JP5257428B2 - Method for setting proper temperature of solid-state laser device - Google Patents

Method for setting proper temperature of solid-state laser device Download PDF

Info

Publication number
JP5257428B2
JP5257428B2 JP2010195656A JP2010195656A JP5257428B2 JP 5257428 B2 JP5257428 B2 JP 5257428B2 JP 2010195656 A JP2010195656 A JP 2010195656A JP 2010195656 A JP2010195656 A JP 2010195656A JP 5257428 B2 JP5257428 B2 JP 5257428B2
Authority
JP
Japan
Prior art keywords
temperature
solid
output
optical noise
state laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010195656A
Other languages
Japanese (ja)
Other versions
JP2011009772A (en
Inventor
一馬 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2010195656A priority Critical patent/JP5257428B2/en
Publication of JP2011009772A publication Critical patent/JP2011009772A/en
Application granted granted Critical
Publication of JP5257428B2 publication Critical patent/JP5257428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lasers (AREA)

Description

本発明は、固体レーザ装置の適正温度設定方法に関し、さらに詳しくは、光ノイズの影響を最小限に抑えつつ、駆動電流を少なくしたり、温度変動に対するマージンを大きくすることが出来る固体レーザ装置の適正温度設定方法に関する。 The present invention relates to a method for setting an appropriate temperature of a solid-state laser device. More specifically, the present invention relates to a solid-state laser device capable of reducing drive current and increasing a margin for temperature fluctuation while minimizing the influence of optical noise. It relates to an appropriate temperature setting method.

従来、温度チューニング時には、半導体レーザや固体レーザ結晶や非線形光学素子の温度を変えながら出力レーザ光の光ノイズ(高周波成分)を測定し、光ノイズが最も少なくなるときの温度を最適温度として記憶し、使用時には、記憶した最適温度に維持するように温調を行う固体レーザ装置が知られている(例えば、特許文献1参照。)。
特開2003−158318号公報([0008])
Conventionally, during temperature tuning, the optical noise (high-frequency component) of the output laser beam is measured while changing the temperature of the semiconductor laser, solid-state laser crystal, and nonlinear optical element, and the temperature at which the optical noise is minimized is stored as the optimum temperature. In use, a solid-state laser device is known that performs temperature adjustment so as to maintain the stored optimum temperature (see, for example, Patent Document 1).
JP2003-158318A ([0008])

上記従来の固体レーザ装置では、光ノイズが最も少なくなるときの温度を最適温度としていた。
しかし、許容値以下の光ノイズならば、光ノイズが最も少なくなる温度に拘る必要はない。むしろ、光ノイズが最も少なくなる温度に拘ると、駆動電流が多くなってしまったり、温度変動(実際の温度は温調設定温度の上下に変動する)に対するマージンが小さくなってしまう問題点がある。ここで、温度変動に対するマージンとは、光ノイズが許容値を超えないで温調設定温度から変動可能な温度範囲をいう。
そこで、本発明の目的は、光ノイズの影響を最小限に抑えつつ、駆動電流を少なくしたり、温度変動に対するマージンを大きくすることが出来る固体レーザ装置を提供することにある。
In the conventional solid-state laser device, the temperature at which the optical noise is minimized is set as the optimum temperature.
However, if the optical noise is less than the allowable value, there is no need to be concerned with the temperature at which the optical noise is minimized. Rather, there is a problem that the drive current increases or the margin for temperature fluctuations (actual temperature fluctuates above and below the temperature control set temperature) becomes small for the temperature at which optical noise is minimized. . Here, the margin for temperature fluctuation refers to a temperature range in which optical noise can fluctuate from the temperature adjustment set temperature without exceeding an allowable value.
SUMMARY OF THE INVENTION An object of the present invention is to provide a solid-state laser device that can reduce the drive current and increase the margin for temperature fluctuation while minimizing the influence of optical noise.

本発明は、励起レーザ光を発生する半導体レーザと、前記半導体レーザに駆動電流を供給する半導体レーザ駆動回路と、前記励起レーザ光によって励起され且つ前記励起レーザ光の入射面に反射面が形成され且つ所定の厚みをもった固体レーザ結晶と、前記反射面との間で光共振器を形成する反射面を持つ出力側ミラーと、前記光共振器内に挿入され前記励起レーザ光が入射され高調波を発生する非線形光学素子と、前記出力側ミラーから出力される出力レーザ光が所定出力になるように前記半導体レーザ駆動回路を制御する出力調整回路と、前記固体レーザ結晶と前記光共振器と前記非線形光学素子の少なくとも1つの温度が適正温度となるように制御する温度制御手段とを具備した固体レーザ装置において、前記温度制御手段の制御温度を変化させながら、前記出力レーザ光の光ノイズ成分及び前記駆動電流をモニタし、前記光ノイズ成分が所定の許容値以下の範囲において前記駆動電流が最小となる前記制御温度を、適正温度に設定して温度制御し、当該温度制御中に前記許容値を超える光ノイズ成分が検出された場合には、前記光ノイズ成分が所定の許容値以下の範囲の最低温度と最高温度の中間の温度を、新たな適正温度に設定することを特徴とする、固体レーザ装置の適正温度設定方法を提供する。 The present invention includes a semiconductor laser that generates excitation laser light, a semiconductor laser drive circuit that supplies a drive current to the semiconductor laser, a reflection surface that is excited by the excitation laser light and is formed on an incident surface of the excitation laser light. In addition, a solid-state laser crystal having a predetermined thickness, an output-side mirror having a reflecting surface that forms an optical resonator with the reflecting surface, and an excitation laser beam that is inserted into the optical resonator and is incident thereon. A nonlinear optical element that generates a wave, an output adjustment circuit that controls the semiconductor laser drive circuit so that output laser light output from the output-side mirror has a predetermined output, the solid-state laser crystal, and the optical resonator, In the solid-state laser device comprising temperature control means for controlling so that at least one temperature of the nonlinear optical element becomes an appropriate temperature, the control temperature of the temperature control means While varying, by monitoring the optical noise components and the drive current of the output laser beam, the control temperature of the optical noise components the drive current becomes minimum in the range of the predetermined tolerance, it is set to a proper temperature When the optical noise component exceeding the allowable value is detected during the temperature control, the intermediate temperature between the minimum temperature and the maximum temperature in the range where the optical noise component is equal to or less than a predetermined allowable value, Provided is a method for setting an appropriate temperature of a solid-state laser device, which is characterized by setting a new appropriate temperature .

上記固体レーザ装置では、出力レーザ光の光ノイズ成分が許容値以下となる温度領域に対応する駆動電流が最少となる温度で動作するように温調するため、光ノイズの影響を最小限に抑えつつ、駆動電流を少なくすることが出来る。また、許容値を超える光ノイズ成分が検出された場合には、出力レーザ光の光ノイズ成分が許容値以下となる温度領域の最低温度と最高温度の中間の温度で動作するように温調するため、光ノイズの影響を最小限に抑えつつ、温度変動に対するマージンを大きくすることが出来る。 In the above solid-state laser device, the temperature is adjusted so that the drive current corresponding to the temperature region where the optical noise component of the output laser light is less than the allowable value is operated, so that the influence of the optical noise is minimized. However, the drive current can be reduced. In addition, when an optical noise component exceeding the allowable value is detected , the temperature is adjusted so as to operate at an intermediate temperature between the lowest temperature and the highest temperature in the temperature region where the optical noise component of the output laser light is less than the allowable value. Therefore, it is possible to increase the margin for temperature fluctuation while minimizing the influence of optical noise.

本発明の固体レーザ装置によれば、出力レーザ光の光ノイズ成分が許容値以下となる温度領域に対応する駆動電流が最少となる温度で動作するように温調するため、光ノイズの影響を最小限に抑えつつ、駆動電流を少なくすることが出来る。また、出力レーザ光の光ノイズ成分が許容値以下となる温度領域の最低温度と最高温度の中間の温度で動作するように温調するため、光ノイズの影響を最小限に抑えつつ、温度変動に対するマージンを大きくすることが出来る。 According to the solid-state laser device of the present invention, the temperature is controlled so that the drive current corresponding to the temperature region in which the optical noise component of the output laser beam is less than the allowable value is operated at the minimum temperature. The drive current can be reduced while minimizing. In addition, the temperature is controlled to operate at a temperature between the lowest temperature and the highest temperature in the temperature range where the optical noise component of the output laser light is below the allowable value, so temperature fluctuations are minimized while minimizing the effects of optical noise. The margin for can be increased.

以下、図に示す実施例により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to the embodiments shown in the drawings. Note that the present invention is not limited thereby.

図1は、実施例1に係る固体レーザ装置100を示す説明図である。
この固体レーザ装置100は、レーザ発振部筐体4に収容されたレーザ発振部10と、制御部筐体6に収容された制御部20と、レーザ発振部10と制御部20とを接続するケーブル8とからなっている。
FIG. 1 is an explanatory diagram illustrating a solid-state laser device 100 according to the first embodiment.
The solid-state laser device 100 includes a laser oscillation unit 10 housed in a laser oscillation unit housing 4, a control unit 20 housed in a control unit housing 6, and a cable connecting the laser oscillation unit 10 and the control unit 20. It consists of eight.

レーザ発振部10は、励起レーザ光(波長λa)を発生する半導体レーザ11と、励起レーザ光を集光する集光レンズ系12と、所定の厚みを持ち且つ励起レーザ光の入射面に反射面が形成され且つ励起レーザ光により励起されて基本波光(波長λb)を発生する固体レーザ結晶13と、基本波光が入射すると第2高調波光(波長λc=λb/2)を発生する非線形光学素子14と、固体レーザ結晶13の反射面との間で光共振器を形成する反射面を持つ出力側ミラー15と、出力側ミラー15から外部へ出力される出力レーザ光の一部を透過すると共に残りを分岐するビームスプリッタ16と、分岐光を受光し電気信号に変換するホトダイオード17と、ホトダイオード17の出力Pから光ノイズ(高周波成分)Nを抽出するハイパスフィルタ18と、ペルチェ素子と温度センサとを有し半導体レーザ11の温調を行うための温調ユニット1と、ペルチェ素子と温度センサとを有し光共振器の温調を行うための温調ユニット2と、ペルチェ素子と温度センサとを有し非線形光学素子14の温調を行うための温調ユニット3と、コネクタ5とを具備している。 The laser oscillation unit 10 includes a semiconductor laser 11 that generates excitation laser light (wavelength λa), a condensing lens system 12 that condenses the excitation laser light, a reflection surface on the incident surface of the excitation laser light that has a predetermined thickness. And a solid-state laser crystal 13 that generates a fundamental wave light (wavelength λb) when excited by excitation laser light, and a nonlinear optical element 14 that generates second harmonic light (wavelength λc = λb / 2) when the fundamental wave light is incident. And an output-side mirror 15 having a reflection surface that forms an optical resonator with the reflection surface of the solid-state laser crystal 13, and a part of the output laser light that is output from the output-side mirror 15 to the outside while remaining. A beam splitter 16 that branches the light, a photodiode 17 that receives the branched light and converts it into an electrical signal, and a high-pass filter that extracts optical noise (high-frequency component) N from the output P of the photodiode 17. 18, a temperature control unit 1 having a Peltier element and a temperature sensor for adjusting the temperature of the semiconductor laser 11, and a temperature control unit having a Peltier element and a temperature sensor for adjusting the temperature of the optical resonator. 2, a temperature adjustment unit 3 having a Peltier element and a temperature sensor for adjusting the temperature of the nonlinear optical element 14, and a connector 5.

制御部20は、半導体レーザ11を駆動するための駆動電流Iopを出力する半導体レーザ駆動回路21と、温調ユニット1を介して半導体レーザ11の温度を制御する半導体レーザ温度制御回路24と、温調ユニット2を介して共振器の温度を制御する共振器温度制御回路25と、温調ユニット3を介して非線形光学素子14の温度を制御する非線形光学素子温度制御回路26と、ホトダイオード17の出力Pが所定出力となるように半導体レーザ駆動回路21を制御すると共に各温度制御回路24,25,26を制御する制御回路28と、コネクタ7とを具備している。 The control unit 20 includes a semiconductor laser drive circuit 21 that outputs a drive current Iop for driving the semiconductor laser 11, a semiconductor laser temperature control circuit 24 that controls the temperature of the semiconductor laser 11 via the temperature control unit 1, and a temperature A resonator temperature control circuit 25 that controls the temperature of the resonator via the adjustment unit 2, a nonlinear optical element temperature control circuit 26 that controls the temperature of the nonlinear optical element 14 via the temperature adjustment unit 3, and the output of the photodiode 17 The semiconductor laser drive circuit 21 is controlled so that P becomes a predetermined output, and a control circuit 28 for controlling each temperature control circuit 24, 25, 26 and the connector 7 are provided.

ケーブル8は、レーザ発振部10のコネクタ5と制御部20のコネクタ7とを結合している。 The cable 8 couples the connector 5 of the laser oscillation unit 10 and the connector 7 of the control unit 20.

図2は、温度走査処理を示すフロー図である。この処理は、制御回路28に温度走査指示を与えることにより実行される。
なお、この処理の間、ホトダイオード17の出力Pが所定出力となるように半導体レーザ駆動回路21が制御されている。また、半導体レーザ11が温調されている。
FIG. 2 is a flowchart showing the temperature scanning process. This process is executed by giving a temperature scanning instruction to the control circuit 28.
During this process, the semiconductor laser drive circuit 21 is controlled so that the output P of the photodiode 17 becomes a predetermined output. Further, the temperature of the semiconductor laser 11 is adjusted.

ステップS1では、光共振器の温度T1を開始温度T1s(例えば30℃)とする。 In step S1, the temperature T1 of the optical resonator is set to a start temperature T1s (for example, 30 ° C.).

ステップS2では、非線形光学素子14の温度T2を開始温度T2s(例えば30℃)とする。 In step S2, the temperature T2 of the nonlinear optical element 14 is set to a start temperature T2s (for example, 30 ° C.).

ステップS3では、駆動電流Iopと光ノイズNを実測する。 In step S3, the drive current Iop and the optical noise N are measured.

ステップS4では、非線形光学素子14の温度T2をΔT2(例えば1℃)だけ増加させる。
ステップS5では、温度T2が終了温度T2e(例えば60℃)以下ならばステップS3に戻り、そうでないならばステップS6へ進む。
In step S4, the temperature T2 of the nonlinear optical element 14 is increased by ΔT2 (for example, 1 ° C.).
In step S5, if the temperature T2 is equal to or lower than the end temperature T2e (for example, 60 ° C.), the process returns to step S3, and if not, the process proceeds to step S6.

ステップS6では、光共振器の温度T1をΔT1(例えば1℃)だけ増加させる。
ステップS7では、温度T1が終了温度T1e(例えば60℃)以下ならばステップS2に戻り、そうでないならば処理を終了する。
In step S6, the temperature T1 of the optical resonator is increased by ΔT1 (for example, 1 ° C.).
In step S7, if temperature T1 is below end temperature T1e (for example, 60 degreeC), it will return to step S2, and if that is not right, a process will be complete | finished.

図2のステップS1〜S7が終わると、例えば図3や図12に示すような、出力レーザ光が所定出力に維持された状態における温度に対する駆動電流Iopの特性データおよび光ノイズNの特性データが得られる。なお、温度はT1,T2の2種類であるが、図3以降では説明を簡単にするため1種類としている。 When steps S1 to S7 in FIG. 2 are completed, the characteristic data of the drive current Iop and the characteristic data of the optical noise N with respect to the temperature in a state where the output laser beam is maintained at a predetermined output, for example, as shown in FIG. 3 and FIG. can get. Although there are two types of temperatures, T1 and T2, in FIG. 3 and subsequent figures, one type is used for the sake of simplicity.

図4は、温度領域探索処理を示すフロー図である。この処理は、図2の温度走査処理の後に実行される。 FIG. 4 is a flowchart showing the temperature region search process. This process is executed after the temperature scanning process of FIG.

ステップS11では、図5に示すように、温度Tcを開始温度「Ts+α」とする。Tsは、特性データの最低温度である。αは、温調設定温度の上下に変動する温度振幅であり、例えば3℃である。 In step S11, as shown in FIG. 5, the temperature Tc is set to the start temperature “Ts + α”. Ts is the minimum temperature of the characteristic data. α is a temperature amplitude that fluctuates above and below the temperature control set temperature, and is 3 ° C., for example.

ステップS12では、光ノイズNの特性データを調べて、Tcを中心として±αの範囲の光ノイズNが許容値Nth以下か否かを判定し、許容値Nth以下ならステップS13へ進み、許容値Nthを1カ所でも超えていたらステップS14へ進む。例えば、図5では、Tc=Ts+αであり、Tcを中心として±αの範囲(括弧で示す範囲)の光ノイズNが許容値Nth以下なのでステップS13へ進む。また、図6では、Tc=t1であり、Tcを中心として±αの範囲(括弧で示す範囲)の光ノイズNが許容値Nth以下なのでステップS13へ進む。他方、図7では、Tc=t2であり、Tcを中心として±αの範囲(括弧で示す範囲)の光ノイズNが許容値Nth以下でない部分があるのでステップS14へ進む。 In step S12, the optical noise N characteristic data is examined to determine whether or not the optical noise N in the range of ± α centered on Tc is equal to or smaller than the allowable value Nth. If Nth is exceeded even at one place, the process proceeds to step S14. For example, in FIG. 5, since Tc = Ts + α and the optical noise N in the range of ± α (the range indicated by parentheses) around Tc is equal to or less than the allowable value Nth, the process proceeds to step S13. In FIG. 6, Tc = t1, and the optical noise N in the range of ± α (the range indicated by parentheses) around Tc is equal to or less than the allowable value Nth, so the process proceeds to step S13. On the other hand, in FIG. 7, Tc = t2, and there is a portion where the optical noise N in the range of ± α (range indicated by parentheses) around Tc is not less than the allowable value Nth, so the process proceeds to step S14.

ステップS13では、現在のTcにより温度領域を更新する。すなわち、
(1)それまでに温度領域が全く作成されていないなら、現在のTcだけの温度領域#1を作成する。例えば、図5では、Tc=Ts+αだけの温度領域#1を作成する。
(2)それまでに温度領域が作成されていても閉じられておれば、現在のTcだけの温度領域を新たに作成する。この温度領域には、新たな番号を付ける。例えば、図8では、Tc=t3だけの温度領域#2を作成する。
(3)閉じられていない温度領域があれば、その温度領域の最高値を現在のTcに変更する。例えば、図6では、Tc=t1を温度領域#1の最高値とする。
そして、ステップS15へ進む。
In step S13, the temperature region is updated with the current Tc. That is,
(1) If no temperature region has been created so far, a temperature region # 1 of the current Tc is created. For example, in FIG. 5, the temperature region # 1 of Tc = Ts + α is created.
(2) Even if the temperature region has been created so far, if it is closed, a temperature region corresponding to the current Tc is newly created. A new number is assigned to this temperature region. For example, in FIG. 8, a temperature region # 2 of Tc = t3 is created.
(3) If there is an unclosed temperature region, the maximum value of the temperature region is changed to the current Tc. For example, in FIG. 6, Tc = t1 is set as the maximum value in the temperature region # 1.
Then, the process proceeds to step S15.

ステップS14では、
(1)閉じていない温度領域がなければ、そのままステップS15へ進む。例えば、図11では、Tc=t4となるまでは温度領域が全く作成されないため、そのままステップS15へ進む。
(2)閉じていない温度領域があれば、その温度領域を閉じ、ステップS15へ進む。例えば、図7では、温度領域#1を閉じ、ステップS15へ進む。
In step S14,
(1) If there is no unclosed temperature range, the process proceeds to step S15. For example, in FIG. 11, since no temperature region is created until Tc = t4, the process directly proceeds to step S15.
(2) If there is an unclosed temperature region, the temperature region is closed and the process proceeds to step S15. For example, in FIG. 7, the temperature region # 1 is closed, and the process proceeds to step S15.

ステップS15では、TcをΔTc(例えば1℃)だけ増加させる。
ステップS16では、Tcが終了温度「Te−α」以下ならばステップS12に戻り、そうでないならば処理を終了する。Teは、特性データの最高温度である。例えば、図9になるまではステップS12に戻り、図9が終わると処理を終了する。
In step S15, Tc is increased by ΔTc (for example, 1 ° C.).
In step S16, if Tc is equal to or lower than the end temperature “Te−α”, the process returns to step S12, and if not, the process ends. Te is the maximum temperature of the characteristic data. For example, it returns to step S12 until it becomes FIG. 9, and a process is complete | finished when FIG. 9 is complete | finished.

図4の温度領域探索処理が終わると、例えば、図10に示すような温度領域#1(最低値Ts+α、最高値t1),温度領域#2(最低値t3、最高値Te−α)が得られる。また、図11に示すような温度領域#1(最低値t4、最高値t5)が得られる。
なお、作成した温度領域を記憶すると共に、温度領域に対応する駆動電流Iopも記憶する。
When the temperature region search process in FIG. 4 is completed, for example, temperature region # 1 (minimum value Ts + α, maximum value t1) and temperature region # 2 (minimum value t3, maximum value Te−α) as shown in FIG. 10 are obtained. It is done. Further, a temperature region # 1 (minimum value t4, maximum value t5) as shown in FIG. 11 is obtained.
The created temperature region is stored, and the drive current Iop corresponding to the temperature region is also stored.

図12は、温度制御処理を示すフロー図である。この処理は、図4の温度領域探索処理が終わっていることが前提であり、固体レーザ装置100の稼働中に実行される。 FIG. 12 is a flowchart showing the temperature control process. This process is based on the premise that the temperature region search process in FIG. 4 has been completed, and is executed while the solid-state laser device 100 is in operation.

ステップS21では、記憶している温度領域に対応する駆動電流Iopの最少を与える温度を温調設定温度とし、温度制御する。例えば、図10に示すような温度領域#1,温度領域#2なら、温度t1を温調設定温度とする。また、図11に示すような温度領域#1なら、温度t4を温調設定温度とする。 In step S21, temperature control is performed by setting the temperature that gives the minimum drive current Iop corresponding to the stored temperature range as the temperature adjustment set temperature. For example, in the case of temperature region # 1 and temperature region # 2 as shown in FIG. 10, the temperature t1 is set as the temperature adjustment set temperature. Further, in the temperature region # 1 as shown in FIG. 11, the temperature t4 is set as the temperature adjustment set temperature.

ステップS22では、光ノイズNを測定する。
ステップS23では、測定した光ノイズNが許容値Nth以下ならステップS22に戻り、そうでなければステップS24へ進む。
ステップS24では、現在の温度領域の最低値と最高値の中間の温度を温調設定温度とし、温度制御する。例えば、図10に示す温度t1が温調設定温度であるときに測定した光ノイズNが許容値Nthを超えたなら、温度「(Ts+α+t1)/2」を新たな温調設定温度とし、温度制御する。また、図11に示す温度t4が温調設定温度であるときに測定した光ノイズNが許容値Nthを超えたなら、温度「(t4+t5)/2」を新たな温調設定温度とし、温度制御する。
In step S22, the optical noise N is measured.
In step S23, if the measured optical noise N is less than or equal to the allowable value Nth, the process returns to step S22, and if not, the process proceeds to step S24.
In step S24, temperature control is performed by setting the temperature between the lowest value and the highest value in the current temperature range as the temperature adjustment set temperature. For example, if the optical noise N measured when the temperature t1 shown in FIG. 10 is the temperature adjustment set temperature exceeds the allowable value Nth, the temperature “(Ts + α + t1) / 2” is set as the new temperature adjustment set temperature, and temperature control is performed. To do. If the optical noise N measured when the temperature t4 shown in FIG. 11 is the temperature adjustment set temperature exceeds the allowable value Nth, the temperature “(t4 + t5) / 2” is set as the new temperature adjustment set temperature, and the temperature control is performed. To do.

実施例1の固体レーザ装置100によれば、光ノイズNが許容値Nth以下となる温度領域に対応する駆動電流が最少となる温度で動作するように温調するため、光ノイズNの影響を最小限に抑えつつ、駆動電流を少なくすることが出来る。また、光ノイズNが許容値Nth以下となる温度領域に対応する駆動電流が最少となる温度で動作させていて光ノイズNが許容値Nthを超えると、光ノイズNが許容値Nth以下となる温度領域の最低値と最高値の中間の温度で動作するように温調設定温度を変更するため、光ノイズNの影響のない動作ポイントに迅速に移行させることが出来る。そして、この移行した動作ポイントでは、温度変動に対するマージンが大きいため、運転を安定に継続することが出来る。 According to the solid-state laser device 100 of the first embodiment, the temperature is adjusted so that the drive current corresponding to the temperature region in which the optical noise N is equal to or less than the allowable value Nth is operated at the minimum temperature. The drive current can be reduced while minimizing. Further, when the optical noise N exceeds the allowable value Nth when operating at a temperature at which the drive current corresponding to the temperature region where the optical noise N is the allowable value Nth or less is minimum, the optical noise N becomes the allowable value Nth or less. Since the temperature adjustment set temperature is changed so as to operate at a temperature intermediate between the lowest value and the highest value in the temperature region, it is possible to quickly shift to an operation point that is not affected by the optical noise N. At this shifted operating point, the margin for temperature fluctuation is large, so that the operation can be continued stably.

本発明の固体レーザ装置は、バイオエンジニアリング分野や計測分野で利用できる。 The solid-state laser device of the present invention can be used in the bioengineering field and the measurement field.

実施例1に係る固体レーザ装置を示す構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration explanatory diagram illustrating a solid-state laser apparatus according to a first embodiment. 実施例1に係る温度走査処理を示すフロー図である。FIG. 3 is a flowchart illustrating a temperature scanning process according to the first embodiment. 特性データの例示図である。It is an illustration figure of characteristic data. 実施例1に係る温度領域探索処理を示すフロー図である。It is a flowchart which shows the temperature area search process which concerns on Example 1. FIG. 特性データと探索開始温度の例示図である。It is an illustration figure of characteristic data and search start temperature. 特性データと探索中温度の例示図である。It is an illustration figure of characteristic data and searching temperature. 特性データと探索中温度の別の例示図である。It is another example figure of characteristic data and temperature in search. 特性データと探索中温度のさらに別の例示図である。It is another example figure of characteristic data and searching temperature. 特性データと探索終了温度の例示図である。It is an illustration figure of characteristic data and search end temperature. 特性データと温度領域の例示図である。It is an illustration figure of characteristic data and a temperature range. 特性データと温度領域の別の例示図である。It is another example figure of characteristic data and a temperature range. 実施例1に係る温度制御処理を示すフロー図である。FIG. 3 is a flowchart illustrating a temperature control process according to the first embodiment.

1,2,3
温調ユニット
11
半導体レーザ
12
集光レンズ系
13
固体レーザ結晶
14
非線形光学素子
15
出力側ミラー
18
ハイパスフィルタ
25
共振器温度制御回路
26
非線形光学素子温度制御回路
28
制御部
100
固体レーザ装置
1, 2, 3
Temperature control unit 11
Semiconductor laser 12
Condensing lens system 13
Solid state laser crystal 14
Nonlinear optical element 15
Output side mirror 18
High pass filter 25
Resonator temperature control circuit 26
Nonlinear optical element temperature control circuit 28
Control unit 100
Solid state laser equipment

Claims (1)

励起レーザ光を発生する半導体レーザと、前記半導体レーザに駆動電流を供給する半導体レーザ駆動回路と、前記励起レーザ光によって励起され且つ前記励起レーザ光の入射面に反射面が形成され且つ所定の厚みをもった固体レーザ結晶と、前記反射面との間で光共振器を形成する反射面を持つ出力側ミラーと、前記光共振器内に挿入され前記励起レーザ光が入射され高調波を発生する非線形光学素子と、前記出力側ミラーから出力される出力レーザ光が所定出力になるように前記半導体レーザ駆動回路を制御する出力調整回路と、前記固体レーザ結晶と前記光共振器と前記非線形光学素子の少なくとも1つの温度が適正温度となるように制御する温度制御手段とを具備した固体レーザ装置において、
前記温度制御手段の制御温度を変化させながら、前記出力レーザ光の光ノイズ成分及び前記駆動電流をモニタし、前記光ノイズ成分が所定の許容値以下の範囲において前記駆動電流が最小となる前記制御温度を、適正温度に設定して温度制御し、当該温度制御中に前記許容値を超える光ノイズ成分が検出された場合には、前記光ノイズ成分が所定の許容値以下の範囲の最低温度と最高温度の中間の温度を、新たな適正温度に設定することを特徴とする、固体レーザ装置の適正温度設定方法。
A semiconductor laser that generates excitation laser light, a semiconductor laser drive circuit that supplies a drive current to the semiconductor laser, a excitation surface that is excited by the excitation laser light, has a reflection surface formed on an incident surface of the excitation laser light, and has a predetermined thickness A solid-state laser crystal having an output side mirror having a reflection surface that forms an optical resonator with the reflection surface, and the excitation laser beam inserted into the optical resonator generates a harmonic. A non-linear optical element, an output adjusting circuit for controlling the semiconductor laser driving circuit so that an output laser beam outputted from the output side mirror becomes a predetermined output, the solid-state laser crystal, the optical resonator, and the non-linear optical element A solid-state laser device comprising temperature control means for controlling so that at least one of the temperatures becomes an appropriate temperature.
While controlling the control temperature of the temperature control means, the optical noise component and the driving current of the output laser beam are monitored, and the control is performed such that the driving current is minimized when the optical noise component is within a predetermined allowable value or less. When the temperature is set to an appropriate temperature and temperature control is performed, and an optical noise component exceeding the allowable value is detected during the temperature control, the optical noise component is set to a minimum temperature within a predetermined allowable value range or less. A method for setting an appropriate temperature of a solid-state laser device, wherein an intermediate temperature between the maximum temperatures is set to a new appropriate temperature .
JP2010195656A 2010-09-01 2010-09-01 Method for setting proper temperature of solid-state laser device Active JP5257428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010195656A JP5257428B2 (en) 2010-09-01 2010-09-01 Method for setting proper temperature of solid-state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010195656A JP5257428B2 (en) 2010-09-01 2010-09-01 Method for setting proper temperature of solid-state laser device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005167591A Division JP4856898B2 (en) 2005-06-08 2005-06-08 Solid state laser equipment

Publications (2)

Publication Number Publication Date
JP2011009772A JP2011009772A (en) 2011-01-13
JP5257428B2 true JP5257428B2 (en) 2013-08-07

Family

ID=43565982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010195656A Active JP5257428B2 (en) 2010-09-01 2010-09-01 Method for setting proper temperature of solid-state laser device

Country Status (1)

Country Link
JP (1) JP5257428B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751646A (en) * 2011-04-21 2012-10-24 上海三鑫科技发展有限公司 LD (Laser Diode) pumping green solid laser applying double TECs and temperature control method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3504807B2 (en) * 1996-06-10 2004-03-08 富士写真フイルム株式会社 Image recording apparatus and adjustment method thereof
JP2000261073A (en) * 1999-03-12 2000-09-22 Fuji Photo Film Co Ltd Semiconductor laser pumped solid-state laser
JP2001144369A (en) * 1999-11-10 2001-05-25 Mitsui Chemicals Inc Laser driver
JP2001168439A (en) * 1999-12-09 2001-06-22 Fuji Photo Film Co Ltd Light-emitting device
JP2003158318A (en) * 2001-11-22 2003-05-30 Shimadzu Corp Solid state laser

Also Published As

Publication number Publication date
JP2011009772A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
US7826502B2 (en) Circuit and method for lessening noise in a laser system having a frequency converting element
JP5259716B2 (en) Wavelength conversion laser light source, projection display device including the same, liquid crystal display device, and laser light source
JP5303124B2 (en) Method for controlling semiconductor laser device
US7242700B2 (en) Stabilized frequency-converted laser system
EP2058907B1 (en) Frequency-stabilized laser device, laser frequency stabilizing method, and laser frequency stabilizing program
JP5008831B2 (en) Laser apparatus, laser apparatus control apparatus, laser apparatus control method, laser apparatus wavelength switching method, and laser apparatus control data
JP2010251448A (en) Solid-state pulsed laser apparatus for output of third harmonic waves
US20150063384A1 (en) Method for controlling tunable wavelength laser
JP5257428B2 (en) Method for setting proper temperature of solid-state laser device
JP4856898B2 (en) Solid state laser equipment
JP5070819B2 (en) Solid state laser equipment
JP5557601B2 (en) Laser light source adjustment system
JP2011249400A (en) Adjustment system for laser light source and adjustment method for laser light source
JP4876632B2 (en) Solid state laser equipment
JP2003158318A (en) Solid state laser
JP5070820B2 (en) Solid state laser equipment
JP4650090B2 (en) Solid-state laser device and appropriate temperature measurement method
JP2009140992A (en) Tunable laser light source and method of controlling the same
JP2006294880A (en) Solid-state laser device
JP4968149B2 (en) Solid state laser equipment
US9025626B2 (en) Semiconductor laser excited solid state laser device and laser light output method
JP2020134602A (en) Wavelength variable light source device and control method of wavelength variable light source device
JP6299534B2 (en) Semiconductor laser pumped solid state laser device and laser beam output method
JP4415750B2 (en) Solid state laser equipment
JP5125570B2 (en) Solid state laser equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5257428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151