JP2004292506A - Flame-retardant epoxy resin composition, semiconductor sealing medium using the same and semiconductor device - Google Patents

Flame-retardant epoxy resin composition, semiconductor sealing medium using the same and semiconductor device Download PDF

Info

Publication number
JP2004292506A
JP2004292506A JP2003083735A JP2003083735A JP2004292506A JP 2004292506 A JP2004292506 A JP 2004292506A JP 2003083735 A JP2003083735 A JP 2003083735A JP 2003083735 A JP2003083735 A JP 2003083735A JP 2004292506 A JP2004292506 A JP 2004292506A
Authority
JP
Japan
Prior art keywords
group
epoxy resin
flame
resin composition
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003083735A
Other languages
Japanese (ja)
Other versions
JP4273801B2 (en
Inventor
Hiroshi Hirose
浩 廣瀬
Toshimitsu Fukase
利光 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003083735A priority Critical patent/JP4273801B2/en
Publication of JP2004292506A publication Critical patent/JP2004292506A/en
Application granted granted Critical
Publication of JP4273801B2 publication Critical patent/JP4273801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a flame-retardant epoxy resin composition which imparts excellent flame retardance and can give good curability and flowability, and to provide a semiconductor device excellent in moisture-resistant reliability and soldering crack resistance as well. <P>SOLUTION: The flame-retardant epoxy resin composition has a biphenyl type epoxy resin (A) represented by formula (1) (wherein R<SP>1</SP>to R<SP>7</SP>and R<SP>8</SP>are each one kind selected from hydrogen, methyl group, ethyl group, propyl group, butyl group, and phenyl group and may be the same or different from one another; and (a) is an integer of ≥1), a biphenyl type phenolic resin (B) represented by formula (2), and an aromatic compound (C) having an ethynyl group as the essential components. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は難燃性エポキシ樹脂組成物およびそれを用いた半導体封止材料並びに半導体装置に関するものである。
【0002】
【従来の技術】
IC、LSI等の半導体素子を封止して半導体装置を得る方法としては、エポキシ樹脂組成物のトランスファー成形が低コスト、大量生産に適しているという点で広く用いられている。また、エポキシ樹脂や、硬化剤であるフェノール樹脂の改良により、半導体装置の特性、信頼性の向上が図られている。
【0003】
一方で、エポキシ樹脂をはじめ、高分子材料の難燃化は重要な課題となり、JIS規格、自動車製品用規格、電気製品用規格、UL規格等においても、その規定が設けられており半導体封止用樹脂に対しても難燃性が求められている。
【0004】
これまで難燃性を付与するために用いられてきた臭素化エポキシ樹脂は、安定性に劣り、吸湿時の加水分解やハンダフロー時の熱分解によって、臭化水素等の臭素化合物を発生し易く、このような臭素化エポキシ樹脂を配合したエポキシ樹脂組成物が用いられる高集積化された半導体装置においては、耐湿信頼性を損う場合があった。
【0005】
これまでハロゲン化合物に代わる難燃剤として、水酸化アルミニウムや水酸化マグネシウムなどの金属水酸化物を用いた脱水作用により難燃化する技術(例えば、特許文献1および特許文献2参照。)や炭素−炭素三重結合を有する化合物を添加することにより難燃化する技術(例えば、特許文献3参照。)が検討されている。しかしながら、難燃性は発現できるものの、耐半田クラック性が著しく低化するという欠点を生じた。
【0006】
【特許文献1】
特開2002−363251号公報(第3頁〜第10頁)
【特許文献2】
特開平11−269349号公報(第2頁〜第6頁)
【特許文献3】
特開2002−363381号公報(第5頁〜第7頁)
【0007】
【発明が解決しようとする課題】
本発明は、エポキシ樹脂組成物に特に優れた難燃性を付与し、良好な硬化性、流動性を与えることができる難燃性エポキシ樹脂組成物、および、これを含む半導体封止材料、ならびに、耐湿信頼性はもちろん、耐半田クラック性にも優れる半導体装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記問題点に鑑み、鋭意検討を重ねた結果、ビフェニル型エポキシ樹脂、ビフェニル型フェノール樹脂、炭素−炭素三重結合を1個以上含有する化合物を用いることによって、優れた難燃性、良好な硬化性、流動性を示すエポキシ樹脂組成物、および耐湿信頼性はもちろん、耐半田クラック性にも優れる半導体装置を見出すに至ったものである。
【0009】
即ち本発明は、一般式(1)で表されるビフェニル型エポキシ樹脂(A)、一般式(2)で表されるビフェニル型フェノール樹脂(B)、および、エチニル基を有する芳香族化合物(C)を、必須成分とすることを特徴とする難燃性エポキシ樹脂組成物、及び前記難燃性エポキシ樹脂組成物と、充填剤とを含むことを特徴とする半導体封止材料、更には、前記半導体封止材料の硬化物によって、半導体素子が封止されてなる半導体装置である。
【0010】
【化3】

Figure 2004292506
[式中、R〜R、およびRは、それぞれ、水素原子、メチル基、エチル基、プロピル基、ブチル基、フェニル基から選択される1種を表し、互いに同一であっても異なっていてもよい。ただしaは1以上の整数である。]
【0011】
【化4】
Figure 2004292506
[式中、R〜R15、およびR16は、それぞれ、水素原子、メチル基、エチル基、プロピル基、ブチル基、フェニル基から選択される1種を表し、互いに同一であっても異なっていてもよい。ただし、bは、1以上の整数である。]
さらに、前記一般式(1)および一般式(2)におけるa、bは、それぞれ1〜10であることが好ましい。
【0012】
前記エチニル基を有する芳香族化合物(C)は、p−エチニルフェノール、m−エチニルフェノール、o−エチニルフェノール、1,2−ジエチニルベンゼン、1,3−ジエチニルベンゼン、1,4−ジエチニルベンゼン、1,3,5−トリエチニルベンゼン、1,2,4−トリエチニルベンゼン、1,2,4,5−テトラエチニルベンゼン、ヘキサエチニルベンゼン、ペンタエチニルフェノール、または3,3’,5,5’−テトラエチニルビフェニルが好ましい。
【0013】
【発明の実施の形態】
本発明の難燃性エポキシ樹脂組成物、及びそれを用いた半導体封止材料は、ハロゲン化エポキシ樹脂などのハロゲン系化合物や、金属水酸化物を使用せず、特定構造のビフェニル型エポキシ樹脂と特定構造のビフェニル型フェノール樹脂に炭素−炭素三重結合を少なくとも1個以上含有する化合物(C)の添加によって、優れた難燃性、良好な硬化性、流動性を付与し、該エポキシ樹脂組成物より得られる半導体装置は耐半田クラック性に優れることを見出した。
【0014】
本発明に用いる一般式(1)で表されるビフェニル型エポキシ樹脂の置換基R〜Rは、水素原子、炭素数1〜4のアルキル基、およびハロゲン原子から選択される1種を表し、これらは、互いに同一であっても異なっていてもよい。
これらの置換基R〜Rの具体例としては、それぞれ、例えば、水素原子、メチル基、エチル基、プロピル基、ブチル基、およびフェニル基などが挙げられるが、これらの中でも、特に、水素原子またはメチル基であるビス(メトキシメチル)ビフェニル・フェノール重縮合物型エポキシ化合物が好ましい。
【0015】
本発明に用いる一般式(2)で表されるビフェニル型フェノール樹脂(B)の置換基R〜R15は、水素原子、炭素数1〜4のアルキル基、およびハロゲン原子から選択される1種を表し、これらは、互いに同一であっても異なっていてもよい。
これらの置換基R〜R15の具体例としては、それぞれ、例えば、水素原子、メチル基、エチル基、プロピル基、ブチル基、およびフェニル基などが挙げられるが、これらの中でも、特に、水素原子またはメチル基であるビス(メトキシメチル)ビフェニル・フェノール重縮合物が好ましい。
【0016】
これらの樹脂を用いることにより、エポキシ樹脂組成物の成形時(例えば半導体装置の製造時等)の流動性が向上するとともに、得られた半導体装置の耐半田クラック性および耐湿信頼性が、より向上する。
【0017】
本発明において、一般式(1)で表されるビフェニル型エポキシ樹脂(A)と一般式(2)で表されるビフェニル型フェノール樹脂(B)の配合割合は、エポキシ樹脂(A)のエポキシ当量に対する化合物(B)の水酸基当量の割合が、0.5〜2.0の範囲で配合することが好ましい。
【0018】
本発明に用いるエチニル基を有する芳香族化合物(C)としては、p−エチニルフェノール、m−エチニルフェノール、o−エチニルフェノール、1,2−ジエチニルベンゼン、1,3−ジエチニルベンゼン、1,4−ジエチニルベンゼン、1,3,5−トリエチニルベンゼン、1,2,4−トリエチニルベンゼン、1,2,4,5−テトラエチニルベンゼン、ヘキサエチニルベンゼン、ペンタエチニルフェノール、および3,3’,5,5’−テトラエチニルビフェニルなどが挙げられる。これらは、単独で用いてもよく、複数を混合しても良い。
【0019】
本発明におけるエチニル基を有する芳香族化合物(C)の配合量としては、ビフェニル型エポキシ樹脂(A)とビフェニル型フェノール樹脂(B)との合計100重量部に対して、1〜50重量部が好ましいが、10〜30重量部の範囲とするのが、より好ましい。前記下限値未満では難燃性の効果が小さくなる恐れがあり、一方、前記上限値を越えると硬化性が低下する恐れがある。
【0020】
本発明に用いる充填剤としては、溶融シリカおよび結晶シリカ等のシリカ、アルミナ、タルク、炭酸カルシウム、クレー、マイカなどが挙げられる。これらに内、好ましくは溶融シリカであり、さらに好ましくは、粒子形状が球状をなしており、平均粒径は、1〜100μmの球状シリカである。
【0021】
本発明における充填剤の配合量としては、ビフェニル型エポキシ樹脂(A)と、ビフェニル型フェノール樹脂(B)との合計量100重量部あたり、200〜2400重量部であることが好ましい。
【0022】
また、本発明の難燃性エポキシ樹脂組成物および半導体封止材料中には、前記成分の他に、必要に応じて、例えば、γ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、シリコーンオイル、シリコーンゴム等の低応力成分、天然ワックス、合成ワックス、高級脂肪酸またはその金属塩類、パラフィン等の離型剤、酸化防止剤等の各種添加剤を添加することができる。
【0023】
本発明の難燃性エポキシ樹脂組成物は、前記成分(A)、成分(B)および成分(C)を、必要に応じて、その他の各種添加剤を、ミキサーを用いて、常温混合し、半導体封止材料は、これに充填剤を加えて、前記同様に混合し、更にこれらの混合物を、熱ロールおよび加熱ニーダー等の混練機を用いて、加熱混練後、冷却、粉砕することにより得られる。
【0024】
本発明の半導体装置は、上記で得られた半導体封止材料を、モールド樹脂として用いて、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で、硬化成形することにより、半導体素子を封止して、得られる。
このようにして得られた本発明の半導体装置は、耐湿信頼性はもちろん耐半田クラック性が特に優れ、樹脂組成物は優れた難燃性を示し、硬化性、流動性は良好である。
【0025】
以上、本発明の難燃性エポキシ樹脂組成物および半導体装置の好適実施形態について説明したが、本発明は、これに限定されるものではない。
【0026】
【実施例】
以下、実施例により本発明を詳しく説明するが、本発明はこれによって何ら限定されるものではない。
【0027】
[エチニル基を有する芳香族化合物(C)の合成例]
化合物(C)の合成は、Macromolecules(2002,Vol.35,pp1180−1189)Polymer(1995, Vol36 No.1 pp187−192),Chem.Rev(1999,Vol.9,pp1747−1785)に順じ合成した。以下に合成例を示すが、必ずしも文献の方法、反応温度、反応時間に限定されるものではない。
【0028】
(p−エチニルフェノールの合成)
窒素置換、及び真空が可能で、冷却管および撹拌装置付きの2Lのセパラブルフラスコに、p−ヨードフェノール20g(90.8mmol)、2−メチル−3−ブチニル−2−オール18.36g(218.4mmol)、トリエチルアミン600mlを入れ、窒素を流し攪拌する。その後、ジクロロビス(トリフェニルホスフィン)パラジウム(II)0.64g(6.4mmol)、ヨウ化銅0.88g(4.4mmol)、トリフェニルホスフィン1.68g(6.4mmol)を素早入れ、攪拌した。その後、オイルバスに入れ、70℃に加温し12時間放置した。その後、トリエチルアミンを減圧蒸留し、イソプロパノールで抽出した。メタノールで再結晶し、4−(3−ヒドロキシ−3−メチル−1−ブチニル)フェノールを20g得た。
真空が可能で冷却管および撹拌装置付きの1Lのセパラブルフラスコに、4−(3−ヒドロキシ−3−メチル−1−ブチニル)フェノール10g、1,4−ジオキサン200ml、水酸化カルウム(粒状)4.2gを入れ、130℃のオイルバスで10時間加熱した。その後、冷却し、6mol/L塩酸200mlを敵下し、イソプロパノールで抽出し、p−エチニルフェノール(C−1)を6g得た。
【0029】
(m−エチニルフェノール(C−2)、o−エチニルフェノール(C−3)の合成)
p−ヨードフェノールに代え、m−ヨードフェノール、o−ヨードフェノールを用いた以外はC−1を得たときと同様の方法で、それぞれ、C−2を6g、C−3を6g得た。
【0030】
(1,2−エチニルベンゼン(C−4)の合成)
窒素置換、及び真空が可能で、冷却管および撹拌装置付きの1Lのセパラブルフラスコに、1,2−ジブロモベンゼン12.5g(53mmol)、2−メチル−3−ブチニル−2−オール9.25g(110mmol)、トリエチルアミン221ml(1.1mol)、ピリジン146ml(1.81mol)を入れ、窒素を流し攪拌した。その後、ジクロロビス(トリフェニルホスフィン)パラジウム(II)1.11g(1.59mmol)、ヨウ化銅1.01g(5.28mmol)、トリフェニルホスフィン2.22g(8.46mmol)を素早入れ、攪拌した。その後、セパラブルフラスコを、オイルバスに入れ、85℃に加温し12時間放置した。その後、ピリジン、トリエチルアミンを減圧蒸留し、イソプロパノールで抽出した。メタノールで再結晶し、1,2−ビス(3−ヒドロキシ−3−メチル−1−ブチニル)ベンゼンを15g得た。
真空が可能で冷却管および撹拌装置付きの1Lのセパラブルフラスコに、1,2−ビス(3−ヒドロキシ−3−メチル−1−ブチニル)ベンゼン10g、1,4−ジオキサン200ml、水酸化カルウム(粒状)4.2gを入れ、130℃のオイルバスで10時間加熱した。その後、冷却し、6mol/L塩酸200mlを敵下し、イソプロパノールで抽出し、1,2−ジエチニルベンゼン(C−4)を6g得た。
【0031】
(1,3−エチニルベンゼン(C−5)、1,4−エチニルベンゼン(C−6)の合成)
1,2−ジブロモベンゼンに代え、1,3−ジブロモベンゼン、1,4−ジブロモベンゼンを用いた以外はC−1を得たときと同様の方法で、それぞれ、C−5を6g、C−6を6g得た。
【0032】
(1,3,5−トリスエチニルベンゼン(C−7)の合成)
窒素置換、及び真空が可能で、冷却管および撹拌装置付きの1Lのセパラブルフラスコに、1,3,5−トリスブロモベンゼン16.7g(53mmol)、2−メチル−3−ブチニル−2‐オール13.87g(165mmol)、トリエチルアミン221ml(1.58mol)、ピリジン146ml(1.81mol)を入れ、窒素を流し攪拌した。その後、ジクロロビス(トリフェニルホスフィン)パラジウム(II)1.11g(1.59mmol)、ヨウ化銅1.01g(5.28mmol)、トリフェニルホスフィン2.22g(8.46mmol)を素早入れ、攪拌した。その後、セパラブルフラスコを、オイルバスに入れ、85℃に加温し12時間放置した。その後、ピリジン、トリエチルアミンを減圧蒸留し、イソプロパノールで抽出した。メタノールで再結晶し、1,2,3−トリス(3−ヒドロキシ−3−メチル−1−ブチニル)ベンゼンを14g得た。
真空が可能で冷却管および撹拌装置付きの1Lのセパラブルフラスコに、1,2,3−トリス(3−ヒドロキシ−3−メチル−1−ブチニル)ベンゼン10g、1,4−ジオキサン200ml、水酸化カルウム(粒状)4.2gを入れ、130℃のオイルバスで10時間加熱した。その後、冷却し、6規定塩酸200mlを敵下し、イソプロパノールで抽出し、1,3,5−トリエチニルベンゼン(C−7)を6g得た。
【0033】
(1,2,4−トリスエチニルベンゼン(C−8)の合成)
1,3,5−トリスブロモベンゼンに代え、1,2,4−トリスブロモベンゼンを用いた以外はC−7を得たときと同様の方法でC−8を6g得た。
【0034】
(1,2,4,5−テトラエチニルベンゼン(C−9)の合成)
窒素置換、及び真空が可能で冷却管および撹拌装置付きの1Lのセパラブルフラスコに、1,2,4,5−テトラブロモベンゼン20.87g(53mmol)、2−メチル−3−ブチニル−2‐オール18.51g(220mmol)、トリエチルアミン221ml(1.58mol)、ピリジン146ml(1.81mol)を入れ、窒素を流し攪拌した。その後、ジクロロビス(トリフェニルホスフィン)パラジウム(II)1.11g(1.59mmol)、ヨウ化1.01g(5.28mmol)、トリフェニルホスフィン2.22g(8.46mmol)を素早入れ、攪拌した。その後、セパラブルフラスコを、オイルバスに入れ、85℃に加温し12時間放置した。その後、ピリジン、トリエチルアミンを減圧蒸留し、イソプロパノールで抽出した。メタノールで再結晶し、1,2,4,5−テトラ(3−ヒドロキシ−3−メチル−1−ブチニル)ベンゼンを14g得た。
真空が可能で冷却管および撹拌装置付きの1Lのセパラブルフラスコに、1,2,4,5−テトラ(3−ヒドロキシ−3−メチル−1−ブチニル)ベンゼン10g、1,4−ジオキサン200ml、水酸化カルウム(粒状)4.2gを入れ、130℃のオイルバスで10時間加熱した。その後、冷却し、6mol/L塩酸200mlを敵下し、イソプロパノールで抽出し、1,2,4,5−テトラエチニルベンゼン(C−9)を6g得た。
【0035】
(ヘキサエチニルベンゼン(C−10)の合成)
窒素置換、及び真空が可能で、冷却管および撹拌装置付きの1Lのセパラブルフラスコに、ヘキサブロモベンゼン29.23g(53mmol)、2−メチル−3−ブチニル−2‐オール27.76g(330mmol)、トリエチルアミン221ml(1.58mol)、ピリジン146ml(1.81mol)を入れ、窒素を流し攪拌した。その後、ジクロロビス(トリフェニルホスフィン)パラジウム(II)1.11g(1.59mmol)、ヨウ化銅1.01g(5.28mmol)、トリフェニルホスフィン2.22g(8.46mmol)を素早入れ、攪拌した。その後、セパラブルフラスコを、オイルバスに入れ、85℃に加温し、12時間放置した。その後、ピリジン、トリエチルアミンを減圧蒸留し、イソプロパノールで抽出した。メタノールで再結晶し、ヘキサ(3−ヒドロキシ−3−メチル−1−ブチニル)ベンゼンを11g得た。
真空が可能で冷却管および撹拌装置付きの1Lのセパラブルフラスコに、ヘキサ(3−ヒドロキシ−3−メチル−1−ブチニル)ベンゼン10g、1,4−ジオキサン200ml、水酸化カルウム(粒状)4.2gを入れ、130℃のオイルバスで10時間加熱した。その後、冷却し、6mol/L塩酸200mlを敵下し、イソプロパノールで抽出しヘキサエチニルベンゼン(C−10)を6g得た。
【0036】
(3,3’,5,5’−テトラエチニルビフェニル(C−11)の合成)
窒素置換、及び真空が可能で、冷却管および撹拌装置付きの1Lのセパラブルフラスコに、3,3’,5,5’−テトラブロモビフェニル24.9g(53mmol)、2−メチル−3−ブチニル−2−オール27.76g(330mmol)トリエチルアミン221ml(1.58mol)、ピリジン146ml(1.81mol)を入れ、窒素を流し攪拌した。その後、ジクロロビス(トリフェニルホスフィン)パラジウム(II)1.11g(1.59mmol)、ヨウ化銅1.01g(5.28mmol)、トリフェニルホスフィン2.22g(8.46mmol)を素早入れ、攪拌した。その後、セパラブルフラスコを、オイルバスに入れ、85℃に加温し12時間放置した。その後、ピリジン、トリエチルアミンを減圧蒸留し、イソプロパノールで抽出した。メタノールで再結晶し、3,3’,5,5’−テトラ(3−ヒドロキシ−3−メチル−1−ブチニル)ビフェニルを11g得た。
真空が可能で冷却管および撹拌装置付きの1Lのセパラブルフラスコに、3,3’,5,5’−テトラ(3−ヒドロキシ−3−メチル−1−ブチニル)ビフェニル10g、1,4−ジオキサン200ml、水酸化カルウム(粒状)4.2gを入れ、130℃のオイルバスで10時間加熱した。その後、冷却し、6mol/L塩酸200mlを敵下し、イソプロパノールで抽出し、3,3’、5,5’−テトラエチニルビフェニル(C−11)を6g得た。
【0037】
(ペンタエチニルフェノール(C−12)の合成)
窒素置換、及び真空が可能で、冷却管および撹拌装置付きの1Lのセパラブルフラスコに、ペンタブロモフェノール25.9g(53mmol)、2−メチル−3−ブチニル−2‐オール22.71g(270mmol)、トリエチルアミン221ml(1.58mol)、ピリジン146ml(1.81mol)を入れ、窒素を流し攪拌した。その後、ジクロロビス(トリフェニルホスフィン)パラジウム(II)1.11g(1.59mmol)、ヨウ化銅1.01g(5.28mmol)、トリフェニルホスフィン2.22g(8.46mmol)を素早入れ、攪拌した。その後、セパラブルフラスコを、オイルバスに入れ、85℃に加温し12時間放置した。その後、ピリジン、トリエチルアミンを減圧蒸留し、イソプロパノールで抽出した。メタノールで再結晶し、ペンタ(3−ヒドロキシ−3−メチル−1−ブチニル) フェノールを11g得た。
真空が可能で冷却管および撹拌装置付きの1Lのセパラブルフラスコに、ペンタ(3−ヒドロキシ−3−メチル−1−ブチニル) フェノール10g、1,4−ジオキサン200ml、水酸化カルウム(粒状)4.2gを入れ、130℃のオイルバスで10時間加熱した。その後、冷却し、6mol/L塩酸200mlを敵下し、イソプロパノールで抽出し、ペンタエチニルフェノール(C−12)を6g得た。
【0038】
次いで、上記で得たエチニル基を有する芳香族化合物(C)のそれぞれを用いて、半導体封止材料を作製し、各種特性を評価した。各特性の測定方法および試験方法は、下記の通りとした。
【0039】
[評価方法]
(1)スパイラルフロー
EMMI−I−66に準じたスパイラルフロー測定用の金型を用い、金型温度175℃、注入圧力6.8MPa、硬化時間2分で測定した。スパイラルフローは、流動性のパラメータであり、数値が大きい方が、流動性が良好である。
【0040】
(2)硬化トルク
キュラストメーター(オリエンテック(株)製、JSRキュラストメーターIVPS型)を用い、175℃、45秒後のトルクを測定した。この値の大きい方が硬化性は良好である。
【0041】
(3)耐半田クラック性
100ピンTQFP(Thin Quad Flat Package)(パッケージサイズは14×14mm、厚み1.4mm、シリコンチップサイズは8.0×8.0mm、リードフレームは42アロイ製)を、金型温度175℃、注入圧力7.4MPa、硬化時間2分の条件で、トランスファー成形機を用いて成形し、175℃、8時間で後硬化させた。得られた半導体パッケージを、85℃、相対湿度85%の環境下で、168時間放置し、その後、260℃の半田槽に10秒間浸漬した。顕微鏡で外部クラックを観察し、クラック発生率[(クラック発生パッケージ数)/(全パッケージ数)×100]を%で表示した。また、チップと樹脂組成物の硬化物との剥離面積の割合を、超音波探傷装置を用いて測定し、剥離率[(剥離面積)/(チップ面積)×100]として、5個のパッケージの平均値を求め、%で表示した。クラック数、剥離率が少ないほど、耐半田クラック性は良好である。
【0042】
(4)耐湿信頼性
金型温度175℃、注入圧力6.8MPa、硬化時間2分の条件で、トランスファー成形機を用いて、16pDIP(Dual Inline Package)を成形し、この成形物を、175℃で8時間、後硬化した後、125℃、相対湿度100%の水蒸気中で、20Vの電圧を、16pDIPに印加し、断線不良を調べた。15個のパッケージのうち、8個以上に不良が出るまでの時間を、不良時間とした。単位は時間。なお、測定時間は、最長で500時間とし、その時点で不良パッケージ数が8個未満であったものは、不良時間を500時間以上と示した。不良時間が長いほど、耐湿信頼性に優れる。
【0043】
(5)UL94難燃性
試験片(127mm×12.7mm×厚み1.6mm)を、トランスファー成形機を用いて、金型温度175℃、注入圧力6.86MPa、硬化時間120秒で成形し、175℃、8時間で後硬化し、UL−94垂直法に準じて測定し、難燃性を判定した。
【0044】
[半導体封止材料の調整]
(実施例1)
ビフェニルアラルキル型エポキシ樹脂(日本化薬(株)製NC−3000P)を57重量部、ビフェニ
ルアラルキル型フェノール樹脂(明和化成(株)製MEH−7851ss)を43重量部、上記で得た化
合物C1を10重量部のほか、さらに溶融球状シリカ(平均粒径20μm、最大粒径100μm)を730重量部、カーボンブラックを2重量部、トリフェニルホスフィン1.5重量部、カルナバワックス2重量部を、まず、室温で混合し、ついで、熱ロールを用いて、105℃で8分間混練、冷却粉砕して半導体封止材料を得た。得られた半導体封止材料を、各特性の評価に供した。評価結果は表1に示した通りであった。
【0045】
(実施例2〜12、比較例1〜3)
各成分を、表1に従って、配合した以外は、実施例1と同様にして、半導体封止材料を調製し、各特性の評価をした。評価結果は表1に示した通りであった。
【0046】
【表1】
Figure 2004292506
【0047】
表1に示した結果から分かるように、実施例1〜12では、いずれも難燃性はUL94 V−0を示し、従来のものに比べて、難燃性だけでなく、良好な流動性、硬化性、耐湿信頼性、耐半田性を示した。
これに対して、比較例1は、難燃性、耐湿信頼性は問題ないものの、耐半田性が低下した。比較例2は、耐半田性、耐湿信頼性は問題ないものの、難燃性がUL94V−0未達であった。比較例3は、難燃性は問題ないもののフロー、硬化性、耐湿信頼性、耐半田性が十分でなかった。
【0048】
【発明の効果】
本発明によれば、ハロゲン系化合物や金属水酸化物を添加することなく高度な難燃性、良好な硬化性、および流動性を有する難燃性エポキシ樹脂組成物が得られ、これを含む半導体封止材料により、耐湿信頼性はもちろん、耐半田クラック性にも優れる半導体装置を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flame-retardant epoxy resin composition, a semiconductor sealing material using the same, and a semiconductor device.
[0002]
[Prior art]
As a method for obtaining a semiconductor device by encapsulating a semiconductor element such as an IC or an LSI, transfer molding of an epoxy resin composition is widely used because it is low in cost and suitable for mass production. Further, by improving epoxy resin and phenol resin as a curing agent, the characteristics and reliability of the semiconductor device are improved.
[0003]
On the other hand, flame retardancy of high polymer materials such as epoxy resin has become an important issue, and JIS standards, standards for automotive products, standards for electrical products, UL standards, etc., have been established, and semiconductor encapsulation has been established. Flame retardancy is also required for resin for use.
[0004]
The brominated epoxy resins that have been used to impart flame retardancy are inferior in stability, and are liable to generate bromine compounds such as hydrogen bromide by hydrolysis during moisture absorption or thermal decomposition during solder flow. However, in highly integrated semiconductor devices using an epoxy resin composition containing such a brominated epoxy resin, the moisture resistance reliability may be impaired.
[0005]
Heretofore, as a flame retardant instead of a halogen compound, a technique of decomposing by a dehydration action using a metal hydroxide such as aluminum hydroxide or magnesium hydroxide (for example, see Patent Documents 1 and 2) and carbon- A technology for flame retardation by adding a compound having a carbon triple bond (for example, see Patent Literature 3) has been studied. However, although flame retardancy can be exhibited, there is a drawback that solder crack resistance is significantly reduced.
[0006]
[Patent Document 1]
JP-A-2002-363251 (pages 3 to 10)
[Patent Document 2]
JP-A-11-269349 (pages 2 to 6)
[Patent Document 3]
JP-A-2002-363381 (pages 5 to 7)
[0007]
[Problems to be solved by the invention]
The present invention provides a particularly excellent flame retardancy to the epoxy resin composition, good curability, a flame-retardant epoxy resin composition capable of giving fluidity, and a semiconductor encapsulating material containing the same, and Another object of the present invention is to provide a semiconductor device which is excellent not only in moisture resistance reliability but also in solder crack resistance.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in view of the above problems, and as a result, have obtained an excellent flame retardant by using a biphenyl-type epoxy resin, a biphenyl-type phenol resin, and a compound containing at least one carbon-carbon triple bond. The present invention has led to the discovery of an epoxy resin composition exhibiting excellent curability and fluidity, and a semiconductor device having excellent solder crack resistance as well as moisture resistance reliability.
[0009]
That is, the present invention provides a biphenyl type epoxy resin (A) represented by the general formula (1), a biphenyl type phenol resin (B) represented by the general formula (2), and an aromatic compound having an ethynyl group (C A) as an essential component, a flame-retardant epoxy resin composition, and a semiconductor sealing material comprising the flame-retardant epoxy resin composition and a filler. This is a semiconductor device in which a semiconductor element is sealed with a cured product of a semiconductor sealing material.
[0010]
Embedded image
Figure 2004292506
[Wherein, R 1 to R 7 and R 8 each represent one selected from a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group; May be. Here, a is an integer of 1 or more. ]
[0011]
Embedded image
Figure 2004292506
[Wherein, R 9 to R 15 and R 16 each represent one selected from a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group. May be. Here, b is an integer of 1 or more. ]
Further, a and b in the general formula (1) and the general formula (2) are each preferably 1 to 10.
[0012]
The aromatic compound (C) having an ethynyl group includes p-ethynylphenol, m-ethynylphenol, o-ethynylphenol, 1,2-diethynylbenzene, 1,3-diethynylbenzene, 1,4-diethynyl Benzene, 1,3,5-triethynylbenzene, 1,2,4-triethynylbenzene, 1,2,4,5-tetraethynylbenzene, hexaethynylbenzene, pentaethynylphenol, or 3,3 ′, 5 5'-tetraethynylbiphenyl is preferred.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The flame-retardant epoxy resin composition of the present invention, and a semiconductor encapsulating material using the same, do not use a halogen-based compound such as a halogenated epoxy resin or a metal hydroxide, and a biphenyl-type epoxy resin having a specific structure. By adding a compound (C) containing at least one carbon-carbon triple bond to a biphenyl-type phenol resin having a specific structure, the epoxy resin composition is imparted with excellent flame retardancy, good curability, and fluidity. It has been found that the resulting semiconductor device has excellent solder crack resistance.
[0014]
The substituents R 1 to R 8 of the biphenyl type epoxy resin represented by the general formula (1) used in the present invention represent one selected from a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and a halogen atom. , May be the same or different from each other.
Specific examples of these substituents R 1 to R 8 include, for example, a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group and the like. A bis (methoxymethyl) biphenyl phenol polycondensate type epoxy compound which is an atom or a methyl group is preferred.
[0015]
The substituents R 9 to R 15 of the biphenyl-type phenol resin (B) represented by the general formula (2) used in the present invention are 1 selected from a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and a halogen atom. Represent species, which may be the same or different from each other.
Specific examples of these substituents R 9 to R 15 include, for example, a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group, and the like. Bis (methoxymethyl) biphenyl phenol polycondensates which are atoms or methyl groups are preferred.
[0016]
By using these resins, the fluidity during molding of the epoxy resin composition (for example, during the production of a semiconductor device, etc.) is improved, and the solder crack resistance and moisture resistance reliability of the obtained semiconductor device are further improved. I do.
[0017]
In the present invention, the mixing ratio of the biphenyl type epoxy resin (A) represented by the general formula (1) and the biphenyl type phenol resin (B) represented by the general formula (2) is determined by the epoxy equivalent of the epoxy resin (A). The ratio of the hydroxyl equivalent of the compound (B) to the compound (B) is preferably in the range of 0.5 to 2.0.
[0018]
Examples of the aromatic compound having an ethynyl group (C) used in the present invention include p-ethynylphenol, m-ethynylphenol, o-ethynylphenol, 1,2-diethynylbenzene, 1,3-diethynylbenzene, 4-diethynylbenzene, 1,3,5-triethynylbenzene, 1,2,4-triethynylbenzene, 1,2,4,5-tetraethynylbenzene, hexaethynylbenzene, pentaethynylphenol, and 3,3 ', 5,5'-tetraethynylbiphenyl and the like. These may be used alone or in combination.
[0019]
The amount of the aromatic compound (C) having an ethynyl group in the present invention is 1 to 50 parts by weight based on 100 parts by weight of the total of the biphenyl type epoxy resin (A) and the biphenyl type phenol resin (B). Preferably, it is more preferably in the range of 10 to 30 parts by weight. If it is less than the lower limit, the effect of flame retardancy may be reduced, while if it exceeds the upper limit, curability may be reduced.
[0020]
Examples of the filler used in the present invention include silica such as fused silica and crystalline silica, alumina, talc, calcium carbonate, clay, and mica. Of these, fused silica is preferred, and more preferred is spherical silica having a spherical particle shape and an average particle size of 1 to 100 μm.
[0021]
The compounding amount of the filler in the present invention is preferably 200 to 2400 parts by weight per 100 parts by weight of the total of the biphenyl type epoxy resin (A) and the biphenyl type phenol resin (B).
[0022]
Further, in the flame-retardant epoxy resin composition and the semiconductor encapsulating material of the present invention, in addition to the above components, if necessary, for example, a coupling agent such as γ-glycidoxypropyltrimethoxysilane, carbon Colorants such as black, low stress components such as silicone oil and silicone rubber, natural wax, synthetic wax, higher fatty acids or metal salts thereof, mold release agents such as paraffin, and various additives such as antioxidants may be added. it can.
[0023]
The flame-retardant epoxy resin composition of the present invention is obtained by mixing the above components (A), (B) and (C) with other various additives, if necessary, at room temperature using a mixer. The semiconductor encapsulating material is obtained by adding a filler thereto, mixing the mixture in the same manner as described above, further kneading the mixture using a kneader such as a hot roll and a heating kneader, heating and kneading, then cooling and pulverizing. Can be
[0024]
The semiconductor device of the present invention uses the semiconductor encapsulant obtained above as a molding resin, and cures and molds the semiconductor element by a molding method such as transfer molding, compression molding, or injection molding, thereby sealing the semiconductor element. And get.
The semiconductor device of the present invention thus obtained has particularly excellent solder crack resistance as well as moisture resistance reliability, the resin composition exhibits excellent flame retardancy, and has good curability and fluidity.
[0025]
The preferred embodiments of the flame-retardant epoxy resin composition and the semiconductor device of the present invention have been described above, but the present invention is not limited to these.
[0026]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
[0027]
[Synthesis example of aromatic compound (C) having ethynyl group]
The synthesis of compound (C) is described in Macromolecules (2002, Vol. 35, pp1180-1189) Polymer (1995, Vol36 No. 1 pp187-192), Chem. Rev (1999, Vol. 9, pp1747-1785). The synthesis examples are shown below, but are not necessarily limited to the methods, reaction temperatures and reaction times in the literature.
[0028]
(Synthesis of p-ethynylphenol)
In a 2 L separable flask equipped with a condenser and a stirrer capable of purging with nitrogen and vacuum, 20 g (90.8 mmol) of p-iodophenol, 18.36 g (218) of 2-methyl-3-butynyl-2-ol .4 mmol) and 600 ml of triethylamine, and nitrogen was flowed in, followed by stirring. Thereafter, 0.64 g (6.4 mmol) of dichlorobis (triphenylphosphine) palladium (II), 0.88 g (4.4 mmol) of copper iodide, and 1.68 g (6.4 mmol) of triphenylphosphine were rapidly added and stirred. . Then, it was put in an oil bath, heated to 70 ° C., and left for 12 hours. Thereafter, triethylamine was distilled under reduced pressure and extracted with isopropanol. Recrystallization from methanol gave 20 g of 4- (3-hydroxy-3-methyl-1-butynyl) phenol.
In a 1 L separable flask equipped with a condenser and a stirrer capable of applying vacuum, 10 g of 4- (3-hydroxy-3-methyl-1-butynyl) phenol, 200 ml of 1,4-dioxane, and calcium hydroxide (granular) 4 Then, the mixture was heated in a 130 ° C. oil bath for 10 hours. Thereafter, the mixture was cooled, and 200 ml of 6 mol / L hydrochloric acid was added thereto, and extracted with isopropanol to obtain 6 g of p-ethynylphenol (C-1).
[0029]
(Synthesis of m-ethynylphenol (C-2) and o-ethynylphenol (C-3))
6 g of C-2 and 6 g of C-3 were obtained in the same manner as when C-1 was obtained, except that m-iodophenol and o-iodophenol were used instead of p-iodophenol.
[0030]
(Synthesis of 1,2-ethynylbenzene (C-4))
12.5 g (53 mmol) of 1,2-dibromobenzene and 9.25 g of 2-methyl-3-butynyl-2-ol were placed in a 1 L separable flask equipped with a condenser tube and a stirrer, which can be replaced with nitrogen and vacuum. (110 mmol), 221 ml (1.1 mol) of triethylamine, and 146 ml (1.81 mol) of pyridine were added, and the mixture was stirred while flowing nitrogen. Thereafter, 1.11 g (1.59 mmol) of dichlorobis (triphenylphosphine) palladium (II), 1.01 g (5.28 mmol) of copper iodide, and 2.22 g (8.46 mmol) of triphenylphosphine were quickly added and stirred. . Thereafter, the separable flask was placed in an oil bath, heated to 85 ° C., and left for 12 hours. Thereafter, pyridine and triethylamine were distilled under reduced pressure and extracted with isopropanol. Recrystallization from methanol gave 15 g of 1,2-bis (3-hydroxy-3-methyl-1-butynyl) benzene.
In a 1 L separable flask equipped with a condenser and a stirrer capable of applying vacuum, 10 g of 1,2-bis (3-hydroxy-3-methyl-1-butynyl) benzene, 200 ml of 1,4-dioxane, and calcium hydroxide ( (Granular) (4.2 g) was added and heated in an oil bath at 130 ° C for 10 hours. Thereafter, the mixture was cooled, and 200 ml of 6 mol / L hydrochloric acid was added thereto, and extracted with isopropanol to obtain 6 g of 1,2-diethynylbenzene (C-4).
[0031]
(Synthesis of 1,3-ethynylbenzene (C-5) and 1,4-ethynylbenzene (C-6))
Except that 1,3-dibromobenzene and 1,4-dibromobenzene were used in place of 1,2-dibromobenzene, 6 g of C-5 and C- 6 g was obtained.
[0032]
(Synthesis of 1,3,5-trisethynylbenzene (C-7))
16.7 g (53 mmol) of 1,3,5-trisbromobenzene, 2-methyl-3-butynyl-2-ol were placed in a 1 L separable flask equipped with a condenser tube and a stirrer, capable of nitrogen replacement and vacuum. 13.87 g (165 mmol), 221 ml (1.58 mol) of triethylamine, and 146 ml (1.81 mol) of pyridine were added thereto, and the mixture was stirred while flowing nitrogen. Thereafter, 1.11 g (1.59 mmol) of dichlorobis (triphenylphosphine) palladium (II), 1.01 g (5.28 mmol) of copper iodide, and 2.22 g (8.46 mmol) of triphenylphosphine were quickly added and stirred. . Thereafter, the separable flask was placed in an oil bath, heated to 85 ° C., and left for 12 hours. Thereafter, pyridine and triethylamine were distilled under reduced pressure and extracted with isopropanol. Recrystallization from methanol gave 14 g of 1,2,3-tris (3-hydroxy-3-methyl-1-butynyl) benzene.
In a 1 L separable flask equipped with a condenser and a stirrer capable of applying a vacuum, 10 g of 1,2,3-tris (3-hydroxy-3-methyl-1-butynyl) benzene, 200 ml of 1,4-dioxane, and hydroxide 4.2 g of calcium (granular) was added and heated in an oil bath at 130 ° C. for 10 hours. Thereafter, the mixture was cooled, 200 ml of 6N hydrochloric acid was added thereto, and the mixture was extracted with isopropanol to obtain 6 g of 1,3,5-triethynylbenzene (C-7).
[0033]
(Synthesis of 1,2,4-trisethynylbenzene (C-8))
6 g of C-8 was obtained in the same manner as when C-7 was obtained, except that 1,2,4-trisbromobenzene was used instead of 1,3,5-trisbromobenzene.
[0034]
(Synthesis of 1,2,4,5-tetraethynylbenzene (C-9))
20.87 g (53 mmol) of 1,2,4,5-tetrabromobenzene, 2-methyl-3-butynyl-2-yl were placed in a 1 L separable flask equipped with a condenser tube and a stirrer capable of nitrogen replacement and vacuum. 18.51 g (220 mmol) of all, 221 ml (1.58 mol) of triethylamine, and 146 ml (1.81 mol) of pyridine were added, and nitrogen was flown thereinto, followed by stirring. Thereafter, 1.11 g (1.59 mmol) of dichlorobis (triphenylphosphine) palladium (II), 1.01 g (5.28 mmol) of iodide, and 2.22 g (8.46 mmol) of triphenylphosphine were quickly added and stirred. Thereafter, the separable flask was placed in an oil bath, heated to 85 ° C., and left for 12 hours. Thereafter, pyridine and triethylamine were distilled under reduced pressure and extracted with isopropanol. Recrystallization from methanol gave 14 g of 1,2,4,5-tetra (3-hydroxy-3-methyl-1-butynyl) benzene.
In a 1 L separable flask equipped with a condenser and a stirrer capable of applying a vacuum, 10 g of 1,2,4,5-tetra (3-hydroxy-3-methyl-1-butynyl) benzene, 200 ml of 1,4-dioxane, 4.2 g of calcium hydroxide (granular) was added and heated in an oil bath at 130 ° C. for 10 hours. Thereafter, the mixture was cooled, and 200 ml of 6 mol / L hydrochloric acid was added thereto, and extracted with isopropanol to obtain 6 g of 1,2,4,5-tetraethynylbenzene (C-9).
[0035]
(Synthesis of hexaethynylbenzene (C-10))
In a 1 L separable flask equipped with a condenser tube and a stirrer capable of purging with nitrogen and vacuum, 29.23 g (53 mmol) of hexabromobenzene, 27.76 g (330 mmol) of 2-methyl-3-butynyl-2-ol were added. , 221 ml (1.58 mol) of triethylamine and 146 ml (1.81 mol) of pyridine were added, and nitrogen was flown thereinto, followed by stirring. Thereafter, 1.11 g (1.59 mmol) of dichlorobis (triphenylphosphine) palladium (II), 1.01 g (5.28 mmol) of copper iodide, and 2.22 g (8.46 mmol) of triphenylphosphine were quickly added and stirred. . Thereafter, the separable flask was placed in an oil bath, heated to 85 ° C., and left for 12 hours. Thereafter, pyridine and triethylamine were distilled under reduced pressure and extracted with isopropanol. Recrystallization from methanol gave 11 g of hexa (3-hydroxy-3-methyl-1-butynyl) benzene.
3. In a 1 L separable flask equipped with a condenser and a stirrer capable of applying a vacuum, 10 g of hexa (3-hydroxy-3-methyl-1-butynyl) benzene, 200 ml of 1,4-dioxane, and calcium hydroxide (granular). 2 g was added and heated in an oil bath at 130 ° C. for 10 hours. Thereafter, the mixture was cooled, and 200 ml of 6 mol / L hydrochloric acid was added thereto, followed by extraction with isopropanol to obtain 6 g of hexaethynylbenzene (C-10).
[0036]
(Synthesis of 3,3 ′, 5,5′-tetraethynylbiphenyl (C-11))
In a 1 L separable flask equipped with a condenser and a stirrer capable of nitrogen substitution and vacuum, 24.9 g (53 mmol) of 3,3 ′, 5,5′-tetrabromobiphenyl, 2-methyl-3-butynyl 27.76 g (330 mmol) of -2-ol, 221 ml (1.58 mol) of triethylamine, and 146 ml (1.81 mol) of pyridine were added, and the mixture was stirred while flowing nitrogen. Thereafter, 1.11 g (1.59 mmol) of dichlorobis (triphenylphosphine) palladium (II), 1.01 g (5.28 mmol) of copper iodide, and 2.22 g (8.46 mmol) of triphenylphosphine were quickly added and stirred. . Thereafter, the separable flask was placed in an oil bath, heated to 85 ° C., and left for 12 hours. Thereafter, pyridine and triethylamine were distilled under reduced pressure and extracted with isopropanol. Recrystallization from methanol gave 11 g of 3,3 ', 5,5'-tetra (3-hydroxy-3-methyl-1-butynyl) biphenyl.
In a 1 L separable flask equipped with a condenser and a stirrer capable of applying a vacuum, 10 g of 3,3 ′, 5,5′-tetra (3-hydroxy-3-methyl-1-butynyl) biphenyl, 1,4-dioxane 200 ml and 4.2 g of calcium hydroxide (granular) were added and heated in a 130 ° C. oil bath for 10 hours. Thereafter, the mixture was cooled, and 200 ml of 6 mol / L hydrochloric acid was added thereto, and extracted with isopropanol to obtain 6 g of 3,3 ′, 5,5′-tetraethynylbiphenyl (C-11).
[0037]
(Synthesis of Pentaethynylphenol (C-12))
25.9 g (53 mmol) of pentabromophenol and 22.71 g (270 mmol) of 2-methyl-3-butynyl-2-ol were placed in a 1 L separable flask equipped with a condenser and a stirrer, which can be replaced with nitrogen and vacuum. , 221 ml (1.58 mol) of triethylamine and 146 ml (1.81 mol) of pyridine were added, and nitrogen was flown thereinto, followed by stirring. Thereafter, 1.11 g (1.59 mmol) of dichlorobis (triphenylphosphine) palladium (II), 1.01 g (5.28 mmol) of copper iodide, and 2.22 g (8.46 mmol) of triphenylphosphine were quickly added and stirred. . Thereafter, the separable flask was placed in an oil bath, heated to 85 ° C., and left for 12 hours. Thereafter, pyridine and triethylamine were distilled under reduced pressure and extracted with isopropanol. The crystals were recrystallized from methanol to obtain 11 g of penta (3-hydroxy-3-methyl-1-butynyl) phenol.
3. In a 1 L separable flask equipped with a condenser and a stirrer capable of applying vacuum, 10 g of penta (3-hydroxy-3-methyl-1-butynyl) phenol, 200 ml of 1,4-dioxane, and calcium hydroxide (granular). 2 g was added and heated in an oil bath at 130 ° C. for 10 hours. Thereafter, the mixture was cooled, dropped in 200 ml of 6 mol / L hydrochloric acid, and extracted with isopropanol to obtain 6 g of pentaethynylphenol (C-12).
[0038]
Next, a semiconductor encapsulating material was prepared using each of the ethynyl group-containing aromatic compounds (C) obtained above, and various characteristics were evaluated. The measuring method and test method of each characteristic were as follows.
[0039]
[Evaluation method]
(1) Spiral flow Using a mold for spiral flow measurement according to EMMI-I-66, the measurement was performed at a mold temperature of 175 ° C, an injection pressure of 6.8 MPa, and a curing time of 2 minutes. Spiral flow is a parameter of fluidity, and the larger the value, the better the fluidity.
[0040]
(2) Curing torque was measured at 175 ° C. for 45 seconds using a curing torque curast meter (manufactured by Orientec Co., Ltd., JSR curast meter IVPS type). The larger the value, the better the curability.
[0041]
(3) Solder crack resistance 100-pin thin quad flat package (TQFP) (package size: 14 × 14 mm, thickness: 1.4 mm, silicon chip size: 8.0 × 8.0 mm, lead frame: 42 alloy) Molding was performed using a transfer molding machine under the conditions of a mold temperature of 175 ° C., an injection pressure of 7.4 MPa, and a curing time of 2 minutes, and post-curing was performed at 175 ° C. for 8 hours. The obtained semiconductor package was left under an environment of 85 ° C. and a relative humidity of 85% for 168 hours, and then immersed in a solder bath at 260 ° C. for 10 seconds. External cracks were observed with a microscope, and the crack occurrence rate [(number of crack occurrence packages) / (total number of packages) × 100] was expressed in%. In addition, the ratio of the peeled area between the chip and the cured product of the resin composition was measured using an ultrasonic flaw detector, and the peeling rate was determined as [(peeled area) / (chip area) × 100]. The average was determined and expressed in%. The smaller the number of cracks and the rate of peeling, the better the solder crack resistance.
[0042]
(4) Moisture resistance reliability Under the conditions of a mold temperature of 175 ° C., an injection pressure of 6.8 MPa, and a curing time of 2 minutes, a transfer molding machine is used to mold 16 pDIP (Dual Inline Package). After curing for 8 hours at 20 ° C., a voltage of 20 V was applied to 16 pDIP in steam at 125 ° C. and 100% relative humidity, and the disconnection failure was examined. Out of the 15 packages, the time until a defect appeared in 8 or more packages was defined as a failure time. The unit is time. The measurement time was 500 hours at the longest, and when the number of defective packages was less than 8 at that time, the defective time was indicated as 500 hours or more. The longer the failure time, the better the moisture resistance reliability.
[0043]
(5) A UL94 flame-retardant test piece (127 mm x 12.7 mm x thickness 1.6 mm) was molded using a transfer molding machine at a mold temperature of 175 ° C, an injection pressure of 6.86 MPa, and a curing time of 120 seconds. Post-curing was performed at 175 ° C for 8 hours, and measured according to the UL-94 vertical method to determine the flame retardancy.
[0044]
[Adjustment of semiconductor sealing material]
(Example 1)
57 parts by weight of biphenyl aralkyl type epoxy resin (NC-3000P manufactured by Nippon Kayaku Co., Ltd.), 43 parts by weight of biphenyl aralkyl type phenol resin (MEH-7851ss manufactured by Meiwa Kasei Co., Ltd.), and compound C1 obtained above were used. In addition to 10 parts by weight, 730 parts by weight of fused spherical silica (average particle size: 20 μm, maximum particle size: 100 μm), 2 parts by weight of carbon black, 1.5 parts by weight of triphenylphosphine, and 2 parts by weight of carnauba wax were first added. Then, the mixture was mixed at room temperature, and then kneaded at 105 ° C. for 8 minutes using a hot roll and cooled and pulverized to obtain a semiconductor sealing material. The obtained semiconductor encapsulating material was subjected to evaluation of each property. The evaluation results were as shown in Table 1.
[0045]
(Examples 2 to 12, Comparative Examples 1 to 3)
A semiconductor encapsulating material was prepared in the same manner as in Example 1 except that each component was blended according to Table 1, and each characteristic was evaluated. The evaluation results were as shown in Table 1.
[0046]
[Table 1]
Figure 2004292506
[0047]
As can be seen from the results shown in Table 1, in each of Examples 1 to 12, the flame retardancy shows UL94 V-0, and compared to the conventional one, not only the flame retardancy but also the good fluidity, It exhibited curability, moisture resistance reliability, and solder resistance.
On the other hand, in Comparative Example 1, although there was no problem in flame retardancy and humidity resistance reliability, solder resistance was reduced. In Comparative Example 2, although the solder resistance and the moisture resistance reliability were not problematic, the flame retardancy was not UL94V-0. In Comparative Example 3, although the flame retardancy was not a problem, the flow, curability, moisture resistance reliability, and solder resistance were not sufficient.
[0048]
【The invention's effect】
According to the present invention, a flame-retardant epoxy resin composition having high flame retardancy, good curability, and fluidity can be obtained without adding a halogen compound or a metal hydroxide, and a semiconductor containing the same. By using the sealing material, a semiconductor device which is excellent not only in moisture resistance reliability but also in solder crack resistance can be provided.

Claims (4)

下記一般式(1)で表されるビフェニル型エポキシ樹脂(A)、下記一般式(2)で表されるビフェニル型フェノール樹脂(B)、および、エチニル基を有する芳香族化合物(C)を、必須成分とすることを特徴とする難燃性エポキシ樹脂組成物。
Figure 2004292506
[式中、R〜R、およびRは、それぞれ、水素原子、メチル基、エチル基、プロピル基、ブチル基、およびフェニル基の中から選ばれる1種を示し、互いに同一であっても異なっていてもよい。ただしaは1以上の整数である。]
Figure 2004292506
[式中、R〜R15、およびR16は、それぞれ、水素原子、メチル基、エチル基、プロピル基、ブチル基、およびフェニル基の中から選ばれる1種を示し、互いに同一であっても異なっていてもよい。ただし、bは、1以上の整数である。]
A biphenyl type epoxy resin (A) represented by the following general formula (1), a biphenyl type phenol resin (B) represented by the following general formula (2), and an aromatic compound (C) having an ethynyl group, A flame-retardant epoxy resin composition characterized as being an essential component.
Figure 2004292506
[Wherein, R 1 to R 7 and R 8 each represent one selected from a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group; May also be different. Here, a is an integer of 1 or more. ]
Figure 2004292506
[Wherein, R 9 to R 15 and R 16 each represent one selected from a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group; May also be different. Here, b is an integer of 1 or more. ]
エチニル基を有する芳香族化合物(C)が、p−エチニルフェノール、m−エチニルフェノール、o−エチニルフェノール、1,2−ジエチニルベンゼン、1,3−ジエチニルベンゼン、1,4−ジエチニルベンゼン、1,3,5−トリエチニルベンゼン、1,2,4−トリエチニルベンゼン、1,2,4,5−テトラエチニルベンゼン、ヘキサエチニルベンゼン、ペンタエチニルフェノール、または3,3’,5,5’−テトラエチニルビフェニルである、請求項1記載の難燃性エポキシ樹脂組成物。When the aromatic compound (C) having an ethynyl group is p-ethynylphenol, m-ethynylphenol, o-ethynylphenol, 1,2-diethynylbenzene, 1,3-diethynylbenzene, 1,4-diethynylbenzene , 1,3,5-triethynylbenzene, 1,2,4-triethynylbenzene, 1,2,4,5-tetraethynylbenzene, hexaethynylbenzene, pentaethynylphenol, or 3,3 ', 5,5 The flame-retardant epoxy resin composition according to claim 1, which is' -tetraethynylbiphenyl. 請求項1ないし請求項3のいずれかに記載された難燃性エポキシ樹脂組成物と、充填剤とを含むことを特徴とする半導体封止材料。A semiconductor encapsulant comprising: the flame-retardant epoxy resin composition according to claim 1; and a filler. 請求項4記載の半導体封止材料の硬化物によって、半導体素子が封止されてなる半導体装置。A semiconductor device in which a semiconductor element is sealed with a cured product of the semiconductor sealing material according to claim 4.
JP2003083735A 2003-03-25 2003-03-25 Flame retardant epoxy resin composition, semiconductor sealing material using the same, and semiconductor device Expired - Fee Related JP4273801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083735A JP4273801B2 (en) 2003-03-25 2003-03-25 Flame retardant epoxy resin composition, semiconductor sealing material using the same, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083735A JP4273801B2 (en) 2003-03-25 2003-03-25 Flame retardant epoxy resin composition, semiconductor sealing material using the same, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2004292506A true JP2004292506A (en) 2004-10-21
JP4273801B2 JP4273801B2 (en) 2009-06-03

Family

ID=33399120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083735A Expired - Fee Related JP4273801B2 (en) 2003-03-25 2003-03-25 Flame retardant epoxy resin composition, semiconductor sealing material using the same, and semiconductor device

Country Status (1)

Country Link
JP (1) JP4273801B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009166A (en) * 2005-06-03 2007-01-18 Hitachi Chem Co Ltd Epoxy resin composition for sealing, and electronic component apparatus
JP2007145929A (en) * 2005-11-25 2007-06-14 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
US8492507B2 (en) 2008-09-23 2013-07-23 Nexam Chemical Ab Acetylenic polyamide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009166A (en) * 2005-06-03 2007-01-18 Hitachi Chem Co Ltd Epoxy resin composition for sealing, and electronic component apparatus
JP2007145929A (en) * 2005-11-25 2007-06-14 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
US8492507B2 (en) 2008-09-23 2013-07-23 Nexam Chemical Ab Acetylenic polyamide

Also Published As

Publication number Publication date
JP4273801B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP4380272B2 (en) Epoxy resin composition and semiconductor device using the same
JP2015059130A (en) Epoxy resin composition, use thereof and filler for epoxy resin composition
JP2006306837A (en) Phenolic hydroxy group-bearing compound, thermosetting resin composition and semiconductor sealing material
JP4273801B2 (en) Flame retardant epoxy resin composition, semiconductor sealing material using the same, and semiconductor device
JP4442138B2 (en) Flame-retardant epoxy resin composition, semiconductor sealing material, and semiconductor device
JP2002363261A (en) Flame-retardant epoxy resin composition, semiconductor sealing material and semiconductor device
JP4696372B2 (en) Epoxy resin composition and semiconductor device
JP2008056740A (en) Thermosetting compound, thermosetting resin composition and semiconductor device
JP4599869B2 (en) Thermosetting resin composition
JP6335374B2 (en) Epoxy resin composition and use thereof
JPH09235353A (en) Resin composition for semiconductor sealing use
JP2009242719A (en) Phenolic novolac resin, epoxy resin composition and cured product therefrom, and semiconductor device
JP4622030B2 (en) Epoxy resin composition and semiconductor device
JP2006282818A (en) Epoxy resin composition and semiconductor device
JP4145438B2 (en) Epoxy resin composition and semiconductor device
JP2002363381A (en) Flame-retardant epoxy resin composition, semiconductor sealing medium and semiconductor device
JP4622025B2 (en) Epoxy resin composition and semiconductor device
JP3388503B2 (en) Epoxy resin composition and semiconductor encapsulation device
JP2003286307A (en) Electronic part sealing material and electronic part unit
JP4639461B2 (en) Epoxy resin composition and semiconductor device
JP2004352893A (en) Epoxy resin composition and semiconductor device
JPH08169939A (en) Epoxy resin composition suitable for semiconductor sealng
JP2004300213A (en) Flame-retardant epoxy resin composition and semiconductor device using the composition
JP2003268069A (en) Flame-retardant epoxy resin composition and semiconductor-sealing material using the same and semiconductor
JP2004083662A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees