JP2004300549A - Spheroidizing annealing treatment method for case-hardened steel excellent in cold-workability - Google Patents

Spheroidizing annealing treatment method for case-hardened steel excellent in cold-workability Download PDF

Info

Publication number
JP2004300549A
JP2004300549A JP2003096907A JP2003096907A JP2004300549A JP 2004300549 A JP2004300549 A JP 2004300549A JP 2003096907 A JP2003096907 A JP 2003096907A JP 2003096907 A JP2003096907 A JP 2003096907A JP 2004300549 A JP2004300549 A JP 2004300549A
Authority
JP
Japan
Prior art keywords
steel
spheroidizing annealing
cold
cooling
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003096907A
Other languages
Japanese (ja)
Inventor
Misaki Nagao
実佐樹 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2003096907A priority Critical patent/JP2004300549A/en
Publication of JP2004300549A publication Critical patent/JP2004300549A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spheroidizing annealing treatment for Ni-containing steel material which can treat by using an ordinary continuous furnace and can produce the steel material having low hardness and excellent cold-workability. <P>SOLUTION: In the spheroidizing annealing treatment method for case-hardened steel excellent in the cold-workability, the Ni-containing steel comprising, by mass%, 0.10-0.30% C, 0.01-1.00% Si, 0.10-2.00% Mn, ≤0.03% P, ≤0.03% S, 0.10-3.00% Ni and the balance Fe with inevitable impurities, is cooled at a cooling speed of 5-30°C/hr in the range of 670-600°C after the ferrite area ratio becomes 1-30% by keeping the maximum temperature to be Ac<SB>3</SB>to (Ac<SB>3</SB>-30°C). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はNi含有肌焼鋼の冷間加工性に優れた熱処理方法に関する。
【0002】
【従来の技術】
肌焼き鋼を部品に加工する場合に、棒鋼から切削加工するか、塑性加工を加えた後切削加工を施したり、塑性加工ままで浸炭等の熱処理を実施して部品を製造する。
【0003】
ところで、これらの肌焼き鋼の加工方法としては、最近ではニアネットシェイプあるいはネットシェイプが可能な冷間鍛造が広く実施されいる。この冷間鍛造に供される材料としては、圧延ままや焼きならし処理をした鋼材が用いられることもあるが、一般的には硬度が低く、変形能に優れる焼きなまし処理した鋼材、特に炭化物を球状化させた球状化焼きなまし処理した鋼材が用いられている。球状化焼きなましについては、過共析鋼においては、例えば、A以上Acm以下の約760〜780℃に加熱した後、約700℃までは徐冷し、この温度に約3時間ぐらい保持した後、変態が終わってから急冷する等温球状化焼きなましが記載されており(非特許文献1参照)、また、A点直上またはAとAcmの間の温度に加熱した後、非常にゆっくり炉冷するかA点直下の温度に保持する球状化焼きなましが記載されている(非特許文献2参照)。肌焼鋼においても同様にAc以上、Ac以下の温度にて加熱し、その後徐冷することで硬さを低下する方法が一般的である。
【0004】
ところで、自動車等の機械部品に使用されるギヤやシャフトは通常浸炭処理をするために肌焼き鋼が使用されている。その中でも特に強度の要求される部分には、Niにより靭性を向上させたSNCM鋼やSNC鋼などが使用されている。ところが冷間鍛造をするためにこのようなNi添加鋼を焼きなましを行おうとした場合、SCR鋼やSCM鋼と同じように前述の球状化焼きなましを実施しても、硬さが充分に下がらず、かつ、冷間加工で割れが発生するという問題がある。
【0005】
このような球状化焼きなまし処理したNi添加鋼材のミクロ組織を観察すると、フェライトと球状化した炭化物の他に部分的にマルテンサイトが生成している。この部分的に生成したマルテンサイトが冷間加工時の割れ発生を引き起こしていると考えられる。
【0006】
またNi添加鋼では、マルテンサイト生成を回避するため一旦Ac点以上に加熱し、全てオーステナイト化した後に600〜700℃で保持することでフェライトパーライト組織を得る完全焼きなましが用いられたりする。しかし、完全焼きなましでは球状化焼きなましに比して硬さが高く、また徐冷時間も長く必要であり、サイクルアニーリングのように加熱後保持温度までの冷却を早くとるような場合には、Ac点以上の保持温度から600〜700℃に急冷可能な特別な炉の設置が必要になる。
【0007】
【特許文献1】
特開昭54−145334号公報
【特許文献2】
特開平02−225620号公報
【特許文献3】
特開平04−297521号公報
【特許文献4】
特開平05−125437号公報
【非特許文献1】
日本熱処理技術協会「熱処理ガイドブック」(初版5刷)、平成9年6月10日、p.115〜116
【非特許文献2】
日本鉄鋼協会「鋼の熱処理」(第2版第2刷)、昭和51年9月20日、p.44
【0008】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、通常の連続炉を使用して処理が可能で、かつ、硬さが低く冷間加工性に優れた鋼材とすることが可能なNi含有肌焼鋼材の球状化焼きなまし処理方法を提供することである。
【0009】
【課題を解決するための手段】
発明者は、上記の従来の技術において記載したNi添加鋼について球状化焼きなましを実施した場合に、マルテンサイトが生成する原因を究明して以下の原因があると考えた。
【0010】
すなわち、球状化焼きなましにおいて、Ac〜Ac間の最高点温度に保持した場合にフェライトとオーステナイトの2相になり、また、Acに近い温度に保持した場合にフェライトとオーステナイトとセメンタイトの3相になっている。この時オーステナイト中にはCやNi、Mn等の合金元素が濃縮した状態となっている。ところで、NiやMnはオーステナイト領域を広げる元素であり、これらの元素が濃縮したオーステナイト部分は、焼きの入りやすい状態となっており、このオーステナイトへの合金元素の濃縮が冷却後にマルテンサイトを生成させる原因になっていることを見出した。
【0011】
そこで、このようなマルテンサイトの生成を回避するために、球状化焼きなまし時の最高点温度をAc〜(Ac−30℃)に保持し、その時のフェライト面積率を1〜30%とすることで、最高点温度に保持した時のオーステナイト領域を広くすることにより、オーステナイト中の合金元素の濃度を少なくなるようにした。
【0012】
さらに、保持後の冷却時には、フェライト生成域、セメンタイト生成域である670〜600℃の範囲を5℃/hr以上、30℃/hr以下の速度で冷却するものとする。その理由は、670〜600℃の温度域を5℃/hr未満の速度で徐冷した場合には、フェライトが先に生成することにより残りのオーステナイト部分に合金元素が濃縮する。その結果、マルテンサイト組織が生成して冷間加工性が悪くなる。一方、冷却速度が30℃/hrを超えると、冷却が早過ぎてフェライトとセメンタイトが層状に生成しパーライト組織となり、冷間加工性が悪くなる。
【0013】
その他の条件について説明すると、球状化焼きなまし時の最高点温度がAc〜(Ac−30℃)では、組織はフェライト・オーステナイトの2相であり、セメンタイトは固溶する。セメンタイトを残して球状化焼きなましを行う場合には昇温速度が重要となるが、本発明においては最高点温度までの昇温速度は特に規定する必要はない。
【0014】
さらに、最高点温度での保持時間であるが、最高点温度に保持した後は速やかに所望とするフェライト・オーステナイト組織が得られるため、特に規定する必要はないが、望ましくは30min以上保持する。
【0015】
さらに最高点温度から670℃までの冷却速度であるが、この温度域ではオーステナイト部分の変態がほとんど進まないことから特に規定する必要はない。望ましくは5℃/hr〜5℃/secの間で冷却する。
【0016】
600℃より低い温度への冷却速度であるが、600℃までに変態を終了させているため特に規定する必要はないが、望ましくは5℃/sec以下の間で冷却する。
【0017】
すなわち、課題を解決するための本発明の手段は、請求項1の発明では、質量%で、C:0.10〜0.30%、Si:0.01〜1.00%、Mn:0.10〜2.00%、P:0.03%以下、S:0.03%以下、Ni:0.10〜3.00%からなり、残部Feおよび不可避不純物からなるNi含有鋼を最高点温度をAc〜(Ac−30℃)に保持してフェライト面積率を1〜30%とした後、670〜600℃の範囲を5〜30℃/hrの冷却速度で冷却することを特徴とする冷間加工性に優れた肌焼き鋼の球状化焼きなまし処理方法である。
【0018】
請求項2の発明では、請求項1の手段のNi含有鋼成分に、さらに、質量%で、Cr:0.01〜3.00%、Mo:0.01〜0.50%から選択した1種又は2種を含有し、残部Feおよび不可避不純物からなるNi含有鋼を最高点温度をAc〜(Ac−30℃)に保持してフェライト面積率を1〜30%とした後、670〜600℃の範囲を5〜30℃/hrの冷却速度で冷却することを特徴とする冷間加工性に優れた肌焼き鋼の球状化焼きなまし処理方法である。
【0019】
請求項3の発明では、請求項1又は2の手段のNi含有鋼成分に、さらに、質量%で、Nb:0.01〜0.10%、Ti:0.001〜0.20%、Al:0.010〜0.10%から選択した1種又は2種以上を含有すると共に、N:0.005〜0.020%を含有し、残部Feおよび不可避不純物からなるNi含有鋼を最高点温度をAc〜(Ac−30℃)に保持してフェライト面積率を1〜30%とした後、670〜600℃の範囲を5〜30℃/hrの冷却速度で冷却することを特徴とする冷間加工性に優れた肌焼き鋼の球状化焼きなまし処理方法である。
【0020】
請求項4の発明では、請求項1〜3のいずれか1項の手段のNi含有鋼成分に、さらに、質量%で、Pb:0.001〜0.30%、Se:0.001〜0.30%、Te:0.001〜0.30%、Bi:0.001〜0.30%から選択した1種又は2種以上を含有し、残部Feおよび不可避不純物からなるNi含有鋼を最高点温度をAc〜(Ac−30℃)に保持してフェライト面積率を1〜30%とした後、670〜600℃の範囲を5〜30℃/hrの冷却速度で冷却することを特徴とする冷間加工性に優れた肌焼き鋼の球状化焼きなまし処理方法である。
【0021】
以下に本発明におけるNi添加鋼の成分範囲の限定理由について説明する。なお、説明中の%は質量%を示す。
【0022】
C:0.10〜0.30%
Cは、0.10%未満では浸炭した時に充分な強度が確保できない。0.30%を超えると球状化焼きなましを施しても硬さが下がらず冷間加工が困難である。そこで、C:0.10〜0.30%とする。
【0023】
Si:0.01〜1.00%
Siは、0.01%未満では焼入性向上の効果がない。1.00%を超えると球状化焼きなましを施しても硬さが下がらず冷間加工が困難である。そこで、Si:0.01〜1.00%とする。
【0024】
Mn:0.10〜2.00%
Mnは、0.10%未満では焼入性向上の効果がない。2.00%を超えると球状化焼きなましを施しても硬さが下がらず冷間加工が困難である。そこで、Mn:0.10〜2.00%とする。
【0025】
P:0.03%以下
Pは、結晶粒界に偏在し強度を低下させるので低い方がよい。しかし、0.03%以下であれば許容できる。そこで、P:0.03%以下とする。
【0026】
S:0.03%以下
Sは、MnとMnSを形成する。MnSは被削性を向上させる効果もあるが、冷間加工性を低下させる。そこでS:0.03%以下とする。
【0027】
Ni:0.10〜3.00%
Niは、0.10%未満では焼入性向上及び靭性向上の効果がない。一方、3.00%を超えると靭性向上の効果が飽和し、また、球状化焼きなましを施しても硬さが下がらず冷間加工が困難である。そこでNi:0.10〜3.00%とする。
【0028】
Cr:0.01〜3.00%
Crは、0.01%未満では焼入性向上の効果がない。一方、3.00%を超えると球状化焼きなましを施しても硬さが下がらず冷間加工が困難である。そこでCr:0.01〜3.00%とする。
【0029】
Mo:0.01〜0.50%
Moは、0.01%未満では焼入性向上の効果がない。一方、0.50%を超えると球状化焼きなましを施しても硬さが下がらず冷間加工が困難である。そこでMo:0.01〜0.50%とする。
なお、Cr、Moは選択元素であり、上記の範囲内で、1種又は2種含有することができる。
【0030】
Nb:0.01〜0.10%
Nbは、0.01%未満では細粒化の効果がない。一方、0.10%を超えると効果が飽和しコストが高くなる。そこでNb:0.01〜0.10%とする。
【0031】
Ti:0.001〜0.20%
Tiは、0.001%未満では細粒化の効果がない。一方。0.20%を超えると効果が飽和しコストが高くなる。そこでTi:0.001〜0.20%とする。
【0032】
Al:0.010〜0.10%
Alは、Nと結合したAlNにより粒界をピンニングして結晶粒を微細化するのに有効な元素である。Alが0.010%未満ではこの効果は十分でなく、Nの含有量との関係でAlが0.10%を超えてもピンニング効果は飽和する。そこでAl:0.010〜0.10%とする。
【0033】
N:0.005〜0.020%
Nは、通常は不純物でありできるだけ低減されるが、本発明では上記のAlと結合してAlNとなり粒界をピンニングして結晶粒を微細化するので、極端に低減せずにNを0.0050〜0.0200%として、Alと共に含有させることができる。
なお、Nb、Ti、Alは選択元素であり、上記の範囲内で、1種又は2種以上含有することができる。
【0034】
Pb:0.001〜0.30%、Se:0.001〜0.30%、Te:0.001〜0.30%、Bi:0.001〜0.30%
Pb、Se、Te、Biは、被削性を向上させる元素として1種又は2種以上が選択的に添加される。Pb、Se、Te、Biは、0.001未満では被削性向上の効果がなく、一方、0.30%を超えると巨大なPb、Se、Te、Biが介在物として存在して冷間加工性を低下させる。そこでPb:0.001〜0.30%、Se:0.001〜0.30%、Te:0.001〜0.30%0.001〜0.30%、Bi:0.001〜0.30%とする。
【0035】
【発明の実施の形態】
本発明の実施の形態を以下に記載の実施例を通じて説明する。
【0036】
【実施例】
100kg真空溶解炉で溶製した表1に示す各組成を有する本発明の組成範囲にある鋼材A、鋼材B、鋼材C、鋼材Dおよび鋼材E、並びに、本発明の組成範囲を外れる比較例の鋼材Fをφ50mmに熱間鍛造し、それらの鋼材を950℃に1時間保持した後、空冷の焼きならしを実施した。なお、比較例の鋼材Fは、不可避不純物量としてのみNiを含有するSCM鋼である。
【0037】
【表1】

Figure 2004300549
【0038】
さらに、上記の鋼材を下記に表2に示す各条件にて熱処理を実施した。この時昇温速度は最高点温度まで200℃/hrで昇温し、各最高点温度で1時間保持し、最高点温度から670℃までの冷却は100℃/hrとし、670°から600℃までの冷却速度は表2に示す速度とし、600℃以下は空冷とした。この熱処理をした鋼材の直径Dの1/4部分(以下、「1/4D部分」という。)の硬さをHRBにて5点測定し、それらの試験片を採取してミクロ組織観察をおこない、焼きなまし後にマルテンサイトが生成しているかを確認した。
【0039】
【表2】
Figure 2004300549
【0040】
表2における最高点温度でのフェライト面積率の測定は、最高点温度まで200℃/hrにて昇温し、その温度で1時間保持した後、水冷をおこない、ミクロ組織を観察し、画像解析装置を用いてフェライト面積率を測定した。また、各条件にて焼きなましをおこなった鋼材の1/4D部分よりφ14mm、高さ21mmの円筒形の試験片を5個作成し、これらの試験片を冷間にて据え込みをした。据え込みした試験片の表面に10倍の拡大鏡で見える割れが発生した時点をその鋼材の割れ発生とし、その時の据え込み率の平均値を限界据え込み率として評価を実施した。なお、実部品での割れ発生と照らし合わせて限界据え込み率70%以上を冷間加工性が良いと判断した。
【0041】
表2において、鋼材A、鋼材B、鋼材C、鋼材D、鋼材Eの内、網掛け部で示すデータは本発明の範囲から外れることを示しており、これらのものを除く本発明のものは、最高点温度がAc〜(Ac−30℃)であり、フェライト面積率が1〜30%の範囲内にあり、かつ、670〜600℃の冷却速度が5〜30℃/hrの範囲内にある全ての条件を満足する鋼材AのNo.4およびNo.5、鋼材BのNo.11およびNo.12、鋼材CのNo.16、鋼材DのNo.19および鋼材EのNo.22がマルテンサイトの生成が無く、限界据込率が70%以上であり、冷間加工性が良好なものであることがわかる。これに対し、比較例として示す鋼材Fは、上記のとおりNiを本発明の範囲外の不可避不純物として含有するにすぎないもので、これらは通常の条件であっても良好な冷間加工特性が得られる。
【0042】
【発明の効果】
以上に説明したように、本発明は、Ni含有鋼において、球状化焼きなまし処理の最高点温度をAc〜(Ac−30℃)に保持してフェライト面積率を1〜30%とした後、670〜600℃の範囲を5〜30℃/hrの冷却速度で冷却することにより、通常の連続炉を使用して熱処理が可能で、かつ、硬さが低く冷間加工性に優れた鋼材とすることができるなど、優れた効果を奏する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat treatment method for Ni-containing case hardened steel having excellent cold workability.
[0002]
[Prior art]
When a case hardened steel is processed into a part, the part is manufactured by cutting from a steel bar, performing cutting after plastic working, or performing heat treatment such as carburizing while the plastic working is performed.
[0003]
By the way, as a method of processing these case hardened steels, a near net shape or a cold forging capable of a net shape has been widely practiced recently. As the material to be subjected to the cold forging, as-rolled or normalized steel may be used, but in general, annealed steel having low hardness and excellent deformability, particularly carbide is used. A spheroidized and annealed steel material is used. For spheroidizing annealing, in over-eutectoid steel, for example, after heating to approximately seven hundred sixty to seven hundred eighty ° C. of A 1 or more Acm less, up to about 700 ° C. is gradually cooled, after holding at this temperature for about about 3 hours , transformation is described isothermal spheroidizing annealing quenching after the end (see non-Patent Document 1), also after heating to a temperature between a 1 point directly above or a 1 and Acm, very slowly furnace cooling spheroidizing annealing holding temperature just below or a 1 point to have been described (see non-Patent Document 2). Similarly, the case hardening steel is generally heated at a temperature of not less than Ac 1 and not more than Ac 3 and then gradually cooled to lower the hardness.
[0004]
Gears and shafts used for mechanical parts such as automobiles are usually made of case-hardened steel for carburizing. Among them, particularly for parts requiring high strength, SNCM steel, SNC steel, etc., whose toughness is improved by Ni, are used. However, when such an Ni-added steel is to be annealed for cold forging, the hardness does not drop sufficiently even if the above-described spheroidizing annealing is performed as in the case of the SCR steel and the SCM steel. In addition, there is a problem that cracks occur during cold working.
[0005]
Observation of the microstructure of the Ni-added steel material subjected to such spheroidizing annealing treatment shows that martensite is partially formed in addition to ferrite and spheroidized carbide. It is considered that this partially formed martensite causes cracking during cold working.
[0006]
Further, in the case of Ni-added steel, complete annealing to obtain a ferrite pearlite structure by heating once to three points or more of Ac to avoid a martensite formation, austenitizing all and then maintaining at 600 to 700 ° C. is used. However, complete annealing requires higher hardness and longer slow cooling time than spheroidizing annealing. In the case where cooling to the holding temperature after heating is quickly performed such as cycle annealing, Ac 3 is used. It is necessary to install a special furnace that can be rapidly cooled to 600 to 700 ° C. from the holding temperature above the point.
[0007]
[Patent Document 1]
JP-A-54-145334 [Patent Document 2]
Japanese Patent Application Laid-Open No. 02-225620 [Patent Document 3]
JP 04-297521 A [Patent Document 4]
Japanese Patent Application Laid-Open No. 05-125439 [Non-Patent Document 1]
Japan Heat Treatment Technology Association “Heat Treatment Guidebook” (first edition, 5 printings), June 10, 1997, p. 115-116
[Non-patent document 2]
Japan Iron and Steel Association, “Heat Treatment of Steel” (2nd edition, 2nd printing), September 20, 1976, p. 44
[0008]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that a spherical Ni-containing case hardened steel material that can be processed using a normal continuous furnace and that has a low hardness and excellent cold workability can be obtained. An object of the present invention is to provide a chemical annealing treatment method.
[0009]
[Means for Solving the Problems]
The inventor investigated the cause of the formation of martensite when spheroidizing annealing was performed on the Ni-added steel described in the above-described conventional technique, and considered that the following causes were found.
[0010]
That is, in the spheroidizing annealing, two phases of ferrite and austenite are formed when the temperature is kept at the highest point between Ac 1 and Ac 3, and three phases of ferrite, austenite and cementite are formed when the temperature is kept close to Ac 1. Are in phase. At this time, the austenite is in a state where alloy elements such as C, Ni, and Mn are concentrated. By the way, Ni and Mn are elements that expand the austenite region, and the austenite portion where these elements are concentrated is in a state that is easy to be quenched, and the concentration of the alloying element into the austenite generates martensite after cooling. I found that it was the cause.
[0011]
Therefore, in order to avoid the generation of such martensite, the highest point temperature during spheroidizing annealing is maintained at Ac 3 to (Ac 3 −30 ° C.), and the ferrite area ratio at that time is set to 1 to 30%. Thus, the concentration of the alloy element in the austenite is reduced by widening the austenite region when the temperature is maintained at the highest point.
[0012]
Further, at the time of cooling after the holding, the range of 670 to 600 ° C., which is a ferrite generation region and a cementite generation region, is cooled at a rate of 5 ° C./hr or more and 30 ° C./hr or less. The reason is that when the temperature range of 670 to 600 ° C. is gradually cooled at a rate of less than 5 ° C./hr, the ferrite is generated first, and the alloy element is concentrated in the remaining austenite portion. As a result, a martensitic structure is generated, and the cold workability deteriorates. On the other hand, if the cooling rate exceeds 30 ° C./hr, the cooling is too fast and ferrite and cementite are formed in a layered form, resulting in a pearlite structure, resulting in poor cold workability.
[0013]
Explaining other conditions, when the highest point temperature at the time of spheroidizing annealing is Ac 3 to (Ac 3 −30 ° C.), the structure is two phases of ferrite and austenite, and cementite forms a solid solution. When performing spheroidizing annealing while leaving cementite, the heating rate is important. However, in the present invention, the heating rate up to the highest point temperature does not need to be particularly specified.
[0014]
Further, the holding time at the highest point temperature is not required to be particularly specified, since the desired ferrite-austenite structure can be obtained immediately after the holding at the highest point temperature, but it is preferably held for 30 minutes or more.
[0015]
Further, the cooling rate is from the highest point temperature to 670 ° C., but it is not necessary to particularly define the cooling rate in this temperature range since the transformation of the austenite portion hardly progresses. Desirably, the cooling is performed at 5 ° C./hr to 5 ° C./sec.
[0016]
Although the cooling rate is lower than 600 ° C., since the transformation is completed by 600 ° C., it is not necessary to particularly define the cooling rate. However, the cooling is preferably performed at 5 ° C./sec or less.
[0017]
That is, the means of the present invention for solving the problem is that, in the invention of claim 1, C: 0.10 to 0.30%, Si: 0.01 to 1.00%, and Mn: 0% by mass. .10 to 2.00%, P: 0.03% or less, S: 0.03% or less, Ni: 0.10 to 3.00%, and the highest score is the Ni-containing steel consisting of the balance Fe and unavoidable impurities. After maintaining the temperature at Ac 3 to (Ac 3 −30 ° C.) and reducing the ferrite area ratio to 1 to 30%, the temperature is cooled from 670 to 600 ° C. at a cooling rate of 5 to 30 ° C./hr. This is a method for spheroidizing annealing case hardened steel having excellent cold workability.
[0018]
According to the second aspect of the present invention, the Ni-containing steel component of the first aspect further includes, in mass%, Cr: 0.01 to 3.00% and Mo: 0.01 to 0.50%. After holding the maximum temperature of the Ni-containing steel containing one or two kinds and the balance being Fe and unavoidable impurities at Ac 3 to (Ac 3 −30 ° C.) to make the ferrite area ratio 1 to 30%, 670 This is a method for spheroidizing annealing case hardening steel having excellent cold workability, characterized in that a range of -600 ° C is cooled at a cooling rate of 5-30 ° C / hr.
[0019]
According to the third aspect of the present invention, the Ni-containing steel component according to the first or second aspect further includes Nb: 0.01 to 0.10%, Ti: 0.001 to 0.20%, Al : Ni-containing steel containing one or more selected from 0.010 to 0.10%, N: 0.005 to 0.020%, and the balance of Fe and inevitable impurities is the highest point. After maintaining the temperature at Ac 3 to (Ac 3 −30 ° C.) and reducing the ferrite area ratio to 1 to 30%, the temperature is cooled from 670 to 600 ° C. at a cooling rate of 5 to 30 ° C./hr. This is a method for spheroidizing annealing case hardened steel having excellent cold workability.
[0020]
According to the fourth aspect of the present invention, the Ni-containing steel component according to any one of the first to third aspects further includes, by mass%, Pb: 0.001 to 0.30% and Se: 0.001 to 0%. .30%, Te: 0.001 to 0.30%, Bi: One or more selected from 0.001 to 0.30%, and the highest Ni-containing steel consisting of Fe and unavoidable impurities. After maintaining the point temperature at Ac 3 to (Ac 3 −30 ° C.) and setting the ferrite area ratio to 1% to 30%, the range of 670 to 600 ° C. is cooled at a cooling rate of 5 to 30 ° C./hr. This is a spheroidizing annealing method for case hardened steel having excellent cold workability.
[0021]
Hereinafter, the reason for limiting the component range of the Ni-added steel in the present invention will be described. In the description,% indicates mass%.
[0022]
C: 0.10 to 0.30%
If C is less than 0.10%, sufficient strength cannot be secured when carburized. If it exceeds 0.30%, the hardness does not decrease even if spheroidizing annealing is performed, and cold working is difficult. Therefore, C is set to 0.10 to 0.30%.
[0023]
Si: 0.01 to 1.00%
If Si is less than 0.01%, there is no effect of improving hardenability. If it exceeds 1.00%, the hardness will not decrease even if spheroidizing annealing is performed, and cold working will be difficult. Therefore, Si is set to 0.01 to 1.00%.
[0024]
Mn: 0.10-2.00%
If Mn is less than 0.10%, there is no effect of improving hardenability. If it exceeds 2.00%, the hardness does not decrease even if spheroidizing annealing is performed, and cold working is difficult. Therefore, Mn is set to 0.10 to 2.00%.
[0025]
P: 0.03% or less P is unevenly distributed at the crystal grain boundary and lowers the strength, so that it is better to be low. However, 0.03% or less is acceptable. Therefore, P is set to 0.03% or less.
[0026]
S: 0.03% or less S forms Mn and MnS. MnS also has the effect of improving machinability, but lowers cold workability. Therefore, S is set to 0.03% or less.
[0027]
Ni: 0.10 to 3.00%
If Ni is less than 0.10%, there is no effect of improving hardenability and toughness. On the other hand, if it exceeds 3.00%, the effect of improving toughness is saturated, and even if spheroidizing annealing is performed, the hardness does not decrease and cold working is difficult. Therefore, Ni is set to 0.10 to 3.00%.
[0028]
Cr: 0.01 to 3.00%
If Cr is less than 0.01%, there is no effect of improving hardenability. On the other hand, when the content exceeds 3.00%, the hardness does not decrease even when spheroidizing annealing is performed, and it is difficult to perform cold working. Therefore, Cr is set to 0.01 to 3.00%.
[0029]
Mo: 0.01 to 0.50%
If Mo is less than 0.01%, there is no effect of improving hardenability. On the other hand, when the content exceeds 0.50%, the hardness does not decrease even if spheroidizing annealing is performed, and cold working is difficult. Therefore, Mo is set to 0.01 to 0.50%.
Note that Cr and Mo are selective elements, and one or two of them can be contained within the above range.
[0030]
Nb: 0.01 to 0.10%
If Nb is less than 0.01%, there is no effect of grain refinement. On the other hand, if it exceeds 0.10%, the effect is saturated and the cost increases. Therefore, Nb is set to 0.01 to 0.10%.
[0031]
Ti: 0.001 to 0.20%
If Ti is less than 0.001%, there is no effect of grain refinement. on the other hand. If it exceeds 0.20%, the effect is saturated and the cost increases. Therefore, Ti is set to 0.001 to 0.20%.
[0032]
Al: 0.010 to 0.10%
Al is an element effective for pinning a grain boundary with AlN combined with N to make crystal grains fine. If Al is less than 0.010%, this effect is not sufficient, and even if Al exceeds 0.10% in relation to the N content, the pinning effect is saturated. Therefore, Al is set to 0.010 to 0.10%.
[0033]
N: 0.005 to 0.020%
Normally, N is an impurity and is reduced as much as possible. However, in the present invention, since N is combined with Al to form AlN and pin the grain boundaries to refine the crystal grains, the N is not reduced extremely. As 0050 to 0.0200%, it can be contained together with Al.
Note that Nb, Ti, and Al are selective elements, and one or more of them can be contained within the above range.
[0034]
Pb: 0.001 to 0.30%, Se: 0.001 to 0.30%, Te: 0.001 to 0.30%, Bi: 0.001 to 0.30%
One or more of Pb, Se, Te, and Bi are selectively added as elements for improving machinability. If Pb, Se, Te, and Bi are less than 0.001, there is no effect of improving machinability, while if more than 0.30%, huge Pb, Se, Te, and Bi are present as inclusions and are cold. Decreases workability. Therefore, Pb: 0.001 to 0.30%, Se: 0.001 to 0.30%, Te: 0.001 to 0.30% 0.001 to 0.30%, Bi: 0.001 to 0. 30%.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described through examples described below.
[0036]
【Example】
Steel A, Steel B, Steel C, Steel D and Steel E in the composition range of the present invention having the respective compositions shown in Table 1 melted in a 100 kg vacuum melting furnace, and of Comparative Examples that deviate from the composition range of the present invention. The steel material F was hot forged to φ50 mm, and the steel material was kept at 950 ° C. for 1 hour, and then air-cooled normalization was performed. The steel material F of the comparative example is an SCM steel containing Ni only as an unavoidable impurity amount.
[0037]
[Table 1]
Figure 2004300549
[0038]
Further, the above-mentioned steel material was subjected to a heat treatment under the conditions shown in Table 2 below. At this time, the heating rate is 200 ° C./hr up to the highest point temperature, and the temperature is maintained at each highest point temperature for 1 hour. Cooling from the highest point temperature to 670 ° C. is 100 ° C./hr, and 670 ° to 600 ° C. The cooling rate up to the rate shown in Table 2 was used, and air cooling was performed at 600 ° C. or less. The hardness of a 1/4 portion of the diameter D (hereinafter, referred to as "1 / 4D portion") of the heat-treated steel material was measured at five points by HRB, and the test pieces were sampled to observe the microstructure. Then, it was confirmed whether martensite was formed after annealing.
[0039]
[Table 2]
Figure 2004300549
[0040]
In the measurement of the ferrite area ratio at the highest point temperature in Table 2, the temperature was raised to the highest point temperature at 200 ° C./hr, and after maintaining at that temperature for 1 hour, water cooling was performed, the microstructure was observed, and image analysis was performed. The ferrite area ratio was measured using an apparatus. In addition, five cylindrical test pieces having a diameter of 14 mm and a height of 21 mm were prepared from a 1 / 4D portion of the steel material annealed under each condition, and these test pieces were cold and upset. The point at which a crack visible on a 10-fold magnifying glass on the surface of the swaged test piece occurred was defined as the occurrence of the crack in the steel material, and the average value of the upsetting rate at that time was evaluated as the limit swaging rate. In addition, in view of the occurrence of cracks in actual parts, it was judged that the cold workability was good at the limit upsetting rate of 70% or more.
[0041]
In Table 2, among the steel materials A, B, C, D, and E, the data indicated by the shaded portions indicate that they are out of the scope of the present invention. The highest point temperature is Ac 3 to (Ac 3 -30 ° C.), the ferrite area ratio is in the range of 1 to 30%, and the cooling rate at 670 to 600 ° C. is 5 to 30 ° C./hr. No. of steel A satisfying all the conditions in 4 and No. 4. No. 5 of steel material B 11 and No. 12, No. of steel C No. 16, steel material D No. 19 and steel E No. 22 shows no generation of martensite, a critical upsetting ratio of 70% or more, and good cold workability. On the other hand, the steel material F shown as a comparative example contains only Ni as an unavoidable impurity outside the scope of the present invention as described above, and these steels have good cold working properties even under ordinary conditions. can get.
[0042]
【The invention's effect】
As described above, according to the present invention, in a Ni-containing steel, the maximum point temperature of the spheroidizing annealing treatment is maintained at Ac 3 to (Ac 3 −30 ° C.) and the ferrite area ratio is set to 1 to 30%. 670-600 ° C. at a cooling rate of 5-30 ° C./hr, thereby enabling heat treatment using a normal continuous furnace, and having low hardness and excellent cold workability. And an excellent effect.

Claims (4)

質量%で、C:0.10〜0.30%、Si:0.01〜1.00%、Mn:0.10〜2.00%、P:0.03%以下、S:0.03%以下、Ni:0.10〜3.00%からなり、残部Feおよび不可避不純物からなるNi含有鋼を最高点温度をAc〜(Ac−30℃)に保持してフェライト面積率を1〜30%とした後、670〜600℃の範囲を5〜30℃/hrの冷却速度で冷却することを特徴とする冷間加工性に優れた肌焼き鋼の球状化焼きなまし処理方法。In mass%, C: 0.10 to 0.30%, Si: 0.01 to 1.00%, Mn: 0.10 to 2.00%, P: 0.03% or less, S: 0.03 % Or less, Ni: 0.10 to 3.00%, and the Ni-containing steel consisting of the balance Fe and unavoidable impurities is maintained at the highest point temperature of Ac 3 to (Ac 3 −30 ° C.) and the ferrite area ratio is 1 A spheroidizing annealing method for case hardening steel having excellent cold workability, characterized in that after cooling to -30%, the range of 670-600 ° C is cooled at a cooling rate of 5-30 ° C / hr. 請求項1に記載のNi含有鋼成分に、さらに、質量%で、Cr:0.01〜3.00%、Mo:0.01〜0.50%から選択した1種又は2種を含有し、残部Feおよび不可避不純物からなるNi含有鋼を最高点温度をAc〜(Ac−30℃)に保持してフェライト面積率を1〜30%とした後、670〜600℃の範囲を5〜30℃/hrの冷却速度で冷却することを特徴とする冷間加工性に優れた肌焼き鋼の球状化焼きなまし処理方法。The Ni-containing steel component according to claim 1, further comprising one or two types selected from Cr: 0.01 to 3.00% and Mo: 0.01 to 0.50% by mass%. The Ni-containing steel consisting of the balance of Fe and unavoidable impurities is kept at a maximum point temperature of Ac 3 to (Ac 3 −30 ° C.) to obtain a ferrite area ratio of 1 to 30%. A spheroidizing annealing method for case hardened steel having excellent cold workability, characterized by cooling at a cooling rate of up to 30 ° C / hr. 請求項1又は2に記載のNi含有鋼成分に、さらに、質量%で、Nb:0.01〜0.10%、Ti:0.001〜0.20%、Al:0.010〜0.10%から選択した1種又は2種以上を含有すると共に、N:0.005〜0.020%を含有し、残部Feおよび不可避不純物からなるNi含有鋼を最高点温度をAc〜(Ac−30℃)に保持してフェライト面積率を1〜30%とした後、670〜600℃の範囲を5〜30℃/hrの冷却速度で冷却することを特徴とする冷間加工性に優れた肌焼き鋼の球状化焼きなまし処理方法。The Ni-containing steel component according to claim 1 or 2, further comprising, by mass%, Nb: 0.01 to 0.10%, Ti: 0.001 to 0.20%, and Al: 0.010 to 0.10%. with comprises one or more selected from 10%, N: it contains 0.005~0.020%, Ac 3 ~ a maximum temperature of Ni-containing steel comprising the balance of Fe and inevitable impurities (Ac 3 after the ferrite area ratio between 1% to 30% and held in -30 ° C.), the cold workability, characterized in that cooling the range of six hundred seventy to six hundred ° C. at a cooling rate of 5 to 30 ° C. / hr Excellent spheroidizing annealing method for case hardened steel. 請求項1〜3のいずれか1項に記載のNi含有鋼成分に、さらに、質量%で、Pb:0.001〜0.30%、Se:0.001〜0.30%、Te:0.001〜0.30%、Bi:0.001〜0.30%から選択した1種又は2種以上を含有し、残部Feおよび不可避不純物からなるNi含有鋼を最高点温度をAc〜(Ac−30℃)に保持してフェライト面積率を1〜30%とした後、670〜600℃の範囲を5〜30℃/hrの冷却速度で冷却することを特徴とする冷間加工性に優れた肌焼き鋼の球状化焼きなまし処理方法。The Ni-containing steel component according to any one of claims 1 to 3, further comprising, by mass%, 0.001 to 0.30% of Pb, 0.001 to 0.30% of Se, and 0% of Te. 0.001 to 0.30%, Bi: one or more selected from 0.001 to 0.30%, and a Ni-containing steel consisting of a balance of Fe and inevitable impurities having a maximum temperature of Ac 3 to ( (Ac 3 -30 ° C.), the ferrite area ratio is set to 1 to 30%, and then the range of 670 to 600 ° C. is cooled at a cooling rate of 5 to 30 ° C./hr. Excellent spheroidizing annealing treatment of case hardened steel.
JP2003096907A 2003-03-31 2003-03-31 Spheroidizing annealing treatment method for case-hardened steel excellent in cold-workability Pending JP2004300549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096907A JP2004300549A (en) 2003-03-31 2003-03-31 Spheroidizing annealing treatment method for case-hardened steel excellent in cold-workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096907A JP2004300549A (en) 2003-03-31 2003-03-31 Spheroidizing annealing treatment method for case-hardened steel excellent in cold-workability

Publications (1)

Publication Number Publication Date
JP2004300549A true JP2004300549A (en) 2004-10-28

Family

ID=33408828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096907A Pending JP2004300549A (en) 2003-03-31 2003-03-31 Spheroidizing annealing treatment method for case-hardened steel excellent in cold-workability

Country Status (1)

Country Link
JP (1) JP2004300549A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876564A (en) * 2020-07-14 2020-11-03 昆山正通铭金属有限公司 Spheroidizing annealing process of hexagonal alloy tool steel S2

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876564A (en) * 2020-07-14 2020-11-03 昆山正通铭金属有限公司 Spheroidizing annealing process of hexagonal alloy tool steel S2

Similar Documents

Publication Publication Date Title
JP5927868B2 (en) Carburizing steel excellent in cold forgeability and method for producing the same
JP5288259B2 (en) Pre-quenching method and quenching method for martensitic tool steel
JP6432932B2 (en) High strength and high toughness steel parts for machine structures excellent in pitting resistance and wear resistance and method for manufacturing the same
JP2001240940A (en) Bar wire rod for cold forging and its production method
JP2007177317A (en) Steel for machine structure having excellent strength, ductility, toughness and abrasion resistance, its production method and metal belt using the same
WO2017115842A1 (en) Case-hardened steel, carburized component, and process for producing case-hardened steel
JPH10306343A (en) Steel for soft-nitriding, excellent in cold forgeability and pitting resistance
JP2004027334A (en) Steel for induction tempering and method of producing the same
JPH06172867A (en) Production of gear excellent in impact fatigue life
JPH09170017A (en) Production of steel plate with high strength and high toughness
JP2016138320A (en) NiCrMo STEEL AND MANUFACTURING METHOD OF NiCrMo STEEL
JP4488228B2 (en) Induction hardening steel
JP3288563B2 (en) Steel for mechanical structure excellent in machinability and resistance to fire cracking and method for producing the same
JPH11217649A (en) Steel for induction hardening having both cold workability and high strength and its production
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
JP3739958B2 (en) Steel with excellent machinability and its manufacturing method
WO2019035401A1 (en) Steel having high hardness and excellent ductility
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
KR100957306B1 (en) Forging steel using high frequency heat treatment and method for manufacturing the same
JP2003201513A (en) High strength case hardening steel
JPH08260039A (en) Production of carburized and case hardened steel
JP2000017374A (en) Age hardening type high strength bainitic steel and its production
JP6752624B2 (en) Manufacturing method of carburized steel
JP4121416B2 (en) Non-tempered hot forged parts for machine structure and manufacturing method thereof
JP3907986B2 (en) Method for producing case-hardened steel with excellent cold workability and grain size characteristics