JP2004292226A - ニオブ酸カリウム単結晶薄膜の製造方法、表面弾性波素子、周波数フィルタ、周波数発振器、電子回路、及び電子機器 - Google Patents

ニオブ酸カリウム単結晶薄膜の製造方法、表面弾性波素子、周波数フィルタ、周波数発振器、電子回路、及び電子機器 Download PDF

Info

Publication number
JP2004292226A
JP2004292226A JP2003085761A JP2003085761A JP2004292226A JP 2004292226 A JP2004292226 A JP 2004292226A JP 2003085761 A JP2003085761 A JP 2003085761A JP 2003085761 A JP2003085761 A JP 2003085761A JP 2004292226 A JP2004292226 A JP 2004292226A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
buffer layer
thin film
potassium niobate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003085761A
Other languages
English (en)
Other versions
JP4192648B2 (ja
Inventor
Amamitsu Higuchi
天光 樋口
Katsuyuki Morii
克行 森井
Setsuya Iwashita
節也 岩下
Hiroshi Miyazawa
弘 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003085761A priority Critical patent/JP4192648B2/ja
Priority to US10/808,250 priority patent/US20040237882A1/en
Priority to US10/916,208 priority patent/US7258742B2/en
Publication of JP2004292226A publication Critical patent/JP2004292226A/ja
Application granted granted Critical
Publication of JP4192648B2 publication Critical patent/JP4192648B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】室温付近の温度で各種単結晶基板上に斜方晶KNbO単結晶薄膜を高堆積速度でエピタキシャル成長させるKNbO単結晶薄膜の製造方法と、この方法で得られた薄膜を備えることによって、kが高く広帯域化、小型化、及び省電力化に優れる表面弾性波素子、周波数フィルタ、周波数発振器、電子回路、及び電子機器を提供すること。
【解決手段】KNbO単結晶薄膜の製造方法は、液滴吐出法によってKNbOを含む水溶液の液滴をSrTiO単結晶基板11上に塗布する塗布工程と、塗布された液滴からニオブ酸カリウム単結晶層12をエピタキシャル成長によって析出する析出工程とを備えているものとした。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、ニオブ酸カリウム単結晶薄膜の製造方法、表面弾性波素子、周波数フィルタ、周波数発振器、電子回路、及び電子機器に関する。
【0002】
【従来の技術】
携帯電話等の移動体通信を中心とした通信分野の著しい発展に伴い、これらに使用される表面弾性波素子の需要が急速に拡大している。表面弾性波素子の開発の方向としては、携帯電話機等と同様、小型化、高効率化、高周波化の方向にあり、そのためには、より大きな電気機械結合係数(以下、k)、より大きな表面弾性波伝播速度、が必要となる。例えば、高周波フィルタとして用いる場合には、損失の小さく帯域幅の広い通過帯域を得るために高kが望まれる。共振周波数を高周波化するためには、インターディジタル型電極(Inter−Digital Transducer、以下、IDT)のピッチを形成する際のデザインルールに限界があるため、より音速の速い材料が望まれている。さらに、使用温度領域での特性の安定化を得るためには、中心周波数温度係数(TCF)が小さいことが必要となる。
【0003】
表面弾性波素子は、従来、主として圧電体の単結晶上にIDTを形成した構造が用いられてきた。圧電単結晶の代表的なものとしては、水晶、ニオブ酸リチウム(以下、LiNbO)、タンタル酸リチウム(以下、LiTaO)等である。例えば、広帯域化や通過帯域の低損失化が要求されるRFフィルタの場合には、kの大きいLiNbOが用いられる。一方、狭帯域でも安定な温度特性が必要なIFフィルタの場合は、TCFの小さい水晶が用いられる。さらに、k及びTCFがそれぞれLiNbOと水晶との間にあるLiTaOは、その中間的な役割を果たしている。ただし、kの最も大きいLiNbOでも、k〜20%程度であった。
【0004】
最近、ニオブ酸カリウム(以下、KNbO)(a=0.5695nm、b=0.5721nm、c=0.3973nm、以下、斜方晶としては本指数表示に従う)単結晶において、大きなkの値を示すカット角が見出された。0°YカットX伝播(以下、0°Y−X)KNbO単結晶板が、k=53%と非常に大きな値を示すことが計算によって予測された(例えば、非特許文献1参照。)。また、0°Y−XKNbO単結晶板が、k〜50%の大きな値を示すことが実験でも確認され、45°から75°までの回転Y−XKNbO単結晶板を用いたフィルタの発振周波数が、室温付近で零温度特性を示すことが報告されている(例えば、非特許文献2参照。)。これらの単結晶板が、表面弾性波基板として用いられている(例えば、特許文献1参照。)。
【0005】
圧電単結晶基板を用いた表面弾性波素子では、k、温度係数、音速等の特性は材料固有の値であり、カット角及び伝播方向で決定される。0°Y−XKNbO単結晶板はkに優れるが、45°から75°までの回転Y−XKNbO単結晶板のような零温度特性は室温付近において示さない。また、伝播速度は同じペロブスカイト型酸化物である、チタン酸ストロンチウム(以下、SrTiO)やチタン酸カルシウム(以下、CaTiO)に比べて遅い。このように、KNbO単結晶板を用いるだけでは、高音速、高k、零温度特性を全て満足させることはできない。
【0006】
そこで、何等かの基板上に圧電体薄膜を堆積し、その膜厚を制御して、音速やk、温度特性を向上させることが期待される。サファイア基板上に酸化亜鉛(ZnO)薄膜を形成したもの(例えば、非特許文献3参照。)、LiNbO薄膜を形成したもの(例えば、非特許文献4参照。)等が挙げられる。従って、KNbOについても、基板上に薄膜化して諸特性を全て向上させることが期待される。
【0007】
ここで、圧電薄膜としては、そのk、温度特性を引き出すために最適な方向に配向することが望ましく、リーキー波伝播に伴う損失をなるべく小さくするためには、平坦で緻密なエピタキシャル膜であることが望ましい。ここで、k〜50%のY−XKNbO薄膜は、擬立方晶(100)に相当し、k〜10%の90°Y−XKNbO薄膜は、擬立方晶(110)に相当する。従って例えば、SrTiO(100)或いは(110)単結晶基板を用いることで、k〜50%のY−XKNbO薄膜、或いはk〜10%の90°Y−XKNbO薄膜を得ることができる。
【0008】
従来の気相法やゾルゲル法といった一般的な薄膜形成方法で製膜する場合には、製膜温度或いは製膜後の熱処理温度として、一般のペロブスカイト型酸化物と同様少なくとも500℃以上が必要とされていた。ところが、このKNbOは室温では斜方晶であるが、225℃に斜方晶―正方晶転移温度を、及び435℃に正方晶―立方晶転移温度を有するので、製膜温度から冷却する過程において、立方晶から正方晶、斜方晶へと相転移が発生した。特に、正方晶から斜方晶への相転移時には、結晶内部の応力を緩和するために斜方晶a軸とb軸との方向が混在する双晶を形成しやすく、単一ドメインの単結晶を作製することが困難であった。
【0009】
この問題を回避して単一ドメインの単結晶を作製するためには、製膜温度を斜方晶―正方晶の相転移温度である225℃以下で行う必要がある。そこで、低温状態で、ニオブ、カリウムを含んだ溶液中からKNbO結晶を析出させる溶液析出法があらわれた。この方法によって、溶液としてフッ化ニオブ酸カリウム水溶液を100℃程度の温度に加熱して水分を蒸発させて、10μm程度の大きさの斜方晶KNbO結晶粉末を析出させている(例えば、非特許文献5参照。)。
【0010】
【特許文献1】
特開平10−65488号公報
【非特許文献1】
Eletron. Lett., vol.33 (1997) 193
【非特許文献2】
Jpn. J. Appl. Phys., vol.37 (1998) 2929
【非特許文献3】
Jpn. J. Appl. Phys., vol.32 (1993) 2337
【非特許文献4】
Jpn. J. Appl. Phys., vol.32 (1993) L745
【非特許文献5】
Jpn. J. Appl. Phys., vol.40 (2001) 5657
【0011】
【発明が解決しようとする課題】
しかしながら、上記従来のKNbO単結晶薄膜の製造方法においては、水分蒸発に時間がかかるため溶質の過飽和度の時間変化速度が小さく、また、結晶成長の核生成の起点を制御することが困難であった。そのため、高堆積速度で薄膜を形成することができないという問題があった。
本発明は上記事情に鑑みて成されたものであり、室温程度の低温で基板上に斜方晶KNbO単結晶薄膜を高堆積速度でエピタキシャル成長させることができるKNbO単結晶薄膜の製造方法と、この方法で得られた薄膜を備えることによって、kが高く広帯域化、小型化、及び省電力化に優れる表面弾性波素子、周波数フィルタ、周波数発振器、電子回路、及び電子機器を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するため、以下の手段を採用する。
本発明に係るニオブ酸カリウム単結晶薄膜の製造方法は、ニオブ酸カリウム溶液の液滴を基板上に塗布する塗布工程と、前記液滴から斜方晶ニオブ酸カリウム単結晶を析出する析出工程とを有することを特徴とする。
この方法によれば、液滴から斜方晶ニオブ酸カリウム単結晶を例えば大気圧にて室温程度の低温で析出することができるので、製膜時間の短縮化を図ることができ、また得られたニオブ酸カリウム単結晶薄膜からkに優れた表面弾性波素子を低コストで作製することができる。
【0013】
また、本発明では、前記ニオブ酸カリウム単結晶薄膜の製造方法において、前記液滴の塗布を液滴吐出法によって行うことが好ましい。
このようにすれば、基板上の所望する位置に、所定量の液滴を塗布することができる。
また、特に、前記液滴の体積を100ピコリットル以下とすれば、塗布した後に溶媒が蒸発しやすく、溶質の過飽和度の時間変化速度を大きくすることができる。さらに、液滴の塗布位置を連続的に制御することができるので、薄膜の形成面積を所望する大きさで製膜できる。そのため、前述したようにkに優れた表面弾性波素子を低コストで得ることができる。
【0014】
また、本発明では、前記ニオブ酸カリウム単結晶薄膜の製造方法において、前記塗布工程と前記析出工程とを繰り返し行うとともに、後の工程で塗布する液滴を、先に行った析出工程で析出した前記斜方晶ニオブ酸カリウム単結晶の少なくとも一部と重なるように塗布することが好ましい。
この方法によれば、先に析出した単結晶に連続させて次々と新しい単結晶を析出させることができ、これにより大面積の単結晶薄膜を形成することができる。さらに、前述のようにkに優れた表面弾性波素子を低コストで得ることができる。
【0015】
また、本発明では、前記ニオブ酸カリウム単結晶薄膜の製造方法において、前記ニオブ酸カリウム溶液が、フッ化ニオブ酸カリウム水溶液であることが好ましい。
この方法によれば、水溶液なので室温付近でも液滴からの水分蒸発が高速度であるため、溶質濃度の大きな時間変化を得ることができ、高堆積速度で単結晶薄膜を製膜することができる。そのため、kに優れた表面弾性波素子を低コストで得ることができる。
【0016】
また、本発明では、前記ニオブ酸カリウム単結晶薄膜の製造方法において、前記基板として該基板表面の垂直及び面内方向とも配向した結晶軸を表面に有したものを用い、前記ニオブ酸カリウム単結晶を前記基板上にエピタキシャル成長させることが好ましい。
この方法によれば、基板上の配向状態に沿って結晶を析出させるので、薄膜全体にわたって配向方法が揃ったニオブ酸カリウム単結晶薄膜を製膜することができ、kに優れた表面弾性波素子を低コストで得ることができる。
【0017】
また、本発明では、前記ニオブ酸カリウム単結晶薄膜の製造方法において、前記基板としてチタン酸ストロンチウム(100)単結晶基板を用いることが好ましい。
この方法によれば、汎用的なペロブスカイト型酸化物単結晶板であるチタン酸ストロンチウム単結晶基板においても、基板上に低コストでニオブ酸カリウム単結晶薄膜を形成でき、また、kに優れた表面弾性波素子を低コストで得ることができる。
【0018】
また、本発明では、前記ニオブ酸カリウム単結晶薄膜の製造方法において、前記基板として、シリコン単結晶基板と、該シリコン単結晶基板上にエピタキシャル成長させたバッファ層とから構成されているものを用いることが好ましい。
この方法によれば、シリコン単結晶基板上にバッファ層が設けられているので、安価なシリコン単結晶基板にもニオブ酸カリウム単結晶を析出させることができ、低コストでニオブ酸カリウム単結晶薄膜を形成して、kに優れた表面弾性波素子を低コストで得ることができる。
【0019】
また、本発明では、前記ニオブ酸カリウム単結晶薄膜の製造方法において、前記バッファ層として、NaCl型酸化物で構成される第1バッファ層と、該第1バッファ層の上にエピタキシャル成長させた単純ペロブスカイト型酸化物で構成される第2バッファ層とを作製することが好ましい。
さらに、前記バッファ層として、フルオライト型酸化物で構成される第1バッファ層と、該第1バッファ層の上にエピタキシャル成長させた層状ペロブスカイト型酸化物と該層状ペロブスカイト型酸化物上にエピタキシャル成長させた単純ペロブスカイト型酸化物とから構成される第2バッファ層とを作製することが好ましい。
この方法によれば、シリコン単結晶とニオブ酸カリウム単結晶との間に、双方に好適なバッファ層が形成されるので、安価な単結晶基板であるシリコン単結晶基板上でもニオブ酸カリウム単結晶を製膜することができ、kに優れた表面弾性波素子を低コストで得ることができる。
【0020】
また、本発明では、前記ニオブ酸カリウム単結晶薄膜の製造方法において、前記基板として、石英、水晶、SiO被覆シリコン、ダイヤモンド被覆シリコンの何れかの材料で構成される基板本体と、該基板本体上に形成されたバッファ層とから構成されるものを用い、該バッファ層として、前記基板上に該基板面の結晶方位とは無関係に面内配向成長させた第1バッファ層と、該第1バッファ層上にエピタキシャル成長させた酸化物からなる第2バッファ層とを、イオンビーム照射を伴う気相法によって作製することが好ましい。
この方法によれば、表面弾性波素子に好適な石英、水晶、SiO被覆シリコン、ダイヤモンド被覆シリコンなどの材料からなる基板上にも、高品質なKNbO単結晶薄膜を低コストで製膜することができ、kに優れた表面弾性波素子を低コストで得ることができる。
【0021】
本発明は、前記第1バッファ層をNaCl型酸化物で作製し、前記第2バッファ層を単純ペロブスカイト型酸化物で作製することが好ましい。
また、前記第1バッファ層をフルオライト型酸化物で作製し、前記第2バッファ層を、層状ペロブスカイト型酸化物と該層状ペロブスカイト型酸化物上にエピタキシャル成長させた単純ペロブスカイト型酸化物とで作製することが好ましい。
この方法によれば、安価な石英、水晶、SiO被覆シリコン、ダイヤモンド被覆シリコン等の任意の材料の基板上に、高品質なKNbO単結晶薄膜を低コストで製膜することができ、kに優れた表面弾性波素子を低コストで得ることができる。
【0022】
本発明の表面弾性波素子は、本発明に係る製造方法によって製造するニオブ酸カリウム単結晶薄膜を備えていることを特徴とする。
この表面弾性波素子によれば、大きな電気機械結合係数を有するKNbO単結晶薄膜を備えているので、小型で安価な表面弾性波素子を実現することができる。
【0023】
本発明の周波数フィルタは、本発明に係る表面弾性波素子を備えていることを特徴とする。
また、本発明の周波数発振器は、本発明に係る表面弾性波素子を備えることを特徴とする。
この周波数フィルタ及び周波数発振器によれば、小型で安価であるとともに、フィルタ特性の広帯域化を実現することができる。
【0024】
本発明の電子回路は、本発明に係る周波数発振器を備えていることを特徴とする。
この周波数発振器によれば、広帯域のフィルタ特性を有し、小型で安価であるとともに、省電力化に対応することができる。
また、本発明の電子機器は、本発明に係る周波数フィルタ、周波数発振器、電子回路のうち少なくとも1つを備えていることを特徴とする。
この電子機器によれば、小型化、広帯域化、省電力化を向上することができる。
【0025】
【発明の実施の形態】
次に、本発明の第1の実施形態について、図1から図4を参照して説明する。
本実施形態に係るニオブ酸カリウム(KNbO)単結晶薄膜10は、図1に示すように、チタン酸ストロンチウム(SrTiO)単結晶基板11と、このSrTiO単結晶基板11上にエピタキシャル成長したKNbO単結晶層12とから構成されている。
このSrTiO単結晶基板11は、基板表面の垂直方向に(100)配向及び面内方向に(001)配向の結晶軸を有している。
【0026】
このKNbO単結晶薄膜10を液滴吐出法にて製膜する際に使用する液滴吐出装置13は、図2に示すように、基板移動機構14、ヘッド移動機構15、吐出ヘッド16、及びリザーバ17を備えている。
基板移動機構14は、スライダ18aと、スライダ18a上に載置されたテーブル18bと、スライダ18aをY軸方向に沿って移動させるガイドレール19とを備えており、例えばリニアモータ(図示せず)によりスライダ18aをガイドレール19上に移動させる。このテーブル18b上にSrTiO単結晶基板11が設置される。
ヘッド移動機構15は、一対の架台20a、20bと、この上に設けられた走行路20cとを備えている。走行路20cは、X軸方向、すなわち基板移動機構14のY軸方向と直交する方向に沿って配置され、例えばリニアモータ(図示せず)等の作動によって、吐出ヘッド16をガイドレール19が延在するX軸方向に移動させるよう構成されたものである。
【0027】
吐出ヘッド16は、図3に示すようにキャビティ21と、ノズルプレート22と、吐出機構23とを備えている。
キャビティ21は、塗布する溶液で満たされるようになっており、ノズルプレート22には、キャビティ21から液滴を噴射するための孔状のノズル24が縦横に整列した状態で複数形成されている。
吐出機構23は圧電素子を備えており、図示しない電源部からの通電によって駆動して、キャビティ21内の溶液をノズル24から吐き出す。
吐出機構23及びノズル24は、ノズル24の一回あたりの吐出量が100ピコリットル以下、好ましくは20ピコリットル以下となるように調整されている。
リザーバ17は、塗布する溶液を内部に貯留するもので、吐出ヘッド16のキャビティ21に連通されている。
【0028】
次に、本実施形態に係るKNbO単結晶薄膜10の製造方法について説明する。
この製造方法は、液滴吐出法によってKNbOを含む水溶液の液滴をSrTiO単結晶基板11上に塗布する塗布工程と、塗布された液滴から斜方晶ニオブ酸カリウム単結晶をエピタキシャル成長によって析出する析出工程とを備えている。
以下、製造方法を順に説明する。
【0029】
まず、塗布工程の前に原料を調製する。炭酸カリウム(KCO)粉末と酸化ニオブ(Nb)粉末を、K:Nb=1:1のモル比で混合して空気中1000℃で12時間仮焼きし、KNbO原料粉を調整する。
得られたKNbO原料粉をさらに粉砕した後、フッ化カリウム(KF)粉末を1:1のモル比で混合し、700℃12時間仮焼きしてフッ化ニオブ酸カリウム(KNbOF)を得る。
【0030】
次に、KNbOF水溶液25を調製する。
80℃に加温した純水中に粉砕したKNbOF粉末を1wt%程度の溶液濃度となるように秤量、投入し、24時間程度マグネチックスターラ等によって攪拌して溶解して無色透明な飽和濃度近傍のKNbOF水溶液25とする。
溶解温度、時間等の条件はこれに限るものでなく、また、濃度は過飽和であっても構わない。
このKNbOF水溶液25を図2に示す液滴吐出装置13のリザーバ17に貯留する。
【0031】
続いて、SrTiO単結晶基板11を準備する。
ここでは、SrTiO単結晶基板11を有機溶媒に浸漬した後、超音波洗浄機を用いて脱脂洗浄を行う。有機溶媒としては、例えば、エチルアルコールとアセトンの1:1混合液を使用することができるが、これに限るものではない。
このSrTiO単結晶基板11を、図2に示す液滴吐出装置13のテーブル18b上に設置する。
【0032】
次に、KNbOF水溶液25の液滴をSrTiO単結晶基板11上に液滴吐出法によって塗布する塗布工程について説明する。
まず、基板移動機構14及びヘッド移動機構15を作動して、吐出ヘッド16とSrTiO単結晶基板11とを、所望する所定の初期位置に対向する位置までそれぞれ移動する。
そして、リザーバ17内のKNbOF水溶液25をキャビティ21に供給し、キャビティ21内を充填した後、吐出機構23を駆動してノズル24からSrTiO単結晶基板11表面へKNbOF水溶液25の液滴を吐出する。
こうして、SrTiO単結晶基板11上にKNbOF水溶液25を塗布する。
【0033】
次に,前記液滴から斜方晶KNbO単結晶を析出する析出工程について説明する。
吐出された液滴は、SrTiO単結晶基板11上に付着した際、液滴の体積が20ピコリットル以下と微小なので、KNbOF水溶液25中の水分が室温のような低温でもすぐに蒸発して単結晶の析出が開始する。
こうして、SrTiO単結晶を種結晶として、膜面の垂直方向に(110)配向、及び面内で(001)配向の斜方晶KNbO単結晶をエピタキシャル成長させる。
【0034】
この塗布工程と析出工程とを繰り返し行う。
まず、後の塗布工程で塗布するKNbOF水溶液25の液滴を、先に行った析出工程で析出した斜方晶KNbO単結晶の少なくとも一部と重なるように塗布できる位置へ、ヘッド移動機構15を駆動して吐出ヘッド16を移動する。
そして、吐出機構23を駆動してノズル24からSrTiO単結晶基板11表面へKNbOF水溶液25の液滴を吐出する。
こうして、SrTiO単結晶基板11表面のX軸方向に連続して、KNbO単結晶層12を析出する。
【0035】
その後、基板移動機構14を駆動してSrTiO単結晶基板11をY軸方向に移動する。
そして、上述した塗布工程と析出工程を同様に繰り返すことによって、SrTiO単結晶基板11表面全体にKNbO単結晶層12を析出する。
さらに、所望する厚さになるまで同様の操作を繰り返す。
こうして、KNbO、SrTiOをそれぞれ斜方晶、立方晶指数表示した場合、膜面に垂直方向にKNbO(110)/SrTiO(100)、面内方向にKNbO<001>//SrTiO<001>の方位関係を有するKNbO単結晶薄膜10を製膜する。
【0036】
次に、本実施形態に係る表面弾性波素子26について説明する。
この表面弾性波素子26は、図4に示すように、上述したKNbO単結晶薄膜10を備える。
以下、表面弾性波素子26の製造方法について説明する。
まず、金属アルミニウム(Al)を用いた真空蒸着により、基板温度45℃、真空度6.65×10−5Pa(5×10−7Torr)の条件で、KNbO単結晶薄膜10上に一対のAl電極27a、27bを堆積する。
なお、基板温度、真空度、アルゴン酸素比はこれに限るものではない。
次に、Al電極27a、27bに対して、レジスト塗布、露光、ドライエッチング、レジスト除去によるパターンニングプロセスの連続プロセスを行い、一対のIDT28a、28bを形成する。
こうして、表面弾性波素子26を製造する。
【0037】
得られた表面弾性波素子26において、IDT28a、28b間を伝播する表面弾性波の遅延時間Vopenから求めた音速は4000m/sであった。また、IDT28a、28b間を金属薄膜で覆った場合の表面弾性波の遅延時間Vshortとの差から求めたkは25%であった。
KNbO単結晶薄膜を高温で気相法により作製した場合に得られたkも25%であることから、液滴吐出法によっても十分大きなk値を得ることができた。
【0038】
なお、上述した析出工程において、KNbOF水溶液25の液滴中の水分を大気圧下で自然乾燥によって蒸発させたが、析出速度を増加させるために減圧した雰囲気で析出させても構わない。
また、テーブル18bを常温状態としているが、同様に析出速度を増加させるために室温よりも高い温度となるよう加熱しても構わない。
さらに、ニオブ酸カリウム溶液として、フッ化ニオブ酸タンタル酸カリウムナトリウム水溶液を用いても、K1−xNaNb1−yTa(0≦x≦1、0≦y≦1)なる固溶体薄膜が同様に得られる。
【0039】
このKNbO単結晶薄膜の製造方法によれば、SrTiO単結晶基板11上に塗布されたKNbOF水溶液25の微小液滴を、核生成の起点とすることができる。また、塗布後に水溶液中の水分がすぐに蒸発するので、溶質の過飽和度の時間変化速度を大きくすることができ、高堆積速度でKNbO単結晶層12を析出してエピタキシャル成長させることができる。さらに、液滴の塗布位置を連続的に制御することができるので、KNbO単結晶薄膜10の形成面積や厚さを所望する大きさに製膜できる。この結果、kに優れる表面弾性波素子26を低コストで作製することができる。
【0040】
次に、本発明に係る第2の実施形態について、図5から図7を参照して説明する。なお、以下の説明において、上記実施形態において説明した構成要素には同一符号を付し、その説明は省略する。
第2の実施形態が上記第1の実施形態と異なる点は、第1の実施形態のKNbO単結晶薄膜10は、SrTiO単結晶基板11上にKNbO単結晶を液滴吐出法によってエピタキシャル成長させて製造するようにしたのに対して、第2の実施形態では、シリコン(Si)単結晶基板30aと、その上に気相法によってエピタキシャル成長させたバッファ層31とから構成される基板30上に、KNbO単結晶を液滴吐出法によってエピタキシャル成長させてKNbO単結晶薄膜32を製造するようにした点である。
【0041】
このSi単結晶基板30aの表面は、斜方晶(100)配向で構成されており自然酸化膜で被膜されている。
バッファ層31は、第1バッファ層34と、第1バッファ層34上にエピタキシャル成長させた第2バッファ層35とから構成されている。
第1バッファ層34は、イットリア安定化ジルコニア(YSZ)からなる第1バッファ層34aと、第1バッファ層34aの上にエピタキシャル成長させたCeOからなる第1バッファ層34bとから構成されている。
【0042】
第1バッファ層34a及び第1バッファ層34bは、金属酸化物で構成される。この金属酸化物としては、NaCl構造又はフルオライト構造の金属酸化物が挙げられる。これらの中でも、Siよりも熱力学的に酸素と結合しやすい金属を含む、MgO、CaO、SrO、BaO、若しくはこれらを含む固溶体のうち少なくとも1種、又はYSZ、CeO、ZrO、若しくはこれらを含む固溶体のうちの少なくとも1種を用いるのが好ましい。ここでは、第1バッファ層34aとして、YSZを立方晶(100)配向でエピタキシャル成長させ、第1バッファ層34bとして、CeOを立方晶(100)配向でエピタキシャル成長させて構成するものとしている。
【0043】
第2バッファ層35は、層状ペロブスカイト型酸化物であるYBaCuを正方晶又は斜方晶(001)配向でエピタキシャル成長させた第2バッファ層35aと、第2バッファ層35aの上に単純ペロブスカイト型酸化物であるSrTiOを立方晶(100)配向でエピタキシャル成長させた第2バッファ層35bとから構成されている。
KNbO単結晶層12は、第2バッファ層35の上に斜方晶(110)又は(001)配向で構成される。
第1バッファ層34を、MgOのようなNaCl構造の金属酸化物で作製する場合には、第2バッファ層35として、SrTiOのみを立方晶(100)配向でエピタキシャル成長させても同様の効果を得ることができる。
【0044】
このバッファ層31を、イオンビーム照射を伴う気相法によって製膜する。本実施形態では、パルス・レーザー蒸着(Pulsed Laser Deposition : PLD)法にて薄膜を作製する。この成膜時に使用する成膜装置36は、図6に示すように、内部を減圧可能なプロセスチャンバ37と、Si単結晶基板30aに対向して配設された成膜母材38と、成膜母材38を載置して自公転可能とした母材支持部39と、Si単結晶基板30aを保持する保持部40とを備えている。
また、成膜装置36は、反射高速電子線回折(Reflection High Energy Electron Diffraction、RHEEDと略称する)法で薄膜41を分析する際に用いるRHEED源42と、RHEED源42からSi単結晶基板30a上に堆積した薄膜41に入射されて反射されたビームを検知するRHEEDスクリーン43とを備えている。
【0045】
PLD法とは、基板の上に薄膜を形成している間は、プロセスチャンバ37の内部空間を非常に低い圧力とした酸素雰囲気、例えばおよそ大気圧の千分の一程度とした圧力下において、自転している成膜母材38にArF又はKrFエキシマ・レーザー・ビーム44をパルス的に照射し、この照射によって成膜母材38を構成している成分をプラズマプルーム(プラズマや分子状態)45としてSi単結晶基板30aまで飛翔させて被成膜面上に薄膜41を堆積させる成膜法である。
【0046】
次に、本実施形態に係るKNbO単結晶薄膜32の製造方法について説明する。
この製造方法は、Si単結晶基板30a上にバッファ層31をPLD法によって形成した後、液滴吐出法によってKNbOを含む水溶液の液滴をバッファ層31上に塗布する塗布工程と、塗布した液滴から斜方晶ニオブ酸カリウム単結晶をエピタキシャル成長によって析出する析出工程とを備えている。
以下、製造方法を順に説明する。
【0047】
まず、第1の実施形態と同様の方法によって、例えば、飽和濃度近傍のKNbOF水溶液25を調製する。
続いて、Si単結晶基板30aを準備する。
Si単結晶基板30aを有機溶媒に浸漬し超音波洗浄機を用いて脱脂洗浄を行う。有機溶媒としては、例えばエチルアルコールとアセトンが1:1で混合された混合液を使用することができるが、これに限るものではない。また、自然酸化膜を残した状態とするため、通常のSi単結晶基板の代表的な洗浄方法であるRCA洗浄や弗酸洗浄といった自然酸化膜を除去する工程を行う必要はない。この自然酸化膜は、Si<011>方向からのRHEEDパターンに回析パターンが観測されず、Si(100)2×1による再構成表面が形成されないことから確認できる。
【0048】
次に、バッファ層31をPLD法によって、図6に示す成膜装置36にて製膜する方法について説明する。
まず、第1バッファ層34aをSi単結晶基板30a上に製膜する。
脱脂洗浄したSi単結晶基板30aを保持部40に装填した後、プロセスチャンバ37内へ導入して、1.33×10−6Pa(1×10−8Torr)まで減圧し、図示しない赤外線ランプを用いて10℃/分で700℃まで加熱昇温する。途中500℃以上の温度領域で、自然酸化膜が一部SiOとして蒸発するために、真空度が1.33×10−4Pa(1×10−6Torr)まで上昇するが、700℃では6.65×10−5Pa(5×10−7Torr)以下の一定値となる。なお、Si単結晶基板30a表面に新たな熱酸化膜を形成しない範囲内であれば、昇温速度、基板温度、圧力等の条件は、これに限るものではない。
【0049】
圧力が一定となった後、YSZからなる成膜母材38aを、Si単結晶基板30aに対向し互いの距離が30mm以上50mm以下となるように配設する。そして、基板温度が650℃以上750℃以下、堆積時の酸素分圧が1.33×10−3Pa(1×10−5Torr)以上1.33×10−2Pa(1×10−4Torr)以下の条件で、成膜母材38a表面にレーザーエネルギー密度が2J/cm以上3J/cm以下、及びレーザー周波数が5Hz以上15Hz以下となるエキシマ・レーザー・ビーム44を照射する。
このとき、Y、Zrプラズマが選択的に基板に到達でき、基板上の自然酸化膜をSiOとして除去しながらYSZとしてエピタキシャル成長できるのであれば、各条件は上記の範囲に限らない。
ただし、条件によっては、YSZ第1バッファ層34aが形成されても、Si単結晶基板30aとの界面に酸素が供給されて新しい酸化膜が形成される場合がある。
なお、ZrOが立方晶として固溶体を形成するのであれば、Yの代わりにLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Mg、Ca、Sr、Baの何れか1つの元素を添加してもよい。
【0050】
ここでは、レーザーエネルギー密度2.5J/cm、レーザー周波数10Hz、パルス長10nsの条件でKrFエキシマ・レーザー・ビーム44のパルス光を入射する。そして、成膜母材38aの表面にY、Zr、Oからなるプラズマプルーム45を発生させる。このプラズマプルーム45を成膜母材38aから40mm離れた位置に配設されたSi単結晶基板30aに、基板温度700℃、酸素分圧6.65×10−3Pa(5×10−5Torr)の条件で10分間照射して、図5に示すようにYSZ第1バッファ層34aを5nmエピタキシャル成長させる。
【0051】
続いて、第1バッファ層34bの製膜を行う。
CeOからなる成膜母材38bがSi単結晶基板30aと対向する位置となるように母材支持部39を回転移動する。この成膜母材38bの表面に、上述と同様にKrFエキシマ・レーザー・ビーム44のパルス光を照射する。このときの照射条件は、YSZの場合と同様である。
ここでは、レーザーエネルギー密度2.5J/cm、レーザー周波数10Hz、パルス長10nsの条件とする。
そして、成膜母材38b表面にCe、Oからなるプラズマプルーム45を発生させる。このプラズマプルーム45を成膜母材38bから40mm離れた位置に配設されたSi単結晶基板30aに、基板温度700℃、酸素分圧6.65×10−3Pa(5×10−5Torr)の条件で10分間照射して、図5に示すようにCeO第1バッファ層34bを10nmエピタキシャル成長させる。
CeOとしてエピタキシャル成長できるのであれば、各条件は上記のものに限るものではない。また、CeOが立方晶として固溶体を形成するのであれば、Pr又はZrを添加しても同様の効果が得られる。
【0052】
次に、第2バッファ層35aの製膜を行う。
YBaCuからなる成膜母材38cがSi単結晶基板30aと対向する位置となるように母材支持部39を回転移動する。この成膜母材38cの表面に、上述と同様にKrFエキシマ・レーザー・ビーム44のパルス光を照射する。このときの照射条件は、基板温度が550℃以上650℃以下、堆積時の酸素分圧が1.33×10−1Pa(1×10−3Torr)以上13.3Pa(1×10−1Torr)以下であること以外は、YSZの場合と同様である。
ここでは、レーザーエネルギー密度2.5J/cm、レーザー周波数10Hz、パルス長10nsの条件とする。
そして、成膜母材38cの表面にY、Ba、Cu、Oからなるプラズマプルーム45を発生させる。このプラズマプルーム45を成膜母材38cから40mm離れた位置に配設されたSi単結晶基板30aに、基板温度600℃、酸素分圧1.33Pa(1×10−2Torr)の条件で2分間照射して、図5に示すようにYBaCu第2バッファ層35aを2nmエピタキシャル成長させる。
【0053】
Y、Ba、Cuプラズマが1:2:3の定比で基板に到達でき、YBaCuとしてエピタキシャル成長できるのであれば、各条件は上記に限るものではない。また、YBaCuの代わりに、MRuO(MはCa、Sr,Baの何れか1つの元素を示す。)、RENiO(REはLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Yの何れか一つの元素を示す。)とNiOの固溶体、REBaCu(REはLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luのうち何れか一つの元素を示す。)、(Bi、RE)Ti12(RE=La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Yのうち何れか一つの元素を示す。)を用いても同様の効果が得られる。
【0054】
そして、第2バッファ層35bの製膜を行う。
SrTiOからなる成膜母材38dがSi単結晶基板30aと対向する位置となるように母材支持部39を回転移動する。この成膜母材38dの表面に、KrFエキシマ・レーザー・ビーム44のパルス光を照射する。このときの照射条件は、基板温度が550℃以上650℃以下、堆積時の酸素分圧が1.33×10−1Pa(1×10−3Torr)以上13.3Pa(1×10−1Torr)以下であること以外は、YSZの場合と同様である。
ここでは、レーザーエネルギー密度2.5J/cm、レーザー周波数10Hz、パルス長10nsの条件とする。
そして、成膜母材38dの表面にSr、Ti、Oからなるプラズマプルーム45を発生させる。このプラズマプルーム45を成膜母材38dから40mm離れた位置に配設されたSi単結晶基板30aに、基板温度600℃、酸素分圧1.33Pa(1×10−2Torr)の条件で30分間照射して、図5に示すようにSrTiO第2バッファ層35bを100nmエピタキシャル成長させる。
【0055】
Sr、Tiプラズマが1:1の定比でSi単結晶基板30aに到達でき、SrTiOとしてエピタキシャル成長できるのであれば、各条件は上記に限るものではない。また、SrTiOの代わりに、MTiO(MはCa、Baのうち何れか一つの元素を示す。)、REAlO(REはLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Yのうち何れか一つの元素を示す。)、MAlO(MはMg、Ca、Sr、Baのうち何れか一つの元素を示す。)、REGaO(REはLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Yのうち何れか一つの元素を示す。)を用いても同様の効果が得られる。
【0056】
成膜されたバッファ層31の上に、上述した第1の実施形態と同様の液滴吐出法によって、KNbO単結晶層12をエピタキシャル成長させる。
こうして、KNbO、SrTiO、YBaCu、CeO、YSZ、Siをそれぞれ斜方晶、立方晶、正方晶、立方晶、立方晶、立方晶で指数表示した場合、膜面に垂直方向にKNbO(001)/SrTiO(100)/YBaCu(001)/CeO(100)/YSZ(100)/Si(100)、面内方向にKNbO<110>//SrTiO<010>//YBaCu<100>//CeO<011>//YSZ<011>//Si<011>の方位関係を有するKNbO単結晶薄膜32を製膜する。
【0057】
上述したKNbO単結晶薄膜32上に、第1の実施形態と同様の方法で一対のIDT28a、28bを形成して、図7に示す本実施形態に係る表面弾性波素子46を製造する。
本実施形態によって得られた表面弾性波素子46もkが25%であり、十分大きなk値を得ることができた。
なお、ニオブ酸カリウム溶液として、フッ化ニオブ酸タンタル酸カリウムナトリウム水溶液を用いても、K1−xNaNb1−yTa(0≦x≦1、0≦y≦1)なる固溶体薄膜が同様に得られる。
このKNbO単結晶薄膜の製造方法によれば、Si単結晶基板30a上にバッファ層31を形成後、KNbOF水溶液25の微小液滴を塗布するので、安価なSi単結晶基板を使用して低コストでKNbO単結晶薄膜32を製造でき、また、このKNbO単結晶薄膜32から大きなk値を有する表面弾性波素子46を得ることができる。
【0058】
次に、本発明に係る第3の実施形態について、図8及び図9を参照して説明する。なお、以下の説明において、上記実施形態において説明した構成要素には同一符号を付し、その説明は省略する。
第3の実施形態が上記第2の実施形態と異なる点は、第2の実施形態では、Si単結晶基板30a上にバッファ層31を作製し、KNbO単結晶をエピタキシャル成長させるようにしたのに対して、第3の実施形態では、水晶基板(基板本体)50上にバッファ層31を作製してその上にKNbO単結晶をエピタキシャル成長させるようにした点である。
【0059】
本実施形態に係るKNbO単結晶薄膜52は、図8に示すように、基板53と、その上にエピタキシャル成長させたKNbO単結晶層12とから構成されている。
基板53は、水晶基板(基板本体)50と、この水晶基板50上に形成されたバッファ層31とから構成されている。
水晶基板50の構成材料は、水晶以外の石英、SiO被覆シリコン、ダイヤモンド被覆シリコンの何れかの材料であってもよく、多結晶YSZ基板のようなセラミックスや、ガラス基板のようなアモルファスであってもよい。また、ペロブスカイト型酸化物がエピタキシャル成長できないような結晶構造を有していても良い。ここでは、汎用的であり、表面弾性波素子用基板として重要な水晶としている。
【0060】
バッファ層31は、第1バッファ層34と、この第1バッファ層34上に立方晶(100)配向でエピタキシャル成長させた単純ペロブスカイト型酸化物であるSrTiOからなる第2バッファ層35とから構成されている。
第1バッファ層34は、金属酸化物で構成される。この金属酸化物としては、NaCl構造又はフルオライト構造の金属酸化物が挙げられる。これらの中でも、Siよりも熱力学的に酸素と結合しやすい金属を含む、MgO、CaO、SrO、BaO、若しくはこれらを含む固溶体のうち少なくとも1種、又はYSZ、CeO、ZrO、若しくはこれらを含む固溶体のうちの少なくとも1種を用いるのが好ましい。さらに面内配向方向は、基板面の結晶方位とは無関係であって構わない。
【0061】
本実施形態の第1バッファ層34は、NaCl型酸化物であり立方晶(100)で面内配向成長したMgOで構成されている。
なお、第1バッファ層34にYSZ或いはYSZ/CeOのようなフルオライト型酸化物を用いる場合には、以下に示す構造のものをエピタキシャル成長させて使用する。
すなわち、第2バッファ層35として、YBaCuなどの層状ペロブスカイト構造の金属酸化物を、正方晶又は斜方晶(001)配向でエピタキシャル成長させ、さらにその上に、SrTiOを立方晶(100)配向でエピタキシャル成長させた構成とする。
KNbO単結晶層12は、KNbO単結晶が、斜方晶(110)又は(001)配向で構成されている。
【0062】
次に、上述したKNbO単結晶薄膜52の製造方法について、以下、工程を追って説明する。
まず、第1の実施形態と同様の方法によって、飽和濃度近傍のKNbOF水溶液25を調製する。
続いて、水晶基板50を準備する。
水晶基板50を有機溶媒に浸漬し超音波洗浄機を用いて脱脂洗浄を行う。有機溶媒としては、例えばエチルアルコールとアセトンが1:1で混合された混合液を使用することができるが、これに限るものではない。
【0063】
次に、水晶基板50上にバッファ層31を図6に示す成膜装置36にて製膜する。
まず、第1バッファ層34を水晶基板50上に製膜する。
脱脂洗浄した水晶基板50を保持部39に装填した後、プロセスチャンバ37内へ導入し、アルゴン:酸素=100:1の分圧比で1.33×10−2Pa(1×10−4Torr)の圧力となるよう混合ガスを導入する。
なお、圧力条件は、これに限るものではない。
【0064】
圧力が一定となった後、Mg又はMgOからなる成膜母材38aを水晶基板50に対向し互いの距離が30mm以上50mm以下となるように配設する。そして、堆積時の圧力が1.33×10−3Pa(1×10−5Torr)以上1.33×10−2Pa(1×10−4Torr)以下の条件で、成膜母材38aの表面に、レーザーエネルギー密度が2J/cm以上3J/cm以下、レーザー周波数が5Hz以上15Hz以下となるエキシマレーザーを照射する。
なお、MgOとして面内配向成長できるのであれば、各条件はこれに限るものではない。
【0065】
ここでは、Mgの成膜母材38aに、レーザーエネルギー密度2.5J/cm、レーザー周波数10Hz、パルス長10nsの条件でKrFエキシマ・レーザー・ビーム45のパルス光を入射する。そして、成膜母材38aの表面にMgのプラズマプルーム44を発生させる。このプラズマプルーム44を成膜母材38aから40mm離れた位置に配設された水晶基板50に、圧力1.33×10−2Pa(1×10−4Torr)の条件で10分間照射して、図8に示すようにMgO第1バッファ層34を10nmエピタキシャル成長させる。
【0066】
このとき、水晶基板50の表面における法線方向と45度をなす方向から、アルゴンイオンビームを基板上に照射する。ここで、イオンビームソース源としては、Kauffmannイオンソースが好ましく、イオンビームの加速電圧は200eV程度、電流を10mA程度とするのが好ましい。
基板温度は、特にヒータ等による温度制御をするものではないが、アルゴンイオンビームの衝撃により基板温度は50〜70℃に上昇する。
【0067】
MgO第1バッファ層34を堆積した後、第2の実施形態と同様の方法にて、SrTiO第2バッファ層35を100nmエピタキシャル成長させる。そして、水晶基板50における表面の法線方向と45度をなす方向から、アルゴンイオンビームを上述と同様の条件で基板上に照射して、基板53を得る。
得られた基板53のバッファ層31の上に、上述した第1の実施形態と同様の液滴吐出法によって、KNbO単結晶層12をエピタキシャル成長させる。
こうして、KNbO、MgO、SrTiOをそれぞれ斜方晶、立方晶、立方晶で指数表示した場合、膜面に垂直方向にKNbO(001)/SrTiO(100)/MgO(100)、面内方向にKNbO<110>//SrTiO<010>//MgO<010>の方位関係を有するKNbO単結晶薄膜52を製膜する。
【0068】
上述したKNbO単結晶薄膜52上に、第1の実施形態と同様の方法で一対のIDT28a、28bを形成して、図9に示す本実施形態に係る表面弾性波素子54を製造する。
その結果、本実施形態によって得られた表面弾性波素子54もkが25%であり、十分大きなk値を得ることができた。
なお、ニオブ酸カリウム溶液として、フッ化ニオブ酸タンタル酸カリウムナトリウム水溶液を用いても、K1−xNaNb1−yTa(0≦x≦1、0≦y≦1)なる固溶体薄膜が同様に得られる。
このKNbO単結晶薄膜の製造方法によれば、表面弾性波素子用の基板として重要な水晶等で構成された任意の材料で構成される基板上でも、KNbOF水溶液25の微小液滴を塗布することによってKNbO単結晶薄膜52を作製できる。また、このKNbO単結晶薄膜52から、大きなk値を有する表面弾性波素子54を低コストで得ることができる。
【0069】
次に、本発明に係る表面弾性波素子が設けられた周波数フィルタについて説明する。
図10に示す周波数フィルタ60は、KNbO単結晶薄膜10、32、52の何れか一つからなる表面弾性波素子61と、表面弾性波素子61の表面を伝播する表面弾性波を吸収する一対の吸音部62a、62bとを備えている。
表面弾性波素子61の上面には、一対のIDT63a、63bが形成されている。このIDT電極63a、63bは、Al又はAl合金で構成され、厚さがIDTピッチの100分の1程度に設定されている。
IDT電極63aには、高周波信号源64が接続されており、IDT63bには、端部に端子65a、65bとを備える信号線65が接続されている。
吸音部62a、62bは、IDT63a、63bを挟み込むように形成されている。
【0070】
周波数フィルタ60においては、高周波数信号源64から高周波信号を出力するとIDT63aに印加して、表面弾性波素子61の上面に表面弾性波が発生する。この表面弾性波は、約4000m/s程度の速度で表面弾性波素子61上面を伝播する。この表面弾性波のうち、IDT63aから吸音部62a側へ伝播した表面弾性波は、吸音部62aで吸収される。しかし、IDT63b側に伝播した表面弾性波のうち、IDT63bの配線ピッチ等に応じて定まる特定の周波数、又は特定の帯域における周波数を有する表面弾性波は電気信号に変換される。残りの大部分は、IDT63bを通過して吸音部62bに吸収される。
【0071】
この周波数フィルタ60によれば、IDT63aに供給した電気信号のうち、特定の周波数、又は、特定の帯域における周波数を有する表面弾性波のみを高効率で得る(フィルタリング)ことができる。
【0072】
図11に示す周波数発振器70は、KNbO単結晶薄膜10、32、52の何れか一つからなる表面弾性波素子71を備えている。
表面弾性波素子71の上面には、IDT72と、このIDT72を挟み込んで一対のIDT73a、73bが形成されている。これらのIDT72、73a、73bは、Al又はAl合金で構成され、厚さがIDTピッチの100分の1程度に設定されている。
IDT72は、さらに、一対の櫛歯状電極72a、72bを備えている。一方の櫛歯状電極72aには、高周波信号源74が接続されており、他方の櫛歯状電極72bには端子75a、75bを有する信号線76が接続されている。
【0073】
この周波数発振器70において、高周波信号源74から高周波信号を出力すると、この周波数信号は、櫛歯状電極72aに印加され、表面弾性波素子71の上面にIDT73a側に伝播する表面弾性波、及びIDT73b側に伝播する表面弾性波を発生させる。この表面弾性波は、約4000m/s程度の速度である。これらの表面弾性波のうちの特定の周波数成分の表面弾性波が、IDT73a、73bそれぞれで反射され、IDT73a、73bの間に定在波が発生する。この定在波のうち、特定の周波数成分が共振して振幅が増大する。
この周波数成分、又は、特定の帯域における周波数成分を有する表面弾性波の一部が、櫛歯状電極72bから取り出されて、IDT73a、73bの共振周波数に応じた周波数(又は、ある程度の帯域を有する周波数)の電気信号が端子75a、75bから取り出される。
【0074】
図12に、この周波数発振器70をVCSO(Voltage Controlled SAW Oscillator:電圧制御SAW発振器)80に応用した一例を示す。このVCSO80は、金属製(アルミニウム、又はステンレススチール製)の筐体81内部に実装されている。VCSO80は、SAW基板82上に、IC(Integrated Circuit)83と周波数発振器84とが実装されている。IC83は、図示しない外部回路から入力した電圧値に応じて、周波数発振器84に印加する周波数を制御するものである。
周波数発振器84が具備する表面弾性波素子85上には、IDT86a、86b、86cが形成されている。SAW基板82上には、IC83と周波数発振器84とを電気的に接続するための配線87がパターンニングされている。IC83及び配線87が金線等のワイヤ線88a、88bによって接続されて電気的にも接続される。
【0075】
このVCSO80は、例えば、図13に示すPLL(Phase Locked Loop)回路90のVCO(Voltage Controlled Oscillator)91として用いられる。PLL回路90は、入力端子92、位相比較器93、低減フィルタ94、増幅器95とを他に備えている。
位相比較器93は、入力端子92から入力される信号の位相(又は周波数)とを比較し、その差に応じて値が設定される誤差電圧信号を出力する。低減フィルタ94は、位相比較器93から出力される誤差電圧信号の位置の低周波数成分のみを通過させ、増幅器95は、低減フィルタ94から出力される信号を増幅する。VCO91は、入力される電圧値に応じてある範囲で連続的に発振周波数が変化する発振回路である。
【0076】
このPLL回路90は、入力端子92から入力される位相(又は周波数)との差が減少するように動作する。すなわち、VCO91から出力される信号の周波数が入力端子92から入力される信号の周波数に同期すると、その後は、一定の位相差を除いて入力端子92から入力する信号に一致し、入力信号の変化に追従する信号を出力する。
この周波数発振器70によれば、KNbO単結晶薄膜10、32、52の何れか一つを備えているので、小型で安価であるとともに、広帯域の信号に対応できる高機能なフィルタ特性を得ることができる。
【0077】
次に、周波数フィルタ60及び周波数発振器70が具備され、図14に示す電気的構成を有する電子回路100について説明する。この電子回路100は、例えば、図15に示す携帯電話機(電子機器)101の内部に設けられている。この携帯電話機101は、液晶表示部102、及び操作釦103とを備えている。
電子回路100は、送話器104、送信信号処理回路105、送信ミキサ106、送信フィルタ107、送信電力増幅器108、送受分波器109、アンテナ110、低雑音増幅器111、受信フィルタ112、受信ミキサ113、受信信号処理回路114、受話器115、周波数シンセザイザ116、制御回路117、及び入力/表示回路118とを備えている。
【0078】
送話器104は、音声等の音波信号を電波信号に変換するマイクロフォン等であり、送信信号処理回路105は、送話器104から出力される電気信号に対して、D/A変換処理、変調処理等の処理を行っている。送信ミキサ106は、周波数シンセサイザ116から出力される信号を用いて送信信号処理回路105から出力される信号をミキシングする。送信フィルタ107は、図10に示す周波数フィルタ60であり、中間周波数(IF)のうち必要となる周波数を有する信号のみを通過させ、不要となる周波数の信号をカットする。通過した信号は、図示しない変換回路によってRF信号に変換される。送信電力増幅器108は、RF信号の電力を増幅し、送受分波器109へ出力する。
送受分波器109は、増幅されたRF信号をアンテナ110から電波の形で送信する。また、アンテナ110から受信した受信信号を分波して、低雑音増幅器111へ出力する。
【0079】
低雑音増幅器111は、入力された信号を増幅して図示しない変換回路に出力し、変換回路は、この信号をIFに変換する。受信フィルタ112は、図10に示す周波数フィルタ60であって、IFのうち必要となる周波数を有する信号のみを通過させ、不要となる信号をカットする。
受信ミキサ113は、周波数シンセサイザ116から出力される信号を用いて受信フィルタ112から出力される信号をミキシングする。
受信信号処理回路114は、受信ミキサ113から出力される電気信号に対して、D/A変換処理、復調処理等の処理を行っている。
受話器115は、電波信号を音声等の音波信号に変換する小型スピーカ等で構成されている。
【0080】
周波数シンセサイザ116は、上述した図13に示すPLL回路90を備え、PLL回路90から出力する信号を分周して送信ミキサ106及び受信ミキサ113に供給する信号を生成し、一部をさらに分周して受信ミキサ113へ供給する信号を生成する。これらの信号は、送信フィルタ107及び受信フィルタ112で個別に設定されている。
入力/表示回路118は、携帯電話機101の使用者に対して機器の状態を表示したり、使用者の指示を入力するためのものであり、図15に示す液晶表示部102及び操作釦103に相当する。
制御回路117は、上記の送信信号処理回路105、受信信号処理回路114、周波数シンセサイザ116、及び入力/表示回路118を制御することによって、携帯電話機101の全体動作を制御する。
この電子回路100及び携帯電話機101によれば、KNbO単結晶薄膜10、32、52の何れか一つを備えているので、小型化、広帯域化、省電力化を向上することができる。
【0081】
なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態では電子機器として携帯電話機101とし、電子回路として携帯電話機101内に設けられた電子回路100としたが、本発明は、携帯電話機に限られるものではなく、種々の移動体通信機器及びその内部に設けられる電子機器に適用することができる。
【0082】
さらに、移動体通信機器のみならずBS(Broadcast Satellite)及びCS(Commercial Satellite)放送を受信するチューナ等の据置状態で使用される通信機器及びその内部に設けられる電子回路にも適用することができる。また、通信キャリアとして空中を伝播する電波を使用する通信機器のみならず、同軸ケーブル中を伝播する高周波信号、又は光ケーブル中を伝播する光信号を用いるHUB等の電子機器及びその内部に設けられる電子回路にも適用することができる。
【図面の簡単な説明】
【図1】第1の実施形態におけるKNbO薄膜の断面図である。
【図2】第1の実施形態における液滴吐出装置を示す斜視図である。
【図3】図2における液滴吐出装置の吐出ヘッドの構造を示す図である。
【図4】第1の実施形態における表面弾性波素子の断面を示す図である。
【図5】第2の実施形態におけるKNbO薄膜の断面を示す図である。
【図6】第2の実施形態における成膜装置を示す斜視図である。
【図7】第2の実施形態における表面弾性波素子の断面を示す図である。
【図8】第3の実施形態におけるKNbO薄膜の断面を示す図である。
【図9】第3の実施形態における表面弾性波素子の断面図である。
【図10】本発明の実施形態における周波数フィルタの斜視図である。
【図11】本発明の実施形態における周波数発振器を示す斜視図である。
【図12】本発明の実施形態における周波数発振器を示す斜視図である。
【図13】本発明の実施形態のPLL回路を示すブロック図である。
【図14】本発明の実施形態における電子回路を示すブロック図である。
【図15】本発明の実施形態における携帯電話機を示す斜視図である。
【符号の説明】
10、32、52 ニオブ酸カリウム単結晶薄膜、11 チタン酸ストロンチウム単結晶基板(基板)、12 ニオブ酸カリウム単結晶層(ニオブ酸カリウム単結晶)、25 フッ化ニオブ酸カリウム水溶液、26、46、54、61、71、85 表面弾性波素子、30、53 基板、30a シリコン単結晶基板(基板)、31 バッファ層、34 第1バッファ層、35 第2バッファ層、50水晶基板(基板本体)、60 周波数フィルタ、70、84 周波数発振器、100 電子回路、101 携帯電話機(電子機器)

Claims (18)

  1. ニオブ酸カリウム溶液の液滴を基板上に塗布する塗布工程と、
    前記液滴から斜方晶ニオブ酸カリウム単結晶を析出する析出工程と
    を有することを特徴とするニオブ酸カリウム単結晶薄膜の製造方法。
  2. 前記液滴の塗布を、液滴吐出法によって行うことを特徴とする請求項1記載のニオブ酸カリウム単結晶薄膜の製造方法。
  3. 前記液滴の体積が100ピコリットル以下であることを特徴とする請求項2記載のニオブ酸カリウム単結晶薄膜の製造方法。
  4. 前記塗布工程と前記析出工程とを繰り返し行うとともに、後の工程で塗布する液滴を、先に行った析出工程で析出した前記斜方晶ニオブ酸カリウム単結晶の少なくとも一部と重なるように塗布することを特徴とする請求項1から3の何れか記載のニオブ酸カリウム単結晶薄膜の製造方法。
  5. 前記ニオブ酸カリウム溶液が、フッ化ニオブ酸カリウム水溶液であることを特徴とする請求項1から4の何れか記載のニオブ酸カリウム単結晶薄膜の製造方法。
  6. 前記基板として、該基板表面の垂直及び面内方向とも配向した結晶軸を表面に有したものを用い、
    前記ニオブ酸カリウム単結晶を前記基板上にエピタキシャル成長させることを特徴とする請求項1から5の何れか記載のニオブ酸カリウム単結晶薄膜の製造方法。
  7. 前記基板として、チタン酸ストロンチウム(100)単結晶基板を用いることを特徴とする請求項6記載のニオブ酸カリウム単結晶薄膜の製造方法。
  8. 前記基板として、シリコン単結晶基板と、該シリコン単結晶基板上にエピタキシャル成長させたバッファ層とから構成されるものを用いることを特徴とする請求項6記載のニオブ酸カリウム単結晶薄膜の製造方法。
  9. 前記バッファ層として、NaCl型酸化物で構成される第1バッファ層と、該第1バッファ層の上にエピタキシャル成長させた単純ペロブスカイト型酸化物で構成される第2バッファ層とを作製することを特徴とする請求項8記載のニオブ酸カリウム単結晶薄膜の製造方法。
  10. 前記バッファ層として、フルオライト型酸化物で構成される第1バッファ層と、該第1バッファ層の上にエピタキシャル成長させた層状ペロブスカイト型酸化物と該層状ペロブスカイト型酸化物上にエピタキシャル成長させた単純ペロブスカイト型酸化物とから構成される第2バッファ層とを作製することを特徴とする請求項8記載のニオブ酸カリウム単結晶薄膜の製造方法。
  11. 前記基板として、石英、水晶、SiO被覆シリコン、ダイヤモンド被覆シリコンの何れかの材料で構成される基板本体と、該基板本体上に形成されたバッファ層とから構成されるものを用い、
    該バッファ層として、前記基板上に該基板面の結晶方位とは無関係に面内配向成長させた第1バッファ層と、該第1バッファ層上にエピタキシャル成長させた酸化物からなる第2バッファ層とを、イオンビーム照射を伴う気相法によって作製することを特徴とする請求項6記載のニオブ酸カリウム単結晶薄膜の製造方法。
  12. 前記第1バッファ層をNaCl型酸化物で作製し、前記第2バッファ層を単純ペロブスカイト型酸化物で作製することを特徴とする請求項11記載のニオブ酸カリウム単結晶薄膜の製造方法。
  13. 前記第1バッファ層をフルオライト型酸化物で作製し、前記第2バッファ層を、層状ペロブスカイト型酸化物と該層状ペロブスカイト型酸化物上にエピタキシャル成長させた単純ペロブスカイト型酸化物とで作製することを特徴とする請求項11記載のニオブ酸カリウム単結晶薄膜の製造方法。
  14. 請求項1から13の何れか記載の製造方法によって製造されるニオブ酸カリウム単結晶薄膜を備えていることを特徴とする表面弾性波素子。
  15. 請求項14記載の表面弾性波素子を備えていることを特徴とする周波数フィルタ。
  16. 請求項14記載の表面弾性波素子を備えていることを特徴とする周波数発振器。
  17. 請求項16記載の周波数発振器を備えていることを特徴とする電子回路。
  18. 請求項15記載の周波数フィルタ、請求項16記載の周波数発振器、請求項17記載の電子回路のうち少なくとも1つを備えていることを特徴とする電子機器。
JP2003085761A 2003-03-26 2003-03-26 ニオブ酸カリウム単結晶薄膜の製造方法、及び表面弾性波素子の製造方法 Expired - Fee Related JP4192648B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003085761A JP4192648B2 (ja) 2003-03-26 2003-03-26 ニオブ酸カリウム単結晶薄膜の製造方法、及び表面弾性波素子の製造方法
US10/808,250 US20040237882A1 (en) 2003-03-26 2004-03-24 Method of manufacturing potassium niobate single crystal thin film, surface acoustic wave element, frequency filter, frequency oscillator, electronic circuit, and electronic apparatus
US10/916,208 US7258742B2 (en) 2003-03-26 2004-08-11 Method of manufacturing potassium niobate single crystal thin film, surface acoustic wave element, frequency filter, frequency oscillator, electronic circuit, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085761A JP4192648B2 (ja) 2003-03-26 2003-03-26 ニオブ酸カリウム単結晶薄膜の製造方法、及び表面弾性波素子の製造方法

Publications (2)

Publication Number Publication Date
JP2004292226A true JP2004292226A (ja) 2004-10-21
JP4192648B2 JP4192648B2 (ja) 2008-12-10

Family

ID=33400597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085761A Expired - Fee Related JP4192648B2 (ja) 2003-03-26 2003-03-26 ニオブ酸カリウム単結晶薄膜の製造方法、及び表面弾性波素子の製造方法

Country Status (2)

Country Link
US (1) US20040237882A1 (ja)
JP (1) JP4192648B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7265482B2 (en) 2005-03-30 2007-09-04 Seiko Epson Corporation Potassium niobate deposited body and method for manufacturing the same, surface acoustic wave device, frequency filter, oscillator, electronic circuit, and electronic apparatus
US7345408B2 (en) 2005-03-30 2008-03-18 Seiko Epson Corporation Potassium niobate deposited body and method for manufacturing the same, piezoelectric thin film resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus
US7422807B2 (en) 2005-03-04 2008-09-09 Seiko Epson Corporation Potassium niobate deposited body and method for manufacturing the same, piezoelectric thin film resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus
US7521134B2 (en) 2005-03-04 2009-04-21 Seiko Epson Corporation Potassium niobate deposited body and method for manufacturing the same, surface acoustic wave element, frequency filter, oscillator, electronic circuit, and electronic apparatus
US7601387B2 (en) 2005-03-29 2009-10-13 Seiko Epson Corporation Piezoelectric film laminate and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004224627A (ja) * 2003-01-22 2004-08-12 Seiko Epson Corp ニオブ酸カリウム単結晶薄膜の製造方法、表面弾性波素子、周波数フィルタ、周波数発振器、電子回路、および電子機器
JP2019021994A (ja) * 2017-07-12 2019-02-07 株式会社サイオクス 圧電膜を有する積層基板、圧電膜を有する素子および圧電膜を有する積層基板の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756021B1 (en) * 1995-07-28 2001-07-11 Nihon Yamamura Glass Co., Ltd. Thin film of potassium niobate, process for producing the thin film, and optical device using the thin film
US5997124A (en) * 1997-03-12 1999-12-07 Raster Graphics Inc. Method and apparatus for drop volume normalization in an ink jet printing operation
US6203608B1 (en) * 1998-04-15 2001-03-20 Ramtron International Corporation Ferroelectric thin films and solutions: compositions
JP2000305117A (ja) * 1999-02-19 2000-11-02 Fuji Xerox Co Ltd 光デバイス、光デバイスの駆動方法、及び光デバイスの製造方法
JP2001341296A (ja) * 2000-03-31 2001-12-11 Seiko Epson Corp インクジェット法による薄膜形成方法、インクジェット装置、有機el素子の製造方法、有機el素子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7422807B2 (en) 2005-03-04 2008-09-09 Seiko Epson Corporation Potassium niobate deposited body and method for manufacturing the same, piezoelectric thin film resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus
US7521134B2 (en) 2005-03-04 2009-04-21 Seiko Epson Corporation Potassium niobate deposited body and method for manufacturing the same, surface acoustic wave element, frequency filter, oscillator, electronic circuit, and electronic apparatus
US7575777B2 (en) 2005-03-04 2009-08-18 Seiko Epson Corporation Potassium niobate deposited body and method for manufacturing the same, piezoelectric thin film resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus
US7601387B2 (en) 2005-03-29 2009-10-13 Seiko Epson Corporation Piezoelectric film laminate and method of manufacturing the same
US7265482B2 (en) 2005-03-30 2007-09-04 Seiko Epson Corporation Potassium niobate deposited body and method for manufacturing the same, surface acoustic wave device, frequency filter, oscillator, electronic circuit, and electronic apparatus
US7345408B2 (en) 2005-03-30 2008-03-18 Seiko Epson Corporation Potassium niobate deposited body and method for manufacturing the same, piezoelectric thin film resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus

Also Published As

Publication number Publication date
US20040237882A1 (en) 2004-12-02
JP4192648B2 (ja) 2008-12-10

Similar Documents

Publication Publication Date Title
US7223305B2 (en) Method of manufacturing potassium niobate single crystal thin film, surface acoustic wave element, frequency filter, frequency oscillator, electric circuit, and electronic apparatus
JP4058970B2 (ja) ニオブ酸カリウム圧電薄膜を有する表面弾性波素子、周波数フィルタ、発振器、電子回路、及び電子機器
US7345408B2 (en) Potassium niobate deposited body and method for manufacturing the same, piezoelectric thin film resonator, frequency filter, oscillator, electronic circuit, and electronic apparatus
JP4442471B2 (ja) ニオブ酸カリウム堆積体およびその製造方法、圧電薄膜振動子、周波数フィルタ、発振器、電子回路、並びに、電子機器
US20080308762A1 (en) Piezoelectric laminate, surface acoustic wave device, thin-film piezoelectric resonator, and piezoelectric actuator
JP4171918B2 (ja) 圧電体膜積層体およびその製造方法、表面弾性波素子、周波数フィルタ、発振器、電子回路、並びに、電子機器
JP4442489B2 (ja) ニオブ酸カリウム堆積体およびその製造方法、表面弾性波素子、周波数フィルタ、発振器、電子回路、並びに、電子機器
JP4407835B2 (ja) 圧電体積層体、および圧電体積層体を含むデバイス
JP4192648B2 (ja) ニオブ酸カリウム単結晶薄膜の製造方法、及び表面弾性波素子の製造方法
JP5093084B2 (ja) ニオブ酸カリウム薄膜の製造方法
JP2004292228A (ja) ニオブ酸カリウム単結晶薄膜の製造方法、表面弾性波素子、周波数フィルタ、周波数発振器、電子回路、及び電子機器
US7258742B2 (en) Method of manufacturing potassium niobate single crystal thin film, surface acoustic wave element, frequency filter, frequency oscillator, electronic circuit, and electronic apparatus
JP4058973B2 (ja) 表面弾性波素子、周波数フィルタ、発振器、電子回路、及び電子機器
JPH11122073A (ja) 弾性表面波素子
JP2003289230A (ja) ニオブ酸カリウム薄膜の製造方法、並びに表面弾性波素子、周波数フィルタ、周波数発振器、電子回路、及び電子機器
JP4247629B2 (ja) ニオブ酸カリウム堆積体およびその製造方法、表面弾性波素子、周波数フィルタ、発振器、電子回路、並びに、電子機器
JP4924800B2 (ja) 圧電体積層体、および圧電体積層体を含むデバイス
JP4058972B2 (ja) 表面弾性波素子、周波数フィルタ、発振器、電子回路、及び電子機器
JPH08225398A (ja) 水晶型結晶構造を有する酸化物薄膜及びその製造方法
JP2006321676A (ja) ニオブ酸カリウム堆積体の製造方法、ニオブ酸カリウム層、表面弾性波素子およびその製造方法、並びに、電子機器
JP2006328515A (ja) 圧電体堆積体およびその製造方法、酸化マグネシウム堆積体およびその製造方法、並びに、電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees