JP2004294738A - Solid state laser device - Google Patents

Solid state laser device Download PDF

Info

Publication number
JP2004294738A
JP2004294738A JP2003086653A JP2003086653A JP2004294738A JP 2004294738 A JP2004294738 A JP 2004294738A JP 2003086653 A JP2003086653 A JP 2003086653A JP 2003086653 A JP2003086653 A JP 2003086653A JP 2004294738 A JP2004294738 A JP 2004294738A
Authority
JP
Japan
Prior art keywords
solid
laser
laser device
state laser
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003086653A
Other languages
Japanese (ja)
Other versions
JP4111033B2 (en
Inventor
Kimitada Tojo
公資 東條
Tomoshi Iriguchi
知史 入口
Kazuma Watanabe
一馬 渡辺
Munehiro Sugimoto
統宏 杉本
Ichiro Fukushi
一郎 福士
Naoya Ishigaki
直也 石垣
Koji Inoue
光二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003086653A priority Critical patent/JP4111033B2/en
Priority to US10/791,388 priority patent/US7145924B2/en
Publication of JP2004294738A publication Critical patent/JP2004294738A/en
Priority to US11/391,651 priority patent/US7209504B2/en
Application granted granted Critical
Publication of JP4111033B2 publication Critical patent/JP4111033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress optical noise produced in the vicinity of a relaxation oscillation frequency fk of a solid state laser device. <P>SOLUTION: A phase shifting circuit (9c) to advance a phase in the vicinity of the relaxation oscillation frequency of the solid state laser device is mounted on output control circuits (9, 10). Thereby, summing up phase shifting transmission characteristics of the phase shifting circuit and phase transmission characteristics of a nonlinear optical element and a microchip laser crystal, a delayed phase in the vicinity of the relaxation oscillation frequency turns out to be 0° and the optical noise is suppressed by feedback control with the output control circuits. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固体レーザ装置に関し、さらに詳しくは、固体レーザ装置の緩和発振周波数付近で発生する光ノイズを抑制できる固体レーザ装置に関する。
【0002】
【従来の技術】
従来、レーザ光を発生する半導体レーザと、半導体レーザからのレーザ光が入射され高調波を出射する非線形光学素子と、非線形光学素子から出射される光の強度を検出するモニタ用光検出手段と、光の強度が所定値になるように半導体レーザを駆動する出力制御回路とを備えた固体レーザ装置が知られている(例えば、特許文献1参照。)。
また、半導体レーザからのレーザ光によって励起される結晶であって結晶端面に施されたコーティングにより光共振器を構成するマイクロチップレーザ結晶を、非線形光学素子の前段に設けた固体レーザ装置が知られている(例えば、特許文献2参照。)。
【0003】
【特許文献1】
特開平7−106682号公報
【特許文献2】
特表平4−503429号公報
【0004】
【発明が解決しようとする課題】
図4に、従来の固体レーザ装置の一例における非線形光学素子及びマイクロチップレーザ結晶のゲイン伝達特性および位相伝達特性の実測例を示す。
図4の例では、約11MHzにゲインピークが出ている。このピーク周波数を固体レーザ装置の緩和発振周波数fkと呼ぶ。また、図4の例では、緩和発振周波数fk付近で、位相が約90゜遅れている。
【0005】
図5に、前記固体レーザ装置の光ノイズ波形の実測例を示す。
図5の例では、光ノイズの発振周波数は約11MHzであり、図4における緩和発振周波数fkと一致する。
つまり、光ノイズは緩和発振周波数fk付近で発生し、約90゜の位相遅れが生じていると考えられる。
【0006】
さて、図4の位相伝達特性を持つ固体レーザ装置では、出力制御回路による帰還制御で出力変動(ノイズ)を抑制している。この出力制御回路による帰還制御では、約90゜の位相遅れがあるためにノイズの抑制には限界があった。
そこで、本発明の目的は、緩和発振周波数fk付近で発生する光ノイズを抑制できる固体レーザ装置を提供することにある。
【0007】
【課題を解決するための手段】
第1の観点では、本発明は、レーザ光を発生する半導体レーザと、前記半導体レーザからのレーザ光によって励起される結晶であって結晶端面に施されたコーティングにより光共振器を構成するマイクロチップレーザ結晶と、前記マイクロチップレーザ結晶からのレーザ光が入射され高調波を出射する非線形光学素子と、前記非線形光学素子から出射される光の強度を検出するモニタ用光検出手段と、前記光の強度が所定値になるように前記半導体レーザを駆動する出力制御回路とを備えた固体レーザ装置において、固体レーザ装置の緩和発振周波数の近傍で位相を進める移相回路を前記出力制御回路に設けたことを特徴とする固体レーザ装置を提供する。
上記第1の観点による固体レーザ装置では、固体レーザ装置の緩和発振周波数の近傍で位相を進める移相回路を設けているが、この移相回路の移相伝達特性と非線形光学素子及びマイクロチップレーザ結晶の位相伝達特性とを足し合わせれば、緩和発振周波数近傍での遅れ位相が0゜となり、光ノイズを出力制御回路による帰還制御で抑制することが出来る。
【0008】
第2の観点では、本発明は、レーザ光を発生する半導体レーザと、前記半導体レーザからのレーザ光が入射され高調波を出射する非線形光学素子と、前記非線形光学素子から出射される光の強度を検出するモニタ用光検出手段と、前記光の強度が所定値になるように前記半導体レーザを駆動する出力制御回路とを備えた固体レーザ装置において、固体レーザ装置の緩和発振周波数の近傍で位相を進める移相回路を前記出力制御回路に設けたことを特徴とする固体レーザ装置を提供する。
上記第2の観点による固体レーザ装置では、固体レーザ装置の緩和発振周波数の近傍で位相を進める移相回路を設けているが、この移相回路の移相伝達特性と非線形光学素子の位相伝達特性とを足し合わせれば、緩和発振周波数近傍での遅れ位相が0゜となり、光ノイズを出力制御回路による帰還制御で抑制することが出来る。
【0009】
【発明の実施の形態】
以下、図に示す本発明の実施の形態を説明する。なお、これにより本発明が限定されるものではない。
【0010】
−第1の実施形態−
図1は、第1の実施形態にかかる固体レーザ装置100を示す構成図である。この固体レーザ装置100は、レーザ光を発生する半導体レーザ1と、レーザ光を集光する集光レンズ系2と、集光されたレーザ光によって励起される結晶であって結晶端面に施されたコーティングにより光共振器を構成するマイクロチップレーザ結晶3と、マイクロチップレーザ結晶3からのレーザ光が入射され高調波を出射する非線形光学素子4と、非線形光学素子4から出射される光の強度を検出するためのスプリッタ5,光学フィルタ6及びフォトダイオード7と、フォトダイオード7で検出した光の強度が所定値になるように制御信号Lを出力する低速APC(Auto Power Control)回路8と、フォトダイオード7で検出した光のノイズ成分が0になるように制御信号Hを出力する高速APC回路9と、制御信号L及び制御信号Hに基づく駆動電流を半導体レーザ1に供給するLD駆動回路10とを具備している。
【0011】
低速APC回路8は、信号増幅回路8bと、信号反転増幅回路8dとを含んでいる。
高速APC回路9は、結合コンデンサ9aと、信号増幅回路9bと、移相回路9cと、信号反転増幅回路9dとを含んでいる。
【0012】
図2に、移相回路9cの回路例を示す。
移相回路9cは、緩和発振周波数fkの近傍で位相を例えば90゜進める。なお、実際には、システム全体としての遅れ分(電気回路や伝送ケーブル等の遅れ分等)もキャンセルするように位相シフト量を決める。
一方、図4に示すように、非線形光学素子4及びマイクロチップレーザ結晶3の位相伝達関数では、光ノイズの発生する緩和発振周波数fk付近での位相が90゜遅れになっている。
そうすると、非線形光学素子4及びマイクロチップレーザ結晶3と移相回路9cとを合成した位相伝達関数では、緩和発振周波数fk付近での遅れ移相が0゜となり、光ノイズが高速APC回路9による帰還制御で抑制できることとなる。
【0013】
−第2の実施形態−
図3は、第2の実施形態にかかる固体レーザ装置200を示す構成図である。この固体レーザ装置200は、第1の実施形態にかかる固体レーザ装置100からマイクロチップレーザ結晶3を省いた以外は、同じ構成である。
【0014】
この固体レーザ装置200でも、第1の実施形態にかかる固体レーザ装置100と同じ効果が得られる。すなわち、光ノイズを高速APC回路9による帰還制御で抑制できる。
【0015】
【発明の効果】
本発明の固体レーザ装置によれば、固体レーザ装置の緩和発振周波数の近傍で位相を進める移相回路を出力制御回路に設けたため、非線形光学素子の位相伝達特性または非線形光学素子及びマイクロチップレーザ結晶の位相伝達特性と足し合わせれば、緩和発信周波数近傍において遅れ位相が0゜となり、光ノイズを出力制御回路による帰還制御で抑制できるようになる。
【図面の簡単な説明】
【図1】第1の実施形態に係る固体レーザ装置を示す構成図である。
【図2】移相回路の回路例を示す回路図である。
【図3】第2の実施形態に係る固体レーザ装置を示す構成図である。
【図4】従来の固体レーザ装置の一例における非線形光学素子及びマイクロチップレーザ結晶のゲイン伝達特性および位相伝達特性の実測例を示す特性図である。
【図5】従来の固体レーザ装置の一例における光ノイズ波形の実測例を示す波形図である。
【符号の説明】
1 半導体レーザ
3 マイクロチップレーザ結晶
4 非線形光学素子
8 低速APC回路
9c 移相回路
9 高速APC回路
100,200 固体レーザ装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid-state laser device, and more particularly, to a solid-state laser device capable of suppressing optical noise generated near a relaxation oscillation frequency of the solid-state laser device.
[0002]
[Prior art]
Conventionally, a semiconductor laser that generates laser light, a non-linear optical element that emits a harmonic when laser light from the semiconductor laser is incident, and a monitoring light detection unit that detects the intensity of light emitted from the non-linear optical element, 2. Description of the Related Art A solid-state laser device including an output control circuit that drives a semiconductor laser so that the light intensity becomes a predetermined value is known (for example, see Patent Document 1).
There is also known a solid-state laser device in which a microchip laser crystal, which is a crystal excited by laser light from a semiconductor laser and forms an optical resonator with a coating applied to a crystal end face, is provided in front of a nonlinear optical element. (For example, see Patent Document 2).
[0003]
[Patent Document 1]
JP-A-7-106682 [Patent Document 2]
Japanese Patent Publication No. Hei 4-503429
[Problems to be solved by the invention]
FIG. 4 shows an actual measurement example of gain transfer characteristics and phase transfer characteristics of a nonlinear optical element and a microchip laser crystal in an example of a conventional solid-state laser device.
In the example of FIG. 4, a gain peak appears at about 11 MHz. This peak frequency is called the relaxation oscillation frequency fk of the solid-state laser device. In the example of FIG. 4, the phase is delayed by about 90 ° near the relaxation oscillation frequency fk.
[0005]
FIG. 5 shows an actual measurement example of an optical noise waveform of the solid-state laser device.
In the example of FIG. 5, the oscillation frequency of the optical noise is about 11 MHz, which coincides with the relaxation oscillation frequency fk in FIG.
That is, it is considered that the optical noise occurs near the relaxation oscillation frequency fk, and a phase delay of about 90 ° occurs.
[0006]
In the solid-state laser device having the phase transfer characteristic shown in FIG. 4, output fluctuation (noise) is suppressed by feedback control by an output control circuit. In the feedback control by this output control circuit, there is a limit in suppressing noise because of a phase delay of about 90 °.
Accordingly, an object of the present invention is to provide a solid-state laser device that can suppress optical noise generated near the relaxation oscillation frequency fk.
[0007]
[Means for Solving the Problems]
In a first aspect, the present invention provides a semiconductor laser that generates a laser beam, and a microchip that is a crystal excited by the laser beam from the semiconductor laser and that forms an optical resonator with a coating applied to a crystal end face. A laser crystal, a non-linear optical element into which laser light from the microchip laser crystal is incident and emits harmonics, a monitoring light detecting means for detecting the intensity of light emitted from the non-linear optical element, An output control circuit for driving the semiconductor laser so that the intensity becomes a predetermined value, wherein a phase shift circuit for advancing a phase near a relaxation oscillation frequency of the solid-state laser device is provided in the output control circuit. A solid-state laser device is provided.
In the solid-state laser device according to the first aspect, a phase-shifting circuit for advancing the phase near the relaxation oscillation frequency of the solid-state laser device is provided. By adding the phase transfer characteristics of the crystal, the lag phase near the relaxation oscillation frequency becomes 0 °, and optical noise can be suppressed by feedback control by the output control circuit.
[0008]
In a second aspect, the present invention provides a semiconductor laser that generates laser light, a non-linear optical element into which laser light from the semiconductor laser is incident and emits harmonics, and an intensity of light emitted from the non-linear optical element. And a power control circuit for driving the semiconductor laser so that the intensity of the light becomes a predetermined value, a phase near the relaxation oscillation frequency of the solid-state laser device. Provided in the output control circuit is a solid-state laser device.
In the solid-state laser device according to the second aspect, a phase shift circuit for advancing the phase near the relaxation oscillation frequency of the solid-state laser device is provided. The phase shift transfer characteristic of this phase shift circuit and the phase transfer characteristic of the nonlinear optical element are provided. Is added, the lag phase near the relaxation oscillation frequency becomes 0 °, and optical noise can be suppressed by feedback control by the output control circuit.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention shown in the drawings will be described. Note that the present invention is not limited by this.
[0010]
-1st Embodiment-
FIG. 1 is a configuration diagram illustrating a solid-state laser device 100 according to the first embodiment. The solid-state laser device 100 includes a semiconductor laser 1 for generating laser light, a condensing lens system 2 for condensing laser light, and a crystal that is excited by the condensed laser light and is applied to a crystal end face. A microchip laser crystal 3 constituting an optical resonator by coating; a non-linear optical element 4 into which laser light from the microchip laser crystal 3 is incident to emit harmonics; and an intensity of light emitted from the non-linear optical element 4. A splitter 5, an optical filter 6, and a photodiode 7 for detection; a low-speed APC (Auto Power Control) circuit 8 for outputting a control signal L so that the intensity of light detected by the photodiode 7 becomes a predetermined value; A high-speed APC circuit 9 for outputting a control signal H so that a noise component of light detected by the diode 7 becomes 0; It is provided with a supply LD driving circuit 10 and a drive current based on the control signal H to the semiconductor laser 1.
[0011]
The low-speed APC circuit 8 includes a signal amplification circuit 8b and a signal inversion amplification circuit 8d.
The high-speed APC circuit 9 includes a coupling capacitor 9a, a signal amplification circuit 9b, a phase shift circuit 9c, and a signal inversion amplification circuit 9d.
[0012]
FIG. 2 shows a circuit example of the phase shift circuit 9c.
The phase shift circuit 9c advances the phase by, for example, 90 degrees near the relaxation oscillation frequency fk. In practice, the amount of phase shift is determined so that the delay of the entire system (delay of an electric circuit, a transmission cable, or the like) is also canceled.
On the other hand, as shown in FIG. 4, in the phase transfer function of the nonlinear optical element 4 and the microchip laser crystal 3, the phase near the relaxation oscillation frequency fk at which optical noise occurs is delayed by 90 °.
Then, in the phase transfer function obtained by combining the nonlinear optical element 4 and the microchip laser crystal 3 with the phase shift circuit 9c, the delay phase shift near the relaxation oscillation frequency fk becomes 0 °, and the optical noise is fed back by the high-speed APC circuit 9. It can be suppressed by control.
[0013]
-2nd Embodiment-
FIG. 3 is a configuration diagram illustrating a solid-state laser device 200 according to the second embodiment. The solid-state laser device 200 has the same configuration except that the microchip laser crystal 3 is omitted from the solid-state laser device 100 according to the first embodiment.
[0014]
In the solid-state laser device 200, the same effects as those of the solid-state laser device 100 according to the first embodiment are obtained. That is, optical noise can be suppressed by feedback control by the high-speed APC circuit 9.
[0015]
【The invention's effect】
According to the solid-state laser device of the present invention, the phase control circuit for advancing the phase near the relaxation oscillation frequency of the solid-state laser device is provided in the output control circuit, so the phase transfer characteristic of the nonlinear optical element or the nonlinear optical element and the microchip laser crystal When the phase transfer characteristic is added to the above, the lag phase becomes 0 ° in the vicinity of the relaxation oscillation frequency, and optical noise can be suppressed by feedback control by the output control circuit.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a solid-state laser device according to a first embodiment.
FIG. 2 is a circuit diagram illustrating a circuit example of a phase shift circuit.
FIG. 3 is a configuration diagram illustrating a solid-state laser device according to a second embodiment.
FIG. 4 is a characteristic diagram showing an actual measurement example of gain transfer characteristics and phase transfer characteristics of a nonlinear optical element and a microchip laser crystal in an example of a conventional solid-state laser device.
FIG. 5 is a waveform chart showing an actual measurement example of an optical noise waveform in an example of a conventional solid-state laser device.
[Explanation of symbols]
Reference Signs List 1 semiconductor laser 3 microchip laser crystal 4 nonlinear optical element 8 low-speed APC circuit 9c phase-shift circuit 9 high-speed APC circuit 100, 200 solid-state laser device

Claims (2)

レーザ光を発生する半導体レーザと、前記半導体レーザからのレーザ光によって励起される結晶であって結晶端面に施されたコーティングにより光共振器を構成するマイクロチップレーザ結晶と、前記マイクロチップレーザ結晶からのレーザ光が入射され高調波を出射する非線形光学素子と、前記非線形光学素子から出射される光の強度を検出するモニタ用光検出手段と、前記光の強度が所定値になるように前記半導体レーザを駆動する出力制御回路とを備えた固体レーザ装置において、
固体レーザ装置の緩和発振周波数の近傍で位相を進める移相回路を前記出力制御回路に設けたことを特徴とする固体レーザ装置。
A semiconductor laser that generates laser light, a crystal that is excited by the laser light from the semiconductor laser, a microchip laser crystal that forms an optical resonator with a coating applied to a crystal end face, and a microchip laser crystal. A non-linear optical element that receives laser light and emits harmonics, a monitoring light detection unit that detects the intensity of light emitted from the non-linear optical element, and the semiconductor device so that the intensity of the light becomes a predetermined value. In a solid-state laser device comprising an output control circuit for driving a laser,
A solid-state laser device, wherein a phase shift circuit for advancing a phase near a relaxation oscillation frequency of the solid-state laser device is provided in the output control circuit.
レーザ光を発生する半導体レーザと、前記半導体レーザからのレーザ光が入射され高調波を出射する非線形光学素子と、前記非線形光学素子から出射される光の強度を検出するモニタ用光検出手段と、前記光の強度が所定値になるように前記半導体レーザを駆動する出力制御回路とを備えた固体レーザ装置において、
固体レーザ装置の緩和発振周波数の近傍で位相を進める移相回路を前記出力制御回路に設けたことを特徴とする固体レーザ装置。
A semiconductor laser that generates laser light, a non-linear optical element into which laser light from the semiconductor laser is incident and emits harmonics, and a monitoring light detection unit that detects the intensity of light emitted from the non-linear optical element, A solid-state laser device comprising: an output control circuit that drives the semiconductor laser such that the light intensity becomes a predetermined value.
A solid-state laser device, wherein a phase shift circuit for advancing a phase near a relaxation oscillation frequency of the solid-state laser device is provided in the output control circuit.
JP2003086653A 2003-03-27 2003-03-27 Solid state laser equipment Expired - Fee Related JP4111033B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003086653A JP4111033B2 (en) 2003-03-27 2003-03-27 Solid state laser equipment
US10/791,388 US7145924B2 (en) 2003-03-27 2004-03-02 Solid laser apparatus
US11/391,651 US7209504B2 (en) 2003-03-27 2006-03-27 Solid laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086653A JP4111033B2 (en) 2003-03-27 2003-03-27 Solid state laser equipment

Publications (2)

Publication Number Publication Date
JP2004294738A true JP2004294738A (en) 2004-10-21
JP4111033B2 JP4111033B2 (en) 2008-07-02

Family

ID=33401219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086653A Expired - Fee Related JP4111033B2 (en) 2003-03-27 2003-03-27 Solid state laser equipment

Country Status (1)

Country Link
JP (1) JP4111033B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027704A1 (en) * 2012-08-13 2014-02-20 광주대학교 산학협력단 Method for generating quasi-number state light of continuous wave form in micromaser/laser
CN114526893A (en) * 2022-02-18 2022-05-24 重庆邮电大学 Method and device for measuring stimulated emission cross section of laser crystal
CN114526893B (en) * 2022-02-18 2024-05-28 重庆邮电大学 Method and device for measuring stimulated emission section of laser crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06131783A (en) * 1992-10-19 1994-05-13 Asahi Corp:Kk Disk holder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027704A1 (en) * 2012-08-13 2014-02-20 광주대학교 산학협력단 Method for generating quasi-number state light of continuous wave form in micromaser/laser
CN114526893A (en) * 2022-02-18 2022-05-24 重庆邮电大学 Method and device for measuring stimulated emission cross section of laser crystal
CN114526893B (en) * 2022-02-18 2024-05-28 重庆邮电大学 Method and device for measuring stimulated emission section of laser crystal

Also Published As

Publication number Publication date
JP4111033B2 (en) 2008-07-02

Similar Documents

Publication Publication Date Title
JPH05152657A (en) Feedback circuit and method for reducing amplitude noise of laser system
US8976203B2 (en) Wavelength conversion device and image display apparatus using same
JP3739341B2 (en) LASER DEVICE, CONTROL DEVICE AND CONTROL METHOD THEREOF
EP2071683A3 (en) Laser device and controlling method therefor
JP2010251448A (en) Solid-state pulsed laser apparatus for output of third harmonic waves
JP2010091357A (en) Optical fiber current sensor
JP3573475B2 (en) Laser diode pumped solid state laser
JP2008268945A (en) Wavelength tunable laser apparatus
JP2004294738A (en) Solid state laser device
JP2000261073A (en) Semiconductor laser pumped solid-state laser
JP2004348052A (en) Solid laser device
JP6021134B2 (en) Optical resonator system
JP4114520B2 (en) Solid state laser equipment
US20110216791A1 (en) Phase control device for laser light pulse
JP2008135491A (en) Solid-state laser device
JPS623534A (en) Optical modulator
JPH05110179A (en) Short wavelength and short duration pulse light source
JP4114533B2 (en) Solid state laser equipment
JP4968149B2 (en) Solid state laser equipment
JP2013055283A (en) High power pulse light generator
JP2000349390A (en) Method and device for controlling drive of semiconductor laser
JP4182797B2 (en) Raman gain measuring device
JP2000332332A (en) Fiber raman amplifier and optical fiber communication system using same
JP4415750B2 (en) Solid state laser equipment
JP5257428B2 (en) Method for setting proper temperature of solid-state laser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent or registration of utility model

Ref document number: 4111033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees