JPH05110179A - Short wavelength and short duration pulse light source - Google Patents
Short wavelength and short duration pulse light sourceInfo
- Publication number
- JPH05110179A JPH05110179A JP26474991A JP26474991A JPH05110179A JP H05110179 A JPH05110179 A JP H05110179A JP 26474991 A JP26474991 A JP 26474991A JP 26474991 A JP26474991 A JP 26474991A JP H05110179 A JPH05110179 A JP H05110179A
- Authority
- JP
- Japan
- Prior art keywords
- short
- light
- light source
- pulse light
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は短波長短パルス光源に関
し、特に詳細には、和周波光を利用するものに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a short wavelength short pulse light source, and more particularly to a light source using sum frequency light.
【0002】[0002]
【従来の技術】波長が500nm以下でピコ秒域の短波
長短パルス光の発生技術として、高調波を利用するもの
と和周波光を利用するものが知られている。高調波を発
生させるには、色素レーザなどの大型レーザ装置を使う
方法や、高出力レーザ共振器内で発生させる方法(AP
L.54(17)PP.1625〜1627)、あるい
は半導体レーザ(LD)光を非線形媒質からなる導波路
に導く方法が用いられる。また、和周波光を発生させる
には、高出力レーザ共振器内に非線形素子をセットし、
高速変調したLDの出力光をミキシングする方法(信学
技報、OQE90−37、APL.54(9)PP.7
89〜791など)が用いられる。2. Description of the Related Art Known techniques for generating short-wavelength short-pulse light having a wavelength of 500 nm or less in the picosecond range are those using harmonics and those using sum frequency light. To generate higher harmonics, a method using a large-sized laser device such as a dye laser or a method using a large-power laser resonator (AP
L. 54 (17) PP. 1625 to 1627) or a method of guiding semiconductor laser (LD) light to a waveguide formed of a nonlinear medium. To generate sum frequency light, set a non-linear element in the high power laser resonator,
A method of mixing the output light of the LD which is modulated at high speed (Technical Report, OQE90-37, APL.54 (9) PP.7
89-791) is used.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、高調波
発生による技術では、出力を大きくするためには色素レ
ーザの如き大型の装置が必要になり、他方、導波路とL
Dを用いて小形化すると低出力になってしまう。また、
LD励起固体レーザの共振器内部に非線形素子をセット
し、励起用LDを変調する方法によると、レーザ媒質の
蛍光寿命により速いスイッチングができず、短パルス光
とならない。However, in the technique of generating harmonics, a large device such as a dye laser is required to increase the output, while the waveguide and L
If the size is reduced by using D, the output will be low. Also,
According to the method in which a nonlinear element is set inside the resonator of the LD pumped solid-state laser and the pumping LD is modulated, fast switching cannot be performed due to the fluorescence life of the laser medium, and short pulse light is not produced.
【0004】これに対し、和周波光を利用するものとし
て、例えば特開平1−214082号のように、CW発
振のLD励起固体レーザの共振器内部に非線形素子をセ
ットし、高速変調したLDの出力光をミキシングする方
法がある。しかし、これによると、LD励起固体レーザ
がCW発振ゆえにパワー密度を高くできず、変換効率は
1%程度に止まる。また、パルス幅も5ns程度にしか
ならない。さらに、LD励起固体レーザの励起用LDに
変調をかけた場合には、LD出力があまり大きくないの
で、非線形効果が小さく、また、LDの出力光を非線形
媒質かレーザ媒質の一方にしか集光できないため両媒質
中でパワー密度が上がらず、高出力が得られない。 そ
こで本発明は、小型かつ大出力であって、短波長短パル
ス光を出力することが可能な短波長短パルス光源を提供
することを目的とする。On the other hand, as one utilizing sum frequency light, for example, as disclosed in Japanese Patent Laid-Open No. 1-214082, a nonlinear element is set in the resonator of an LD pumped solid-state laser of CW oscillation and a high-speed modulated LD is used. There is a method of mixing output light. However, according to this, the LD pumped solid-state laser cannot increase the power density because of the CW oscillation, and the conversion efficiency is limited to about 1%. Moreover, the pulse width is only about 5 ns. Furthermore, when the LD for excitation of the LD pumped solid-state laser is modulated, the LD output is not so large that the nonlinear effect is small, and the output light of the LD is focused only on one of the nonlinear medium and the laser medium. Since it is not possible, the power density does not rise in both media and high output cannot be obtained. Therefore, an object of the present invention is to provide a short-wavelength short-pulse light source that is small in size and high in output and capable of outputting short-wavelength short-pulse light.
【0005】[0005]
【課題を解決するための手段】本発明に関わる短波長短
パルス光源は、励起パルス光を発生させる第1の光源
と、この励起パルス光より短パルス幅の短パルス光を発
生させる第2の光源と、第1および第2の光源の発光タ
イミングを同期させる同期手段と、励起パルス光と短パ
ルス光を入射することにより和周波光を発生させる和周
波発生手段と、を備え、和周波光を短波長短パルス光と
して出力するようにしたことを特徴とする。A short wavelength short pulse light source according to the present invention comprises a first light source for generating an excitation pulse light and a second light source for generating a short pulse light having a shorter pulse width than the excitation pulse light. And a sum frequency generating means for generating sum frequency light by making excitation pulse light and short pulse light incident, and synchronizing means for synchronizing the light emission timings of the first and second light sources. It is characterized in that it outputs as short wavelength short pulse light.
【0006】[0006]
【作用】本発明の構成によれば、励起パルス光と短パル
ス光が同期して和周波発生手段に入射され、これによっ
て和周波光が発生される。ここで、和周波光の波長は励
起パルス光と短パルス光の波長に対応して十分に短波長
となり、また、そのパルス幅は短パルス光のパルス幅に
応じて十分に短くなる。また、励起パルス光と短パルス
光のタイミングが一致すると和周波光の出力は最大とな
り、タイミングをずらすことで出力を可変にできる。According to the structure of the present invention, the excitation pulse light and the short pulse light are incident on the sum frequency generation means in synchronization with each other, and the sum frequency light is generated thereby. Here, the wavelength of the sum frequency light is sufficiently short wavelength corresponding to the wavelengths of the pump pulse light and the short pulse light, and the pulse width thereof is sufficiently short according to the pulse width of the short pulse light. Further, when the excitation pulse light and the short pulse light have the same timing, the output of the sum frequency light becomes maximum, and the output can be made variable by shifting the timing.
【0007】[0007]
【実施例】以下、添付図面を参照して、本発明の実施例
を詳細に説明する。Embodiments of the present invention will now be described in detail with reference to the accompanying drawings.
【0008】図1は本発明に係わる短波長短パルス光源
の基本構成を示すブロック図である。この装置は、短パ
ルス光源1とエネルギー注入光源2との2個のパルス光
源を有し、その発光タイミングはタイミング同期手段3
によって同期するようコントロールされている。短パル
ス光源1からの短パルス光とエネルギー注入光源2から
の励起パルス光は光結合手段4によって結合され、和周
波発生手段5に入射される。FIG. 1 is a block diagram showing the basic configuration of a short wavelength short pulse light source according to the present invention. This device has two pulse light sources, a short pulse light source 1 and an energy injection light source 2, and the light emission timing thereof is a timing synchronization means 3
It is controlled to synchronize by. The short pulse light from the short pulse light source 1 and the excitation pulse light from the energy injection light source 2 are combined by the optical combining means 4 and are incident on the sum frequency generating means 5.
【0009】ここで短パルス光の波長をλS 、励起パル
ス光の波長をλP とすると、和周波発生手段5からの和
周波光の波長λO は、 1/λO =1/λS +1/λP となる。この波長λO の和周波光のみが光分岐手段6に
よって取り出され、出力パルスすなわち短波長短パルス
光として外部に出力される。なお、この短波長短パルス
光のパワーは、短パルス光のパワーPS および励起パル
ス光のパワーPP に比例している。When the wavelength of the short pulse light is λ S and the wavelength of the pump pulse light is λ P , the wavelength λ O of the sum frequency light from the sum frequency generating means 5 is 1 / λ O = 1 / λ S It becomes + 1 / λ P. Only the sum frequency light of the wavelength λ O is extracted by the optical branching means 6 and output as an output pulse, that is, a short wavelength short pulse light. The power of the short length pulse light is proportional to the power P P of the power P S and the excitation pulse light of the short pulse light.
【0010】図2は上記構成の具体的実施例を示してい
る。図1と対比すれば明らかなように、短パルス光源1
は高出力短パルスLD光源10で構成され、エネルギー
注入光源2はLD励起QスイッチYLFレーザ光源20
で構成され、タイミング同期手段3はタイミング同期信
号発生回路30で構成されている。また、光結合手段4
は全反射ミラー41とダイクロイックミラー42で構成
され、和周波発生手段5はBBO(β−BaB2 O4 )
やKTP(KTiOPO4 )などの非線形素子50で構
成され、光分岐手段6は分光器60で構成されている。
なお、L1 ,L2 は集光レンズである。FIG. 2 shows a specific embodiment of the above construction. As is clear from comparison with FIG. 1, the short pulse light source 1
Is a high-power short-pulse LD light source 10, and the energy injection light source 2 is an LD pumped Q-switch YLF laser light source 20.
The timing synchronization means 3 is composed of a timing synchronization signal generation circuit 30. Also, the optical coupling means 4
Is composed of a total reflection mirror 41 and a dichroic mirror 42, and the sum frequency generation means 5 is BBO (β-BaB 2 O 4 ).
And a non-linear element 50 such as KTP (KTiOPO 4 ) or the like, and the optical branching means 6 is composed of a spectroscope 60.
Incidentally, L 1 and L 2 are condenser lenses.
【0011】このような構成では、励起パルス光の波長
はλP =1047nmであり、例えば短パルス光の波長
をλS =900nmとすると、短波長短パルス光の波長
はλO =484nmとなる。そして例えばLD励起Qス
イッチYLFレーザ光源20の出力を10μJとし、高
出力短パルスLD光源10の出力ピークパワーを10
W、非線形素子50の変換効率を4〜5%とすると、短
波長短パルス光のピーク強度は400〜500mWとな
る。In such a configuration, the wavelength of the pump pulse light is λ P = 1047 nm. For example, if the wavelength of the short pulse light is λ S = 900 nm, the wavelength of the short wavelength short pulse light is λ O = 484 nm. Then, for example, the output of the LD excitation Q-switch YLF laser light source 20 is set to 10 μJ, and the output peak power of the high output short pulse LD light source 10 is set to 10 μJ.
If the conversion efficiency of W and the nonlinear element 50 is 4 to 5%, the peak intensity of the short wavelength short pulse light is 400 to 500 mW.
【0012】このような最大出力の短波長短パルス光
は、図3のように励起パルス光と短パルス光のピークの
タイミングが一致するt0 のときに得られ、t1 ,t2
では出力が小さくなる。また、PO はPP とPS の積に
比例するので、短波長短パルス光の強度をLD励起Qス
イッチYLFレーザ光源20の出力でコントロールする
ことができる。ここで、LD励起QスイッチYLFレー
ザ光源20はパルス光源であり、したがってCW光源に
比べてパワー密度を大きくできるので、大出力の短波長
短パルス光が得られる。[0012] short length pulse light of such maximum output is obtained when the t 0 the timing of the peak of the excitation pulse light and the pulsed light coincide as shown in FIG. 3, t 1, t 2
Then the output becomes smaller. Further, since P O is proportional to the product of P P and P S , the intensity of the short-wavelength short-pulse light can be controlled by the output of the LD pumped Q-switch YLF laser light source 20. Here, the LD excitation Q-switch YLF laser light source 20 is a pulse light source, and therefore, the power density can be made larger than that of the CW light source, so that a large output short wavelength short pulse light can be obtained.
【0013】なお、図4(a)のように、励起パルス光
ビームと短パルス光ビームを非線形素子50中でクロス
させるようにすれば、光結合手段4を設けることが不要
になる。このとき、短波長短パルス光はスリット61を
用いて取り出せばよい。なお、非線形素子50の出射端
面に多層膜などでダイクロイックミラーを形成してもよ
い。非線形素子50には、チェレンコフ放射型の素子を
用いてもよく、この場合には、図4(b)のように波長
によって出射角が異なるので、アパーチャやスリット6
1で分光できる。If the excitation pulsed light beam and the short pulsed light beam are crossed in the non-linear element 50 as shown in FIG. 4 (a), it is not necessary to provide the optical coupling means 4. At this time, the short wavelength short pulse light may be extracted using the slit 61. A dichroic mirror may be formed on the emission end face of the non-linear element 50 with a multilayer film or the like. A Cherenkov radiation type element may be used as the non-linear element 50. In this case, since the emission angle differs depending on the wavelength as shown in FIG.
It can be separated by 1.
【0014】次に、タイミング同期手段3の具体的な構
成をいくつかの例について説明する。図5では、タイミ
ング同期手段3はタイミング同期信号発生回路30と光
検出器31により構成される。ここでは、励起パルス光
と短パルス光が検出され、この検出出力にもとずき、タ
イミング同期信号発生回路30によるコントロールがさ
れる。図5(a)では、光結合手段であるダイクロイッ
クミラー42からの励起光と短パルス光のもれ光を利用
している。図5(b)では、非線形素子50から出射さ
れた光から、ダイクロイックミラー44によって取り出
された励起光と短パルス光を光検出器31に入射してい
る。Next, a specific configuration of the timing synchronization means 3 will be described with reference to some examples. In FIG. 5, the timing synchronizing means 3 comprises a timing synchronizing signal generating circuit 30 and a photodetector 31. Here, the excitation pulsed light and the short pulsed light are detected, and based on the detection outputs, the timing synchronization signal generation circuit 30 controls them. In FIG. 5A, the leaking light of the excitation light and the short pulse light from the dichroic mirror 42 which is the optical coupling means is used. In FIG. 5B, the excitation light and the short pulse light extracted by the dichroic mirror 44 from the light emitted from the nonlinear element 50 are incident on the photodetector 31.
【0015】次に、上記の光検出器31と同期コントロ
ールの手法について説明する。図6では、高速光検出器
46で、励起パルス光と短パルス光のパワーの和のピー
クを検出し、このピーク値が最大となるよう、発光タイ
ミングをコントロールしている。なお、図5(b)の構
成では励起パルス光と短パルス光の他に和周波光も同時
に高速光検出器46で検出し、そのピークが最大となる
よう発光タイミングをコントロールしてもよい。Next, a method of the photodetector 31 and the synchronization control will be described. In FIG. 6, the high-speed photodetector 46 detects the peak of the sum of the powers of the excitation pulse light and the short pulse light, and controls the emission timing so that this peak value becomes maximum. In the configuration of FIG. 5B, the high-frequency photodetector 46 may simultaneously detect the sum frequency light in addition to the excitation pulse light and the short pulse light, and control the emission timing so that the peak thereof becomes maximum.
【0016】図7では、高速光検出器46P で励起パル
ス光を検出し、高速光検出器46S で短パルス光を検出
し、このピークの時間差△tがゼロになるようコントロ
ールしている。この場合には、ダイクロイックミラー4
4は波長λP を反射し、波長λS を透過する。なお、こ
の時間差△tの調整によって、短波長短パルス光のパワ
ーを任意に調整できることは言うまでもない。In FIG. 7, the high-speed photodetector 46 P detects the excitation pulse light, the high-speed photodetector 46 S detects the short pulse light, and the peak time difference Δt is controlled to be zero. .. In this case, the dichroic mirror 4
4 reflects the wavelength λ P and transmits the wavelength λ S. It is needless to say that the power of the short wavelength short pulse light can be arbitrarily adjusted by adjusting the time difference Δt.
【0017】図8は、非線形素子50からの光の一部
(数%)を分岐し、これから和周波光をフィルタ45で
抽出し、高速光検出器46に入射して検出し、タイミン
グコントロールを行なう場合を示している。このように
すると、高速光検出器46の検出出力は、短パルス光と
励起パルス光のピークの時間差△tに依存して変化する
ので、出力パワーのコントロールができる。この場合、
検出器には低速のものを用いてもよい。In FIG. 8, a part (several percent) of the light from the non-linear element 50 is branched, and the sum frequency light is extracted from this by the filter 45 and is incident on the high-speed photodetector 46 to be detected for timing control. It shows the case of performing. By doing so, the detection output of the high-speed photodetector 46 changes depending on the time difference Δt between the peaks of the short pulse light and the excitation pulse light, so that the output power can be controlled. in this case,
A low speed detector may be used.
【0018】上記のようなタイミングコントロールを行
なうことで、温度によって高出力短パルスLD光源10
やLD励起QスイッチYLFレーザ光源20の発光タイ
ミングがずれた場合でも、これを所望に補正でき、安定
な動作をさせることができる。また、任意強度の出力を
得ることもでき、例えば励起パルス光の出力が50%に
なるタイミングに短パルス光を合わせれば、短波長短パ
ルス光を50%の出力にできる。そして、最大パワーか
らゼロパワーまでの間で、連続的に出力を変更できる。By performing the timing control as described above, the high-power short-pulse LD light source 10 is changed depending on the temperature.
Even when the light emission timing of the LD excitation Q switch YLF laser light source 20 is deviated, this can be corrected as desired, and stable operation can be performed. Further, it is possible to obtain an output having an arbitrary intensity. For example, if the short pulse light is matched at the timing when the output of the excitation pulse light becomes 50%, the short wavelength short pulse light can be output at 50%. Then, the output can be continuously changed from the maximum power to the zero power.
【0019】このとき、短パルス光のピークのタイミン
グを、励起パルス光のピークの前に合わせるか後に合わ
せるかによって励起パルス光のエンベロープにもとづ
き、短波長短パルス光の立上がりをシャープにしたり、
立ち下がりシャープにしたりすることが可能になる。励
起パルス光と短パルス光のタイミングをずらせることな
く、短波長短パルス光のパワーを可変とするためには、
2つの光の空間的な重なり具合を変化させればよく、こ
の場合には、立上がりと立ち下がりのシャープさは変化
しない。なお、これらを併用してもよく、このようにす
れば短波長短パルス光の強度可変時の強度比を大きくで
きる。At this time, depending on whether the timing of the peak of the short pulse light is adjusted before or after the peak of the excitation pulse light, the rise of the short wavelength short pulse light is sharpened based on the envelope of the excitation pulse light,
It becomes possible to sharpen the fall. In order to make the power of short wavelength short pulse light variable without shifting the timing of the pump pulse light and short pulse light,
It is only necessary to change the degree of spatial overlap of the two lights, and in this case, the sharpness of the rising and falling edges does not change. Note that these may be used in combination, and by doing so, the intensity ratio at the time of varying the intensity of the short wavelength short pulse light can be increased.
【0020】上記のような強度の調整は、NDフィルタ
などを用いる場合よりも有用である。なぜなら、NDフ
ィルタを用いると分散によってパルス幅が拡がってしま
うが、本発明によれば、このような不利益は生じないか
らである。The intensity adjustment as described above is more useful than the case where an ND filter or the like is used. This is because when the ND filter is used, the pulse width is widened due to dispersion, but according to the present invention, such a disadvantage does not occur.
【0021】さらに、本発明によれば、SHG(高調
波)を用いる場合に比べて、多種の変換波長を得られ
る。すなわち、SHG法によれば、LD光が900nm
なら出力光は450nm、LD光が830nmなら出力
光は415nmにしかならないが、本発明によれば、L
Dはそのままでエネルギー注入光源2を別の波長のもの
に変えるか、またはその逆を行なうかして、光源の組み
合わせを変えることで多様な出力波長が得られる。これ
を、図9に示す。ただし、この場合非線形素子50や光
入射角度を適正にする必要がある。Further, according to the present invention, various conversion wavelengths can be obtained as compared with the case of using SHG (harmonic wave). That is, according to the SHG method, the LD light is 900 nm.
If the output light is 450 nm and the LD light is 830 nm, the output light is only 415 nm, but according to the present invention, L
Various output wavelengths can be obtained by changing the combination of the light sources by changing the energy injection light source 2 to a different wavelength one with D as it is, or vice versa. This is shown in FIG. However, in this case, it is necessary to make the nonlinear element 50 and the light incident angle appropriate.
【0022】[0022]
【発明の効果】以上の通り、本発明では、励起パルス光
と短パルス光が同期して和周波発生手段に入射され、こ
れによって和周波が発生される。ここで、励起パルス光
と短パルス光のタイミングが一致すると和周波光の出力
は最大となり、タイミングをずらすことで出力を可変に
できる。このため、高効率で強度可変の短波長短パルス
光を得ることのできる小型の短波長短パルス光源が提供
できる。As described above, in the present invention, the excitation pulsed light and the short pulsed light are synchronously incident on the sum frequency generating means, and the sum frequency is thereby generated. Here, the output of the sum frequency light becomes maximum when the timings of the pump pulse light and the short pulse light match, and the output can be made variable by shifting the timing. Therefore, it is possible to provide a compact short-wavelength short-pulse light source that can obtain highly efficient and variable intensity short-wavelength short-pulse light.
【図1】本発明の基本構成を示す図である。FIG. 1 is a diagram showing a basic configuration of the present invention.
【図2】実施例の基本構成を示す図である。FIG. 2 is a diagram showing a basic configuration of an embodiment.
【図3】実施例の短波長短パルス光の生成原理を示す図
である。FIG. 3 is a diagram showing a generation principle of short-wavelength short-pulse light in the example.
【図4】非線形素子50への励起パルス光と短パルス光
の入射をしめす図である。FIG. 4 is a diagram showing the incidence of excitation pulse light and short pulse light on a nonlinear element 50.
【図5】和周波発生手段5の構成を具体的に示した図で
ある。FIG. 5 is a diagram specifically showing a configuration of a sum frequency generation means 5.
【図6】和周波発生手段5の構成の一例と作用を示す図
である。FIG. 6 is a diagram showing an example of the configuration and operation of a sum frequency generation means 5.
【図7】和周波発生手段5の構成の一例と作用を示す図
である。FIG. 7 is a diagram showing an example of the configuration and operation of a sum frequency generation means 5.
【図8】和周波発生手段5の構成の一例と作用を示す図
である。FIG. 8 is a diagram showing an example of the configuration and operation of the sum frequency generation means 5.
【図9】短パルス光源1とエネルギー注入光源2の組み
合わせを示す図表である。FIG. 9 is a chart showing a combination of a short pulse light source 1 and an energy injection light source 2.
1…短パルス光源、10…高出力短パルスLD光源、2
…エネルギー注入光源、20…LD励起QスイッチYL
Fレーザ光源、3…タイミング同期手段、30…タイミ
ング同期信号発生回路、31…高速光検出器、4…光結
合手段、42…ダイクロイックミラー、5…和周波発生
手段、50…非線形素子、6…光分岐手段、60…分光
器1 ... Short pulse light source, 10 ... High output short pulse LD light source, 2
… Energy injection light source, 20… LD excitation Q switch YL
F laser light source, 3 ... Timing synchronizing means, 30 ... Timing synchronizing signal generating circuit, 31 ... High-speed photodetector, 4 ... Optical coupling means, 42 ... Dichroic mirror, 5 ... Sum frequency generating means, 50 ... Non-linear element, 6 ... Light splitting means, 60 ... Spectrometer
Claims (12)
と、 前記励起パルス光より短パルス幅の短パルス光を発生さ
せる第2の光源と、 前記第1および第2の光源の発光タイミングを同期させ
る同期手段と、 前記励起パルス光と前記短パルス光を入射することによ
り和周波光を発生させる和周波発生手段と、 を備え、前記和周波光を短波長短パルス光として出力す
るようにした短波長短パルス光源。1. A first light source for generating excitation pulsed light, a second light source for generating short pulsed light having a shorter pulse width than the excitation pulsed light, and light emission timings of the first and second light sources. A synchronizing means for synchronizing and a sum frequency generating means for generating sum frequency light by making the excitation pulse light and the short pulse light incident are provided, and the sum frequency light is output as short wavelength short pulse light. Short wavelength short pulse light source.
の光源の少なくとも一方の発光タイミングを調整するこ
とにより、前記和周波光の出力を最大とするよう構成さ
れている請求項1記載の短波長短パルス光源。2. The synchronizing means includes the first or second
The short-wavelength short-pulse light source according to claim 1, wherein the output of the sum frequency light is maximized by adjusting the light emission timing of at least one of the light sources.
合させて前記和周波発生手段に入射する光結合手段を更
に備える請求項1記載の短波長短パルス光源。3. The short-wavelength short-pulse light source according to claim 1, further comprising an optical coupling unit that couples the output lights of the first and second light sources and makes them incident on the sum frequency generation unit.
光のみを分離して出力する光分岐手段を更に備える請求
項1記載の短波長短パルス光源。4. The short wavelength short pulse light source according to claim 1, further comprising an optical branching unit that separates and outputs only the sum frequency light from the light emitted from the sum frequency generating unit.
入射される前記励起パルス光および前記短パルス光の一
部を受光する検出手段を含み、この検出手段の検出出力
にもとづいて前記第1および第2の光源の少なくとも一
方の発光タイミングを調整するよう構成されている請求
項2記載の短波長短パルス光源。5. The synchronizing means includes a detecting means for receiving a part of the excitation pulse light and the short pulse light incident on the sum frequency generating means, and the detecting means outputs the first pulse based on a detection output of the detecting means. The short-wavelength short-pulse light source according to claim 2, wherein the light-emission timing of at least one of the first and second light sources is adjusted.
出力光の一部を受光する検出手段を含み、この検出手段
の検出出力にもとづいて前記第1および第2の光源の少
なくとも一方の発光タイミングを調整するよう構成され
ている請求項2記載の短波長短パルス光源。6. The synchronizing means includes a detecting means for receiving a part of the output light of the sum frequency generating means, and based on a detection output of the detecting means, at least one of the first and second light sources. The short wavelength short pulse light source according to claim 2, wherein the short wavelength short pulse light source is configured to adjust the light emission timing.
の光源の少なくとも一方の発光タイミングを可変に設定
する手段を含み、前記和周波光の出力を所望のレベルと
するよう構成されている請求項1記載の短波長短パルス
光源。7. The synchronizing means comprises the first or second
2. The short-wavelength short-pulse light source according to claim 1, further comprising means for variably setting the light emission timing of at least one of the light sources, and the output of the sum frequency light is set to a desired level.
における前記励起パルス光と前記短パルス光の空間的な
重なりを可変とするよう構成されている請求項3記載の
短波長短パルス光源。8. The short-wavelength short-pulse light source according to claim 3, wherein the optical coupling means is configured so that the spatial overlap between the excitation pulse light and the short-pulse light in the sum frequency generation means is variable.
スイッチ固体レーザからなる請求項1記載の短波長短パ
ルス光源。9. The semiconductor laser pumped Q
The short-wavelength short-pulse light source according to claim 1, comprising a switched solid-state laser.
ス光を発生させる半導体レーザからなる請求項1記載の
短波長短パルス光源。10. The short wavelength short pulse light source according to claim 1, wherein the second light source is a semiconductor laser that generates short pulse light in the picosecond range.
ーである請求項3記載の短波長短パルス光源。11. The short wavelength short pulse light source according to claim 3, wherein the optical coupling means is a dichroic mirror.
ーである請求項4記載の短波長短パルス光源。12. The short wavelength short pulse light source according to claim 4, wherein the light splitting means is a dichroic mirror.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26474991A JPH05110179A (en) | 1991-10-14 | 1991-10-14 | Short wavelength and short duration pulse light source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26474991A JPH05110179A (en) | 1991-10-14 | 1991-10-14 | Short wavelength and short duration pulse light source |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05110179A true JPH05110179A (en) | 1993-04-30 |
Family
ID=17407654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26474991A Pending JPH05110179A (en) | 1991-10-14 | 1991-10-14 | Short wavelength and short duration pulse light source |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05110179A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999014631A1 (en) * | 1997-09-17 | 1999-03-25 | Kabushiki Kaisya Ushiosougougizyutsukenkyusyo | Light source |
JP2002099007A (en) * | 2000-09-21 | 2002-04-05 | Sony Corp | Laser beam generator and optical device using the same |
WO2005073795A1 (en) | 2004-01-29 | 2005-08-11 | Zaidan Hojin Handotai Kenkyu Shinkokai | Electromagnetic wave generating device |
US7580432B2 (en) | 1994-04-01 | 2009-08-25 | Imra America, Inc. | Scanning temporal ultrafast delay methods and apparatuses therefor |
JP2009543363A (en) * | 2006-07-12 | 2009-12-03 | ダンマークス テクニスケ ウニヴァシティット | Pumping laser system using feedback to pump means |
JP2012137799A (en) * | 2012-04-23 | 2012-07-19 | Sony Corp | Laser beam generator and optical device using the same |
JP2017520806A (en) * | 2014-07-03 | 2017-07-27 | アンプリテュード システムAmplitude Systemes | UV visible laser system with ultrashort high power and / or high energy pulses |
EP3584632A1 (en) * | 2018-06-18 | 2019-12-25 | Advalight APS | Medical laser system |
-
1991
- 1991-10-14 JP JP26474991A patent/JPH05110179A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7580432B2 (en) | 1994-04-01 | 2009-08-25 | Imra America, Inc. | Scanning temporal ultrafast delay methods and apparatuses therefor |
US8630321B2 (en) | 1994-04-01 | 2014-01-14 | Imra America, Inc. | Scanning temporal ultrafast delay and methods and apparatuses therefor |
US8265105B2 (en) | 1994-04-01 | 2012-09-11 | Imra America, Inc. | Scanning temporal ultrafast delay and methods and apparatuses therefor |
WO1999014631A1 (en) * | 1997-09-17 | 1999-03-25 | Kabushiki Kaisya Ushiosougougizyutsukenkyusyo | Light source |
JP2002099007A (en) * | 2000-09-21 | 2002-04-05 | Sony Corp | Laser beam generator and optical device using the same |
JPWO2005073795A1 (en) * | 2004-01-29 | 2008-01-10 | 財団法人半導体研究振興会 | Electromagnetic wave generator |
US7599409B2 (en) | 2004-01-29 | 2009-10-06 | Jun-ichi Nishizawa | Electromagnetic wave generating device |
EP1715377A4 (en) * | 2004-01-29 | 2011-04-27 | Nishizawa Junichi | Electromagnetic wave generating device |
JP4749156B2 (en) * | 2004-01-29 | 2011-08-17 | 潤一 西澤 | Electromagnetic wave generator |
EP1715377A1 (en) * | 2004-01-29 | 2006-10-25 | Zaidan Hojin Handotai Kenkyu Shinkokai | Electromagnetic wave generating device |
WO2005073795A1 (en) | 2004-01-29 | 2005-08-11 | Zaidan Hojin Handotai Kenkyu Shinkokai | Electromagnetic wave generating device |
JP2009543363A (en) * | 2006-07-12 | 2009-12-03 | ダンマークス テクニスケ ウニヴァシティット | Pumping laser system using feedback to pump means |
JP2012137799A (en) * | 2012-04-23 | 2012-07-19 | Sony Corp | Laser beam generator and optical device using the same |
JP2017520806A (en) * | 2014-07-03 | 2017-07-27 | アンプリテュード システムAmplitude Systemes | UV visible laser system with ultrashort high power and / or high energy pulses |
EP3584632A1 (en) * | 2018-06-18 | 2019-12-25 | Advalight APS | Medical laser system |
WO2019242919A1 (en) * | 2018-06-18 | 2019-12-26 | Advalight Aps | Medical laser system |
CN112470069A (en) * | 2018-06-18 | 2021-03-09 | 艾德瓦莱特私人有限公司 | Medical laser system |
US12053640B2 (en) | 2018-06-18 | 2024-08-06 | Advalight Aps | Medical laser system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7116688B2 (en) | Laser system and method for generation of a pulse sequence with controllable parameters and computer program product | |
JP3987554B2 (en) | High repetition rate femtosecond playback amplifier | |
KR100989100B1 (en) | Method and apparatus for oscillator start-up control for mode-locked laser | |
US8374206B2 (en) | Combining multiple laser beams to form high repetition rate, high average power polarized laser beam | |
JPH10268369A (en) | Light pulse amplifying device, chirp pulse amplifying device, and parametric chirp pulse amplifying device | |
JP2007086108A (en) | Method of generating deep ultraviolet laser light and deep ultraviolet laser device | |
US9414498B2 (en) | Via-hole drilling in a printed circuit board using a carbon monoxide laser | |
KR102235631B1 (en) | Laser Equipment for Outputting Multi-Pulse Width | |
JPH05110179A (en) | Short wavelength and short duration pulse light source | |
JP6508058B2 (en) | Light source device and wavelength conversion method | |
US4425652A (en) | Laser system using organic dye amplifier | |
Liu et al. | Subnanosecond tunable ultraviolet pulse generation from a low-Q, short-cavity Ce: LiCAF laser | |
US5271025A (en) | Mode-locked upconversion laser source | |
JP5964779B2 (en) | Terahertz wave generation apparatus and terahertz wave generation method | |
JP2002287190A (en) | Ir light generating device | |
JP2904189B2 (en) | Optical parametric oscillator | |
JP3131079B2 (en) | Q switch CO2 laser device | |
JP2541478B2 (en) | Exposure equipment | |
KR100757101B1 (en) | High-repetition-rate femtosecond regenerative amplification system | |
JP2001249367A (en) | Light generation method and light source | |
JP2011053314A (en) | Light source device | |
US3922618A (en) | Multiple transition laser | |
JP2696121B2 (en) | Infrared femtosecond optical pulse generator | |
Mani et al. | High energy and short pulses generation by Nd: yttrium aluminum garnet laser mode-locked using frequency-doubling nonlinear mirror | |
Dong et al. | Direct generation of orthogonally polarized dual-wavelength double pulse Pr: YLF visible laser |