるのである。現在までの本発明者の研究によると、この金又はパラジウムの触媒活性化処理で析出させる金又はパラジウムの厚みは0.01μm未満の薄い厚みの析出であれば、その後の還元金めっき処理も良好に行え、半田/ニッケル界面の剥離現象も生じないことを確認している。この第一の本発明に係る無電解金めっき処理方法では、金又はパラジウムの触媒活性化処理を行うことで、ニッケル系下地めっきの表層に従来のようなめっき厚みで金を置換析出させないので、ニッケル系下地めっき表層の酸化を抑制し、ニッケルに対するリンやホウ素等の濃度が相対的に高くなる部分を形成しないことが可能となる。   The electroless gold plating method according to the first aspect of the present invention is based on the fact that it has been found that the solder peeling phenomenon can be effectively prevented by subjecting the nickel base plating surface to a catalyst activation treatment of gold or palladium. It is. The gold catalyst activation treatment or palladium catalyst activation treatment in the electroless gold plating treatment method of the first aspect of the present invention does not deposit 0.01 to 0.20 μm thick gold plating as in the case of conventional displacement gold plating. And very thin catalytic metal deposition, i.e. very thin gold or palladium deposition. According to the study by the present inventors, when the thickness of the displacement gold plating on the nickel-based base plating surface becomes 0.01 μm or more, the gold surface slightly appears and the peeling phenomenon of the solder / nickel interface starts to occur. However, if the ultra-thin catalytic metal is deposited by the catalyst activation treatment of gold or palladium according to the present invention, the peeling phenomenon of the solder / nickel interface does not occur. According to the present inventors' research so far, if the thickness of gold or palladium deposited by the catalyst activation treatment of gold or palladium is a thin deposit of less than 0.01 μm, the subsequent reduction gold plating treatment is also good. It has been confirmed that there is no peeling phenomenon at the solder / nickel interface. In the electroless gold plating method according to the first present invention, by performing a catalyst activation treatment of gold or palladium, the surface layer of the nickel-based base plating does not cause substitution deposition of gold with a conventional plating thickness. It is possible to suppress oxidation of the nickel-based base plating surface layer and not to form a portion where the concentration of phosphorus, boron, or the like with respect to nickel is relatively high.

第一の本発明に係る無電解金めっき処理方法における金又はパラジウムの触媒活性化処理は、液の種類や処理条件等に特に制限はなく、要はニッケル系下地めっき表面に、極力、ニッケルの酸化溶出反応を抑制した状態で、還元金めっきの析出ができるように、金又はパラジウムの触媒金属を種付けすればよいものである。   The catalyst activation treatment of gold or palladium in the electroless gold plating method according to the first aspect of the present invention is not particularly limited with respect to the type of liquid and the treatment conditions. A catalytic metal such as gold or palladium may be seeded so that reduced gold plating can be deposited in a state where the oxidation elution reaction is suppressed.

また、第二の本発明に係る無電解金めっき処理方法は、還元パラジウムめっき処理をニッケル系下地めっきの表面に行い、その後無電解金めっき処理を行うものである。この方法によりBGAを製造した場合、半田の剥離現象を効果的に防止できることが判明したのである。   In addition, the electroless gold plating method according to the second aspect of the present invention performs a reduction palladium plating process on the surface of the nickel base plating, and then performs an electroless gold plating process. It has been found that when a BGA is manufactured by this method, the solder peeling phenomenon can be effectively prevented.

第二の本発明の無電解金めっき処理方法における還元パラジウムめっき処理は、ニッケル系下地めっき表面を酸化溶出させないで、ニッケル系下地めっき表面に還元によりパラジウム金属を析出させ、その後無電解で金めっきを析出可能とするものである。本発明者らの研究によると、還元パラジウムめっき処理を行うと、従来の置換金めっき処理に比べて、半田/ニッケル界面の剥離現象が確実に防止されることを確認している。また、本発明において還元パラジウムめっき処理のパラジウムの被覆量は極わずかであることが好ましいことも確認している。その還元パラジウムめっき厚みは、0.01〜0.50μmが望ましい。0.01μm未満であると、無電解金めっき処理が良好に行えず、0.50μmを超えると、半田/ニッケル界面の剥離現象が生じやすくなる傾向となるからである。実用的には、0.03〜0.1μmが望ましい。   In the reduced palladium plating process in the electroless gold plating method of the second invention, the nickel-based undercoating surface is not oxidized and eluted, but palladium metal is deposited on the nickel-based undercoating surface by reduction, and then electrolessly gold-plated. Can be deposited. According to the study by the present inventors, it has been confirmed that when the reduced palladium plating process is performed, the peeling phenomenon of the solder / nickel interface is surely prevented as compared with the conventional displacement gold plating process. In the present invention, it is also confirmed that the amount of palladium covered by the reduced palladium plating treatment is preferably extremely small. The reduced palladium plating thickness is desirably 0.01 to 0.50 μm. If the thickness is less than 0.01 μm, the electroless gold plating process cannot be performed satisfactorily, and if it exceeds 0.50 μm, a peeling phenomenon at the solder / nickel interface tends to occur. Practically, 0.03-0.1 μm is desirable.

また、この第二の本発明における無電解金めっき処理方法では、還元パラジウムめっき処理後に行う無電解金めっきは、置換金めっき処理或いは還元金めっき処理のいずれを採用してもよいものである。本発明者等の研究によると、ニッケル系下地めっきの表面に還元パラジウムめっき処理をしておけば、その後の無電解金めっきが置換型或いは還元型であることに関わらず、半田/ニッケル界面の剥離現象を有効に防止できることを確認したからである。   In the electroless gold plating method according to the second aspect of the present invention, the electroless gold plating performed after the reduction palladium plating treatment may employ either a displacement gold plating treatment or a reduction gold plating treatment. According to the study by the present inventors, if the surface of the nickel-based base plating is subjected to reduction palladium plating, the solder / nickel interface can be obtained regardless of whether the subsequent electroless gold plating is a substitution type or a reduction type. This is because it has been confirmed that the peeling phenomenon can be effectively prevented.

本発明に係る無電解金めっき処理方法によれば、導体回路に形成したニッケル系下地めっきに無電解により金めっき処理を行っても、該金めっき及びニッケル系下地めっきと半田との接合はリフロー処理などの熱履歴を加えられても、半田/ニッケル界面での剥離現象を有効に防止することができる。特に、近年における過酷なリフロー処理条件が適用されるBGAを製造する際に好適な無電解金めっき処理方法である。   According to the electroless gold plating method of the present invention, even if the nickel-based undercoating formed on the conductor circuit is subjected to electroless gold plating, the gold plating and the bonding between the nickel-based undercoating and the solder are reflowed. Even if a thermal history such as treatment is applied, the peeling phenomenon at the solder / nickel interface can be effectively prevented. In particular, it is an electroless gold plating method suitable for manufacturing a BGA to which recent severe reflow processing conditions are applied.

以下に、本発明の好ましい実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

実施例1では、ニッケル系下地めっきに対して電解金めっき処理を行い、BGAを製造した場合の半田の剥離現象を調査した結果を示す。まず、実施例1−1として、図1で示すBGA基板のCu(銅)の導体回路1上に、無電解によるニッケル−リン合金めっき2(厚み6μm)を施し、続いて電解金メッキ処理により約0.05μmの金めっき4を施した。そして、このニッケル−リン合金めっき2及び金めっき4の部分に、鉛フリー半田(錫−銀−銅の三元合金半田)を用いて半田ボール5を形成してBGAを製造した。   Example 1 shows the result of investigating the solder peeling phenomenon when a BGA is manufactured by performing an electrolytic gold plating process on a nickel-based base plating. First, as Example 1-1, the electroless nickel-phosphorus alloy plating 2 (thickness 6 μm) is applied on the Cu (copper) conductor circuit 1 of the BGA substrate shown in FIG. 0.05 μm gold plating 4 was applied. And the solder ball 5 was formed in the part of this nickel- phosphorus alloy plating 2 and the gold plating 4 using the lead free solder (Tin-silver-copper ternary alloy solder), and BGA was manufactured.

実施例1−2として、上記実施例1−1の無電解によるニッケル−リン合金めっきの代わりに電解により無光沢ニッケルめっき(厚み6μm)を下地として施し、その後の金めっき処理及び半田ボールの形成は実施例1−1と同様にしてBGAを製造した。   As Example 1-2, instead of the electroless nickel-phosphorus alloy plating of Example 1-1 above, matte nickel plating (thickness 6 μm) is applied by electrolysis as a base, followed by gold plating treatment and formation of solder balls Produced BGA in the same manner as in Example 1-1.

さらに、従来例1としてCu(銅)の導体回路1上に無電解によるニッケル−リン合金めっき2(厚み6μm)を施し、続いて置換金メッキ処理により約0.05μmの金めっき4を施した。その後、実施例1−1と同じ鉛フリー半田を用いて半田ボールを形成してBGAを製造した。上述した各めっき処理の具体的な条件を以下に纏めて示す。   Further, as a conventional example 1, electroless nickel-phosphorus alloy plating 2 (thickness 6 μm) was applied on a Cu (copper) conductor circuit 1, and subsequently gold plating 4 of about 0.05 μm was applied by a displacement gold plating process. Thereafter, a solder ball was formed using the same lead-free solder as in Example 1-1 to manufacture a BGA. Specific conditions for the above-described plating processes are summarized below.

・ 無電解ニッケル−リン合金めっき処理(実施例1−1、従来例1)
Ni 6g/L
次亜リン酸Na 30g/L
pH 4.5〜5.0
液温 90℃
浸漬時間 18min
Electroless nickel-phosphorus alloy plating treatment (Example 1-1, conventional example 1)
Ni 6g / L
Hypophosphite Na 30g / L
pH 4.5-5.0
Liquid temperature 90 ℃
Immersion time 18min

・ 無光沢の電解ニッケルめっき処理(実施例1−2)
スルファミン酸Ni 75g/L(Niメタルとして)
ホウ酸 30g/L
塩化ニッケル 6g/L
pH 3.0〜4.5
液温 55℃
電流密度 3A/dm
Matte electrolytic nickel plating treatment (Example 1-2)
Sulfamic acid Ni 75g / L (as Ni metal)
Boric acid 30g / L
Nickel chloride 6g / L
pH 3.0-4.5
Liquid temperature 55 ℃
Current density 3A / dm 2

・ 電解金めっき処理(実施例1−1〜2)
シアン化金カリウム 2g/L
有機酸塩 200g/L
pH 3.5〜4.0
液温 50℃
電流密度 3A/dm
Electrolytic gold plating treatment (Examples 1-1 and 2)
Potassium cyanide 2g / L
Organic acid salt 200g / L
pH 3.5-4.0
Liquid temperature 50 ℃
Current density 3A / dm 2

・ 置換金めっき処理(従来例1)
シアン化金カリウム 4g/L
キレート剤 50g/L
有機酸塩 20g/L
pH 4.0〜5.0
液温 90℃
・ Replacement gold plating treatment (conventional example 1)
Potassium cyanide 4g / L
Chelating agent 50g / L
Organic acid salt 20g / L
pH 4.0-5.0
Liquid temperature 90 ℃

以上のようにして得られた各BGAについて、リフロー処理の熱履歴を加え、半田ボールの半田プル強度測定を行った。   For each BGA obtained as described above, the heat history of the reflow process was added, and the solder pull strength of the solder ball was measured.

上述したリフロー処理条件の熱履歴を加えた各BGAについて、半田プル強度を測定することで、接合強度とその破壊モードを調査した。その結果を表1に示す。半田プル強度測定は、半田プル強度測定器(Dage Bond tester 4000、Dage社製)を用いて半田ボールの接合強度を測定した。表1に示す破壊モード値は、半田プル強度測定後のサンプルを確認することで、全測定サンプル数に占める、界面剥がれ(ニッケル系下地めっき部分と半田ボールとの接合界面で剥がれたもの)が生じていたサンプル数の割合を算出した値である。   About each BGA which added the thermal history of the reflow processing conditions mentioned above, the joint strength and its failure mode were investigated by measuring solder pull strength. The results are shown in Table 1. The solder pull strength measurement was performed by measuring the solder ball bonding strength using a solder pull strength measuring device (Dage Bond tester 4000, manufactured by Dage). The failure mode values shown in Table 1 show that after peeling the solder pull strength measurement, the interface peeling (those peeled off at the bonding interface between the nickel-based base plating portion and the solder ball) occupying the total number of measurement samples. It is a value obtained by calculating the ratio of the number of samples that occurred.

Figure 2005054267
Figure 2005054267

表1を見ると判るように、ニッケル系下地めっきに電解金めっき処理を行うと、半田の剥離現象を防止できることが明確に判明した。このことより、半田の剥離現象がニッケル系下地めっきに置換金めっき処理を行うことが大きな要因であるということが推定された。   As can be seen from Table 1, it was clearly found that the solder peeling phenomenon can be prevented by performing electrolytic gold plating on the nickel base plating. From this, it was presumed that the solder peeling phenomenon was a major factor in performing the displacement gold plating treatment on the nickel base plating.

この実施例2では、ニッケル系下地めっきとして無電解によるニッケル−リン合金めっき(厚み6μm)を施したものに、本発明に係る無電解金めっき処理方法における金又はパラジウムの触媒活性化処理を施して還元金めっき処理(約0.05μm)を行った場合、及び還元パラジウムめっき処理を施して還元金めっき処理(約0.05μm)を行った場合によりBGAを製造した場合の半田の剥離現象を調査した結果を示す。   In Example 2, the nickel-phosphorus alloy plating (thickness: 6 μm) that was electrolessly plated as the nickel-based base plating was subjected to a catalyst activation treatment of gold or palladium in the electroless gold plating method according to the present invention. When the reduced gold plating process (about 0.05 μm) is performed and when the reduced palladium plating process is performed and the reduced gold plating process (about 0.05 μm) is performed, the solder peeling phenomenon when the BGA is manufactured The survey results are shown.

まず、実施例2−1として、図1で示したBGAのCu(銅)の導体回路1上に無電解によるニッケル−リン合金めっき2(厚み6μm)を施し、続いて、金触媒液をニッケル−リン合金めっき表面に接触させることで触媒活性化処理を行った。その後、還元金めっき処理をすることにより、0.05μmの金めっき4を施した。そして、実施例1と同様な半田ボールを形成してBGAを製造した。尚、この際の還元金めっきの処理条件は実施例1と同様である。   First, as Example 2-1, electroless nickel-phosphorus alloy plating 2 (thickness 6 μm) was applied on the BGA Cu (copper) conductor circuit 1 shown in FIG. -The catalyst activation process was performed by making it contact the phosphorus alloy plating surface. Thereafter, gold plating 4 of 0.05 μm was applied by reducing gold plating. Then, the same solder balls as in Example 1 were formed to manufacture a BGA. The processing conditions for reducing gold plating at this time are the same as in Example 1.

実施例2−2として、上記実施例2−1の金触媒液による触媒活性化処理の代わりに、パラジウム触媒液を接触することで触媒活性化処理した。その後の還元金めっき処理及び半田ボールの形成は実施例2−1と同様にしてBGAを製造した。   As Example 2-2, instead of the catalyst activation treatment with the gold catalyst solution of Example 2-1 above, the catalyst activation treatment was performed by contacting the palladium catalyst solution. Subsequent reduction gold plating treatment and solder ball formation were carried out in the same manner as in Example 2-1, to produce BGA.

実施例2−3として、図1で示したBGAのCu(銅)の導体回路1上に無電解によるニッケル−リン合金めっき2(厚み6μm)を施し、続いて、還元パラジウムめっきをニッケル−リン合金めっき表面に施した。その後、還元金めっき処理をすることにより、0.05μmの金めっき4を施した。そして、実施例1と同様な半田ボールを形成してBGAを製造した。尚、この際の還元金めっきの処理条件は実施例2と同様である。   As Example 2-3, electroless nickel-phosphorus alloy plating 2 (thickness 6 μm) was applied on the BGA Cu (copper) conductor circuit 1 shown in FIG. 1, and subsequently reduced palladium plating was applied to nickel-phosphorus. The alloy plating surface was applied. Thereafter, gold plating 4 of 0.05 μm was applied by reducing gold plating. Then, the same solder balls as in Example 1 were formed to manufacture a BGA. The processing conditions for reducing gold plating at this time are the same as in Example 2.

実施例2−4として、図1で示したBGAのCu(銅)の導体回路1上に無電解によるニッケル−リン合金めっき2(厚み6μm)を施し、続いて、還元パラジウムめっきをニッケル−リン合金めっき表面に施した。その後、置換金めっき処理をすることにより、0.05μmの金めっき4を施した。そして、実施例1と同様な半田ボールを形成してBGAを製造した。尚、この際の置換金金めっきの処理条件は上記従来例1と同様である。   As Example 2-4, electroless nickel-phosphorus alloy plating 2 (thickness 6 μm) was applied on the BGA Cu (copper) conductor circuit 1 shown in FIG. 1, and subsequently reduced palladium plating was applied to nickel-phosphorus. The alloy plating surface was applied. Thereafter, gold plating 4 of 0.05 μm was applied by performing a displacement gold plating treatment. Then, the same solder balls as in Example 1 were formed to manufacture a BGA. The processing conditions for the substitution gold plating at this time are the same as those in the above-mentioned conventional example 1.

・ 金触媒液による触媒活性化処理(実施例2−1)
シアン化金カリウム 4g/L
キレート剤 70g/L
還元剤 1g/L
pH 4.0
液温 55℃
浸漬時間 1min
-Catalyst activation treatment with gold catalyst solution (Example 2-1)
Potassium cyanide 4g / L
Chelating agent 70g / L
Reducing agent 1g / L
pH 4.0
Liquid temperature 55 ℃
Immersion time 1 min

・ パラジウム触媒液による触媒活性化処理(実施例2−1)
ジニトロジアミンパラジウム 25 mg/L(Pdメタルとして)
pH 7.0
液温 30℃
浸漬時間 1min
Catalyst activation treatment with palladium catalyst solution (Example 2-1)
Dinitrodiamine palladium 25 mg / L (as Pd metal)
pH 7.0
Liquid temperature 30 ℃
Immersion time 1 min

・還元パラジウムめっき処理(実施例2−3、2−4)
Pd 1g/L
アンモニア水 30g/L
ホウ酸 40g/L
無機酸塩 110g/L
pH 8.0
液温 53℃
Reduction palladium plating treatment (Examples 2-3 and 2-4)
Pd 1g / L
Ammonia water 30g / L
Boric acid 40g / L
Inorganic acid salt 110g / L
pH 8.0
Liquid temperature 53 ℃

・還元金めっき処理(実施例2−1〜3)
シアン化金カリウム 5g/L
水酸化カリウム 9g/L
水素化ホウ素ナトリウム 15g/L
pH 13.0
液温 70℃
浸漬時間 1min
-Reduction gold plating treatment (Examples 2-1 to 3)
Potassium cyanide 5g / L
Potassium hydroxide 9g / L
Sodium borohydride 15g / L
pH 13.0
Liquid temperature 70 ℃
Immersion time 1 min

以上のようにして得られた各BGAをについて、実施例1で説明したリフロー処理の熱履歴を加え、半田ボールの半田プル強度測定を行った。リフロー処理条件、半田プル強度測定については、実施例1と同じであるため説明を省略する。各実施例のBGAにおける、接合強度とその破壊モードの測定結果を表2に示す。   For each BGA obtained as described above, the thermal history of the reflow processing described in Example 1 was added, and the solder pull strength measurement of the solder balls was performed. Since the reflow processing conditions and the solder pull strength measurement are the same as those in the first embodiment, the description thereof is omitted. Table 2 shows the measurement results of the bonding strength and the fracture mode in the BGA of each example.

Figure 2005054267
Figure 2005054267

表2を見ると判るように、ニッケル系下地めっきに対して、触媒活性化処理を行うと、半田の剥離現象を防止できることが判明した。また、本発明の無電解めっき処理方法における還元パラジウムめっき処理を行うと、その後の無電解金めっきの種類、即ち還元金めっき処理或いは置換金めっき処理に関わらず、触媒活性化処理の場合と同様に、半田の剥離現象を効果的に防止できることが判明した。   As can be seen from Table 2, it has been found that when the catalyst activation treatment is performed on the nickel base plating, the solder peeling phenomenon can be prevented. Further, when the reduced palladium plating treatment in the electroless plating treatment method of the present invention is performed, it is the same as in the case of the catalyst activation treatment regardless of the type of subsequent electroless gold plating, that is, the reduced gold plating treatment or the displacement gold plating treatment. In addition, it has been found that the solder peeling phenomenon can be effectively prevented.

BGAの搭載面側の一部分を拡大した概略断面図。The schematic sectional drawing which expanded a part of the mounting surface side of BGA. 図1の拡大図。The enlarged view of FIG.

符号の説明Explanation of symbols

1 導体回路
2 ニッケル系下地めっき
3 レジスト
4 金めっき
5 半田ボール
1 Conductor Circuit 2 Nickel Base Plating 3 Resist 4 Gold Plating 5 Solder Ball

Claims (2)

導体回路上にニッケル系下地めっき処理をし、該ニッケル系下地めっき上に無電解金めっきをする無電解金めっき処理方法において、
前記ニッケル系下地めっき処理後、該ニッケル系下地めっき表面を金触媒活性化処理又はパラジウム触媒活性化処理をし、還元金めっき処理を行うことを特徴とする無電解金めっき処理方法。
In the electroless gold plating method of performing nickel-based base plating on the conductor circuit and performing electroless gold plating on the nickel-based base plating,
An electroless gold plating method, wherein after the nickel-based undercoating treatment, the nickel-based undercoating surface is subjected to a gold catalyst activation treatment or a palladium catalyst activation treatment to perform a reduced gold plating treatment.
導体回路上にニッケル系下地めっき処理をし、該ニッケル系下地めっき上に無電解金めっき処理をする無電解金めっき処理方法において、
前記ニッケル系下地めっき処理後、ニッケル系下地めっき表面に還元パラジウムめっき処理を行い、その後無電解金めっき処理を行うことを特徴とする無電解金めっき処理方法。
In the electroless gold plating method of performing a nickel-based undercoating treatment on a conductor circuit and performing an electroless gold plating treatment on the nickel-based undercoating,
An electroless gold plating method, wherein after the nickel-based undercoating treatment, a reduced palladium plating treatment is performed on the nickel-based undercoating surface, and then an electroless gold plating treatment is performed.
JP2004106494A 2003-07-24 2004-03-31 Electroless gold plating method Pending JP2005054267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106494A JP2005054267A (en) 2003-07-24 2004-03-31 Electroless gold plating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003278692 2003-07-24
JP2004106494A JP2005054267A (en) 2003-07-24 2004-03-31 Electroless gold plating method

Publications (1)

Publication Number Publication Date
JP2005054267A true JP2005054267A (en) 2005-03-03

Family

ID=34380052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106494A Pending JP2005054267A (en) 2003-07-24 2004-03-31 Electroless gold plating method

Country Status (1)

Country Link
JP (1) JP2005054267A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144187A (en) * 2006-12-06 2008-06-26 C Uyemura & Co Ltd Electroless gold plating bath, electroless gold plating method, and electronic component
JP2008144188A (en) * 2006-12-06 2008-06-26 C Uyemura & Co Ltd Electroless gold plating bath, electroless gold plating method, and electronic component
JP2008174774A (en) * 2007-01-17 2008-07-31 Okuno Chem Ind Co Ltd Reduction precipitation type electroless gold plating liquid for palladium film
JP2009228103A (en) * 2008-03-25 2009-10-08 Sekisui Chem Co Ltd Plating structure, and method for manufacturing plating structure
WO2014010662A1 (en) 2012-07-13 2014-01-16 東洋鋼鈑株式会社 Electroless gold plating method and gold-plate-coated material
JP2014067852A (en) * 2012-09-26 2014-04-17 Toyota Central R&D Labs Inc Electrode
JP2016086024A (en) * 2014-10-23 2016-05-19 イビデン株式会社 Printed wiring board
WO2017217125A1 (en) * 2016-06-13 2017-12-21 上村工業株式会社 Film formation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209359A (en) * 1995-02-07 1996-08-13 Sumitomo Metal Ind Ltd Ic package
JPH10168578A (en) * 1996-12-10 1998-06-23 Sakae Denshi Kogyo Kk Electroless gold plating method
JPH10287994A (en) * 1997-04-14 1998-10-27 World Metal:Kk Plating structure of bonding part
JPH11140658A (en) * 1997-11-05 1999-05-25 Hitachi Chem Co Ltd Substrate for mounting semiconductor and its production
JPH11140659A (en) * 1997-11-05 1999-05-25 Hitachi Chem Co Ltd Substrate for mounting semiconductor and its production
JP2001358164A (en) * 2000-06-13 2001-12-26 Ne Chemcat Corp Electrode formed with electroless multilayer plating film thereon, and its manufacturing method
JP2002057444A (en) * 2000-08-08 2002-02-22 Kyocera Corp Wiring board
JP2002327279A (en) * 2001-05-02 2002-11-15 Furukawa Electric Co Ltd:The Method for joining electronic components

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209359A (en) * 1995-02-07 1996-08-13 Sumitomo Metal Ind Ltd Ic package
JPH10168578A (en) * 1996-12-10 1998-06-23 Sakae Denshi Kogyo Kk Electroless gold plating method
JPH10287994A (en) * 1997-04-14 1998-10-27 World Metal:Kk Plating structure of bonding part
JPH11140658A (en) * 1997-11-05 1999-05-25 Hitachi Chem Co Ltd Substrate for mounting semiconductor and its production
JPH11140659A (en) * 1997-11-05 1999-05-25 Hitachi Chem Co Ltd Substrate for mounting semiconductor and its production
JP2001358164A (en) * 2000-06-13 2001-12-26 Ne Chemcat Corp Electrode formed with electroless multilayer plating film thereon, and its manufacturing method
JP2002057444A (en) * 2000-08-08 2002-02-22 Kyocera Corp Wiring board
JP2002327279A (en) * 2001-05-02 2002-11-15 Furukawa Electric Co Ltd:The Method for joining electronic components

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457462B (en) * 2006-12-06 2014-10-21 Uyemura C & Co Ltd Electroless gold plating bath, electroless gold plating method and electronic parts
JP2008144188A (en) * 2006-12-06 2008-06-26 C Uyemura & Co Ltd Electroless gold plating bath, electroless gold plating method, and electronic component
JP2008144187A (en) * 2006-12-06 2008-06-26 C Uyemura & Co Ltd Electroless gold plating bath, electroless gold plating method, and electronic component
JP2008174774A (en) * 2007-01-17 2008-07-31 Okuno Chem Ind Co Ltd Reduction precipitation type electroless gold plating liquid for palladium film
JP2009228103A (en) * 2008-03-25 2009-10-08 Sekisui Chem Co Ltd Plating structure, and method for manufacturing plating structure
WO2014010662A1 (en) 2012-07-13 2014-01-16 東洋鋼鈑株式会社 Electroless gold plating method and gold-plate-coated material
CN104471109A (en) * 2012-07-13 2015-03-25 东洋钢钣株式会社 Electroless gold plating method and gold-plate-coated material
JPWO2014010662A1 (en) * 2012-07-13 2016-06-23 東洋鋼鈑株式会社 Electroless gold plating method and gold plating coating material
US9388497B2 (en) 2012-07-13 2016-07-12 Toyo Kohan Co., Ltd. Method of electroless gold plating
US10006125B2 (en) 2012-07-13 2018-06-26 Toyo Kohan Co., Ltd. Gold plate coated material
JP2014067852A (en) * 2012-09-26 2014-04-17 Toyota Central R&D Labs Inc Electrode
JP2016086024A (en) * 2014-10-23 2016-05-19 イビデン株式会社 Printed wiring board
WO2017217125A1 (en) * 2016-06-13 2017-12-21 上村工業株式会社 Film formation method
JP2017222891A (en) * 2016-06-13 2017-12-21 上村工業株式会社 Film formation method
US10941493B2 (en) 2016-06-13 2021-03-09 C. Uyemura & Co., Ltd. Film formation method

Similar Documents

Publication Publication Date Title
US7808109B2 (en) Fretting and whisker resistant coating system and method
KR100688833B1 (en) Method for plating on printed circuit board and printed circuit board produced therefrom
US7122894B2 (en) Wiring substrate and process for manufacturing the same
US9572252B2 (en) Wiring substrate and method of manufacturing wiring substrate
US20120285720A1 (en) Corrosion resistant electrical conductor
US9883586B2 (en) Wiring substrate for bonding using solder having a low melting point and method for manufacturing same
JP2005054267A (en) Electroless gold plating method
JP4759416B2 (en) Non-cyanide electroless gold plating solution and electroless gold plating method
JP2013108180A (en) Substrate and method for producing the same
JP4699704B2 (en) Wiring board
JP5978587B2 (en) Semiconductor package and manufacturing method thereof
KR101184875B1 (en) Electric joint structure, and method for preparing the same
JP2007262573A (en) Palladium plating solution
JP4798451B2 (en) Wiring board and manufacturing method thereof
JP2000277897A (en) Terminal for solder-ball connection and its formation method and as manufacture of board for semiconductor mounting
JP2005163153A (en) Electroless nickel substituted gold plating treatment layer, electroless nickel plating solution, and electroless nickel substituted gold plating treatment method
JP2005286323A (en) Wiring substrate, wiring substrate with solder member, and manufacturing method of the same
JP6025259B2 (en) Plating
JP2012204476A (en) Wiring board and manufacturing method therefor
JP2006049589A (en) Forming method of solder joint
JP2013076135A (en) Current-carrying member for solder connection, wiring substrate, and method for forming plating film
Fang Bondability & solderability of neutral electroless gold
JP2010031312A (en) Pattern plating film, and forming method thereof
JP2007266582A (en) Electronic component
JP2006002177A (en) Electroless copper plating bath composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100129