JP2004294591A - Method of manufacturing display device - Google Patents

Method of manufacturing display device Download PDF

Info

Publication number
JP2004294591A
JP2004294591A JP2003084331A JP2003084331A JP2004294591A JP 2004294591 A JP2004294591 A JP 2004294591A JP 2003084331 A JP2003084331 A JP 2003084331A JP 2003084331 A JP2003084331 A JP 2003084331A JP 2004294591 A JP2004294591 A JP 2004294591A
Authority
JP
Japan
Prior art keywords
substrate
thin film
film transistor
insulating substrate
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003084331A
Other languages
Japanese (ja)
Other versions
JP4340461B2 (en
Inventor
Shunichiro Matsui
俊一郎 松井
Jun Goto
順 後藤
Yuichi Nakamura
裕一 中村
Koki Tanabe
興希 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIBA ELECTRONICS KK
Japan Display Inc
Original Assignee
CHIBA ELECTRONICS KK
Hitachi Displays Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIBA ELECTRONICS KK, Hitachi Displays Ltd filed Critical CHIBA ELECTRONICS KK
Priority to JP2003084331A priority Critical patent/JP4340461B2/en
Publication of JP2004294591A publication Critical patent/JP2004294591A/en
Application granted granted Critical
Publication of JP4340461B2 publication Critical patent/JP4340461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a display device of high quality by suppressing occurrence of damage of the rear surface of a thin film transistor substrate 2 and a substrate supporting member 3 in a vertical type annealing furnace and avoiding contamination of another thin film transistor substrate 2. <P>SOLUTION: The glass substrate 2 is subjected to thermal treatment while the glass substrate 2 is nearly horizontally supported by the substrate supporting member 3 in which the part in contact with the glass substrate 2 is formed of an alumina based or zirconia based material, or while the glass substrate 2 is nearly horizontally supported by using a rotator 10 rotated by the force caused by thermal deformation of the insulating substrate 2 at the part in contact with the insulating substrate 2. At this time, a foreign matter receiving member 13 preventing drop of a foreign matter generated associated with rotation of the rotator 10 onto an another insulating substrate 2 positioned lower than the foreign matter is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、表示装置の製造方法に係り、特に表示装置を構成するアクティブ・マトリクス基板に有するアクティブ素子に熱処理を施して所要の動作特性とするための表示装置の製造方法に関する。
【0002】
【従来の技術】
薄型、軽量かつ低消費電力の表示装置として液晶パネル、有機ELパネル等を用いた様々な表示装置が実用化乃至は実用化開発研究段階にある。この種の表示装置には、精細度、解像度および高速動作特性を実現するために絶縁基板の主面にマトリクス配置される各画素ごとにアクティブ素子で構成した画素回路を有する、所謂アクティブ・マトリクス型表示装置がある。
【0003】
アクティブ・マトリクス型表示装置では、上記アクティブ素子で構成した画素回路を形成した絶縁基板(以下、アクティブ・マトリクス基板とも称する)を熱処理し、当該アクティブ素子の半導体膜を活性化して所要の動作特性とする熱工程が必要である。アクティブ素子としては薄膜トランジスタが多く採用される。ここでは、この絶縁基板を薄膜トランジスタ基板(または、TFT基板)として説明する。薄膜トランジスタ基板に形成された薄膜トランジスタは、通常はガラス基板からなる絶縁基板上に成膜したシリコン半導体膜に所要の配線又は電極を形成して得られる。
【0004】
このような薄膜トランジスタ基板はガラス基板からなり、この薄膜トランジスタ基板に施す熱処理は、縦型アニール炉と称する加熱炉を用いて行われる。縦型アニール炉の内部にはボートと呼ばれる石英製の基板支持部材が絶縁基板の対向する二辺の近傍の下側に位置するように配置されている。この縦型アニール炉にロボット等で薄膜トランジスタ基板を搬入し、上記基板支持部材の上に対向する二辺近傍の下面を接触させて載置し、例えば最高温度490°Cでアニール処理することで薄膜トランジスタに所要の動作特性を付与する。通常、縦型アニール炉には上記ボートが多段に配置され、多数の薄膜トランジスタ基板を同時にアニールできるようになっている。
【0005】
図1は縦型アニール炉の概略構成を説明する模式図である。図1において、参照符号1はアニール室を示し、このアニール室1内に支持部枠4の柱4A,4Bに取り付けた複数の基板支持部材3A,3Bの群が薄膜トランジスタ基板単位で水平方向に向き合うように取り付けられている。なお、支持部枠4は底板4C、天板4Dで柱4A,4Bを固定して構成される。柱4A,4Bは図では2本のみ示すが、基板支持部材3A,3Bの配置群数により可変な複数本となる。図1ではこの基板支持部材3Aと3Bを、図の左右方向から互いに対向する水平方向に突出させている。そして、図示しないロボット等の移送手段により薄膜トランジスタ基板2を基板支持部材3A,3Bの上方に搬入し、当該薄膜トランジスタ基板2の下面を基板支持部材3Aと3Bの上部に接触させて載置する。
【0006】
図2は図1に示した縦型アニール炉内で支持される一枚の薄膜トランジスタ基板の載置状態を説明する模式図である。搬入された薄膜トランジスタ基板2は水平方向一方側に配置された3つの基板支持部材3A−1,3A−2,3A−3と、水平方向他方側に配置された3つの基板支持部材3B−1,3B−2,3B−3の計6つで支えられている。参照符号6は、基板支持部材3A,3Bと薄膜トランジスタ基板2の接触部を示す。薄膜トランジスタ基板2は極めて薄い(例えば0.5mmあるいは0.7mmなど)ガラス板であるため、基板支持部材3A,3Bに支えられた場合、自重で撓みを生じる。基板支持部材3A,3Bに支えられた当該薄膜トランジスタ基板2が撓んだ状態を図2中に描かれた直線および曲線で可視的に示した。
【0007】
図3は図2における薄膜トランジスタ基板の支持状態を図2の矢印Z方向からみた模式図である。なお、図2では基板支持部材3A−1,3A−2,3A−3と基板支持部材3B−1,3B−2,3B−3の計6つのみで支持されたものとして説明したが、薄膜トランジスタ基板2のサイズ次第では、図3に示すように搬入方向の奥側にさらに基板支持部材3Cを配置することもできる。ここでは、計7ヵ所で薄膜トランジスタ基板2を支持している。
【0008】
図4は図3のA−A’線に沿った基板支持部材の断面図であり、薄膜トランジスタ基板2は図示していない。また、図5は図3のB−B’線に沿った基板支持部材と薄膜トランジスタ基板との接触状態を模式的に説明する断面図である。図4と図5では基板支持部材3A−3,3B−3およびこれらの基板支持部材3A−3,3B−3で支持される薄膜トランジスタ基板2を例として示す。基板支持部材3A−3,3B−3の先端部は2方向に湾曲する平滑な曲面とされ、この曲面上に薄膜トランジスタ基板2が接触載置して支持される。図中、この接触部分を参照符号6A,6Bで示す。
【0009】
【発明が解決しようとする課題】
上記した基板支持部材3A−3,3B−3の平滑な曲面に絶縁基板(主に薄膜トランジスタ基板)2を接触させて載置支持することで、薄膜トランジスタ基板2の接触部分6A,6Bによって当該薄膜トランジスタ基板2の裏面に傷がつくことはないと考えられていた。
【0010】
しかしながら、実際には本装置の使用開始当初は薄膜トランジスタ基板2の裏面には傷がつかなかったのだが、長期間の使用、すなわち、薄膜トランジスタ基板2を入れ替えて熱処理を行うという工程を何度も繰り返すうち、薄膜トランジスタ基板2の裏面に傷が発生するようになった。
【0011】
この原因を調査したところ、基板支持部材3A−3,3B−3において、薄膜トランジスタ基板2との接触部分6A,6Bに傷が生じており、この基板支持部材3A−3,3B−3の傷が原因で、薄膜トランジスタ基板2の裏面にも傷を発生させていることが発見された。
【0012】
図6は薄膜トランジスタ基板に生じる傷の発生原因を説明する図5と同様の模式図、図7は従来の基板支持部材接触部分に生じた傷の形状例を説明する模式図、図8は従来の薄膜トランジスタ基板に生じる傷の発生原因をさらに詳細に説明する模式図である。ここでは、図2の基板支持部材3A−3と3B−3と薄膜トランジスタ基板2の関係で説明するが、他の基板支持部材との間においても同様である。薄膜トランジスタ基板2が縦型アニール炉の基板支持部材3A−3と3B−3に載置して装填された状態では、薄膜トランジスタ基板2は自重により図示したように撓んでいる。したがって、両者の接触は図6に丸で囲んだ6A,6Bで示す狭い面積に集中する。この状態でアニールが行われると、加熱とその後の冷却により、薄膜トランジスタ基板2には熱による変形が発生する。具体的には、加熱時には、薄膜トランジスタ基板2が膨張するとともに、薄膜トランジスタ基板2の撓みがより大きくなる。このとき、薄膜トランジスタ基板2と基板支持部材3A−3,3B−3の接触部分6A,6Bには熱による変形に起因する力(摩擦)5A、5Bが発生する。加熱後の冷却の際にも、先程とは逆に薄膜トランジスタ基板2が収縮するとともに、薄膜トランジスタ基板2の撓みが加熱時より小さくなる。このときも、薄膜トランジスタ基板2と基板支持部材3A−3,3B−3の接触部分6A,6Bには熱による変形に起因する力(摩擦)5A、5Bが発生する。
【0013】
そして、これが長期間にわたって繰り返し実施されることで、基板支持部材3A−3,3B−3と薄膜トランジスタ基板2の接触部分6A,6Bには図7に参照符号7示した摩擦傷の凹凸が生じる。この基板支持部材3A−3,3B−3に生じた凹凸7は、繰り返して次々に載置されアニールされる薄膜トランジスタ基板2の接触部分(当該基板の裏面)に、同様の熱による変形に起因する力5A,5Bが生じた際に、図8に参照符号8で示した摩擦傷の凹凸8を発生させるものと考えられる。
【0014】
そして、このような薄膜トランジスタ基板の傷は、その後の組立工程での基板クラックを引き起したり、表示装置に組立てたとき、例えばそれが液晶表示装置である場合はバックライトからの光を散乱させて表示品質を劣化させる原因ともなる。さらに、このような摩擦傷の発生時に当該凹凸生成の塵が下側に載置された薄膜トランジスタ基板に落下し、その主面を汚染して不良画素を招くことがある。
【0015】
本発明の目的は、このような縦型アニール炉による薄膜トランジスタ基板の傷の発生を抑制して高品質の表示装置を得ることができる表示装置の製造方法を提供することにある。また、本発明の他の目的は、他の薄膜トランジスタ基板の汚染を回避して高品質の表示装置を得ることができる表示装置の製造方法を提供することにある。
【0016】
【課題を解決するための手段】
上記目的を達成するために、ガラス基板2と接触する部分がアルミナ系又はジルコニア系の材料で形成された基板支持部材3によってガラス基板2をほぼ水平に支持しながら熱処理を行う。
【0017】
あるいは、少なくとも絶縁基板2と接触する部分に絶縁基板2の熱による変形に起因する力により回転する回転体10を用いて絶縁基板2をほぼ水平に支持しながら熱処理を行う。その際、回転体10の回転に伴って発生する異物がそれより下方の絶縁基板2の上に落下するのを防止する異物受け部材13を設ける。
【0018】
本発明による表示装置の製造方法の代表的な構成を以下に列挙する。
【0019】
(1)、アクティブ素子が形成されたガラス基板に熱処理を施す工程を有する表示装置の製造方法であって、
少なくとも前記ガラス基板と接触する部分がアルミナ系又はジルコニア系の材料で形成された基板支持部材の上に前記ガラス基板を載置する基板装填工程と、
前記ガラス基板を前記基板支持部材に接触させて載置した状態でほぼ水平に支持しながら熱処理する加熱工程とを有する。
【0020】
(2)、(1)において、前記ガラス基板は前記アクティブ素子として薄膜トランジスタを有するアクティブ・マトリクス基板であり、前記熱処理が前記薄膜トランジスタを構成する半導体膜のアニール処理である。
【0021】
(3)、アクティブ素子が形成された絶縁基板に熱処理を施す工程を有する表示装置の製造方法であって、
少なくとも前記絶縁基板と接触する部分に前記絶縁基板の熱による変形に起因する力により回転する回転体を有した基板支持部材の上に前記絶縁基板を載置する基板装填工程と、
前記絶縁基板を前記基板支持部材の前記回転体に接触させて載置した状態でほぼ水平に支持しながら熱処理する加熱工程とを有する。
【0022】
(4)、(3)において、前記基板支持部材は複数枚の前記絶縁基板をそれぞれ前記絶縁基板の面に垂直な方向に所定間隔をもって多数段支持できるよう配置され、前記複数枚の絶縁基板を前記基板支持部材のそれぞれに載置して熱処理する。
【0023】
(5)、(4)において、前記基板支持部材に有する前記回転体の回転に伴って発生する異物がそれより下方の絶縁基板の上に落下するのを防止する異物受け部材を備えた。
【0024】
(6)、(3)乃至(5)の何れかにおいて、前記回転体が前記絶縁基板を支持している前記絶縁基板上の平面的な位置に応じて前記回転体の回転方向の角度を異ならせた。
【0025】
(7)、(3)乃至(5)の何れかにおいて、前記絶縁基板は前記アクティブ素子として薄膜トランジスタを有するアクティブ・マトリクス基板であり、前記熱処理が前記薄膜トランジスタを構成する半導体膜のアニール処理である。
【0026】
尚、本発明は以上に列挙した構成に限定されるものではなく、本発明の技術的思想を逸脱しない範囲で変形が可能である。
【0027】
さらに、本発明は、液晶表示装置用の薄膜トランジスタ基板に限らず、例えば有機EL表示装置用の薄膜トランジスタ基板でも同様である。また、その基板がガラス基板またはプラスチック基板の何れかであってもよく、さらにはその他の各種薄型基板の熱処理にも同様に適用できる。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態について、実施例により説明する。本発明の第1実施例では、基本的な構成は図1から図6に示したものと同様である。本実施例においてこれまでの説明と異なる点は、基板支持部材3A,3Bを構成する材質にある。本実施例では、アクティブ素子(薄膜トランジスタ)が形成された絶縁基板(薄膜トランジスタ基板2)の材質としてガラス基板を用いると共に、基板支持部材3A,3Bの少なくともガラス基板と接触する部分6A,6Bがアルミナ系又はジルコニア系の材料で形成されている。尚、基板支持部材3A,3Bの接触部分6A,6Bだけでなく、全体をアルミナ系又はジルコニア系の材料で形成してもよい。
【0029】
薄膜トランジスタ基板2がガラス基板である場合に、石英製の基板支持部材3A,3Bを用いると、両者の間では非常に密着性が高くなり、摩擦力が大きくなる。これにより、薄膜トランジスタ基板2の熱による変形に起因する力5A,5Bによって基板支持部材3A,3Bおよび薄膜トランジスタ基板2に傷が発生しやすくなる。
【0030】
これに対して、本実施例のように基板支持部材3A,3Bの材質としてアルミナ系又はジルコニア系の材料を用いると、ガラス基板との間の密着性が低くなり、傷がつきにくくなることがわかった。さらに、アルミナ系又はジルコニア系の材料を用いる場合は、加工性が良く、コストが安いという利点もある。
【0031】
図9は本発明の第2実施例を説明する縦型アニール炉内で支持される一枚の薄膜トランジスタ基板の載置状態を説明する模式図である。本実施例の特徴は、絶縁基板2との接触部分に絶縁基板2の熱による変形に起因する力5によって回転する回転体10を備えている点である。
【0032】
本実施例では、搬入された薄膜トランジスタ基板2は水平方向一方側に配置された3つの基板支持部材3A−1,3A−2,3A−3と、水平方向他方側に配置された3つの基板支持部材3B−1,3B−2,3B−3の計6つで支えられている。尚、この数や配置は適宜変更が可能である。薄膜トランジスタ基板2は図2と同様に極めて薄いガラス板であるが、絶縁基板であればよく、ガラスに限定されるものではない。
【0033】
基板支持部材3A−1,3A−2,3A−3と、3B−1,3B−2,3B−3には薄膜トランジスタ基板と接する部分に表面を平滑にした回転体10を備えている。本実施例では、基板支持部材3A−1,3A−2,3A−3と、3B−1,3B−2,3B−3のそれぞれに、各一対の回転体10A−1a,10A−1b、10A−2a,10A−2b、10A−3a,10A−3bが取り付けられている。この回転体10と基板支持部材3の詳細構造は後述する。そして、回転体10A−1a,10A−1b、10A−2a,10A−2b、10A−3a,10A−3bの材質は、アルミナ系又はジルコニア系の材料で形成するのが好ましい。しかし、従来と同様の石英製としても、その摩擦による回転で回転体10が薄膜トランジスタ基板2と接触する部分が毎回異なる場所になることと、回転によって薄膜トランジスタ基板2の熱による変形に起因する力5を発散させる作用により、前記したような傷の発生は低減できる。
【0034】
本実施例により、アニール等の熱処理時における基板支持部材との接触部分における前記傷の発生を抑制することができる。その結果、この薄膜トランジスタ基板を用いて組立てた表示装置の品質を劣化を押さえ、信頼性が高い表示装置を提供できる。
【0035】
図10は本発明の第3実施例を説明するための基板支持部材の配置例を説明する模式図である。本実施例では、前記図9で説明した基板支持部材3を薄膜トランジスタ基板2の対向する二辺と他の一辺の計三辺のそれぞれの辺の下側となるように配置した。図11は図10の矢印Z方向からみた基板支持部材の配置を説明する模式図である。図10と図11において、本実施例では、薄膜トランジスタ基板2を支持する基板支持部材3は、基板支持部材3A−1,3A−2,3A−3と、基板支持部材3B−1,3B−2,3B−3、および搬入方向奥側に設置された基板支持部材3Cで構成されている。このような基板支持部材3の配置は、比較的大型サイズの基板を熱処理する場合に好適である 。
【0036】
図12は本発明の第2実施例および第3実施例で説明した基板支持部材の動作を説明する模式図である。この図は、図11のC−C’における断面図に相当する。図12では薄膜トランジスタ基板2の対向する両端を支持する一対の回転体10A−3a,10B−3aをそれぞれ参照符号10A,10Bで示す。薄膜トランジスタ基板2の熱による変形に起因する力5A,5Bは、この薄膜トランジスタ基板2に接触して支持する回転体10A,10Bを矢印11a,11b、12a,12b方向に回転させる。これにより、熱による変形に起因する力5A,5Bを発散させて逃がすことができる。したがって、薄膜トランジスタ基板2と各回転体10A,10Bとの間で擦れあうことが大幅に抑制される。その結果、薄膜トランジスタ基板2と各回転体10A,10Bの何れの側の傷発生も抑制される。
【0037】
図13は本発明の第2実施例および第3実施例で説明した基板支持部材の具体的構成を詳細に説明する斜視図である。ここでは、基板支持部材を参照符号3で示し、基板支持部材3に有する回転体を参照符号10−a,10−bで示す。基板支持部材3の先端部と、先端部から後退した位置とにそれぞれ回転体10aと回転体10−bを設けてある。尚、この数や配置は必要に応じて変更可能である。薄膜トランジスタ基板2と接触する表面が例えば研磨などにより平滑にされた回転体10−a,10−bは中心軸を有して、この中心軸の回りに、または中心軸と一体に自由に回転するごとく設置され円柱状部材であり、両者は同じものでよい。基板支持部材3の回転体10−a,10−bが設置される部分には切欠き30a,30bが形成されている。一方、回転体10−a,10−bはブラケット14の両端に回転可能に取り付けられている。そして、ブラケット14はネジ15で基板支持部材3に固定されている。
【0038】
また、回転体10を設けたことに伴い、異物受け部材13も新たに設けた。参照符号13は回転体10−a,10−bの回転に伴って発生する異物がそれより下方の絶縁基板2の上に落下するのを防止する異物受け部材である。この異物受け部材13は不可欠ではないが、これを設置することで熱処置後の薄膜トランジスタ基板2の塵汚染を防止でき、さらに高信頼性を表示装置を得ることができる。
【0039】
図14は本発明の第4実施例を説明する図11と同様の基板支持部材の配置を説明する模式図である。本実施例の特徴は、回転体10が絶縁基板2を支持している絶縁基板2上の平面的な位置に応じて回転体10の回転方向の角度を異ならせた点にある。その実現方法の一例として、図11と比較して基板支持部材3A−1,3B−1の向きを異ならせた。本実施例では、図11における基板支持部材を薄膜トランジスタ基板2の熱による変形(例えば撓みと熱膨張/収縮)の方向に応じて配置し、薄膜トランジスタ基板2の平面位置でみて熱による変形に起因する力が生じる箇所を全体として均一または略ゝ均一に支持するように、かつ回転体の回転面と熱による変形に起因する力の方向が一致または略ゝ一致する向きに配置する。この構成により、特に画面サイズが大きい表示装置用の薄膜トランジスタ基板2の傷抑制を実現でき、この薄膜トランジスタ基板を用いて組立てた表示装置の品質を劣化を押さえ、信頼性が高い表示装置を提供できる。
【0040】
別の実現方法としては、回転体10を球状とし、自由方向に回転できるようにすることでも実現が可能である。この場合、基板支持部材3の配置の方法は例えば図11、図14などの何れでもよい。
【0041】
以上では、表示装置を構成する絶縁基板を薄膜トランジスタ基板として説明したが、本発明はこれに限るものではないことは言うまでもなく、その基板がガラス基板またはプラスチック基板、その他の材料からなる絶縁基板の何れかであってもよく、さらにはその他の各種薄型基板の熱処理にも同様に適用できることは前記したとおりである。
【0042】
以上の各実施例により熱処理を行ったアクティブ素子が形成された絶縁基板を用いて表示装置(例えば液晶表示装置や有機EL表示装置など)を製造することができる。
【0043】
【発明の効果】
以上説明したように、本発明によれば、表示装置を構成するアクティブ・マトリクス基板を縦型アニール炉内の基板支持部材に接触載置した面における傷発生を抑制して高品質かつ高信頼性の表示装置を得ることができる。
【図面の簡単な説明】
【図1】縦型アニール炉の概略構成を説明する模式図である。
【図2】図1に示した縦型アニール炉内で支持される一枚の薄膜トランジスタ基板の載置状態を説明する模式図である。
【図3】図2における薄膜トランジスタ基板の支持状態を図2の矢印Z方向からみた模式図である。
【図4】図3のA−A’線に沿った基板支持部材の断面図である。
【図5】図3のB−B’線に沿った基板支持部材と薄膜トランジスタ基板との接触状態を模式的に説明する断面図である。
【図6】薄膜トランジスタ基板に生じる傷の発生原因を説明する図5と同様の模式図である。
【図7】従来の基板支持部材の接触部分に生じた傷の形状例を説明する模式図である。
【図8】従来の薄膜トランジスタ基板に生じる傷の発生原因をさらに詳細に説明する模式図である。
【図9】本発明の第2実施例を説明する縦型アニール炉内で支持される一枚の薄膜トランジスタ基板の載置状態を説明する模式図である。
【図10】本発明の第3実施例を説明するための基板支持部材の配置例を説明する模式図である。
【図11】図10の矢印Z方向からみた基板支持部材の配置を説明する模式図である。
【図12】本発明の第2実施例および第3実施例で説明した基板支持部材の動作を説明する模式図である。
【図13】本発明の第2実施例および第3実施例で説明した基板支持部材の具体的構成を詳細に説明する斜視図である。
【図14】本発明の第4実施例を説明する図11と同様の基板支持部材の配置を説明する模式図である。
【符号の説明】
2・・・・絶縁基板(薄膜トランジスタ基板、3A−1,3A−2,3A−3、3B−1,3B−2,3B−3・・・・基板支持部材、6・・・・接触部分、7,8・・・・凹凸、10A−1a,10A−1b、10A−2a,10A−2b、10A−3a,10A−3b・・・・回転体、13・・・・異物受け部材、14・・・・ブラケット、15・・・・ネジ15。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a display device, and more particularly to a method for manufacturing a display device for performing heat treatment on an active element included in an active matrix substrate included in the display device to obtain required operation characteristics.
[0002]
[Prior art]
Various display devices using a liquid crystal panel, an organic EL panel, or the like as a thin, lightweight, and low power consumption display device are in the stage of practical use or practical application development research. This type of display device has a so-called active matrix type having a pixel circuit configured with an active element for each pixel arranged in a matrix on a main surface of an insulating substrate in order to realize definition, resolution and high-speed operation characteristics. There is a display device.
[0003]
In an active matrix display device, an insulating substrate (hereinafter, also referred to as an active matrix substrate) on which a pixel circuit including the above active elements is formed is heat-treated, and a semiconductor film of the active element is activated to obtain required operating characteristics. Heat process is required. Thin film transistors are often used as active elements. Here, this insulating substrate is described as a thin film transistor substrate (or a TFT substrate). The thin film transistor formed on the thin film transistor substrate is obtained by forming required wirings or electrodes on a silicon semiconductor film formed on an insulating substrate usually formed of a glass substrate.
[0004]
Such a thin film transistor substrate is formed of a glass substrate, and the heat treatment applied to the thin film transistor substrate is performed using a heating furnace called a vertical annealing furnace. Inside the vertical annealing furnace, a substrate support member made of quartz called a boat is disposed so as to be located below the vicinity of two opposing sides of the insulating substrate. The thin-film transistor substrate is carried into the vertical annealing furnace by a robot or the like, and placed on the substrate supporting member by contacting the lower surfaces near two opposing sides, for example, by annealing at a maximum temperature of 490 ° C. Required operating characteristics. Usually, the boats are arranged in multiple stages in a vertical annealing furnace so that a large number of thin film transistor substrates can be annealed simultaneously.
[0005]
FIG. 1 is a schematic diagram illustrating a schematic configuration of a vertical annealing furnace. In FIG. 1, reference numeral 1 denotes an annealing chamber, in which a group of a plurality of substrate supporting members 3A and 3B attached to columns 4A and 4B of a support frame 4 face in a horizontal direction on a thin film transistor substrate basis. So that it is attached. The support frame 4 is configured by fixing the columns 4A and 4B with a bottom plate 4C and a top plate 4D. Although only two pillars 4A and 4B are shown in the drawing, a plurality of pillars 4A and 4B are variable depending on the number of arrangement groups of the substrate support members 3A and 3B. In FIG. 1, the substrate supporting members 3A and 3B are projected in the horizontal direction facing each other from the left and right directions in the figure. Then, the thin film transistor substrate 2 is carried over the substrate supporting members 3A and 3B by a transfer means such as a robot (not shown), and the lower surface of the thin film transistor substrate 2 is placed in contact with the upper portions of the substrate supporting members 3A and 3B.
[0006]
FIG. 2 is a schematic diagram for explaining a mounted state of one thin film transistor substrate supported in the vertical annealing furnace shown in FIG. The loaded thin film transistor substrate 2 has three substrate supporting members 3A-1, 3A-2 and 3A-3 arranged on one side in the horizontal direction and three substrate supporting members 3B-1 and 3B-1 arranged on the other side in the horizontal direction. 3B-2 and 3B-3 are supported by a total of six. Reference numeral 6 indicates a contact portion between the substrate supporting members 3A and 3B and the thin film transistor substrate 2. Since the thin film transistor substrate 2 is an extremely thin (for example, 0.5 mm or 0.7 mm) glass plate, it is bent by its own weight when supported by the substrate supporting members 3A and 3B. The bent state of the thin film transistor substrate 2 supported by the substrate supporting members 3A and 3B is visually shown by straight lines and curves drawn in FIG.
[0007]
FIG. 3 is a schematic diagram of the support state of the thin film transistor substrate in FIG. 2 as viewed from the direction of arrow Z in FIG. Although FIG. 2 has been described as being supported only by the substrate support members 3A-1, 3A-2, and 3A-3 and the substrate support members 3B-1, 3B-2, and 3B-3 in total, the thin film transistor Depending on the size of the substrate 2, a substrate supporting member 3C can be further disposed on the back side in the loading direction as shown in FIG. Here, the thin film transistor substrate 2 is supported at a total of seven locations.
[0008]
FIG. 4 is a cross-sectional view of the substrate supporting member taken along line AA ′ of FIG. 3, and the thin film transistor substrate 2 is not shown. FIG. 5 is a cross-sectional view schematically illustrating a contact state between the substrate supporting member and the thin film transistor substrate along the line BB ′ in FIG. 4 and 5 show the substrate supporting members 3A-3 and 3B-3 and the thin film transistor substrate 2 supported by these substrate supporting members 3A-3 and 3B-3 as an example. The distal ends of the substrate support members 3A-3 and 3B-3 are formed into a smooth curved surface which is curved in two directions, and the thin film transistor substrate 2 is placed on and supported by the curved surface. In the drawing, this contact portion is indicated by reference numerals 6A and 6B.
[0009]
[Problems to be solved by the invention]
An insulating substrate (mainly a thin film transistor substrate) 2 is placed in contact with and supported by the smooth curved surfaces of the above-described substrate supporting members 3A-3 and 3B-3, and the thin film transistor substrate is contacted by the contact portions 6A and 6B of the thin film transistor substrate 2. It was thought that the back of 2 would not be scratched.
[0010]
However, although the back surface of the thin film transistor substrate 2 was not scratched at the beginning of use of the device, the process of using the device for a long time, that is, replacing the thin film transistor substrate 2 and performing the heat treatment was repeated many times. Of these, the rear surface of the thin film transistor substrate 2 was damaged.
[0011]
Investigation of the cause revealed that the substrate supporting members 3A-3 and 3B-3 had scratches on the contact portions 6A and 6B with the thin film transistor substrate 2, and the substrate supporting members 3A-3 and 3B-3 had scratches. It has been found that the back surface of the thin film transistor substrate 2 is also damaged due to the cause.
[0012]
FIG. 6 is a schematic diagram similar to FIG. 5 for explaining the cause of the generation of scratches on the thin film transistor substrate, FIG. 7 is a schematic diagram illustrating an example of the shape of a scratch generated on a contact portion of a conventional substrate supporting member, and FIG. FIG. 3 is a schematic diagram for explaining in more detail the cause of the generation of scratches on the thin film transistor substrate. Here, the relationship between the substrate supporting members 3A-3 and 3B-3 and the thin film transistor substrate 2 in FIG. 2 will be described, but the same applies to other substrate supporting members. In a state where the thin film transistor substrate 2 is mounted on the substrate supporting members 3A-3 and 3B-3 of the vertical annealing furnace, the thin film transistor substrate 2 is bent as shown in FIG. Therefore, the contact between them is concentrated in a small area indicated by 6A and 6B circled in FIG. When annealing is performed in this state, the thin film transistor substrate 2 is deformed by heat due to heating and subsequent cooling. Specifically, at the time of heating, the thin film transistor substrate 2 expands and the thin film transistor substrate 2 bends more. At this time, forces (friction) 5A and 5B resulting from deformation due to heat are generated in the contact portions 6A and 6B between the thin film transistor substrate 2 and the substrate supporting members 3A-3 and 3B-3. At the time of cooling after heating, the thin film transistor substrate 2 contracts and the deflection of the thin film transistor substrate 2 becomes smaller than at the time of heating. Also at this time, forces (friction) 5A and 5B due to deformation due to heat are generated in the contact portions 6A and 6B between the thin film transistor substrate 2 and the substrate supporting members 3A-3 and 3B-3.
[0013]
By repeating this operation over a long period of time, the contact portions 6A and 6B between the substrate support members 3A-3 and 3B-3 and the thin film transistor substrate 2 have frictional irregularities indicated by reference numeral 7 in FIG. The irregularities 7 formed on the substrate supporting members 3A-3 and 3B-3 are caused by similar heat deformation at the contact portion (the back surface of the substrate) of the thin film transistor substrate 2 which is repeatedly placed and annealed one after another. It is considered that when the forces 5A and 5B are generated, the irregularities 8 of the friction scratches indicated by reference numeral 8 in FIG. 8 are generated.
[0014]
Such a scratch on the thin film transistor substrate 2 causes a substrate crack in a subsequent assembling process, or scatters light from a backlight when assembled into a display device, for example, when it is a liquid crystal display device. This causes the display quality to deteriorate. Further, when such frictional scratches occur, the dust generated by the unevenness may fall on the thin film transistor substrate placed on the lower side, and contaminate the main surface thereof, resulting in defective pixels.
[0015]
An object of the present invention is to provide a method of manufacturing a display device capable of obtaining a high-quality display device by suppressing the occurrence of scratches on a thin film transistor substrate by such a vertical annealing furnace. It is another object of the present invention to provide a method of manufacturing a display device capable of obtaining a high quality display device while avoiding contamination of another thin film transistor substrate.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, heat treatment is performed while the glass substrate 2 is supported substantially horizontally by a substrate supporting member 3 in which a portion that comes into contact with the glass substrate 2 is formed of an alumina-based or zirconia-based material.
[0017]
Alternatively, heat treatment is performed while supporting the insulating substrate 2 substantially horizontally using a rotating body 10 that is rotated by a force resulting from deformation of the insulating substrate 2 at least at a portion in contact with the insulating substrate 2. At this time, a foreign substance receiving member 13 is provided to prevent foreign substances generated due to the rotation of the rotating body 10 from falling onto the insulating substrate 2 below the foreign substance.
[0018]
Representative configurations of a method for manufacturing a display device according to the present invention are listed below.
[0019]
(1) A method for manufacturing a display device, comprising a step of performing a heat treatment on a glass substrate on which an active element is formed,
A substrate loading step of placing the glass substrate on a substrate supporting member at least a portion of which is in contact with the glass substrate, made of an alumina-based or zirconia-based material;
A heating step of performing heat treatment while supporting the glass substrate substantially horizontally in a state where the glass substrate is placed in contact with the substrate support member.
[0020]
(2) In (1), the glass substrate is an active matrix substrate having a thin film transistor as the active element, and the heat treatment is an annealing treatment of a semiconductor film forming the thin film transistor.
[0021]
(3) A method for manufacturing a display device, comprising a step of performing a heat treatment on an insulating substrate on which an active element is formed,
A substrate loading step of placing the insulating substrate on a substrate supporting member having a rotating body that rotates by a force resulting from thermal deformation of the insulating substrate at least in a portion in contact with the insulating substrate;
A heating step of performing heat treatment while supporting the insulating substrate substantially horizontally in a state where the insulating substrate is placed in contact with the rotating body of the substrate support member.
[0022]
(4) In (3), the substrate support member is arranged so as to be able to support a plurality of the insulating substrates at a predetermined interval in a direction perpendicular to a surface of the insulating substrate, respectively, at a predetermined interval. The substrate is placed on each of the substrate support members and heat-treated.
[0023]
(5) In the constitution (4), a foreign substance receiving member is provided for preventing foreign substances generated by the rotation of the rotating body of the substrate support member from falling onto the insulating substrate below the foreign substance.
[0024]
(6) In any one of the constitutions (3) to (5), if the angle of rotation of the rotating body is different depending on a planar position of the rotating body on the insulating substrate supporting the insulating substrate. I let you.
[0025]
(7) In any one of (3) to (5), the insulating substrate is an active matrix substrate having a thin film transistor as the active element, and the heat treatment is an annealing process of a semiconductor film forming the thin film transistor.
[0026]
It should be noted that the present invention is not limited to the configurations listed above, and can be modified without departing from the technical idea of the present invention.
[0027]
Further, the present invention is not limited to a thin film transistor substrate for a liquid crystal display device, but is also applicable to a thin film transistor substrate for an organic EL display device, for example. Further, the substrate may be either a glass substrate or a plastic substrate, and can be similarly applied to heat treatment of other various thin substrates.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to examples. In the first embodiment of the present invention, the basic configuration is the same as that shown in FIGS. This embodiment differs from the above description in the material constituting the substrate supporting members 3A and 3B. In this embodiment, a glass substrate is used as a material of the insulating substrate (thin film transistor substrate 2) on which the active element (thin film transistor) is formed, and at least portions 6A and 6B of the substrate supporting members 3A and 3B that come into contact with the glass substrate are made of alumina. Alternatively, it is formed of a zirconia-based material. In addition, not only the contact portions 6A and 6B of the substrate support members 3A and 3B, but also the whole may be formed of an alumina-based or zirconia-based material.
[0029]
If the thin film transistor substrate 2 is a glass substrate and the substrate supporting members 3A and 3B made of quartz are used, the adhesion between the two becomes very high, and the frictional force becomes large. Thereby, the substrate supporting members 3A and 3B and the thin film transistor substrate 2 are easily damaged by the forces 5A and 5B caused by the thermal deformation of the thin film transistor substrate 2.
[0030]
On the other hand, when an alumina-based or zirconia-based material is used as the material of the substrate support members 3A and 3B as in the present embodiment, the adhesion between the substrate support members 3A and 3B and the glass substrate is reduced, and the substrate is less likely to be damaged. all right. Further, when an alumina-based or zirconia-based material is used, there is an advantage that the workability is good and the cost is low.
[0031]
FIG. 9 is a schematic diagram for explaining a mounted state of one thin film transistor substrate supported in a vertical annealing furnace for explaining a second embodiment of the present invention. The feature of the present embodiment is that a rotating body 10 that is rotated by a force 5 resulting from deformation of the insulating substrate 2 due to heat is provided at a contact portion with the insulating substrate 2.
[0032]
In this embodiment, the loaded thin film transistor substrate 2 has three substrate support members 3A-1, 3A-2, 3A-3 arranged on one side in the horizontal direction and three substrate support members arranged on the other side in the horizontal direction. It is supported by a total of six members 3B-1, 3B-2 and 3B-3. The number and arrangement can be changed as appropriate. Although the thin film transistor substrate 2 is an extremely thin glass plate as in FIG. 2, the thin film transistor substrate 2 may be an insulating substrate and is not limited to glass.
[0033]
The substrate supporting members 3A-1, 3A-2, 3A-3 and 3B-1, 3B-2, 3B-3 are provided with a rotator 10 having a smooth surface at a portion in contact with the thin film transistor substrate 2 . In this embodiment, a pair of rotating bodies 10A-1a, 10A-1b, and 10A are respectively attached to the substrate support members 3A-1, 3A-2, 3A-3 and 3B-1, 3B-2, 3B-3. 2a, 10A-2b, 10A-3a, and 10A-3b are attached. The detailed structures of the rotating body 10 and the substrate support member 3 will be described later. The rotating bodies 10A-1a, 10A-1b, 10A-2a, 10A-2b, 10A-3a, and 10A-3b are preferably formed of an alumina-based or zirconia-based material. However, even if it is made of quartz as in the prior art, the portion where the rotating body 10 comes into contact with the thin film transistor substrate 2 becomes different every time due to the rotation due to the friction, and the force 5 due to the thermal deformation of the thin film transistor substrate 2 due to the rotation. The generation of the flaw as described above can be reduced by the action of dispersing.
[0034]
According to the present embodiment, it is possible to suppress the generation of the flaw at the contact portion with the substrate supporting member during the heat treatment such as annealing. As a result, it is possible to provide a highly reliable display device while suppressing the deterioration of the quality of the display device assembled using the thin film transistor substrate.
[0035]
FIG. 10 is a schematic diagram illustrating an example of the arrangement of substrate support members for explaining a third embodiment of the present invention. In this embodiment, the substrate supporting member 3 described with reference to FIG. 9 is disposed below the three sides of the thin film transistor substrate 2, namely, two opposing sides and the other side. FIG. 11 is a schematic diagram illustrating the arrangement of the substrate support members viewed from the direction of arrow Z in FIG. 10 and 11, in the present embodiment, the substrate supporting member 3 supporting the thin film transistor substrate 2 includes substrate supporting members 3A-1, 3A-2, 3A-3 and substrate supporting members 3B-1, 3B-2. , 3B-3, and a substrate supporting member 3C installed on the back side in the loading direction. Such an arrangement of the substrate support members 3 is suitable for a case where a relatively large-sized substrate is subjected to heat treatment.
[0036]
FIG. 12 is a schematic diagram illustrating the operation of the substrate support member described in the second and third embodiments of the present invention. This drawing corresponds to a cross-sectional view taken along the line CC ′ in FIG. In FIG. 12, a pair of rotating bodies 10A-3a and 10B-3a supporting opposite ends of the thin film transistor substrate 2 are indicated by reference numerals 10A and 10B, respectively. The forces 5A and 5B caused by the thermal deformation of the thin film transistor substrate 2 rotate the rotating bodies 10A and 10B which are in contact with and support the thin film transistor substrate 2 in the directions of arrows 11a, 11b, 12a and 12b. Thereby, the forces 5A and 5B caused by the deformation due to heat can be diverged and released. Therefore, rubbing between the thin film transistor substrate 2 and each of the rotating bodies 10A and 10B is greatly suppressed. As a result, generation of scratches on either side of the thin film transistor substrate 2 and each of the rotating bodies 10A and 10B is suppressed.
[0037]
FIG. 13 is a perspective view for explaining in detail the specific structure of the substrate support member described in the second and third embodiments of the present invention. Here, the substrate support member is indicated by reference numeral 3, and the rotating bodies of the substrate support member 3 are indicated by reference numerals 10-a and 10-b. It is provided a the rotator 10-b - a distal portion of the substrate support 3, respectively to the position retracted from the tip rotating body 10. Note that the number and arrangement can be changed as needed. The rotating bodies 10-a and 10-b whose surfaces in contact with the thin film transistor substrate 2 are smoothed by, for example, polishing have a central axis, and freely rotate around the central axis or integrally with the central axis. It is a columnar member installed like this, and both may be the same. Notches 30a and 30b are formed in portions of the substrate support member 3 where the rotating bodies 10-a and 10-b are installed. On the other hand, the rotating bodies 10-a and 10-b are rotatably attached to both ends of the bracket 14. Then, the bracket 14 is fixed to the substrate support member 3 with screws 15.
[0038]
Further, with the provision of the rotating body 10, a foreign matter receiving member 13 is newly provided. Reference numeral 13 denotes a foreign matter receiving member for preventing foreign matter generated due to rotation of the rotating bodies 10-a and 10-b from falling onto the insulating substrate 2 below the foreign body. Although the foreign-matter receiving member 13 is not indispensable, it can prevent dust contamination of the thin film transistor substrate 2 after the heat treatment, and can obtain a highly reliable display device.
[0039]
FIG. 14 is a schematic view for explaining the arrangement of the substrate support members similar to FIG. 11 for explaining the fourth embodiment of the present invention. The feature of the present embodiment is that the angle of the rotating body 10 in the rotating direction is changed according to the planar position of the rotating body 10 on the insulating substrate 2 supporting the insulating substrate 2. As an example of the method of realizing this, the directions of the substrate support members 3A-1 and 3B-1 are made different from those in FIG. In the present embodiment, the substrate support member 3 in FIG. 11 is arranged in accordance with the direction of thermal deformation (for example, bending and thermal expansion / contraction) of the thin film transistor substrate 2, and is caused by the thermal deformation when viewed in a plane position of the thin film transistor substrate 2. The rotating body is disposed so as to uniformly or substantially uniformly support the portion where the force to be generated is generated as a whole, and in a direction in which the direction of the force caused by the deformation due to heat coincides with or substantially matches the rotating surface of the rotating body. With this configuration, it is possible to suppress damage to the thin film transistor substrate 2 for a display device having a particularly large screen size, to suppress deterioration of the quality of the display device assembled using the thin film transistor substrate 2, and to provide a highly reliable display device. .
[0040]
As another realizing method, the realizing is also possible by making the rotating body 10 spherical so as to be able to rotate in a free direction. In this case, the method of arranging the substrate support member 3 may be, for example, any of FIGS.
[0041]
In the above, the insulating substrate constituting the display device has been described as a thin film transistor substrate. However, it is needless to say that the present invention is not limited to this, and the substrate may be any one of a glass substrate, a plastic substrate, and an insulating substrate made of other materials. As described above, the present invention can be similarly applied to heat treatment of other various thin substrates.
[0042]
A display device (for example, a liquid crystal display device or an organic EL display device) can be manufactured using the insulating substrate on which the active element subjected to the heat treatment is formed according to each of the above embodiments.
[0043]
【The invention's effect】
As described above, according to the present invention, the generation of scratches on the surface of an active matrix substrate constituting a display device in contact with a substrate support member in a vertical annealing furnace is suppressed to achieve high quality and high reliability. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a schematic configuration of a vertical annealing furnace.
FIG. 2 is a schematic diagram illustrating a mounted state of one thin film transistor substrate supported in the vertical annealing furnace shown in FIG.
FIG. 3 is a schematic diagram illustrating a support state of the thin film transistor substrate in FIG. 2 as viewed from a direction of an arrow Z in FIG. 2;
FIG. 4 is a cross-sectional view of the substrate support member taken along line AA ′ of FIG.
FIG. 5 is a cross-sectional view schematically illustrating a contact state between the substrate supporting member and the thin film transistor substrate along the line BB ′ in FIG. 3;
FIG. 6 is a schematic diagram similar to FIG. 5, for explaining the cause of the generation of scratches on the thin film transistor substrate.
FIG. 7 is a schematic diagram illustrating an example of the shape of a flaw generated at a contact portion of a conventional substrate supporting member.
FIG. 8 is a schematic diagram for explaining in more detail the cause of the occurrence of a flaw generated in a conventional thin film transistor substrate.
FIG. 9 is a schematic diagram for explaining a mounted state of one thin film transistor substrate supported in a vertical annealing furnace for explaining a second embodiment of the present invention.
FIG. 10 is a schematic view illustrating an example of the arrangement of a substrate support member for explaining a third embodiment of the present invention.
FIG. 11 is a schematic diagram illustrating the arrangement of the substrate support members as viewed from the direction of arrow Z in FIG. 10;
FIG. 12 is a schematic diagram illustrating the operation of the substrate support member described in the second and third embodiments of the present invention.
FIG. 13 is a perspective view illustrating in detail a specific configuration of the substrate support member described in the second and third embodiments of the present invention.
FIG. 14 is a schematic diagram for explaining a layout of a substrate supporting member similar to FIG. 11 for explaining a fourth embodiment of the present invention.
[Explanation of symbols]
2... Insulating substrate (thin film transistor substrate ) , 3A-1, 3A-2, 3A-3, 3B-1, 3B-2, 3B-3... Substrate supporting member, 6. .., 7, 8... Unevenness, 10A-1a, 10A-1b, 10A-2a, 10A-2b, 10A-3a, 10A-3b. ... Brackets, 15... Screws 15.

Claims (7)

アクティブ素子が形成されたガラス基板に熱処理を施す工程を有する表示装置の製造方法であって、
少なくとも前記ガラス基板と接触する部分がアルミナ系又はジルコニア系の材料で形成された基板支持部材の上に前記ガラス基板を載置する基板装填工程と、前記ガラス基板を前記基板支持部材に接触させて載置した状態でほぼ水平に支持しながら熱処理する加熱工程とを有することを特徴とする表示装置の製造方法。
A method for manufacturing a display device, comprising a step of performing a heat treatment on a glass substrate on which an active element is formed,
A substrate loading step of placing the glass substrate on a substrate supporting member at least a portion of which is in contact with the glass substrate and formed of an alumina-based or zirconia-based material, and contacting the glass substrate with the substrate supporting member. A heating step of performing a heat treatment while supporting the device in a substantially horizontal state in a state where the device is placed on the display device.
前記ガラス基板は前記アクティブ素子として薄膜トランジスタを有するアクティブ・マトリクス基板であり、前記熱処理が前記薄膜トランジスタを構成する半導体膜のアニール処理であることを特徴とする請求項1に記載の表示装置の製造方法。2. The method according to claim 1, wherein the glass substrate is an active matrix substrate having a thin film transistor as the active element, and the heat treatment is an annealing treatment of a semiconductor film forming the thin film transistor. アクティブ素子が形成された絶縁基板に熱処理を施す工程を有する表示装置の製造方法であって、
少なくとも前記絶縁基板と接触する部分に前記絶縁基板の熱による変形に起因する力により回転する回転体を有した基板支持部材の上に前記絶縁基板を載置する基板装填工程と、
前記絶縁基板を前記基板支持部材の前記回転体に接触させて載置した状態でほぼ水平に支持しながら熱処理する加熱工程とを有することを特徴とする表示装置の製造方法。
A method for manufacturing a display device, comprising: performing a heat treatment on an insulating substrate on which an active element is formed,
A substrate loading step of placing the insulating substrate on a substrate supporting member having a rotating body that rotates by a force resulting from thermal deformation of the insulating substrate at least in a portion in contact with the insulating substrate;
A heating step of performing heat treatment while supporting the insulating substrate substantially horizontally in a state where the insulating substrate is placed in contact with the rotating body of the substrate support member.
前記基板支持部材は複数枚の前記絶縁基板をそれぞれ前記絶縁基板の面に垂直な方向に所定間隔をもって多数段支持できるよう配置され、前記複数枚の絶縁基板を前記基板支持部材のそれぞれに載置して熱処理することを特徴とする請求項3に記載の表示装置の製造方法。The substrate support member is disposed so as to be able to support a plurality of the insulating substrates at a predetermined interval in a direction perpendicular to the surface of the insulating substrate at a predetermined interval, and places the plurality of insulating substrates on each of the substrate support members. 4. The method according to claim 3, wherein the heat treatment is performed. 前記基板支持部材に有する前記回転体の回転に伴って発生する異物がそれより下方の絶縁基板の上に落下するのを防止する異物受け部材を備えたことを特徴とする請求項4に記載の表示装置の製造方法。5. The apparatus according to claim 4, further comprising a foreign substance receiving member for preventing foreign substances generated by rotation of the rotating body of the substrate supporting member from dropping onto the insulating substrate below the foreign substance. A method for manufacturing a display device. 前記回転体が前記絶縁基板を支持している前記絶縁基板上の平面的な位置に応じて前記回転体の回転方向の角度を異ならせたことを特徴とする請求項3乃至5の何れかに記載の表示装置の製造方法。6. The rotating body according to claim 3, wherein an angle of a rotating direction of the rotating body is changed according to a planar position on the insulating substrate supporting the insulating substrate. The manufacturing method of the display device according to the above. 前記絶縁基板は前記アクティブ素子として薄膜トランジスタを有するアクティブ・マトリクス基板であり、前記熱処理が前記薄膜トランジスタを構成する半導体膜のアニール処理であることを特徴とする請求項3乃至6の何れかに記載の表示装置の製造方法。The display according to any one of claims 3 to 6, wherein the insulating substrate is an active matrix substrate having a thin film transistor as the active element, and the heat treatment is an annealing treatment of a semiconductor film forming the thin film transistor. Device manufacturing method.
JP2003084331A 2003-03-26 2003-03-26 Manufacturing method of display device Expired - Fee Related JP4340461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084331A JP4340461B2 (en) 2003-03-26 2003-03-26 Manufacturing method of display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084331A JP4340461B2 (en) 2003-03-26 2003-03-26 Manufacturing method of display device

Publications (2)

Publication Number Publication Date
JP2004294591A true JP2004294591A (en) 2004-10-21
JP4340461B2 JP4340461B2 (en) 2009-10-07

Family

ID=33399524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084331A Expired - Fee Related JP4340461B2 (en) 2003-03-26 2003-03-26 Manufacturing method of display device

Country Status (1)

Country Link
JP (1) JP4340461B2 (en)

Also Published As

Publication number Publication date
JP4340461B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
US8826693B2 (en) Apparatus and method for heat treating a glass substrate
US7637799B2 (en) Substrate production apparatus for producing a substrate for a display device
TWI763419B (en) Printing apparatus and printing method
WO2015021622A1 (en) Glass substrate supporting device and liquid crystal panel manufacturing process
JP2009218536A (en) Manufacturing apparatus of substrate heater and electro-optical device
KR102386998B1 (en) Supporter Pin And Heat Treatment Apparatus Comprising The Same
JP4340461B2 (en) Manufacturing method of display device
KR100978261B1 (en) Cassette for containing liquid crystal dispaly device
US7654786B2 (en) Substrate carrying method thereof
KR100942066B1 (en) Holder Stage
JP2000277587A (en) Substrate carrying system
KR20080051604A (en) Lift pin and supporting pin
TW562966B (en) Work-piece-carrying device for a thermal treatment apparatus
JP7155200B2 (en) Substrate transfer unit for heat treatment equipment
KR20060112446A (en) Substrate heating apparatus for manufacturing liquid crystal display device
KR101146381B1 (en) Rubbing device for Liquid Crystal Display device and the rubbing method thereof
JP2022182090A (en) Substrate carrier, film forming system, and electronic device manufacturing method
KR20110060642A (en) Robot arm for transfering a substrate and the method for loading and unloading a substrate using the same
JP2001108953A (en) Supporting base for liquid crystal and method for supporting liquid crystal panel
KR20080049450A (en) Robot transferring apparatus
TW200410913A (en) Supporting member in an over for barking glass substrate
KR20060000818A (en) Rotatiing apparatus for drying a substrate
KR20070058845A (en) Photoresist coater
JP2010038978A (en) Fixing device and peeling method
KR20040057690A (en) Substrate of tft-lcd moving apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Ref document number: 4340461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees