JP2004287215A - Transmission type optical modulation apparatus and method for packaging the same - Google Patents

Transmission type optical modulation apparatus and method for packaging the same Download PDF

Info

Publication number
JP2004287215A
JP2004287215A JP2003080827A JP2003080827A JP2004287215A JP 2004287215 A JP2004287215 A JP 2004287215A JP 2003080827 A JP2003080827 A JP 2003080827A JP 2003080827 A JP2003080827 A JP 2003080827A JP 2004287215 A JP2004287215 A JP 2004287215A
Authority
JP
Japan
Prior art keywords
light modulation
modulation device
transmissive
connection terminal
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003080827A
Other languages
Japanese (ja)
Other versions
JP4505189B2 (en
Inventor
Koichi Kimura
宏一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2003080827A priority Critical patent/JP4505189B2/en
Publication of JP2004287215A publication Critical patent/JP2004287215A/en
Application granted granted Critical
Publication of JP4505189B2 publication Critical patent/JP4505189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15151Shape the die mounting substrate comprising an aperture, e.g. for underfilling, outgassing, window type wire connections

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmission type optical modulation apparatus which can be packaged by miniaturizing a transmission type optical modulation element array having a number of connection terminals permitting high-speed driving and a method for packaging the same. <P>SOLUTION: The transmission type optical modulation element is constituted by forming an optical modulation element array 15 of the transmission type which puts an incident light introduced therein into a transmission or non-transmission state, a circuit which drives or controls the optical modulation element array 15 and first connecting terminals 23 which are electrically connected to the circuit on an element fixing substrate 11. The first connecting terminals 23 are connecting terminals for surface packaging and are formed in an area array form on one or the other surface of the element fixing substrate 11 in at least portions on the circumference of the region formed with the optical modulation element array 15. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、入射光を透過又は非透過状態に光変調する光変調素子アレイを備えた透過型光変調装置及びその実装方法に関する。
【0002】
【従来の技術】
フォトリソグラフィ工程に使用されるオンディマンドのデジタル露光装置、デジタル露光による画像形成装置、プロジェクタ等の投影表示装置、ヘッドマウントディスプレイ等のマイクロディスプレイ装置等に搭載される1次元又は2次元の光変調素子アレイとしては、液晶素子、マイクロマシン光変調素子等が知られている。特に、透過型の光変調素子は、光学系をシンプルにすることができるので好適である。このような光変調素子アレイは、1次元又は2次元に配列された複数の画素それぞれに対し、入射光に対する透過率を独立して制御される。また、近年、特に素子の微細化と高速化の要求が高まり、各々の画素の変調制御を一般のSi半導体プロセスにより形成されたCMOS回路で行っている。
【0003】
そして、光変調素子アレイにおいては、多画素の光変調を高速に行うため、素子応答の高速化とデータの書き込み時間の短縮化が課題となっており、特にデータ書き込み時間は、光変調素子アレイの画素数増大に伴って長くなる。
【0004】
ここで、図25に光変調素子アレイの制御駆動回路の一例を示した。代表的な2次元マトリクスの画像制御回路の動作としては、アドレス信号とこれに対応する並列転送データ信号が転送クロックφで制御駆動回路に入力され、SRAM回路からなる2次元マトリクス画像回路は、各画素のSRAM回路に書き込まれたデータに従って光変調素子の画素電極電位を制御して、光変調動作を行う。即ち、外部からのデータ書き込みは、転送クロックφ[Hz]毎に同時にN[bit]のデータが選択されたアドレスに従ってSRAM回路に書き込まれる。従って、光変調素子アレイの全画素数をPとすると、全画素にデータを書き込む時間Tは、T=P/(Nφ)[sec]となる。つまり、書き込み時間を短縮する場合、転送クロックφを一定とすると、データのビット数Nを増加させる必要がある。
【0005】
しかし、同時書き込みデータ数を増やすと、その信号線が増え、素子の信号端子が増大するために高密度の実装が必要となる。この高密度実装の方法としてはBGA(ball grid array)、CSP(chip size package)技術等が知られているが、これらの多くは一般のLSIを対象としたものである。また、光素子としては、発光素子、受光素子が開示されているが、これらは全て遮光性、又は片面が透明の構成である。光変調素子アレイとしてはシンプルな光学系が構成できる透過型が好ましいが、透過型の光変調素子を対象とした高密度実装型の構成のものはない。(例えば、特許文献1〜5参照)。
【0006】
【特許文献1】
特開平11−168154号公報(第2〜4頁、図1)
【特許文献2】
特開2000−216413号公報(第3頁、図1)
【特許文献3】
特開2000−323614号公報(第6頁、図1)
【特許文献4】
特開2002−100785号公報(第4、5頁、図1)
【特許文献5】
特開2002−198470号公報(第3、4頁、図1)
【0007】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みてなされたもので、高速駆動が可能な多数の接続端子を有する透過型の光変調素子アレイを小型化して実装できる透過型光変調装置及びその実装方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の透過型光変調装置は、導入される入射光を透過又は非透過状態にする透過型の光変調素子アレイと、該光変調アレイを駆動又は制御する回路と、該回路に電気的に接続された第1接続端子とを素子固定基板上に形成した透過型光変調素子であって、前記第1接続端子が、表面実装用の接続端子であり、前記素子固定基板の一方の面又は他方の面に、前記光変調素子アレイの形成された領域の周囲の少なくとも一部でエリアアレイ状に形成されていることを特徴とする。
【0009】
この透過型光変調装置では、透過型の光変調素子アレイを素子固定基板に形成し、この光変調素子アレイに駆動又は制御回路を介して電気的に接続される第1接続端子を素子固定基板にエリアアレイ状に配列するので、信号線の増加に伴って接続端子数が増大しても、接続端子がエリアアレイ状に高密度に配列されるために、光変調装置装置を大型化することがなくなる。従って、高速駆動に有利な多数の接続端子を備えつつ小型化を図ることができる。
【0010】
請求項2記載の透過型光変調装置は、請求項1記載の透過型光変調装置であって、前記光変調素子アレイが、マイクロマシニングにより形成された微小電気機械式の光変調素子であることを特徴とする。
【0011】
この透過型光変調装置では、マイクロマシニングによって形成した微小電気機械式の光変調素子を用いるので、光変調素子アレイの高密度化と高速化(μ秒オーダ、又はμ秒以下)、及び低電圧駆動による省電力化を図ることができる。
【0012】
請求項3記載の透過型光変調装置は、請求項1記載の透過型光変調装置であって、前記光変調素子アレイが液晶素子であることを特徴とする。
【0013】
この透過型光変調装置では、透過性を有する光変調素子アレイとして液晶素子を用いることにより、光変調素子アレイの高密度化、低消費電力化が図られ、また、製造コストを低減して安価に提供することができる。
【0014】
請求項4記載の透過型光変調装置は、請求項1〜請求項3のいずれか1項記載の透過型光変調装置であって、前記光変調素子アレイに対峙して、入射光に対して光透過性を有する透明領域を一部に備え、光変調素子アレイを素子固定基板との間に封止するための封止部材が設けられていることを特徴とする。
【0015】
この透過型光変調装置では、入射光に対して光透過性を有する透明領域を一部に備え、光変調素子アレイを素子固定基板との間に封止するための封止部材を設けたので、光変調素子アレイ、駆動回路等への塵埃、水分、酸素等の浸入を確実に防止して素子を保護することができる。
【0016】
請求項5記載の透過型光変調装置は、請求項1〜請求項4のいずれか1項記載の透過型光変調装置であって、屈折、回折、干渉、偏光、偏向の少なくともいずれかを利用した光学機能部材が一体に設けられていることを特徴とする。
【0017】
この透過型光変調装置では、屈折、回折、干渉、偏光、偏向の少なくともいずれかを利用した光学機能部材を一体に設けることにより、光変調を行うために必要な光学機能部材と光変調素子アレイとの光学精度が向上して高品質を得られるとともに、光変調装置の小型化、低コスト化を図れる。
【0018】
請求項6記載の透過型光変調装置は、請求項1〜請求項5のいずれか1項記載の透過型光変調装置であって、前記光変調素子アレイの各光変調部に向けて入射光を収束するマイクロレンズアレイが、前記光変調素子アレイに対する入射光の光路入射側に設けられていることを特徴とする。
【0019】
この透過型光変調装置では、マイクロレンズアレイによって入射光を光変調素子アレイの各光変調素子に集光させることができるので、光変調素子の周囲における遮光がなくなり、効率よく入射光を透過させることができる。これにより、透過光量の低減が大幅に改善され、高輝度の透過光出射が可能となる。
【0020】
請求項7記載の透過型光変調装置は、請求項1〜請求項6のいずれか1項記載の透過型光変調装置であって、前記素子固定基板を搭載する支持基板を一体に備えた透過型光変調装置であり、前記支持基板は、入射光に対して光透過性を有する透過領域を少なくとも一部に備え、一方の面に前記透過領域の周囲で前記素子固定基板の第1接続端子に対応するエリアアレイ状の第2接続端子が形成されると共に、前記一方の面又は他方の面に前記第2接続端子と内部配線回路を介して電気的に接続されたエリアアレイ状の第3接続端子が形成されており、前記素子固定基板の第1接続端子と、前記支持基板の第2接続端子とが電気的に接続されていることを特徴とする。
【0021】
この透過型光変調装置では、第1接続端子に対応する第2接続端子と、第1接続端子よりも配列ピッチの広い第3接続端子とを有する支持基板に、素子固定基板を第1接続端子と第2接続端子とを電気的に接続して搭載することにより、端子ピッチの広い一般の回路基板への実装を容易にすることができる。
【0022】
請求項8記載の透過型光変調装置は、請求項7記載の透過型光変調装置であって、前記第1接続端子と前記第2接続端子との接続部位がモールド封止されていることを特徴とする。
【0023】
この透過型光変調装置では、第1接続端子と第2接続端子との接続部位がモールド封止により塵埃の進入や損傷を受けることが防止され、また、接続部位を補強することができ、その結果、取り扱い性を向上させることができる。
【0024】
請求項9記載の透過型光変調装置は、請求項7又は請求項8記載の透過型光変調装置であって、前記支持基板の透過領域が開口孔であり、該開口孔に前記素子固定基板の光変調素子アレイが挿入されていることを特徴とする。
【0025】
この透過型光変調装置では、素子固定基板側の光変調素子アレイが支持基板の開口孔に挿入されることで、光変調素子アレイを外力や環境雰囲気から保護し、光変調素子アレイによる透過型光変調装置外部への突出をなくすことができる。
【0026】
請求項10記載の透過型光変調装置は、請求項7又は請求項8記載の透過型光変調装置であって、前記光変調素子アレイが、前記素子固定基板の前記支持基板側とは反対側の面に形成されていることを特徴とする。
【0027】
この透過型光変調装置では、光変調素子アレイへの光学フィルタ等の各種光学機能部材の取り付けを自由に行うことができ、また、光変調素子アレイの封止部材を、配置制限を受けることなく容易に設けることができる。
【0028】
請求項11記載の透過型光変調装置は、請求項7〜請求項10のいずれか1項記載の透過型光変調装置であって、前記支持基板に電子部品が実装されていることを特徴とする。
【0029】
この透過型光変調装置では、電子部品、例えば光変調素子アレイを制御する回路や、より上位の大規模な周辺のシステムLSIを実装してモジュール化されているので、一般回路基板へ実装する際に、この光変調素子の駆動に関連する部品等の回路基板への実装を軽減でき、電子部品の実装の省スペース化、簡略化が図れるとともに、高速で多量のデータを安定に制御、処理することが可能となる。
【0030】
請求項12記載の透過型光変調装置の実装方法は、請求項1〜請求項11のいずれか1項記載の透過型光変調装置を回路基板に実装する透過型光変調装置の実装方法であって、前記回路基板が開口孔又は切り欠きからなる透過開口部を有し、前記透過型光変調装置の光変調素子アレイを、前記透過開口部の位置に合わせて実装することを特徴とする。
【0031】
この透過型光変調装置の実装方法では、透過型光変調装置が実装される一般の回路基板が開口孔又は切り欠きからなる開口部を有しているので、透過型光変調装置が一般の回路基板に実装された状態で、回路基板の外部から透過型光変調装置へ入射光を導入することが可能となり、また、回路基板の外部へ透過光を出射することが可能となる。このため、透過型光変調装置と一般回路、及び光学系を含むシステムの一体化が可能になり、システムの高精度化と省スペース化が図れる。
【0032】
【発明の実施の形態】
以下、本発明に係る透過型光変調装置及びその実装方法の実施の形態について、図面を参照して詳細に説明する。なお、各実施形態において、同一の機能を有する部材に対しては、同一の符号を付与することでその説明は省略するものとする。
(第1実施形態)
図1に本発明に係る第1実施形態の透過型光変調装置の断面図を示した。
この透過型光変調装置100は、変調する光Lに対して透明な素子固定基板11と、素子固定基板11の少なくとも一方の表面に形成されCMOS等の駆動回路や配線回路からなる回路形成層13と、この回路形成層13の素子固定基板11とは反対側の面に配置された光変調素子アレイ15と、光変調素子アレイ15の周囲に回路形成層13を介して電気的に接続されエリアアレイ状(1列、又は複数列の格子状又は千鳥状、或いは平面上に任意に複数個が並べられた状態をいう)に配列された表面実装用の接続端子である接続端子列17とを備えている。ここで、表面実装用の接続とは、本明細書においては半田ボールによる接続形態やワイヤーボンディングによる接続形態をいう。
【0033】
そして、この実施形態の透過型光変調装置100は、光変調素子アレイ15に対峙して、回路形成層13にシール材19を介して接続したガラス等の封止用透明基板(封止部材)21を設けることで、光変調素子アレイ15を素子固定基板11との間に封止した構成としている。なお、シール材19と封止用透明基板21を設けずに光変調素子アレイ15を封止しない構成であってもよい。
【0034】
また、素子固定基板11はSi基板などの半導体基板、ガラス基板、石英基板などが好適である。例えばSi基板の場合はSiを透過する赤色から赤外光が光変調の対象となる。また、光透過領域に開口部を設けることで、対象となる変調光の波長はUV、可視、赤外光と広がる。ガラス基板、石英基板を用いても対象となる波長はUV、可視、赤外光と広がる。
【0035】
接続端子列17は、素子固定基板11の略中央部に配置された光変調素子アレイ15の周囲の少なくとも一部にエリアアレイ状に配列されたハンダバンプの接続端子(第1接続端子)23からなる。本実施形態においては光変調素子アレイ15の周囲全体にわたって環状に接続端子23を設けており、その配列ピッチは20μm〜200μm程度に設定している。なお、接続端子列17は、素子固定基板11の光変調素子アレイ15の周囲に環状に配置される以外にも、周囲の少なくとも一部に1つのブロック、又は複数のブロック内にエリアアレイ状に配置された形態であってもよい。
【0036】
光変調素子アレイ15は、マイクロマシニングにより形成された微小電気機械式の光変調素子25の配列体であって、入射される光を透過又は非透過状態に光変調して、透過光量を制御するものである。本実施形態においては、MEMS(micro electro mechanical systems)技術により形成したファブリペロー干渉型の光変調素子を用いている。
【0037】
図2はファブリペロー干渉型の光変調素子の一例としての概略構成とその動作を示す説明図である。
光変調素子25の構成としては、素子固定基板11上に形成した回路形成層13に、トランジスタやCMOSのSRAM等のスイッチ機能を有する画素駆動回路27と、下部電極(画素電極)29と、一方のハーフミラー31と、光学スペーサ33を形成する一方、回路形成層13の素子固定基板11側とは反対側に上部電極(共通電極)35と他方のハーフミラー37とを備えた可動薄膜39を有する。可動薄膜39は、下部電極29と上部電極35との間に駆動電圧を印加することで静電吸引作用により光学スペーサ33に接触し、非駆動電圧を印加することにより可動薄膜39が弾性復帰して光学スペーサ33から離間するようになっている。このファブリペロー干渉型の光変調素子の詳細は、例えば特開2000−121970号公報に記載されている。
【0038】
可動薄膜39の動作により、一方のハーフミラー31と他方のハーフミラー37との間隔が変化し、これにより、所定の波長域の光が光変調素子25を透過或いは遮光状態にする。本実施の形態においては、可動薄膜39が光学スペーサ33に接触するハーフミラー間距離を透過状態とし、可動薄膜39が弾性復帰したハーフミラー間距離を遮光状態としている。即ち、光学スペーサ33はハーフミラー31,37が透過状態となるようにその厚みが設計されている。
【0039】
このような光変調を行うハーフミラー31,37は、屈折率の異なる材料を交互に重ねた多層膜からなり、その材料としては、変調する光に応じて、次のものが使用可能である。
【0040】
(1)可視光又は赤外線透過用
高い屈折率材料(屈折率が概ね1.8以上の材料)としては、TiO、CeO、Ta、ZrO、Sb、HfO、La、NdO、Y、ZnO、Nbが使用可能である。
比較的高い屈折率材料(屈折率が概ね1.6〜1.8以上の材料)としては、MgO、Al、CeF、LaF、NdFが使用可能である。
低い屈折率材料(屈折率が概ね1.5以下の材料)としては、SiO、AlF、MgF、NaAlF、NaF、LiF、CaF、BaFが使用可能である。
【0041】
(2)紫外線透過用
高い屈折率材料(屈折率が概ね1.8以上の材料)としては、ZrO、HfO、La、NdO、Y又はTiO、Ta、ZrO(但し、光の波長が概ね360〜400nm)が使用可能である。
比較的高い屈折率材料(屈折率が概ね1.6〜1.8以上の材料)としては、MgO、Al、LaF、NdFが使用可能である。
低い屈折率材料(屈折率が概ね1.5以下の材料)としては、SiO、AlF、MgF、NaAlF、NaF、LiF、CaFが使用可能である。
【0042】
光変調素子25は、素子固定基板11内で均等に2次元配列されて光変調素子アレイ15を形成し、それぞれが同等の動作が可能になっている。上記構成の複数の光変調素子25からなる光変調素子アレイ15は、電気的には次のように接続される。
【0043】
図3は光変調素子アレイのアクティブマトリクス駆動のための等価回路図である。この例に示すn行×m列のアクティブマトリクスの構成例では、走査信号ライン(共通電極35)に順次走査電圧を印加し、これに接続されている画素駆動回路27を一斉にON状態とする。同時に、画像信号ライン(画素電極29)から表示画像に応じた画像信号電圧Vbを印加し、画素駆動回路27を通して各光変調素子25の静電容量に電荷を蓄積する。即ち、選択された一行の光変調素子25を選択的にオン/オフ制御する。この一行の走査を終了して画素駆動回路27が非導通となっても、上記の画素駆動回路27の状態は維持され、次の行の走査が開始される。この繰り返しにより複数行のマトリクス変調が可能となり、光変調素子アレイ15が画像様に動作する。
【0044】
このように、上記透過型光変調装置100によれば、ファブリペロー型の光変調素子アレイ15を光透過性を有する素子固定基板11に設け、回路形成層13を光透過性を有する素子固定基板11に設け、回路形成層13を、素子固定基板11上にエリアアレイ状に配列された接続端子列17と電気的に接続した構成にしている。このため、各信号線による信号端子が多数の接続端子23からなる接続端子列17にそれぞれ接続される構成であるので、光変調素子の高速化のため信号線を増加させても、これに容易に対応することができる。また、光変調素子アレイ15の周囲に接続端子列17を設けているので、BGA、CSPの接続形態と同様に、スペース効率を高めた多接点接続を確実に行うことができ、透過型光変調装置100の高速駆動を可能にできると共に、小型化と高密度実装をも可能にできる。また、MEMSによるマイクロマシニング技術によって形成した微小電気機械式の光変調素子25を用いるので、光変調素子アレイの高密度化と高速化(μ秒オーダ、又はμ秒以下)、及び光変調装置の更なる小型化と低電圧駆動による省電力化が実現できる。
【0045】
さらに、封止用透明基板21を設けて光変調素子アレイ15を素子固定基板との間に封止することにより、光変調素子アレイ15、駆動回路等への塵埃、水分、酸素等の浸入を確実に防止して、微細な素子が確実に保護されるため、素子動作が安定化して経年劣化を低減することができる。
さらに、光変調素子アレイ15を素子固定基板11の裏面にあたる接続端子列17側に設けたので、透過型光変調装置100の光変調素子アレイ15の配設面側とは反対側の表面を突出部分のない平坦面にでき、実装の自由度を向上できる。なお、封止用透明基板21を接続端子列17の高さより低く形成して、実装する基板の開口孔を必要最小限の大きさ(光変調素子アレイ15の領域)にする構成であってもよい。
【0046】
透過型光変調装置100に搭載可能な光変調素子アレイ15の光変調素子25としては、上記のファブリペロー干渉型に限らず各種のものが適用可能である。ここで、他の光変調方式による素子を用いた一例として、機械式シャッター型の光変調素子41について説明する。
【0047】
図4に機械式シャッター型の光変調素子の(a)平面図及び(b)断面図を示した。
この光変調素子41では、素子固定基板11上に一対の平行な支柱43を突設し、この一対の支柱43の間に、支柱43間の距離の略半分の対向長さで二対の対向電極45,47を並設してある。また、一方の対向電極(例えば47)の間には、素子固定基板11を覆う遮光膜49を形成してある。
【0048】
そして、二対の対向電極45,47の対向する空間には、支柱43間の距離の略半分の長さで前記空間の略半分の面積を有する電極遮光板51が、その側面側を可撓部材である折れ線バネ53を介して各支柱43に支持されている。電極遮光板51は、折れ線バネ53を弾性変形させることで平行移動して、対向電極45又は47のいずれかの側に片寄せられるようになっている。
つまり、素子固定基板11は、遮光膜49を形成した部分が非開口部となり、遮光膜49を形成していない部分が光変調部55となる。そして、素子固定基板11を透過する光は、光変調部55から選択的に出射されるようになる。
【0049】
次に、上記機械式シャッター型の光変調素子41の光変調動作について図5を用いて説明する。図5は機械式シャッター型の光変調素子のオン/オフ状態を平面で表す動作説明図で、図6は図5の光変調素子の断面図である。
光変調素子41は、図5(a)、図6(a)に示すように、対向電極45のみに固定的に電圧を印加し、且つ、電極遮光板51に非駆動電圧(0V)を印加すると、電極遮光板51は静電気力によって対向電極45側へ移動する。これにより、光変調部55を通過しようとする光は、電極遮光板51によって遮光されることになる。一方、電極遮光板51に駆動電圧(+V)を印加すると、図5(b)、図6(b)に示すように、電極遮光板51は静電気力によって対向電極47側へ移動する。これにより、光変調部55を通過しようとする光は電極遮光板51に影響されることなくシャッター型光変調素子41から出射することになる。そして、電極遮光板51への印加電圧を再度非駆動電圧(0V)にすると、電極遮光板51は、折れ線バネ53の弾性力及び静電気力により元の位置に復帰する。
【0050】
上記のような機械式シャッター型光変調素子41を透過型光変調装置100に適用しても、良好な光変調動作を行うことができる。
この他、公知の静電Comb駆動(静電力による櫛歯電極駆動)型の光変調素子や、圧電駆動、電磁駆動等の光変調素子等、マイクロマシン技術により形成される微小電気機械式の光変調素子等、本発明の主旨に沿うものであれば何れでも良い。
【0051】
(第2実施形態)
次に、本発明に係る透過型光変調装置の第2の実施の形態を説明する。
図7は光変調素子アレイを上面側に設けた透過型光変調装置の構成を示す断面図である。
前述の第1実施形態の透過型光変調装置100では、素子固定基板11の一方の面に光変調素子アレイ15を設け、さらに、これと同一面側に接続端子列17を設けたが、本実施形態の透過型光変調装置200では、図7に示すように、回路形成層13及び光変調素子アレイ15を素子固定基板11の接続端子列17の配設された側の面とは反対側の面に形成している。従って、シール材19と封止用透明基板21も同様に反対側の面に形成されることになる。
【0052】
本実施形態の素子固定基板11は、基板表裏を貫通して複数個が穿設された貫通孔を有し、この貫通孔にCu等を埋め込むことで配線回路57を形成している。配線回路57は、光変調素子アレイ15に接続された回路形成層13と、接続端子列17の接続端子23とを電気的に接続している。
【0053】
上記構成の透過型光変調装置200によれば、接続端子列17が装置の裏面に設けられ、実装側の面を突出部分のない平坦面にでき、実装の自由度を向上することができる。また、実装側とは反対側の面に対しては、光変調素子アレイ15への光学フィルタ等の各種光学部材の取り付けや、封止部材の取り付け等、各種部材の配置制限が緩和されて設計自由度を向上できるため、より高機能化することが可能となる。
【0054】
(第3実施形態)
次に、本発明に係る透過型光変調装置の第3の実施の形態を説明する。
図8は液晶素子を用いた透過型光変調装置の構成を示す断面図である。
本実施形態の透過型光変調装置300では、前述の第1実施形態における透過型光変調装置100の微小電気機械式の光変調素子アレイに代えて、高精細、低コスト性に優れるネマチック液晶や、高速応答性に優れる強誘電液晶、電傾効果液晶等の電界印加による屈折率変化によって光変調を行う液晶素子59を用いて構成している。他の構成は第1実施形態と同様であるので重複する説明は省略する。
【0055】
液晶素子59は、素子固定基板11の回路形成層13上から順に、画素電極61、配光膜63、液晶層64、配光膜65、対向電極66を配設した層構成であり、ガラス基板上に形成するTFTプロセスの他に、Si基板、SOI基板上に形成するLCOS(Liquid Crystal on Silicon)等の技術により形成されたものであってもよい。
この液晶素子59は、画素電極61と対向電極66との間に印加される電圧により液晶層64の配向が変化され、偏光板(図示せず)との作用により液晶素子59を透過する光の光量を増減する。
【0056】
本実施形態の透過型光変調装置300によれば、透過型の光変調素子アレイ15としての液晶素子を、光透過性を有する素子固定基板11に形成し、素子固定基板11の回路形成層13を介して光変調素子アレイ15に接続された接続端子列17に電気的に接続するので、信号線の増加に伴って信号端子が増大しても、光変調素子アレイ15を小型軽量化しつつ搭載することができる。
【0057】
上記の透過型光変調装置300は、図9に本実施形態の変形例を示すように、素子固定基板11の接続端子列17の配設された側の面とは反対側の面に光変調素子アレイ15を備えた構成としてもよい。
この透過型光変調装置310では、図7に示す透過型光変調装置200と同様に、接続端子列17が装置の裏面に設けられ、実装側の面を突出部分のない平坦面にでき、実装の自由度を向上することができる。また、実装側とは反対側の面に対しては、光変調素子アレイ15への光学フィルタ等の各種光学部材の取り付けや、封止部材の取り付け等、各種部材の配置制限が緩和されて設計自由度を向上できるため、より高機能化することが可能となる。
【0058】
(第4実施形態)
次に、本発明に係る透過型光変調装置の第4の実施の形態を説明する。
図10は電気光学結晶素子を用いた透過型光変調装置の構成を示す断面図である。
本実施形態の透過型光変調装置320では、前述の第1実施形態における透過型光変調装置100の微小電気機械式の光変調素子アレイに代えて、PLZT光変調素子を用いている。PLZT膜は、Pb,La、Zr、Tiの酸化物であり、光カー効果を示す。PLZT光変調素子は、液晶素子よりも高速に光変調することができ、また、固体型なので信頼性も高い。
図10に示すように、本実施形態の透過型光変調装置320は、素子固定基板11、回路形成層13上に画素電極67と対向電極68を基板11に対して垂直となるように設け、両電極間にPLZT薄膜69を形成する。画素電極67は各画素毎に設けられ、駆動制御回路の出力に接続されて光透過率に応じた電位が供給される。対向電極68は全画素で電気的に共通である。なお、画素電極67、対向電極68、PLZT薄膜69の基板11側とは反対側の端面は、透明保護膜70を設けてある。
【0059】
このとき、画素電極67と対向電極68の電位差によって生じる電界により、PLZT薄膜69の複屈折が変化し、PLZT薄膜69を透過する光の偏光状態が変化する。ここで、PLZT薄膜69を透過する光路長と電圧印加により変化する複屈折の値を適宜選択することで、入射光の偏光軸を回転させることができ、入射側及び出射側に偏光膜を設けることで複屈折制御型の光変調が可能となる。
【0060】
電気光学結晶素子は、上記の他、例えば、LN(LiNbO)、KDP(KHPO)、ADP(NHPO)等ポッケルス効果による電界複屈折制御を利用した光変調素子でもよい。また、電気光学結晶素子の他には、磁気光学結晶素子(例えばガーネット材料など)ファラデー効果による偏光回転を利用して光変調を行う素子でもよい。
【0061】
(第5実施形態)
次に、本発明に係る透過型光変調装置の第5の実施の形態を説明する。
図11に支持基板に搭載された透過型光変調装置の構成を(a)断面図、(b)上面図、(c)下面図で示した。
この透過型光変調装置400は、前述した光変調素子アレイ15が素子固定基板11の下面側に形成された狭端子ピッチの透過型光変調装置(例えば100、300)をインターポーザとしての支持基板71に積層すると共に、接続端子列17を、幅広の接続端子ピッチ(例えば0.1mm〜2.0mm程度)を有し、表面実装用の接続端子である接続端子列73の各接続端子(第3接続端子)75へ電気的に接続している。この支持基板71は、内部に配線パターン77の形成された開口部79を有するガラス、セラミックス、樹脂等から形成されている。また、支持基板71の開口孔である開口部79は、搭載される光変調素子アレイ15よりも僅かに大きな大きさに形成されており、素子固定基板11側の光変調素子アレイ15が開口部79側に配置されるように、開口部79側に配置されている。
【0062】
また支持基板71は、狭幅ピッチの接続端子列17を有する透過型光変調装置100が搭載される表面に、接続端子列17の各接続端子に対応するランド等の接続端子(第2接続端子)81を有している。そして、この接続端子81は、接続端子列17の各接続端子に対応してエリアアレイ状に配設されている。
【0063】
また、支持基板71の素子固定基板11が搭載される側とは反対側の面に、ハンダバンプからなる接続端子列73がエリアアレイ状に配設されている。この接続端子列73は、配線パターン77を介して接続端子81に電気的に接続されている。
このように、本実施形態の透過型光変調装置400によれば、ピッチの狭い接続端子を有する透過型光変調装置100を、ピッチの広いエリアアレイ状に配列された接続端子列73を有する支持基板71に搭載し、狭幅の透過型光変調装置100の接続端子列17を接続端子81から配線パターン77を通じて接続端子75に電気的に接続した構成であるので、端子ピッチの広い一般の回路基板への実装が容易となる。
【0064】
また、素子固定基板11が、開口部79側に光変調素子アレイ15を配置し、支持基板71の開口孔である開口部79に素子固定基板11側の光変調素子アレイ15を挿入して収容した構成としたため、光変調素子アレイ15を外力や環境雰囲気から保護することができ、また、光変調素子アレイ15による透過型光変調装置外部への突出をなくすことができる。
【0065】
次に、本実施形態の透過型光変調装置400の変形例を順次説明する。
図12にモジュール化した透過型光変調装置の断面図を示した。本変形例の透過型光変調装置410は、支持基板71に他の回路素子(CPUやメモリー或いはドライバ等)83を搭載している。この回路素子83の具体例としては、例えば光変調素子アレイ15の駆動制御用IC、メモリーIC、システム制御用CPU等の電子部品等が挙げられる。このように、支持基板71に他の回路素子83を一体に搭載することにより、光変調素子の機能を拡充させ、また部品間の配線長が短くなり信号の高速性と信頼性が得られ、より高機能なモジュール化を図ることができる。これにより、回路素子83の搭載によってモジュール化されているので、一般回路基板へ透過型光変調装置410を実装する際に、この光変調素子の駆動に関連する部品等の回路基板への実装を軽減でき、電子部品の実装の省スペース化、簡略化を図ることができる。
【0066】
次に、本実施形態の第2変形例を説明する。
図13に端子接続部を樹脂により封止した透過型光変調装置の断面図を示した。
本変形例の透過型光変調装置420は、素子固定基板11側の接続端子列17の各接続端子と、支持基板71の素子固定基板11側の面に設けた接続端子81との間を、樹脂材料によって封止している。このような各接続端子の接続部位をモールド封止した透過型光変調装置420によれば、接続端子列17の接続端子と接続端子81との間の接続部位への塵埃、水分、酸素等の浸入や損傷を防ぐことができ、また、この接続部位を補強することができ、破壊強度が増加して取り扱い性を向上させることができる。
【0067】
次に、本実施形態の第3変形例を説明する。
図14に端子接続部を樹脂により封止した透過型光変調装置の断面図を示した。
この透過型光変調装置430は、前述した光変調素子アレイ15が素子固定基板11の上面側に形成された狭端子ピッチの透過型光変調装置(例えば200、310)を支持基板71に積層すると共に、接続端子列17を幅広の接続端子ピッチを有する広ピッチ接続端子列73の各接続端子75へ電気的に接続している。
このように、光変調素子アレイ15の形成された素子固定基板11を狭端子ピッチの光変調装置に搭載した透過型光変調装置430によれば、光変調素子アレイ15が最上面に配置されるため、光変調素子アレイ15への光学フィルタ等の各種光学機能部材の取り付けを自由に行うことができ、また、光変調素子アレイ15の封止部材を、配置制限を受けることなく容易に設けることができる。
【0068】
この場合の光学機能部材としては、屈折、回折、干渉、偏光、偏向の少なくともいずれかを利用した光学機能部材を適宜用いることができる。配置場所は、光変調素子アレイ15の光入射側又は出射側、あるいはその両方とされる。例えば、屈折を利用したものでは、集光して光利用効率を向上させるマイクロレンズアレイや、入射光や透過光の光路を変えて設計自由度等を向上させるプリズムアレイがある。回折を利用したものでは、入射光の波長を空間的に弁別して光変調素子に導入する回折格子等があり、干渉を利用したものでは、入射する波長の選択を行って光変調素子に導入する干渉フィルタ等がある。偏光を利用したものでは、例えば液晶素子、電気光学結晶素子等を用いる場合には、入射側及び出射側に設けられ複屈折制御による光変調を行うための偏光板、位相差板等がある。
【0069】
次に、本実施形態の第4変形例を説明する。
図15に端子をワイヤボンディング接続した透過型光変調装置の断面図を示した。
この透過型光変調装置440は、前述した第3変形例の透過型光変調装置430の接続端子列17を、回路形成層13の上面に接続端子(第1接続端子)87として形成すると共に、支持基板71の上面に接続端子(第2接続端子)89を形成し、これらの接続端子87と接続端子89とを導電性のワイヤ線91によってワイヤボンディング接続している。そして、素子固定基板11を支持基板71との間に接着層93を介して固定している。なお、支持基板71の接続端子89は、素子固定基板11の配置位置の外周側にエリアアレイ状に設けてある。
【0070】
このように、素子固定基板11を接着層93によって支持基板71に接着固定し、素子固定基板11の接続端子87と支持基板71の接続端子89とをワイヤボンディング接続した透過型光変調装置440によれば、素子固定基板11の裏面に接続端子を設ける必要がなくなり、素子の構成を簡略化できる。また、従来の半導体製造装置を用いて接続端子同士の接続が簡単にして行えるため、製造コストを低減でき、透過型光変調装置440を安価に提供することが可能となる。また、ワイヤボンディング接続を行った部位は、樹脂封止することで保護した構成としても良い。
【0071】
次に、本実施形態の第5変形例を説明する。
図16は封止部材を支持基板の開口部に接合した透過型光変調装置の断面図である。
この透過型光変調装置450は、図11に示す透過型光変調装置400の支持基板71の開口部79に、入射光に対して光透過性を有する透明領域を一部に備えた封止部材95を設けることで、光変調素子アレイ15を封止している。封止部材95は、透明部材を開口部79に接合することで設けてもよく、透明樹脂材料を開口部79に充填してモールド成形して設けてもよい。
このように、光変調素子アレイ15を開口部79側に配設すると共に、この開口部79を、光透過性を有する封止部材95によって封止することにより、光変調素子アレイ15を保護することができ、透過型光変調装置450の堅牢化が図られる。
【0072】
(第6実施形態)
次に、本発明に係る透過型光変調装置の第6の実施の形態を説明する。
図17に素子固定基板側の接続端子と支持基板側の接続端子が同じ側に形成された透過型光変調装置の断面図を示した。
この透過型光変調装置500は、図11に示す透過型光変調装置400の支持基板71の接続端子列73を素子固定基板11側の面上に形成しており、支持基板72の接続端子75の配置と、これに伴う配線パターン77が異なる点以外は図11に示す透過型光変調装置400と同様である。従って、本実施形態の透過型光変調装置500では、接続端子75及び素子固定基板11側の接続端子列17の各接続端子に接続される接続端子81を同一面上に形成するので、支持基板72の構造を簡略化することができる。また、回路基板へ実装した際に、実装側とは反対側の面に接続端子が存在しなくなるため、回路基板との接続部に対して塵埃等による影響を受けにくくすることができる。
【0073】
また、上記構成の透過型光変調装置は、次に示す構成としてもよい。
図18は、図17の透過型光変調装置の光変調素子アレイを、素子固定基板の支持基板側とは反対側の面に設けた構成の透過型光変調装置の断面図である。
この変形例としての透過型光変調装置510は、支持基板72に接続される素子固定基板11が、光変調素子アレイ15が支持基板72側とは反対側の面に設けられている。
このような構成によれば、光変調素子アレイ15への光学フィルタ等の各種光学機能部材の取り付けや封止部材等による保護を容易に行うことができる。
【0074】
(第7実施形態)
次に、本発明に係る透過型光変調装置の第7の実施の形態を説明する。
図19にマイクロレンズアレイを設けた透過型光変調装置の断面図を示した。
この透過型光変調装置600は、図1に示す透過型光変調装置100に対して複数のマイクロレンズからなるマイクロレンズアレイ97を光変調素子アレイ15の光入射側に設けたものである。なお、入射光は図19の下側から上側へ向けて導入されるものとする。このマイクロレンズアレイ97は、封止用透明基板21に取り付けられ、入射光を集光させて光変調素子アレイ15の各光変調素子25の光変調部55へ集光させる。また、マイクロレンズアレイ97の各マイクロレンズは、その周囲が遮光性を有するブラックマトリックス99によって囲われている。
【0075】
このように、入射光を光変調素子アレイ15に集光させるマイクロレンズアレイ97を備えた透過型光変調装置600によれば、マイクロレンズアレイ97によって入射光を光変調素子アレイ15の各光変調素子25の光変調部55に収束させ、光変調部55から拡げて出射させることができる。つまり、光変調素子25は、1つの素子の配置領域全体に対する一部のみが光変調機能を有する光変調部55として形成されており、素子の全体に入射光を照射する方式では開口率を高くすることに限界があった。そのため、光変調部55に入射光を収束させた状態で光変調を行い、さらに光変調部55の光路前方において光変調部55からの透過光を拡げて出射させるようにした。これにより、見掛けの開口率が増加し、透過型光変調装置600の透過部103を、各光変調素子25の光変調部55以外の領域や光変調素子25同士の間による遮光部分が実質的に存在しない状態にできる。その結果、光変調素子25の光変調部55周囲における遮光領域がなくなり、透過部103内における画素間のノイズが大幅に低減されて、透過光強度が高く極めて高効率な光変調が可能となる。
また、マイクロレンズアレイ97の各マイクロレンズの周囲をブラックマトリックス99により包囲したため、マイクロレンズの周囲における迷光の発生が防止される。
【0076】
なお、マイクロレンズアレイ97は、入射光の出射側に設けてもよく、入射側及び出射側の双方に設けてもよい。さらには、封止用透明基板21のマイクロレンズアレイ97配設側とは反対側の面等の任意の位置に、その他の光学機能部材を設けた構成としてもよい。この場合の光学機能部材としては、例えば、プリズム、レンズ、回折素子、光学フィルタ、ビームスプリッタ、偏向フィルタ等の部材が挙げられる。
【0077】
また、上記構成の透過型光変調装置は、次に示す構成としてもよい。
図20に入射光を上側から下側へ向けて導入する透過型光変調装置の断面図を示した。
この変形例としての透過型光変調装置610は、図7に示す透過型光変調装置200に対して複数のマイクロレンズからなるマイクロレンズアレイ97を光変調素子アレイ15の光入射側に設けたものである。なお、入射光は図20の上側から下側へ向けて導入されるものとする。そして、マイクロレンズアレイ97は、封止用透明基板21に取り付けられ、入射光を集光させて光変調素子アレイ15の各光変調素子25の光変調部55へ集光させる。その他の構成は前記同様であって、透過型光変調装置600と同様の効果が奏される。
【0078】
(第8実施形態)
次に、本発明に係る透過型光変調装置の第8の実施の形態を説明する。
図21にマイクロレンズアレイを備えた狭端子ピッチの透過型光変調装置(例えば600)を支持基板に搭載した透過型光変調装置の断面図を示した。
この透過型光変調装置700は、前述の透過型光変調装置600を図11に示す透過型光変調装置400の狭端子ピッチの透過型光変調装置(例えば100,300)の代わりに、支持基板71へ搭載した構成としている。
この透過型光変調装置700の構成によれば、ピッチの狭い接続端子を有する透過型光変調装置600を、ピッチの広いエリアアレイ状に配列された接続端子列73を有する支持基板71に搭載し、狭幅の透過型光変調装置600の接続端子列17を、接続端子81から配線パターン77を通じて接続端子75に電気的に接続した構成であるので、端子ピッチの広い一般の回路基板への実装が容易となる。
【0079】
また、素子固定基板11が、開口部79側に光変調素子アレイ15及びマイクロレンズアレイ97を配置し、支持基板71の開口部79内に素子固定基板11側の光変調素子アレイ15を収容した構成としたため、光変調素子アレイ15やマイクロレンズアレイ97を外力や環境雰囲気から保護することができ、また、光変調素子アレイ15による透過型光変調装置外部への突出をなくすことができる。
【0080】
(第9実施形態)
次に、本発明に係る透過型光変調装置の第9の実施の形態を説明する。
図22にマイクロレンズアレイを備えた狭端子ピッチの透過型光変調装置(例えば610)を支持基板に搭載した透過型光変調装置の断面図を示した。
この透過型光変調装置800は、前述の透過型光変調装置610を図11に示す透過型光変調装置400の狭端子ピッチの透過型光変調装置(例えば100,300)の代わりに、支持基板71へ搭載した構成としている。
この透過型光変調装置800の構成によれば、第7実施形態と同様に、端子ピッチの広い一般の回路基板への実装が容易となる。また、光変調素子アレイ15とマイクロレンズアレイ97が上面側に配置されるため、封止用透明基板21への光学フィルタ等の各種光学機能部材の取り付けを自由に行うことができる。この場合の光学機能部材としては、例えば、プリズム、レンズ、回折素子、光学フィルタ、ビームスプリッタ、偏向フィルタ等の部材が挙げられる。
【0081】
(第10実施形態)
次に、本発明に係る透過型光変調装置の実装方法を説明する。
図23は透過型光変調装置を回路基板に実装した様子を示す断面図である。
ここでは、回路基板105に前述の透過型光変調装置600を実装する様子を一例として示しているが、上記説明済みである狭端子ピッチの透過型光変調装置(100,200,300,310)のいずれであってもよい。
回路基板105は、例えば光変調素子アレイ15の駆動用IC、メモリーIC、システム制御用CPU等のICや、コンデンサ、抵抗、コネクター等の一般電子部品107が実装されており、その一部には開口孔等の透過開口部109が形成されている。この回路基板105としては、ビルドアップ基板が好適に用いられる。ここで、ビルドアップ基板とは、プリント配線板のコア層(コアとなる多層基板)の上下に、ビルドアップ層と呼ばれる新しい層を積み上げて製造された基板である。
【0082】
そして、この透過型光変調装置600を、その光変調素子アレイ15が透過開口部109と重なり合う位置に実装する。即ち、光変調素子アレイ15と透過開口部109とを位置合わせして、透過型光変調装置600の接続端子列17を回路基板105のランド111に合わせて半田付けを行う。具体的な接続端子列17の接続形態としては、これに限らず、接続ピンやコラム、或いは周知の接続技術を用いることができる。
【0083】
このような透過型光変調装置の実装方法によれば、透過開口部109を形成した回路基板105へ透過型光変調装置を容易に実装して設置することができる。また、透過開口部109をガラスや樹脂等の変調する光に対して透明な透光性材料によって封止した構成としてもよく、この場合には、回路基板105との接合強度を増加させ、回路基板105自体を堅牢化させ、光変調素子アレイ15等を保護することができる。なお、回路基板105として透明基板を用いることで、単純にそのまま実装するだけで透過/非透過の光変調が可能となる。
さらに、プリズム、レンズ、回折素子、光学フィルタ、ビームスプリッタ、偏光フィルタ等の光学機能部材を適宜設けた構成としてもよい。
【0084】
さらに、透過開口部109は、上記のように図24(a)に示す回路基板105の内部に開口孔を形成する以外にも、例えば図24(b)に示す回路基板105の端部における切り欠き部113としてもよい。この場合には、回路基板105の加工の簡単化を図ることができる。
また、電子部品107を例えば光変調素子アレイを駆動させるに必要な駆動用デバイスとすることで、回路基板105が透過型光変調装置を駆動させるモジュールとして機能させることができる。
【0085】
次に、他の透過型光変調装置の実装方法について説明する。
図25は他の透過型光変調装置を回路基板に実装した様子を示す断面図である。
ここでは、回路基板105に前述の透過型光変調装置700を実装する様子を一例として示しているが、上記説明済みである透過型光変調装置(400,410,420,430,440,450,500,510)のいずれであってもよい。
【0086】
この場合も、図23に示す場合と同様に、光変調素子アレイ15の駆動用IC等の電子部品107が実装されており、その一部には透過開口部109が形成されている。この回路基板105としては、ビルドアップ基板が好適に用いられる。
このような透過型光変調装置の実装方法によれば、透過開口部109を形成した一般の回路基板105へ透過型光変調装置を容易に実装して設置することができる。また、透過開口部109をガラスや樹脂等の透明な封止部材によって塞ぐことで、光変調素子アレイ15とこれを保護する封止用透明基板21等を、回路基板105と素子固定基板11との間に封止した構成としてもよく、この場合には、回路基板105との接合強度を増加させ、回路基板105自体を堅牢化させ、光変調素子アレイ15等を保護することができる。また、プリズム、レンズ、回折素子、光学フィルタ、ビームスプリッタ、偏光フィルタ等の光学機能部材を適宜設けた構成としてもよい。
【0087】
以上説明した各実施形態及び各変形例は、それぞれの構成を適宜組み合わせることで種々の透過型光変調装置を構成することが可能であり、これにより、目的に応じた最適な機能を得ることができる。
【0088】
【発明の効果】
本発明に係る透過型光変調装置及びその実装方法によれば、導入される入射光を透過又は非透過状態にする透過型の光変調素子アレイと、該光変調素子アレイを駆動又は制御する回路と、該回路に電気的に接続された第1接続端子とを素子固定基板上に形成した透過型光変調素子で、この第1接続端子が、表面実装用の接続端子であり、素子固定基板の一方の面又は他方の面に、光変調素子アレイの形成された領域の周囲の少なくとも一部でエリアアレイ状に形成することにより、高速駆動のために信号線が増加して接続端子数が増大しても、第1の接続端子がエリアアレイ状に高密度に配列されるために、光変調装置装置を大型化することがなくなる。従って、高速駆動に有利な多数の接続端子を備えつつ小型化を図ることができる透過型光変調装置を構築することができる。また、この透過型光変調装置を回路基板に実装する際、回路基板が透過開口部を有することで、この透過開口部と光変調素子アレイとの位置を重ね合わせて実装することにより、透過/非透過による光変調が回路基板上で可能となる。
【図面の簡単な説明】
【図1】本発明に係る第1実施形態の透過型光変調装置の断面図である。
【図2】ファブリペロー干渉型の光変調素子の一例としての概略構成とその動作を示す説明図である。
【図3】光変調素子アレイのアクティブマトリクス駆動のための等価回路図である。
【図4】機械式シャッター型の光変調素子の(a)平面図及び(b)断面図である。
【図5】機械式シャッター型の光変調素子の(a)オフ状態及び(b)オン状態を平面で表す動作説明図である。
【図6】図5に示す光変調素子であって(a)はオフ状態(b)はオン状態を示す断面図である。
【図7】光変調素子アレイを上面側に設けた透過型光変調装置の構成を示す断面図である。
【図8】液晶素子を用いた透過型光変調装置の構成を示す断面図である。
【図9】素子固定基板の接続端子列の配設された側の面とは反対側の面に光変調素子アレイを備えた透過型光変調装置の構成を示す断面図である。
【図10】電気光学結晶素子を用いた透過型光変調装置の構成を示す断面図である。
【図11】支持基板に搭載された透過型光変調装置の構成を示す(a)断面図、(b)上面図、(c)下面図である。
【図12】モジュール化した透過型光変調装置の断面図である。
【図13】端子接続部を樹脂により封止した透過型光変調装置の断面図である。
【図14】端子接続部を樹脂により封止した透過型光変調装置の断面図である。
【図15】端子をワイヤボンディング接続した透過型光変調装置の断面図である。
【図16】封止部材を支持基板の開口部に接合した透過型光変調装置の断面図である。
【図17】素子固定基板側の接続端子と支持基板側の接続端子が同じ側に形成された透過型光変調装置の断面図である。
【図18】図17の透過型光変調装置の光変調素子アレイを、素子固定基板の支持基板側とは反対側の面に設けた構成の透過型光変調装置の断面図である。
【図19】マイクロレンズアレイを設けた透過型光変調装置の断面図である。
【図20】入射光を上側から下側へ向けて導入する透過型光変調装置の断面図である。
【図21】マイクロレンズアレイを備えた狭端子ピッチの透過型光変調装置を支持基板に搭載した透過型光変調装置の断面図である。
【図22】マイクロレンズアレイを備えた狭端子ピッチの透過型光変調装置を支持基板に搭載した透過型光変調装置の断面図である。
【図23】透過型光変調装置を回路基板に実装した様子を示す断面図である。
【図24】支持基板の透過開口部の例であって(a)は開口孔、(b)は切り欠き部を示す平面図である。
【図25】他の透過型光変調装置を回路基板に実装した様子を示す断面図である。
【図26】光変調素子アレイの制御駆動回路を示す説明図である。
【符号の説明】
11 素子固定基板
13 内部回路層(内部配線回路)
15 光変調素子アレイ
17 接続端子列
19 シール材
21 封止用透明基板
23 接続端子(第1接続端子)
25 光変調素子
27 画素駆動回路
29 下部電極
31 ハーフミラー
33 光学スペーサ
35 上部電極
37 ハーフミラー
39 可動薄膜
41 機械式シャッター型光変調素子
55 光変調部
59 液晶素子
61 画素電極
63,67 配光膜
64 液晶層
66 対向電極
67 画素電極
68 対向電極
69 PLZT薄膜
71,72 支持基板
73 接続端子列
75 接続端子(第3接続端子)
79 開口部
81 接続端子(第2接続端子)
83 回路素子
87 接続端子(第1接続端子)
89 接続端子(第2接続端子)
95 封止部材
97 マイクロレンズアレイ
103 透過部
105 回路基板
107 電子部品
109 透過開口部
111 ランド
113 切り欠き部
100,200,300,310,320,400,410,420,430,440,450,500,510,600,610,700,800 透過型光変調装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transmissive light modulation device including a light modulation element array that modulates incident light into a transmission or non-transmission state, and a mounting method thereof.
[0002]
[Prior art]
One-dimensional or two-dimensional light modulation element array mounted on an on-demand digital exposure apparatus used in a photolithography process, an image forming apparatus using digital exposure, a projection display apparatus such as a projector, a micro display apparatus such as a head-mounted display As such, liquid crystal elements, micromachine light modulation elements, and the like are known. In particular, a transmissive light modulation element is preferable because the optical system can be simplified. In such a light modulation element array, the transmittance for incident light is independently controlled for each of a plurality of pixels arranged one-dimensionally or two-dimensionally. In recent years, the demand for miniaturization and higher speed of elements has been increasing in recent years, and modulation control of each pixel is performed by a CMOS circuit formed by a general Si semiconductor process.
[0003]
In the light modulation element array, since the light modulation of multiple pixels is performed at high speed, it is a problem to increase the element response and shorten the data writing time. It becomes longer as the number of pixels increases.
[0004]
Here, FIG. 25 shows an example of the control drive circuit of the light modulation element array. As an operation of a typical two-dimensional matrix image control circuit, an address signal and a parallel transfer data signal corresponding to the address signal are input to the control drive circuit with a transfer clock φ. The light modulation operation is performed by controlling the pixel electrode potential of the light modulation element according to the data written in the SRAM circuit of the pixel. That is, data writing from the outside is simultaneously written in the SRAM circuit according to the selected address of N [bit] data every transfer clock φ [Hz]. Therefore, when the total number of pixels of the light modulation element array is P, the time T for writing data to all the pixels is T = P / (Nφ) [sec]. That is, in order to shorten the writing time, it is necessary to increase the number of data bits N when the transfer clock φ is constant.
[0005]
However, when the number of simultaneously written data is increased, the number of signal lines is increased and the number of signal terminals of the element is increased, so that high-density mounting is required. As a high-density mounting method, BGA (ball grid array), CSP (chip size package) technology, and the like are known, but most of them are for general LSI. Moreover, although the light emitting element and the light receiving element are disclosed as an optical element, these are all light-shielding or one side is transparent. The light modulation element array is preferably a transmissive type capable of forming a simple optical system, but there is no high-density mounting type structure for a transmissive type light modulation element. (For example, refer to Patent Documents 1 to 5).
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-168154 (pages 2 to 4, FIG. 1)
[Patent Document 2]
JP 2000-216413 A (page 3, FIG. 1)
[Patent Document 3]
JP 2000-323614 A (Page 6, FIG. 1)
[Patent Document 4]
Japanese Patent Laid-Open No. 2002-1000078 (4th, 5th page, FIG. 1)
[Patent Document 5]
JP 2002-198470 A (3rd, 4th page, FIG. 1)
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and provides a transmissive light modulation device capable of downsizing and mounting a transmissive light modulation element array having a large number of connection terminals that can be driven at high speed, and a mounting method thereof. The purpose is that.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a transmissive light modulation device according to claim 1 is a transmissive light modulation element array that transmits or does not transmit incident light that is introduced, and drives or controls the light modulation array. And a first connection terminal electrically connected to the circuit formed on the element fixing substrate, wherein the first connection terminal is a surface mounting connection terminal. The element fixing substrate is formed in an area array shape on at least a part of the periphery of the region where the light modulation element array is formed on one surface or the other surface of the element fixing substrate.
[0009]
In this transmissive light modulation device, a transmissive light modulation element array is formed on an element fixing substrate, and a first connection terminal electrically connected to the light modulation element array via a drive or control circuit is provided as an element fixing substrate. Since the connection terminals are arranged in a high density in the area array even if the number of connection terminals increases as the number of signal lines increases, the size of the light modulation device device must be increased. Disappears. Therefore, it is possible to reduce the size while providing a large number of connection terminals advantageous for high-speed driving.
[0010]
The transmission type light modulation device according to claim 2 is the transmission type light modulation device according to claim 1, wherein the light modulation element array is a micro electro mechanical light modulation element formed by micromachining. It is characterized by.
[0011]
This transmissive light modulator uses a microelectromechanical light modulator formed by micromachining, so that the density and speed of the light modulator array can be increased (on the order of μs or less than μs), and the voltage can be reduced. Power saving by driving can be achieved.
[0012]
A transmission type light modulation device according to a third aspect is the transmission type light modulation device according to the first aspect, wherein the light modulation element array is a liquid crystal element.
[0013]
In this transmission type light modulation device, by using a liquid crystal element as a light modulation element array having transparency, the light modulation element array can be increased in density and power consumption, and the manufacturing cost can be reduced and the cost can be reduced. Can be provided.
[0014]
A transmissive light modulation device according to claim 4 is the transmissive light modulation device according to any one of claims 1 to 3, wherein the transmissive light modulation device is arranged against an incident light against the light modulation element array. A transparent region having light permeability is provided in part, and a sealing member for sealing the light modulation element array with the element fixing substrate is provided.
[0015]
In this transmissive light modulation device, a transparent region having a light transmission property with respect to incident light is provided in part, and a sealing member for sealing the light modulation element array between the element fixing substrate is provided. In addition, it is possible to protect the element by reliably preventing the entry of dust, moisture, oxygen and the like into the light modulation element array and the drive circuit.
[0016]
The transmissive light modulation device according to claim 5 is the transmissive light modulation device according to any one of claims 1 to 4, and uses at least one of refraction, diffraction, interference, polarization, and deflection. The optical functional member is integrally provided.
[0017]
In this transmissive light modulation device, an optical function member and a light modulation element array necessary for performing light modulation are provided by integrally providing an optical function member utilizing at least one of refraction, diffraction, interference, polarization, and deflection. As a result, the optical accuracy can be improved and high quality can be obtained, and the light modulation device can be reduced in size and cost.
[0018]
The transmissive light modulation device according to claim 6 is the transmissive light modulation device according to any one of claims 1 to 5, wherein incident light is directed toward each light modulation portion of the light modulation element array. A microlens array for converging is provided on the light path incident side of incident light with respect to the light modulation element array.
[0019]
In this transmissive light modulation device, incident light can be condensed on each light modulation element of the light modulation element array by the microlens array, so that there is no light shielding around the light modulation element, and the incident light is efficiently transmitted. be able to. Thereby, the reduction of the amount of transmitted light is greatly improved, and it becomes possible to emit transmitted light with high brightness.
[0020]
The transmissive light modulation device according to claim 7 is the transmissive light modulation device according to any one of claims 1 to 6, wherein the transmission light modulation device is integrally provided with a support substrate on which the element fixing substrate is mounted. The support substrate includes at least a part of a transmissive region having light transmittance with respect to incident light, and the first connection terminal of the element fixing substrate is provided on one surface around the transmissive region. The area array-shaped second connection terminals corresponding to the first and second surfaces are formed, and the area array-shaped third connection terminals are electrically connected to the second connection terminals via the internal wiring circuit. A connection terminal is formed, and the first connection terminal of the element fixing substrate and the second connection terminal of the support substrate are electrically connected.
[0021]
In this transmissive light modulation device, the element fixing substrate is disposed on the support substrate having the second connection terminal corresponding to the first connection terminal and the third connection terminal having a wider arrangement pitch than the first connection terminal. And the second connection terminal are electrically connected and mounted, whereby mounting on a general circuit board having a wide terminal pitch can be facilitated.
[0022]
The transmissive light modulation device according to claim 8 is the transmissive light modulation device according to claim 7, wherein a connection portion between the first connection terminal and the second connection terminal is molded. Features.
[0023]
In this transmissive light modulation device, the connection portion between the first connection terminal and the second connection terminal is prevented from being intruded and damaged by mold sealing, and the connection portion can be reinforced. As a result, handleability can be improved.
[0024]
The transmissive light modulation device according to claim 9 is the transmissive light modulation device according to claim 7 or claim 8, wherein a transmission region of the support substrate is an opening hole, and the element fixing substrate is formed in the opening hole. The light modulation element array is inserted.
[0025]
In this transmissive light modulation device, the light modulation element array on the element fixing substrate side is inserted into the opening hole of the support substrate, so that the light modulation element array is protected from external force and the environmental atmosphere. Protrusion to the outside of the light modulation device can be eliminated.
[0026]
The transmissive light modulation device according to claim 10 is the transmissive light modulation device according to claim 7 or claim 8, wherein the light modulation element array is opposite to the support substrate side of the element fixing substrate. It is formed in the surface of this.
[0027]
In this transmissive light modulation device, various optical functional members such as an optical filter can be freely attached to the light modulation element array, and the sealing member of the light modulation element array is not subject to arrangement restrictions. It can be easily provided.
[0028]
A transmissive light modulation device according to claim 11 is the transmissive light modulation device according to any one of claims 7 to 10, wherein an electronic component is mounted on the support substrate. To do.
[0029]
In this transmissive light modulation device, electronic components such as a circuit for controlling the light modulation element array and a higher-order large-scale peripheral system LSI are mounted and modularized, so when mounting on a general circuit board In addition, it is possible to reduce the mounting of components related to driving of the light modulation element on the circuit board, to save space and simplify the mounting of electronic components, and to stably control and process a large amount of data at high speed. It becomes possible.
[0030]
A mounting method of the transmission type light modulation device according to claim 12 is a mounting method of the transmission type light modulation device in which the transmission type light modulation device according to any one of claims 1 to 11 is mounted on a circuit board. The circuit board has a transmissive opening formed of an opening hole or a notch, and the light modulation element array of the transmissive light modulation device is mounted in accordance with the position of the transmissive opening.
[0031]
In this transmissive light modulation device mounting method, since a general circuit board on which the transmissive light modulation device is mounted has an opening formed by an opening or a notch, the transmissive light modulation device is a general circuit. Incident light can be introduced from the outside of the circuit board to the transmissive light modulator while being mounted on the board, and transmitted light can be emitted to the outside of the circuit board. For this reason, it becomes possible to integrate a transmission type light modulation device, a general circuit, and a system including an optical system, so that the system can be highly accurate and save space.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a transmissive light modulation device and a mounting method thereof according to the present invention will be described below in detail with reference to the drawings. In each embodiment, members having the same function are denoted by the same reference numerals, and the description thereof is omitted.
(First embodiment)
FIG. 1 shows a sectional view of a transmissive light modulation device according to the first embodiment of the present invention.
The transmissive light modulation device 100 includes an element fixing substrate 11 that is transparent to the light L to be modulated, and a circuit forming layer 13 that is formed on at least one surface of the element fixing substrate 11 and includes a driving circuit such as a CMOS or a wiring circuit. An optical modulation element array 15 disposed on the surface of the circuit forming layer 13 opposite to the element fixing substrate 11, and an area electrically connected to the periphery of the light modulation element array 15 via the circuit forming layer 13. A connection terminal array 17 which is a connection terminal for surface mounting arranged in an array (one or a plurality of grids or staggered patterns, or a state in which a plurality are arbitrarily arranged on a plane). I have. Here, the surface mounting connection means a connection form by solder balls or a connection form by wire bonding in this specification.
[0033]
The transmissive light modulation device 100 of this embodiment is a transparent substrate for sealing (sealing member) made of glass or the like that is connected to the circuit forming layer 13 via a sealing material 19 so as to face the light modulation element array 15. By providing 21, the light modulation element array 15 is sealed between the element fixing substrate 11. In addition, the structure which does not seal the light modulation element array 15 without providing the sealing material 19 and the transparent substrate 21 for sealing may be sufficient.
[0034]
The element fixing substrate 11 is preferably a semiconductor substrate such as a Si substrate, a glass substrate, or a quartz substrate. For example, in the case of a Si substrate, infrared light from red that transmits Si becomes a target of light modulation. Further, by providing an opening in the light transmission region, the wavelength of the target modulated light is expanded to UV, visible, and infrared light. Even if a glass substrate or a quartz substrate is used, the target wavelengths spread to UV, visible, and infrared light.
[0035]
The connection terminal row 17 is composed of solder bump connection terminals (first connection terminals) 23 arranged in an area array around at least a part of the periphery of the light modulation element array 15 disposed in the substantially central portion of the element fixing substrate 11. . In the present embodiment, the connection terminals 23 are provided in a ring shape over the entire periphery of the light modulation element array 15, and the arrangement pitch is set to about 20 μm to 200 μm. The connection terminal row 17 is arranged in a ring shape around the light modulation element array 15 of the element fixing substrate 11, or in one block or at least part of the periphery in an area array shape. The arranged form may be sufficient.
[0036]
The light modulation element array 15 is an array of microelectromechanical light modulation elements 25 formed by micromachining. The light modulation element array 15 modulates incident light into a transmission or non-transmission state to control the amount of transmitted light. Is. In the present embodiment, a Fabry-Perot interference type light modulation element formed by a MEMS (micro electro mechanical systems) technique is used.
[0037]
FIG. 2 is an explanatory diagram showing a schematic configuration as an example of a Fabry-Perot interference type light modulation element and its operation.
As the configuration of the light modulation element 25, a circuit driving layer 13 formed on the element fixing substrate 11, a pixel driving circuit 27 having a switching function such as a transistor or a CMOS SRAM, a lower electrode (pixel electrode) 29, A movable thin film 39 having an upper electrode (common electrode) 35 and the other half mirror 37 is formed on the opposite side of the circuit forming layer 13 from the element fixing substrate 11 side. Have. The movable thin film 39 is brought into contact with the optical spacer 33 by electrostatic attraction by applying a driving voltage between the lower electrode 29 and the upper electrode 35, and the movable thin film 39 is elastically restored by applying a non-driving voltage. Thus, the optical spacer 33 is separated from the optical spacer 33. Details of the Fabry-Perot interference type light modulation element are described in, for example, Japanese Patent Application Laid-Open No. 2000-121970.
[0038]
By the operation of the movable thin film 39, the distance between the one half mirror 31 and the other half mirror 37 is changed, so that light in a predetermined wavelength region transmits or blocks the light modulation element 25. In the present embodiment, the distance between the half mirrors where the movable thin film 39 comes into contact with the optical spacer 33 is in a transmissive state, and the distance between the half mirrors where the movable thin film 39 is elastically restored is in a light shielding state. That is, the thickness of the optical spacer 33 is designed so that the half mirrors 31 and 37 are in a transmissive state.
[0039]
The half mirrors 31 and 37 that perform such light modulation are formed of multilayer films in which materials having different refractive indexes are alternately stacked, and the following materials can be used depending on the light to be modulated.
[0040]
(1) For visible light or infrared transmission
As a high refractive index material (a material having a refractive index of about 1.8 or more), TiO 2 , CeO 2 , Ta 2 O 5 , ZrO 2 , Sb 2 O 3 , HfO 2 , La 2 O 3 , NdO 3 , Y 2 O 3 , ZnO, Nb 2 O 5 Can be used.
As a relatively high refractive index material (a material having a refractive index of approximately 1.6 to 1.8 or more), MgO, Al 2 O 3 , CeF 3 , LaF 3 , NdF d Can be used.
As a low refractive index material (a material having a refractive index of about 1.5 or less), SiO 2 2 , AlF 3 , MgF 2 , Na 3 AlF 6 , NaF, LiF, CaF 2 , BaF 2 Can be used.
[0041]
(2) For UV transmission
As a high refractive index material (a material having a refractive index of about 1.8 or more), ZrO 2 , HfO 2 , La 2 O 3 , NdO 3 , Y 2 O 3 Or TiO 2 , Ta 2 O 5 , ZrO 2 (However, the wavelength of light is approximately 360 to 400 nm) can be used.
As a relatively high refractive index material (a material having a refractive index of approximately 1.6 to 1.8 or more), MgO, Al 2 O 3 , LaF 3 , NdF 3 Can be used.
As a low refractive index material (a material having a refractive index of about 1.5 or less), SiO 2 2 , AlF 3 , MgF 2 , Na 3 AlF 6 , NaF, LiF, CaF 2 Can be used.
[0042]
The light modulation elements 25 are uniformly two-dimensionally arranged in the element fixing substrate 11 to form the light modulation element array 15, and each of them can perform the same operation. The light modulation element array 15 including the plurality of light modulation elements 25 having the above configuration is electrically connected as follows.
[0043]
FIG. 3 is an equivalent circuit diagram for active matrix driving of the light modulation element array. In the configuration example of the active matrix of n rows × m columns shown in this example, scanning voltages are sequentially applied to the scanning signal lines (common electrode 35), and the pixel driving circuits 27 connected thereto are turned on all at once. . At the same time, an image signal voltage Vb corresponding to the display image is applied from the image signal line (pixel electrode 29), and charges are accumulated in the capacitance of each light modulation element 25 through the pixel drive circuit 27. That is, the selected one row of light modulation elements 25 is selectively turned on / off. Even if the scanning of one row is finished and the pixel driving circuit 27 is turned off, the state of the pixel driving circuit 27 is maintained, and scanning of the next row is started. By repeating this, matrix modulation of a plurality of rows becomes possible, and the light modulation element array 15 operates like an image.
[0044]
As described above, according to the transmissive light modulation device 100, the Fabry-Perot light modulation element array 15 is provided on the light-transmitting element fixing substrate 11, and the circuit forming layer 13 is light-transmitting element fixing substrate. The circuit forming layer 13 is electrically connected to the connection terminal row 17 arranged in an area array on the element fixing substrate 11. For this reason, since the signal terminal by each signal line is connected to the connection terminal row 17 composed of a large number of connection terminals 23, even if the number of signal lines is increased to increase the speed of the light modulation element, this is easy. It can correspond to. Further, since the connection terminal row 17 is provided around the light modulation element array 15, the multi-contact connection with improved space efficiency can be reliably performed as in the connection form of the BGA and CSP, and the transmission type light modulation is achieved. The apparatus 100 can be driven at high speed, and can be miniaturized and mounted with high density. In addition, since the microelectromechanical light modulation element 25 formed by the micromachining technology using MEMS is used, the light modulation element array has a high density and high speed (μs order or μs or less), and the light modulation device Further miniaturization and power saving by low voltage driving can be realized.
[0045]
Further, by providing a sealing transparent substrate 21 and sealing the light modulation element array 15 with the element fixing substrate, intrusion of dust, moisture, oxygen and the like into the light modulation element array 15 and the drive circuit, etc. Since it is surely prevented and a fine element is reliably protected, the element operation is stabilized and aging deterioration can be reduced.
Further, since the light modulation element array 15 is provided on the connection terminal row 17 side corresponding to the back surface of the element fixing substrate 11, the surface of the transmission type light modulation device 100 opposite to the arrangement surface side of the light modulation element array 15 protrudes. A flat surface with no part can be formed, and the degree of freedom in mounting can be improved. Even if the sealing transparent substrate 21 is formed to be lower than the height of the connection terminal row 17, the opening hole of the substrate to be mounted is made the minimum necessary size (region of the light modulation element array 15). Good.
[0046]
The light modulation element 25 of the light modulation element array 15 that can be mounted on the transmissive light modulation device 100 is not limited to the Fabry-Perot interference type described above, and various types of elements can be applied. Here, a mechanical shutter type light modulation element 41 will be described as an example using an element based on another light modulation method.
[0047]
FIG. 4 shows (a) a plan view and (b) a cross-sectional view of a mechanical shutter type light modulation element.
In this light modulation element 41, a pair of parallel support columns 43 are projected on the element fixing substrate 11, and two pairs of opposing support columns are formed between the pair of support columns 43 with approximately half the distance between the support columns 43. Electrodes 45 and 47 are juxtaposed. A light shielding film 49 that covers the element fixing substrate 11 is formed between one counter electrode (for example, 47).
[0048]
In the space where the two pairs of counter electrodes 45 and 47 are opposed, an electrode light-shielding plate 51 having approximately half the distance between the columns 43 and approximately half the space is flexible on the side surface side. It is supported by each support | pillar 43 via the broken line spring 53 which is a member. The electrode light-shielding plate 51 is moved in parallel by elastically deforming the polygonal line spring 53 so that the electrode light-shielding plate 51 is shifted to either side of the counter electrode 45 or 47.
That is, in the element fixing substrate 11, a portion where the light shielding film 49 is formed becomes a non-opening portion, and a portion where the light shielding film 49 is not formed becomes a light modulation portion 55. Then, the light transmitted through the element fixing substrate 11 is selectively emitted from the light modulation unit 55.
[0049]
Next, the light modulation operation of the mechanical shutter type light modulation element 41 will be described with reference to FIG. FIG. 5 is an operation explanatory view showing the on / off state of the mechanical shutter type light modulation element in a plane, and FIG. 6 is a sectional view of the light modulation element in FIG.
As shown in FIGS. 5A and 6A, the light modulation element 41 applies a fixed voltage only to the counter electrode 45, and applies a non-driving voltage (0 V) to the electrode light-shielding plate 51. Then, the electrode light-shielding plate 51 moves to the counter electrode 45 side by electrostatic force. As a result, the light that is about to pass through the light modulator 55 is blocked by the electrode light blocking plate 51. On the other hand, when a drive voltage (+ V) is applied to the electrode light-shielding plate 51, the electrode light-shielding plate 51 moves to the counter electrode 47 side by electrostatic force, as shown in FIGS. 5 (b) and 6 (b). As a result, the light that is about to pass through the light modulation unit 55 is emitted from the shutter-type light modulation element 41 without being affected by the electrode light shielding plate 51. When the voltage applied to the electrode light shielding plate 51 is set again to the non-driving voltage (0 V), the electrode light shielding plate 51 returns to the original position by the elastic force and electrostatic force of the polygonal line spring 53.
[0050]
Even if the mechanical shutter type light modulation element 41 as described above is applied to the transmission type light modulation device 100, a good light modulation operation can be performed.
In addition, a known electro-mechanical light modulation element formed by micromachine technology, such as an electrostatic comb drive (comb electrode drive by electrostatic force) type light modulation element or a light modulation element such as piezoelectric drive or electromagnetic drive. Any element may be used as long as it conforms to the gist of the present invention.
[0051]
(Second Embodiment)
Next, a second embodiment of the transmissive light modulation device according to the present invention will be described.
FIG. 7 is a cross-sectional view showing a configuration of a transmissive light modulation device in which a light modulation element array is provided on the upper surface side.
In the transmissive light modulation device 100 of the first embodiment described above, the light modulation element array 15 is provided on one surface of the element fixing substrate 11, and the connection terminal row 17 is provided on the same surface side. In the transmissive light modulation device 200 of the embodiment, as shown in FIG. 7, the circuit forming layer 13 and the light modulation element array 15 are opposite to the surface of the element fixing substrate 11 on the side where the connection terminal row 17 is disposed. It is formed on the surface. Therefore, the sealing material 19 and the sealing transparent substrate 21 are similarly formed on the opposite surfaces.
[0052]
The element fixing substrate 11 according to the present embodiment has a plurality of through holes penetrating the front and back of the substrate, and the wiring circuit 57 is formed by embedding Cu or the like in the through holes. The wiring circuit 57 electrically connects the circuit forming layer 13 connected to the light modulation element array 15 and the connection terminals 23 of the connection terminal row 17.
[0053]
According to the transmissive light modulation device 200 configured as described above, the connection terminal row 17 is provided on the back surface of the device, and the surface on the mounting side can be a flat surface without a protruding portion, and the degree of freedom in mounting can be improved. In addition, on the surface opposite to the mounting side, the arrangement restrictions of various members such as attachment of various optical members such as an optical filter to the light modulation element array 15 and attachment of a sealing member are relaxed and designed. Since the degree of freedom can be improved, higher functionality can be achieved.
[0054]
(Third embodiment)
Next, a third embodiment of the transmissive light modulation device according to the present invention will be described.
FIG. 8 is a cross-sectional view showing a configuration of a transmissive light modulation device using a liquid crystal element.
In the transmissive light modulation device 300 of this embodiment, instead of the microelectromechanical light modulation element array of the transmissive light modulation device 100 in the first embodiment, a nematic liquid crystal excellent in high definition and low cost can be used. A liquid crystal element 59 that modulates light by changing a refractive index by applying an electric field, such as a ferroelectric liquid crystal having excellent high-speed response or an electro-gradient effect liquid crystal, is used. Since other configurations are the same as those of the first embodiment, a duplicate description is omitted.
[0055]
The liquid crystal element 59 has a layer structure in which a pixel electrode 61, a light distribution film 63, a liquid crystal layer 64, a light distribution film 65, and a counter electrode 66 are disposed in this order from the circuit forming layer 13 of the element fixing substrate 11, and a glass substrate. In addition to the TFT process formed above, it may be formed by a technique such as LCOS (Liquid Crystal on Silicon) formed on a Si substrate or SOI substrate.
In the liquid crystal element 59, the orientation of the liquid crystal layer 64 is changed by a voltage applied between the pixel electrode 61 and the counter electrode 66, and the light transmitted through the liquid crystal element 59 by the action of a polarizing plate (not shown). Increase or decrease the amount of light.
[0056]
According to the transmissive light modulation device 300 of the present embodiment, the liquid crystal element as the transmissive light modulation element array 15 is formed on the light-transmitting element fixing substrate 11, and the circuit forming layer 13 of the element fixing substrate 11 is formed. Is electrically connected to the connection terminal row 17 connected to the light modulation element array 15, so that the light modulation element array 15 can be reduced in size and weight even if the signal terminals increase as the number of signal lines increases. can do.
[0057]
As shown in FIG. 9 showing a modification of the present embodiment, the transmissive light modulation device 300 performs light modulation on the surface of the element fixing substrate 11 opposite to the surface on which the connection terminal row 17 is disposed. It is good also as a structure provided with the element array 15. FIG.
In this transmissive light modulation device 310, like the transmissive light modulation device 200 shown in FIG. 7, the connection terminal row 17 is provided on the back surface of the device, and the surface on the mounting side can be a flat surface without a protruding portion. The degree of freedom can be improved. In addition, on the surface opposite to the mounting side, the arrangement restrictions of various members such as attachment of various optical members such as an optical filter to the light modulation element array 15 and attachment of a sealing member are relaxed and designed. Since the degree of freedom can be improved, higher functionality can be achieved.
[0058]
(Fourth embodiment)
Next, a fourth embodiment of the transmissive light modulation device according to the present invention will be described.
FIG. 10 is a cross-sectional view showing a configuration of a transmissive light modulation device using an electro-optic crystal element.
In the transmissive light modulation device 320 of this embodiment, a PLZT light modulation element is used in place of the microelectromechanical light modulation element array of the transmissive light modulation device 100 in the first embodiment described above. The PLZT film is an oxide of Pb, La, Zr, and Ti and exhibits a light Kerr effect. The PLZT light modulation element can perform light modulation at higher speed than the liquid crystal element, and has high reliability because it is a solid type.
As shown in FIG. 10, the transmissive light modulation device 320 of this embodiment is provided with a pixel electrode 67 and a counter electrode 68 on the element fixing substrate 11 and the circuit forming layer 13 so as to be perpendicular to the substrate 11. A PLZT thin film 69 is formed between both electrodes. The pixel electrode 67 is provided for each pixel, is connected to the output of the drive control circuit, and is supplied with a potential corresponding to the light transmittance. The counter electrode 68 is electrically common to all pixels. A transparent protective film 70 is provided on the end surface of the pixel electrode 67, the counter electrode 68, and the PLZT thin film 69 on the side opposite to the substrate 11 side.
[0059]
At this time, due to the electric field generated by the potential difference between the pixel electrode 67 and the counter electrode 68, the birefringence of the PLZT thin film 69 changes, and the polarization state of the light transmitted through the PLZT thin film 69 changes. Here, by appropriately selecting the optical path length that passes through the PLZT thin film 69 and the birefringence value that changes with voltage application, the polarization axis of incident light can be rotated, and polarizing films are provided on the incident side and the outgoing side. This enables birefringence control type light modulation.
[0060]
In addition to the above, the electro-optic crystal element is, for example, LN (LiNbO 3 ), KDP (KH 2 PO 4 ), ADP (NH 4 H 2 PO 4 ) A light modulation element using electric field birefringence control by the equal Pockels effect may be used. In addition to the electro-optic crystal element, a magneto-optic crystal element (for example, a garnet material) may be an element that performs light modulation using polarization rotation by the Faraday effect.
[0061]
(Fifth embodiment)
Next, a fifth embodiment of the transmissive light modulation device according to the present invention will be described.
FIG. 11 shows a configuration of a transmission type light modulation device mounted on a support substrate in (a) a sectional view, (b) a top view, and (c) a bottom view.
The transmissive light modulation device 400 includes a support substrate 71 having a narrow terminal pitch transmissive light modulation device (for example, 100 or 300) in which the light modulation element array 15 is formed on the lower surface side of the element fixing substrate 11 as an interposer. In addition, the connection terminal row 17 has a wide connection terminal pitch (for example, about 0.1 mm to 2.0 mm), and each connection terminal (third) of the connection terminal row 73 that is a connection terminal for surface mounting. Connection terminal) 75 is electrically connected. The support substrate 71 is made of glass, ceramics, resin or the like having an opening 79 in which a wiring pattern 77 is formed. The opening 79, which is an opening hole of the support substrate 71, is formed to be slightly larger than the light modulation element array 15 to be mounted, and the light modulation element array 15 on the element fixing substrate 11 side is opened. It arrange | positions at the opening part 79 side so that it may be arrange | positioned at 79 side.
[0062]
The support substrate 71 is connected to a connection terminal (second connection terminal) such as a land corresponding to each connection terminal of the connection terminal row 17 on the surface on which the transmissive light modulation device 100 having the connection terminal row 17 having a narrow pitch is mounted. ) 81. The connection terminals 81 are arranged in an area array corresponding to the connection terminals of the connection terminal row 17.
[0063]
Further, a connection terminal row 73 made of solder bumps is arranged in an area array on the surface of the support substrate 71 opposite to the side on which the element fixing substrate 11 is mounted. The connection terminal row 73 is electrically connected to the connection terminal 81 via the wiring pattern 77.
Thus, according to the transmissive light modulation device 400 of this embodiment, the transmissive light modulation device 100 having the connection terminals with a narrow pitch is supported by the connection terminal row 73 arranged in an area array with a wide pitch. Since the connection terminal row 17 of the narrow transmission optical modulator 100 is mounted on the substrate 71 and electrically connected to the connection terminal 75 from the connection terminal 81 through the wiring pattern 77, a general circuit having a wide terminal pitch is provided. Mounting on the board becomes easy.
[0064]
Further, the element fixing substrate 11 has the light modulation element array 15 disposed on the opening 79 side, and the light modulation element array 15 on the element fixing substrate 11 side is inserted and accommodated in the opening 79 which is an opening hole of the support substrate 71. With this configuration, it is possible to protect the light modulation element array 15 from external force and environmental atmosphere, and it is possible to eliminate the protrusion of the light modulation element array 15 to the outside of the transmissive light modulation device.
[0065]
Next, modified examples of the transmissive light modulation device 400 of this embodiment will be sequentially described.
FIG. 12 shows a cross-sectional view of a modularized transmission type light modulation device. In the transmissive light modulation device 410 of this modification, another circuit element (CPU, memory, driver, or the like) 83 is mounted on the support substrate 71. Specific examples of the circuit element 83 include electronic components such as a drive control IC, a memory IC, and a system control CPU for the light modulation element array 15. In this way, by integrally mounting the other circuit element 83 on the support substrate 71, the function of the light modulation element is expanded, and the wiring length between the parts is shortened, so that the high speed and reliability of the signal can be obtained. More highly functional modules can be achieved. As a result, since the circuit element 83 is modularized, when the transmissive light modulation device 410 is mounted on a general circuit board, components related to driving of the light modulation element are mounted on the circuit board. It is possible to reduce the space and simplify the mounting of electronic components.
[0066]
Next, a second modification of the present embodiment will be described.
FIG. 13 shows a cross-sectional view of a transmissive light modulation device in which the terminal connection portion is sealed with resin.
The transmissive light modulation device 420 according to this modification includes a gap between each connection terminal of the connection terminal row 17 on the element fixing substrate 11 side and a connection terminal 81 provided on the surface of the support substrate 71 on the element fixing substrate 11 side. It is sealed with a resin material. According to the transmission type light modulation device 420 in which the connection portion of each connection terminal is sealed with mold, dust, moisture, oxygen, or the like on the connection portion between the connection terminal of the connection terminal row 17 and the connection terminal 81 is removed. Infiltration and damage can be prevented, and the connecting portion can be reinforced, and the breaking strength can be increased to improve the handleability.
[0067]
Next, a third modification of the present embodiment will be described.
FIG. 14 shows a cross-sectional view of a transmissive light modulation device in which the terminal connection portion is sealed with resin.
In this transmissive light modulator 430, a narrow terminal pitch transmissive light modulator (for example, 200 or 310) in which the above-described light modulator array 15 is formed on the upper surface side of the element fixing substrate 11 is laminated on the support substrate 71. At the same time, the connection terminal row 17 is electrically connected to each connection terminal 75 of the wide pitch connection terminal row 73 having a wide connection terminal pitch.
As described above, according to the transmission type light modulation device 430 in which the element fixing substrate 11 on which the light modulation element array 15 is formed is mounted on the light modulation device having a narrow terminal pitch, the light modulation element array 15 is arranged on the uppermost surface. Therefore, it is possible to freely attach various optical function members such as an optical filter to the light modulation element array 15, and to easily provide the sealing member of the light modulation element array 15 without being restricted in arrangement. Can do.
[0068]
As the optical functional member in this case, an optical functional member using at least one of refraction, diffraction, interference, polarization, and deflection can be used as appropriate. The arrangement location is the light incident side, the light emitting side, or both of the light modulation element array 15. For example, those using refraction include a microlens array that collects light to improve light utilization efficiency, and a prism array that improves design flexibility by changing the optical path of incident light and transmitted light. In the case of using diffraction, there is a diffraction grating or the like that spatially discriminates the wavelength of incident light and introduces it to the light modulation element. In the case of using interference, the incident wavelength is selected and introduced into the light modulation element. There are interference filters. In the case of using polarized light, for example, when a liquid crystal element, an electro-optic crystal element, or the like is used, there are a polarizing plate, a retardation plate, and the like that are provided on the incident side and the emission side and perform light modulation by birefringence control.
[0069]
Next, a fourth modification of the present embodiment will be described.
FIG. 15 shows a cross-sectional view of a transmissive light modulation device in which terminals are connected by wire bonding.
In this transmissive light modulation device 440, the connection terminal row 17 of the transmissive light modulation device 430 of the third modification described above is formed as a connection terminal (first connection terminal) 87 on the upper surface of the circuit forming layer 13, and A connection terminal (second connection terminal) 89 is formed on the upper surface of the support substrate 71, and the connection terminal 87 and the connection terminal 89 are connected by wire bonding with a conductive wire 91. The element fixing substrate 11 is fixed to the support substrate 71 via an adhesive layer 93. The connection terminals 89 of the support substrate 71 are provided in an area array on the outer peripheral side of the arrangement position of the element fixing substrate 11.
[0070]
In this way, the element fixing substrate 11 is bonded and fixed to the support substrate 71 by the adhesive layer 93, and the transmission type light modulation device 440 in which the connection terminals 87 of the element fixing substrate 11 and the connection terminals 89 of the support substrate 71 are connected by wire bonding. Accordingly, it is not necessary to provide a connection terminal on the back surface of the element fixing substrate 11, and the structure of the element can be simplified. Further, since the connection terminals can be easily connected to each other using a conventional semiconductor manufacturing apparatus, the manufacturing cost can be reduced and the transmissive light modulation device 440 can be provided at low cost. Moreover, the site | part which performed the wire bonding connection is good also as a structure protected by resin-sealing.
[0071]
Next, a fifth modification of the present embodiment will be described.
FIG. 16 is a cross-sectional view of a transmissive light modulation device in which a sealing member is bonded to an opening of a support substrate.
This transmissive light modulation device 450 includes a sealing member that partially includes a transparent region that is light-transmissive to incident light in the opening 79 of the support substrate 71 of the transmissive light modulation device 400 shown in FIG. By providing 95, the light modulation element array 15 is sealed. The sealing member 95 may be provided by bonding a transparent member to the opening 79, or may be provided by filling the opening 79 with a transparent resin material and molding it.
As described above, the light modulation element array 15 is disposed on the opening 79 side, and the opening 79 is sealed by the sealing member 95 having light transmittance, thereby protecting the light modulation element array 15. Thus, the transmissive light modulation device 450 can be made robust.
[0072]
(Sixth embodiment)
Next, a sixth embodiment of the transmissive light modulation device according to the present invention will be described.
FIG. 17 shows a cross-sectional view of a transmissive light modulation device in which the connection terminal on the element fixing substrate side and the connection terminal on the support substrate side are formed on the same side.
In this transmissive light modulation device 500, the connection terminal row 73 of the support substrate 71 of the transmissive light modulation device 400 shown in FIG. 11 is formed on the surface of the element fixing substrate 11, and the connection terminal 75 of the support substrate 72. 11 and the wiring pattern 77 associated therewith are the same as those of the transmissive light modulation device 400 shown in FIG. Therefore, in the transmissive light modulation device 500 of this embodiment, the connection terminals 75 and the connection terminals 81 connected to the connection terminals 17 of the connection terminal row 17 on the element fixing substrate 11 side are formed on the same surface. The structure of 72 can be simplified. In addition, since the connection terminal does not exist on the surface opposite to the mounting side when mounted on the circuit board, the connection portion with the circuit board can be hardly affected by dust or the like.
[0073]
Further, the transmissive light modulation device having the above-described configuration may be configured as follows.
FIG. 18 is a cross-sectional view of a transmissive light modulation device having a structure in which the light modulation element array of the transmissive light modulation device of FIG. 17 is provided on the surface opposite to the support substrate side of the element fixing substrate.
In this transmissive light modulation device 510 as a modification, the element fixing substrate 11 connected to the support substrate 72 is provided on the surface opposite to the support substrate 72 side of the light modulation element array 15.
According to such a configuration, it is possible to easily attach various optical function members such as an optical filter to the light modulation element array 15 and protect the light modulation element array 15 with a sealing member or the like.
[0074]
(Seventh embodiment)
Next, a seventh embodiment of the transmissive light modulation device according to the present invention will be described.
FIG. 19 shows a sectional view of a transmissive light modulation device provided with a microlens array.
In this transmissive light modulation device 600, a microlens array 97 composed of a plurality of microlenses is provided on the light incident side of the light modulation element array 15 with respect to the transmissive light modulation device 100 shown in FIG. In addition, incident light shall be introduced toward the upper side from the lower side of FIG. The microlens array 97 is attached to the sealing transparent substrate 21, collects incident light, and condenses it on the light modulation unit 55 of each light modulation element 25 of the light modulation element array 15. In addition, each microlens of the microlens array 97 is surrounded by a black matrix 99 having a light shielding property.
[0075]
As described above, according to the transmissive light modulation device 600 including the microlens array 97 that focuses the incident light on the light modulation element array 15, the light modulation of the light modulation element array 15 is performed by the microlens array 97. The light can be converged on the light modulation unit 55 of the element 25 and emitted from the light modulation unit 55. That is, the light modulation element 25 is formed as a light modulation part 55 having a light modulation function only for a part of the entire arrangement region of one element, and the aperture ratio is increased in the method of irradiating the entire element with incident light. There was a limit to doing it. For this reason, the light modulation is performed in a state where the incident light is converged on the light modulation unit 55, and the transmitted light from the light modulation unit 55 is spread and emitted in front of the optical path of the light modulation unit 55. As a result, the apparent aperture ratio increases, and the transmissive part 103 of the transmissive light modulation device 600 is substantially free from light shielding portions between regions other than the light modulation parts 55 of the light modulation elements 25 and between the light modulation elements 25. It can be in a state that does not exist. As a result, there is no light-shielding region around the light modulation unit 55 of the light modulation element 25, noise between pixels in the transmission unit 103 is greatly reduced, and high-efficiency light modulation with high transmitted light intensity is possible. .
Further, since the periphery of each microlens of the microlens array 97 is surrounded by the black matrix 99, the generation of stray light around the microlens is prevented.
[0076]
The microlens array 97 may be provided on the exit side of incident light, or may be provided on both the entrance side and the exit side. Furthermore, another optical function member may be provided at an arbitrary position such as a surface of the sealing transparent substrate 21 opposite to the side on which the microlens array 97 is disposed. Examples of the optical function member in this case include members such as a prism, a lens, a diffraction element, an optical filter, a beam splitter, and a deflection filter.
[0077]
Further, the transmissive light modulation device having the above-described configuration may be configured as follows.
FIG. 20 shows a cross-sectional view of a transmissive light modulation device that introduces incident light from the upper side to the lower side.
A transmissive light modulation device 610 as a modification is obtained by providing a microlens array 97 composed of a plurality of microlenses on the light incident side of the light modulation element array 15 with respect to the transmissive light modulation device 200 shown in FIG. It is. In addition, incident light shall be introduced toward the lower side from the upper side of FIG. The microlens array 97 is attached to the sealing transparent substrate 21, collects incident light, and condenses the light on the light modulation unit 55 of each light modulation element 25 of the light modulation element array 15. Other configurations are the same as those described above, and the same effects as those of the transmissive light modulation device 600 are obtained.
[0078]
(Eighth embodiment)
Next, an eighth embodiment of a transmissive light modulation device according to the present invention will be described.
FIG. 21 shows a cross-sectional view of a transmissive light modulator having a narrow terminal pitch transmissive light modulator (for example, 600) equipped with a microlens array mounted on a support substrate.
In this transmissive light modulator 700, the above-described transmissive light modulator 600 is replaced by a support substrate instead of the transmissive light modulator (eg, 100, 300) having a narrow terminal pitch of the transmissive light modulator 400 shown in FIG. 71 is mounted.
According to the configuration of the transmissive light modulation device 700, the transmissive light modulation device 600 having connection terminals with a narrow pitch is mounted on a support substrate 71 having connection terminal rows 73 arranged in an area array with a wide pitch. Since the connection terminal row 17 of the narrow transmission optical modulator 600 is electrically connected from the connection terminal 81 to the connection terminal 75 through the wiring pattern 77, it is mounted on a general circuit board having a wide terminal pitch. Becomes easy.
[0079]
Further, the element fixing substrate 11 has the light modulation element array 15 and the microlens array 97 disposed on the opening 79 side, and the light modulation element array 15 on the element fixing substrate 11 side is accommodated in the opening 79 of the support substrate 71. Since the configuration is adopted, the light modulation element array 15 and the microlens array 97 can be protected from external force and environmental atmosphere, and the light modulation element array 15 can be prevented from protruding to the outside of the transmissive light modulation device.
[0080]
(Ninth embodiment)
Next, a ninth embodiment of the transmissive light modulation device according to the present invention will be described.
FIG. 22 shows a cross-sectional view of a transmissive light modulator having a narrow terminal pitch transmissive light modulator (for example, 610) having a microlens array mounted on a support substrate.
In this transmissive light modulation device 800, instead of the transmissive light modulation device 610 described above instead of the transmissive light modulation device (eg, 100, 300) having a narrow terminal pitch of the transmissive light modulation device 400 shown in FIG. 71 is mounted.
According to the configuration of the transmissive light modulation device 800, as in the seventh embodiment, mounting on a general circuit board having a wide terminal pitch is facilitated. Further, since the light modulation element array 15 and the microlens array 97 are arranged on the upper surface side, various optical function members such as an optical filter can be freely attached to the sealing transparent substrate 21. Examples of the optical function member in this case include members such as a prism, a lens, a diffraction element, an optical filter, a beam splitter, and a deflection filter.
[0081]
(10th Embodiment)
Next, a method for mounting the transmissive light modulation device according to the present invention will be described.
FIG. 23 is a cross-sectional view showing a state in which the transmissive light modulation device is mounted on a circuit board.
Here, a state in which the above-described transmission type light modulation device 600 is mounted on the circuit board 105 is shown as an example, but the transmission type light modulation device (100, 200, 300, 310) having a narrow terminal pitch, which has already been described above. Any of these may be used.
The circuit board 105 is mounted with, for example, an IC such as a driving IC, a memory IC, and a system control CPU for the light modulation element array 15, and general electronic components 107 such as a capacitor, a resistor, and a connector. A transmission opening 109 such as an opening hole is formed. As the circuit board 105, a build-up board is preferably used. Here, the build-up substrate is a substrate manufactured by stacking new layers called build-up layers above and below a core layer (multi-layer substrate serving as a core) of a printed wiring board.
[0082]
The transmissive light modulation device 600 is mounted at a position where the light modulation element array 15 overlaps the transmissive opening 109. That is, the light modulation element array 15 and the transmission opening 109 are aligned, and the connection terminal row 17 of the transmission light modulation device 600 is soldered to the land 111 of the circuit board 105. A specific connection form of the connection terminal row 17 is not limited to this, and connection pins, columns, or a known connection technique can be used.
[0083]
According to such a mounting method of the transmissive light modulation device, the transmissive light modulation device can be easily mounted and installed on the circuit board 105 in which the transmissive opening 109 is formed. Alternatively, the transmission opening 109 may be configured to be sealed with a light-transmitting material that is transparent to light to be modulated, such as glass or resin. In this case, the bonding strength with the circuit board 105 is increased, and the circuit The substrate 105 itself can be hardened and the light modulation element array 15 and the like can be protected. In addition, by using a transparent substrate as the circuit board 105, transmission / non-transmission light modulation is possible simply by mounting as it is.
Furthermore, it is good also as a structure which provided optical function members, such as a prism, a lens, a diffraction element, an optical filter, a beam splitter, and a polarizing filter suitably.
[0084]
In addition to forming the opening hole in the circuit board 105 shown in FIG. 24A as described above, the transmission opening 109 is cut at the end of the circuit board 105 shown in FIG. 24B, for example. The notch 113 may be used. In this case, the processing of the circuit board 105 can be simplified.
In addition, by using the electronic component 107 as a driving device necessary for driving the light modulation element array, for example, the circuit board 105 can function as a module for driving the transmission type light modulation device.
[0085]
Next, a method for mounting another transmissive light modulation device will be described.
FIG. 25 is a cross-sectional view showing a state in which another transmissive light modulation device is mounted on a circuit board.
Here, a state where the above-described transmission type light modulation device 700 is mounted on the circuit board 105 is shown as an example, but the transmission type light modulation devices (400, 410, 420, 430, 440, 450, 500, 510).
[0086]
Also in this case, as in the case shown in FIG. 23, an electronic component 107 such as a driving IC for the light modulation element array 15 is mounted, and a transmission opening 109 is formed in a part thereof. As the circuit board 105, a build-up board is preferably used.
According to such a mounting method of the transmissive light modulation device, the transmissive light modulation device can be easily mounted and installed on the general circuit board 105 in which the transmissive opening 109 is formed. Further, by closing the transmission opening 109 with a transparent sealing member such as glass or resin, the light modulation element array 15 and the sealing transparent substrate 21 that protects the light modulation element array 15 are connected to the circuit board 105 and the element fixing substrate 11. In this case, the bonding strength with the circuit board 105 can be increased, the circuit board 105 itself can be hardened, and the light modulation element array 15 and the like can be protected. In addition, an optical function member such as a prism, a lens, a diffraction element, an optical filter, a beam splitter, or a polarizing filter may be appropriately provided.
[0087]
Each embodiment and each modification described above can configure various transmissive light modulation devices by appropriately combining the respective configurations, thereby obtaining an optimum function according to the purpose. it can.
[0088]
【The invention's effect】
According to the transmissive light modulation device and the mounting method thereof according to the present invention, a transmissive light modulation element array that transmits or introduces incident light that is introduced, and a circuit that drives or controls the light modulation element array And a first connection terminal electrically connected to the circuit formed on the element fixing substrate. The first connection terminal is a surface mounting connection terminal, and the element fixing substrate. By forming an area array on at least a part of the periphery of the region where the light modulation element array is formed on one surface or the other surface, the number of signal lines increases to increase the number of connection terminals. Even if it increases, the first connection terminals are arranged in a high density in an area array, so that the size of the light modulation device is not increased. Therefore, it is possible to construct a transmissive light modulation device that can be downsized while having a large number of connection terminals advantageous for high-speed driving. Further, when the transmission type light modulation device is mounted on the circuit board, the circuit board has the transmission opening portion, so that the position of the transmission opening portion and the light modulation element array are overlapped and mounted. Non-transmission light modulation is possible on the circuit board.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a transmissive light modulation device according to a first embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a schematic configuration and operation as an example of a Fabry-Perot interference type light modulation element;
FIG. 3 is an equivalent circuit diagram for active matrix driving of a light modulation element array.
4A is a plan view and FIG. 4B is a cross-sectional view of a mechanical shutter type light modulation element.
FIGS. 5A and 5B are operation explanatory views showing, in a plane, an (a) off state and an (b) on state of a mechanical shutter type light modulation element. FIGS.
6 is a cross-sectional view of the light modulation element shown in FIG. 5, in which (a) is an off state (b) is an on state.
FIG. 7 is a cross-sectional view showing a configuration of a transmissive light modulation device in which a light modulation element array is provided on the upper surface side.
FIG. 8 is a cross-sectional view illustrating a configuration of a transmissive light modulation device using a liquid crystal element.
FIG. 9 is a cross-sectional view illustrating a configuration of a transmissive light modulation device including a light modulation element array on a surface opposite to a surface on which the connection terminal row of the element fixing substrate is disposed.
FIG. 10 is a cross-sectional view showing a configuration of a transmissive light modulation device using an electro-optic crystal element.
11A is a cross-sectional view illustrating a configuration of a transmissive light modulation device mounted on a support substrate, FIG. 11B is a top view, and FIG. 11C is a bottom view.
FIG. 12 is a cross-sectional view of a modularized transmission type light modulation device.
FIG. 13 is a cross-sectional view of a transmissive light modulation device in which terminal connection portions are sealed with resin.
FIG. 14 is a cross-sectional view of a transmissive light modulation device in which terminal connection portions are sealed with resin.
FIG. 15 is a cross-sectional view of a transmissive light modulation device in which terminals are connected by wire bonding.
FIG. 16 is a cross-sectional view of a transmissive light modulation device in which a sealing member is bonded to an opening of a support substrate.
FIG. 17 is a cross-sectional view of a transmissive light modulation device in which a connection terminal on the element fixing substrate side and a connection terminal on the support substrate side are formed on the same side.
18 is a cross-sectional view of a transmissive light modulation device having a structure in which the light modulation element array of the transmissive light modulation device of FIG. 17 is provided on the surface of the element fixing substrate opposite to the support substrate side.
FIG. 19 is a cross-sectional view of a transmissive light modulation device provided with a microlens array.
FIG. 20 is a cross-sectional view of a transmissive light modulation device that introduces incident light from the upper side to the lower side.
FIG. 21 is a cross-sectional view of a transmissive light modulator having a narrow terminal pitch transmissive light modulator equipped with a microlens array mounted on a support substrate.
FIG. 22 is a cross-sectional view of a transmissive light modulator having a narrow terminal pitch transmissive light modulator equipped with a microlens array mounted on a support substrate.
FIG. 23 is a cross-sectional view showing a state in which a transmissive light modulation device is mounted on a circuit board.
FIG. 24 is an example of a transmissive opening of a support substrate, where (a) is an opening hole and (b) is a plan view showing a notch.
FIG. 25 is a cross-sectional view showing a state in which another transmissive light modulation device is mounted on a circuit board.
FIG. 26 is an explanatory diagram showing a control drive circuit of the light modulation element array.
[Explanation of symbols]
11 Element fixed board
13 Internal circuit layer (internal wiring circuit)
15 Light modulation element array
17 Connection terminal row
19 Sealing material
21 Transparent substrate for sealing
23 Connection terminal (first connection terminal)
25 Light modulation element
27 Pixel drive circuit
29 Lower electrode
31 half mirror
33 Optical spacer
35 Upper electrode
37 half mirror
39 Movable thin film
41 Mechanical shutter light modulator
55 Light modulator
59 Liquid crystal elements
61 Pixel electrode
63, 67 Light distribution film
64 Liquid crystal layer
66 Counter electrode
67 Pixel electrode
68 Counter electrode
69 PLZT thin film
71, 72 Support substrate
73 Connection terminal row
75 Connection terminal (third connection terminal)
79 opening
81 Connection terminal (second connection terminal)
83 Circuit elements
87 Connection terminal (first connection terminal)
89 Connection terminal (second connection terminal)
95 Sealing member
97 Micro lens array
103 Transmission part
105 Circuit board
107 electronic components
109 Transmission opening
111 rand
113 Notch
100, 200, 300, 310, 320, 400, 410, 420, 430, 440, 450, 500, 510, 600, 610, 700, 800 Transmission type light modulator

Claims (12)

導入される入射光を透過又は非透過状態にする透過型の光変調素子アレイと、該光変調アレイを駆動又は制御する回路と、該回路に電気的に接続された第1接続端子とを素子固定基板上に形成した透過型光変調素子であって、
前記第1接続端子が、表面実装用の接続端子であり、前記素子固定基板の一方の面又は他方の面に、前記光変調素子アレイの形成された領域の周囲の少なくとも一部でエリアアレイ状に形成されていることを特徴とする透過型光変調装置。
A transmission-type light modulation element array for transmitting incident light to be introduced into a transmission or non-transmission state, a circuit for driving or controlling the light modulation array, and a first connection terminal electrically connected to the circuit A transmissive light modulation element formed on a fixed substrate,
The first connection terminal is a connection terminal for surface mounting, and is formed in an area array shape on at least a part of the periphery of the region where the light modulation element array is formed on one surface or the other surface of the element fixing substrate. A transmissive light modulation device characterized in that the transmissive light modulation device is formed.
前記光変調素子アレイが、マイクロマシニングにより形成された微小電気機械式の光変調素子であることを特徴とする請求項1記載の透過型光変調装置。2. The transmission type light modulation device according to claim 1, wherein the light modulation element array is a micro electro mechanical light modulation element formed by micromachining. 前記光変調素子アレイが液晶素子であることを特徴とする請求項1記載の透過型光変調装置。The transmissive light modulation device according to claim 1, wherein the light modulation element array is a liquid crystal element. 前記光変調素子アレイに対峙して、入射光に対して光透過性を有する透明領域を一部に備え、光変調素子アレイを素子固定基板との間に封止するための封止部材が設けられていることを特徴とする請求項1〜請求項3のいずれか1項記載の透過型光変調装置。Opposite to the light modulation element array, a transparent region having a light transmission property with respect to incident light is provided in part, and a sealing member for sealing the light modulation element array between the element fixing substrate is provided. The transmissive light modulation device according to claim 1, wherein the transmissive light modulation device is provided. 屈折、回折、干渉、偏光、偏向の少なくともいずれかを利用した光学機能部材が一体に設けられていることを特徴とする請求項1〜請求項4のいずれか1項記載の透過型光変調装置。The transmission type light modulation device according to any one of claims 1 to 4, wherein an optical functional member using at least one of refraction, diffraction, interference, polarization, and deflection is integrally provided. . 前記光変調素子アレイの各光変調部に向けて入射光を収束するマイクロレンズアレイが、前記光変調素子アレイに対する入射光の光路入射側に設けられていることを特徴とする請求項1〜請求項5のいずれか1項記載の透過型光変調装置。The microlens array which converges incident light toward each light modulation part of the said light modulation element array is provided in the optical path entrance side of the incident light with respect to the said light modulation element array. Item 6. The transmissive light modulation device according to any one of Items 5 to 6. 前記素子固定基板を搭載する支持基板を一体に備えた透過型光変調装置であって、
前記支持基板は、入射光に対して光透過性を有する透過領域を少なくとも一部に備え、一方の面に前記透過領域の周囲で前記素子固定基板の第1接続端子に対応するエリアアレイ状の第2接続端子が形成されると共に、前記一方の面又は他方の面に前記第2接続端子と内部配線回路を介して電気的に接続されたエリアアレイ状の第3接続端子が形成されており、
前記素子固定基板の第1接続端子と、前記支持基板の第2接続端子とが電気的に接続されていることを特徴とする請求項1〜請求項6のいずれか1項記載の透過型光変調装置。
A transmission type light modulation device integrally including a support substrate on which the element fixing substrate is mounted,
The support substrate includes at least a part of a transmissive region having light transmittance with respect to incident light, and has an area array shape corresponding to the first connection terminal of the element fixing substrate around the transmissive region on one surface. A second connection terminal is formed, and an area array-like third connection terminal electrically connected to the second connection terminal via an internal wiring circuit is formed on the one surface or the other surface. ,
The transmissive light according to any one of claims 1 to 6, wherein the first connection terminal of the element fixing substrate and the second connection terminal of the support substrate are electrically connected. Modulation device.
前記第1接続端子と前記第2接続端子との接続部位がモールド封止されていることを特徴とする請求項7記載の透過型光変調装置。The transmissive light modulation device according to claim 7, wherein a connection portion between the first connection terminal and the second connection terminal is mold-sealed. 前記支持基板の透過領域が開口孔であって、該開口孔に前記素子固定基板の光変調素子アレイが挿入されていることを特徴とする請求項7又は請求項8記載の透過型光変調装置。9. The transmission type light modulation device according to claim 7, wherein the transmission region of the support substrate is an opening hole, and the light modulation element array of the element fixing substrate is inserted into the opening hole. . 前記光変調素子アレイが、前記素子固定基板の前記支持基板側とは反対側の面に形成されていることを特徴とする請求項7又は請求項8記載の透過型光変調装置。9. The transmissive light modulation device according to claim 7, wherein the light modulation element array is formed on a surface of the element fixing substrate opposite to the support substrate side. 前記支持基板に電子部品が実装されていることを特徴とする請求項7〜請求項10のいずれか1項記載の透過型光変調装置。The transmissive light modulation device according to claim 7, wherein an electronic component is mounted on the support substrate. 請求項1〜請求項11のいずれか1項記載の透過型光変調装置を回路基板に実装する透過型光変調装置の実装方法であって、
前記回路基板が開口孔又は切り欠きからなる透過開口部を有し、前記透過型光変調装置の光変調素子アレイを、前記透過開口部の位置に合わせて実装することを特徴とする透過型光変調装置の実装方法。
A mounting method of a transmission type light modulation device, wherein the transmission type light modulation device according to any one of claims 1 to 11 is mounted on a circuit board,
The circuit board has a transmission opening formed of an opening hole or a notch, and the light modulation element array of the transmission light modulation device is mounted in accordance with the position of the transmission opening. Method of mounting a modulation device.
JP2003080827A 2003-03-24 2003-03-24 Transmission type light modulation device and mounting method thereof Expired - Fee Related JP4505189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080827A JP4505189B2 (en) 2003-03-24 2003-03-24 Transmission type light modulation device and mounting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080827A JP4505189B2 (en) 2003-03-24 2003-03-24 Transmission type light modulation device and mounting method thereof

Publications (2)

Publication Number Publication Date
JP2004287215A true JP2004287215A (en) 2004-10-14
JP4505189B2 JP4505189B2 (en) 2010-07-21

Family

ID=33294581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080827A Expired - Fee Related JP4505189B2 (en) 2003-03-24 2003-03-24 Transmission type light modulation device and mounting method thereof

Country Status (1)

Country Link
JP (1) JP4505189B2 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220746A (en) * 2005-02-08 2006-08-24 Rohm Co Ltd Light controller and structural body used therefor
JP2007000994A (en) * 2005-06-27 2007-01-11 Toshiba Corp Semiconductor device
JP2007240744A (en) * 2006-03-07 2007-09-20 Tecdia Kk Optical switch and optical add/drop multiplexer
JP2008533510A (en) * 2005-02-23 2008-08-21 ピクストロニクス,インコーポレイテッド Display device and manufacturing method thereof
JP2009139444A (en) * 2007-12-03 2009-06-25 Seiko Epson Corp Electro-optical display device and electronic device
JP2009151297A (en) * 2007-11-29 2009-07-09 Kyocera Corp Optical device, and method for manufacturing optical device
JP2010217469A (en) * 2009-03-17 2010-09-30 V Technology Co Ltd Wiring structure of spatial light modulator
US7894115B2 (en) 2005-01-20 2011-02-22 Rohm Co., Ltd. Light control apparatus having light modulating film
JP2011069946A (en) * 2009-09-25 2011-04-07 Dainippon Screen Mfg Co Ltd Spatial optical modulator and exposure device
JP2011515707A (en) * 2008-03-07 2011-05-19 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Interferometric modulator in transmission mode.
JP2011522282A (en) * 2008-04-22 2011-07-28 3アリティー,インコーポレイティド Position-acceptable autostereoscopic display system and method
US7999994B2 (en) 2005-02-23 2011-08-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US8169679B2 (en) 2008-10-27 2012-05-01 Pixtronix, Inc. MEMS anchors
JP2012128451A (en) * 2005-02-23 2012-07-05 Pixtronix Inc Display methods and apparatus
WO2012105055A1 (en) * 2011-02-04 2012-08-09 株式会社日立製作所 Optical filtering method, device therefor, substrate-defect inspection method, and apparatus therefor
JP2012150194A (en) * 2011-01-18 2012-08-09 Seiko Epson Corp Optical module and optical analysis device
JP2012198554A (en) * 2005-02-23 2012-10-18 Pixtronix Inc Display device
JP2013088822A (en) * 2011-10-21 2013-05-13 Sharp Corp Ultraviolet laser source and method of fabricating frequency-doubling waveguide generating ultraviolet light
US8482496B2 (en) 2006-01-06 2013-07-09 Pixtronix, Inc. Circuits for controlling MEMS display apparatus on a transparent substrate
JP2013156630A (en) * 2012-01-11 2013-08-15 Sharp Corp Static random-access cell, active matrix device and array element circuit
US8519923B2 (en) 2005-02-23 2013-08-27 Pixtronix, Inc. Display methods and apparatus
US8520285B2 (en) 2008-08-04 2013-08-27 Pixtronix, Inc. Methods for manufacturing cold seal fluid-filled display apparatus
US8519945B2 (en) 2006-01-06 2013-08-27 Pixtronix, Inc. Circuits for controlling display apparatus
JP2013167701A (en) * 2012-02-14 2013-08-29 Seiko Epson Corp Optical filter device and method for manufacturing optical filter device
US8526096B2 (en) 2006-02-23 2013-09-03 Pixtronix, Inc. Mechanical light modulators with stressed beams
US8792101B2 (en) 2011-01-27 2014-07-29 Seiko Epson Corporation Optical module and spectroscopic analyzer
US9082353B2 (en) 2010-01-05 2015-07-14 Pixtronix, Inc. Circuits for controlling display apparatus
US9087486B2 (en) 2005-02-23 2015-07-21 Pixtronix, Inc. Circuits for controlling display apparatus
US9135868B2 (en) 2005-02-23 2015-09-15 Pixtronix, Inc. Direct-view MEMS display devices and methods for generating images thereon
US9134552B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. Display apparatus with narrow gap electrostatic actuators
US9158106B2 (en) 2005-02-23 2015-10-13 Pixtronix, Inc. Display methods and apparatus
US9176318B2 (en) 2007-05-18 2015-11-03 Pixtronix, Inc. Methods for manufacturing fluid-filled MEMS displays
US9229222B2 (en) 2005-02-23 2016-01-05 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
US9261694B2 (en) 2005-02-23 2016-02-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US9336732B2 (en) 2005-02-23 2016-05-10 Pixtronix, Inc. Circuits for controlling display apparatus
JP2017111433A (en) * 2015-11-16 2017-06-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Micromechanical component, illumination device, and corresponding production method
WO2023157408A1 (en) * 2022-02-18 2023-08-24 株式会社フジクラ Optical switch and switching method

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108776A (en) * 1989-09-22 1991-05-08 Mitsubishi Electric Corp Laminated type semiconductor device and manufacture thereof
JPH05142553A (en) * 1991-11-20 1993-06-11 Fujitsu Ltd Liquid crystal display element with test terminal
JPH05196878A (en) * 1992-01-23 1993-08-06 Minolta Camera Co Ltd Optical modulation device
JPH0651250A (en) * 1992-05-20 1994-02-25 Texas Instr Inc <Ti> Monolithic space optical modulator and memory package
JPH06295935A (en) * 1993-04-07 1994-10-21 Hitachi Ltd Semiconductor package
JPH06310759A (en) * 1993-04-26 1994-11-04 Kyocera Corp Image pickup device
JPH07178961A (en) * 1993-12-22 1995-07-18 Kyocera Corp Imaging device
US5491362A (en) * 1992-04-30 1996-02-13 Vlsi Technology, Inc. Package structure having accessible chip
JPH08201835A (en) * 1995-01-27 1996-08-09 Kyocera Corp Liquid crystal display device
WO1997031283A1 (en) * 1996-02-26 1997-08-28 Seiko Epson Corporation Optical modulating device, display and electronic device
JPH1039239A (en) * 1996-07-18 1998-02-13 Ricoh Co Ltd Spatial light modulation element
JPH10254370A (en) * 1997-03-10 1998-09-25 Canon Inc Display panel and projection type display device using it
JP2000012910A (en) * 1998-06-19 2000-01-14 Matsushita Electron Corp Semiconductor light-emitting device and display device structure comprising the same
JP2001075488A (en) * 1999-06-30 2001-03-23 Toshiba Corp Display device and display method
JP2001308225A (en) * 2000-02-22 2001-11-02 Texas Instr Inc <Ti> Flip-chip assembly of protected micro mechanical device
US6396116B1 (en) * 2000-02-25 2002-05-28 Agilent Technologies, Inc. Integrated circuit packaging for optical sensor devices
JP2002231974A (en) * 2001-01-30 2002-08-16 Matsushita Electric Ind Co Ltd Light receiving device, mounting structure thereof, and method of manufacturing the same
JP2002312975A (en) * 2001-04-12 2002-10-25 Sankyo Seiki Mfg Co Ltd Manufacturing method of light receiving and emitting device for optical head
JP2002341268A (en) * 2001-05-11 2002-11-27 Sony Corp Display device
JP2002351086A (en) * 2001-03-22 2002-12-04 Fuji Photo Film Co Ltd Exposure device
JP2002357846A (en) * 2002-04-15 2002-12-13 Sharp Corp Liquid crystal display device and its manufacturing method
JP2003029249A (en) * 2001-07-16 2003-01-29 Sanyo Electric Co Ltd Display device
JP2003036034A (en) * 2001-07-25 2003-02-07 Sony Corp Method for producing display device and display device
JP2003057571A (en) * 2001-08-16 2003-02-26 Sony Corp Optical multi-layered structure and optical switching element, and image display device

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108776A (en) * 1989-09-22 1991-05-08 Mitsubishi Electric Corp Laminated type semiconductor device and manufacture thereof
JPH05142553A (en) * 1991-11-20 1993-06-11 Fujitsu Ltd Liquid crystal display element with test terminal
JPH05196878A (en) * 1992-01-23 1993-08-06 Minolta Camera Co Ltd Optical modulation device
US5491362A (en) * 1992-04-30 1996-02-13 Vlsi Technology, Inc. Package structure having accessible chip
JPH0651250A (en) * 1992-05-20 1994-02-25 Texas Instr Inc <Ti> Monolithic space optical modulator and memory package
JPH06295935A (en) * 1993-04-07 1994-10-21 Hitachi Ltd Semiconductor package
JPH06310759A (en) * 1993-04-26 1994-11-04 Kyocera Corp Image pickup device
JPH07178961A (en) * 1993-12-22 1995-07-18 Kyocera Corp Imaging device
JPH08201835A (en) * 1995-01-27 1996-08-09 Kyocera Corp Liquid crystal display device
WO1997031283A1 (en) * 1996-02-26 1997-08-28 Seiko Epson Corporation Optical modulating device, display and electronic device
JPH1039239A (en) * 1996-07-18 1998-02-13 Ricoh Co Ltd Spatial light modulation element
JPH10254370A (en) * 1997-03-10 1998-09-25 Canon Inc Display panel and projection type display device using it
JP2000012910A (en) * 1998-06-19 2000-01-14 Matsushita Electron Corp Semiconductor light-emitting device and display device structure comprising the same
JP2001075488A (en) * 1999-06-30 2001-03-23 Toshiba Corp Display device and display method
JP2001308225A (en) * 2000-02-22 2001-11-02 Texas Instr Inc <Ti> Flip-chip assembly of protected micro mechanical device
US6396116B1 (en) * 2000-02-25 2002-05-28 Agilent Technologies, Inc. Integrated circuit packaging for optical sensor devices
JP2002231974A (en) * 2001-01-30 2002-08-16 Matsushita Electric Ind Co Ltd Light receiving device, mounting structure thereof, and method of manufacturing the same
JP2002351086A (en) * 2001-03-22 2002-12-04 Fuji Photo Film Co Ltd Exposure device
JP2002312975A (en) * 2001-04-12 2002-10-25 Sankyo Seiki Mfg Co Ltd Manufacturing method of light receiving and emitting device for optical head
JP2002341268A (en) * 2001-05-11 2002-11-27 Sony Corp Display device
JP2003029249A (en) * 2001-07-16 2003-01-29 Sanyo Electric Co Ltd Display device
JP2003036034A (en) * 2001-07-25 2003-02-07 Sony Corp Method for producing display device and display device
JP2003057571A (en) * 2001-08-16 2003-02-26 Sony Corp Optical multi-layered structure and optical switching element, and image display device
JP2002357846A (en) * 2002-04-15 2002-12-13 Sharp Corp Liquid crystal display device and its manufacturing method

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7894115B2 (en) 2005-01-20 2011-02-22 Rohm Co., Ltd. Light control apparatus having light modulating film
JP2006220746A (en) * 2005-02-08 2006-08-24 Rohm Co Ltd Light controller and structural body used therefor
US9177523B2 (en) 2005-02-23 2015-11-03 Pixtronix, Inc. Circuits for controlling display apparatus
US9158106B2 (en) 2005-02-23 2015-10-13 Pixtronix, Inc. Display methods and apparatus
US9336732B2 (en) 2005-02-23 2016-05-10 Pixtronix, Inc. Circuits for controlling display apparatus
US9274333B2 (en) 2005-02-23 2016-03-01 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
US9261694B2 (en) 2005-02-23 2016-02-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US9500853B2 (en) 2005-02-23 2016-11-22 Snaptrack, Inc. MEMS-based display apparatus
US9229222B2 (en) 2005-02-23 2016-01-05 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
JP4669520B2 (en) * 2005-02-23 2011-04-13 ピクストロニクス,インコーポレイテッド Display device and manufacturing method thereof
US8519923B2 (en) 2005-02-23 2013-08-27 Pixtronix, Inc. Display methods and apparatus
JP2008533510A (en) * 2005-02-23 2008-08-21 ピクストロニクス,インコーポレイテッド Display device and manufacturing method thereof
US7999994B2 (en) 2005-02-23 2011-08-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US9135868B2 (en) 2005-02-23 2015-09-15 Pixtronix, Inc. Direct-view MEMS display devices and methods for generating images thereon
JP2015132844A (en) * 2005-02-23 2015-07-23 ピクストロニクス,インコーポレイテッド Display method and device
JP2012128451A (en) * 2005-02-23 2012-07-05 Pixtronix Inc Display methods and apparatus
US9087486B2 (en) 2005-02-23 2015-07-21 Pixtronix, Inc. Circuits for controlling display apparatus
JP2012256069A (en) * 2005-02-23 2012-12-27 Pixtronix Inc Display method and device
JP2012198554A (en) * 2005-02-23 2012-10-18 Pixtronix Inc Display device
JP2007000994A (en) * 2005-06-27 2007-01-11 Toshiba Corp Semiconductor device
US8519945B2 (en) 2006-01-06 2013-08-27 Pixtronix, Inc. Circuits for controlling display apparatus
US8482496B2 (en) 2006-01-06 2013-07-09 Pixtronix, Inc. Circuits for controlling MEMS display apparatus on a transparent substrate
US8526096B2 (en) 2006-02-23 2013-09-03 Pixtronix, Inc. Mechanical light modulators with stressed beams
US9128277B2 (en) 2006-02-23 2015-09-08 Pixtronix, Inc. Mechanical light modulators with stressed beams
JP2007240744A (en) * 2006-03-07 2007-09-20 Tecdia Kk Optical switch and optical add/drop multiplexer
US9176318B2 (en) 2007-05-18 2015-11-03 Pixtronix, Inc. Methods for manufacturing fluid-filled MEMS displays
JP2009151297A (en) * 2007-11-29 2009-07-09 Kyocera Corp Optical device, and method for manufacturing optical device
JP2009139444A (en) * 2007-12-03 2009-06-25 Seiko Epson Corp Electro-optical display device and electronic device
US7999987B2 (en) 2007-12-03 2011-08-16 Seiko Epson Corporation Electro-optical display device and electronic device
US8693084B2 (en) 2008-03-07 2014-04-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
JP2011515707A (en) * 2008-03-07 2011-05-19 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Interferometric modulator in transmission mode.
JP2011522282A (en) * 2008-04-22 2011-07-28 3アリティー,インコーポレイティド Position-acceptable autostereoscopic display system and method
US8520285B2 (en) 2008-08-04 2013-08-27 Pixtronix, Inc. Methods for manufacturing cold seal fluid-filled display apparatus
US8891152B2 (en) 2008-08-04 2014-11-18 Pixtronix, Inc. Methods for manufacturing cold seal fluid-filled display apparatus
US9182587B2 (en) 2008-10-27 2015-11-10 Pixtronix, Inc. Manufacturing structure and process for compliant mechanisms
US8599463B2 (en) 2008-10-27 2013-12-03 Pixtronix, Inc. MEMS anchors
US9116344B2 (en) 2008-10-27 2015-08-25 Pixtronix, Inc. MEMS anchors
US8169679B2 (en) 2008-10-27 2012-05-01 Pixtronix, Inc. MEMS anchors
JP2010217469A (en) * 2009-03-17 2010-09-30 V Technology Co Ltd Wiring structure of spatial light modulator
JP2011069946A (en) * 2009-09-25 2011-04-07 Dainippon Screen Mfg Co Ltd Spatial optical modulator and exposure device
US9082353B2 (en) 2010-01-05 2015-07-14 Pixtronix, Inc. Circuits for controlling display apparatus
JP2012150194A (en) * 2011-01-18 2012-08-09 Seiko Epson Corp Optical module and optical analysis device
US8792101B2 (en) 2011-01-27 2014-07-29 Seiko Epson Corporation Optical module and spectroscopic analyzer
WO2012105055A1 (en) * 2011-02-04 2012-08-09 株式会社日立製作所 Optical filtering method, device therefor, substrate-defect inspection method, and apparatus therefor
US8743922B2 (en) 2011-10-21 2014-06-03 Sharp Kabushiki Kaisha Ultraviolet laser
US9158178B2 (en) 2011-10-21 2015-10-13 Sharp Kabushiki Kaisha Ultraviolet laser
JP2013088822A (en) * 2011-10-21 2013-05-13 Sharp Corp Ultraviolet laser source and method of fabricating frequency-doubling waveguide generating ultraviolet light
JP2013156630A (en) * 2012-01-11 2013-08-15 Sharp Corp Static random-access cell, active matrix device and array element circuit
JP2013167701A (en) * 2012-02-14 2013-08-29 Seiko Epson Corp Optical filter device and method for manufacturing optical filter device
US9678259B2 (en) 2012-02-14 2017-06-13 Seiko Epson Corporation Optical filter device and manufacturing method for the optical filter device
US9134552B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. Display apparatus with narrow gap electrostatic actuators
JP2017111433A (en) * 2015-11-16 2017-06-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Micromechanical component, illumination device, and corresponding production method
WO2023157408A1 (en) * 2022-02-18 2023-08-24 株式会社フジクラ Optical switch and switching method

Also Published As

Publication number Publication date
JP4505189B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4505189B2 (en) Transmission type light modulation device and mounting method thereof
US6346430B1 (en) Packaged integrated processor and spatial light modulator
US7969639B2 (en) Optical modulator
EP0831352A1 (en) Optical modulating device, display and electronic device
US7359103B2 (en) Transmission type spatial light modulator and transmission type spatial light modulation array device
CN108919573B (en) Display panel, display device, imaging method and depth distance detection method
US8445984B2 (en) Micro-optical device packaging system
US20070171504A1 (en) Light control device and light control system using the same
WO2023025018A1 (en) Electronic device
KR20220009738A (en) Image sensor package and camera device comprising the same
CN212696099U (en) Imaging system, image sensor packaging device and image sensor
US8125423B2 (en) Voltage control circuit, voltage control method and light control apparatus utilizing the same
JP2010093754A (en) Solid-state image pickup element and signal processing system
CN114527549A (en) Optical element driving mechanism
KR100645635B1 (en) Image pick-up module comprising an optical device
KR100722617B1 (en) Packaging structure for optical modulator
KR100815350B1 (en) Packaging structure for optical modulator
KR100815358B1 (en) Optical modulator having tilted cline type window
KR20100055200A (en) Optical modulator module package
US7773288B2 (en) Dynamic image regulator
KR20220023489A (en) Image sensor package and camera device comprising the same
JP2004170516A (en) Micro structure body
KR20210091509A (en) Image sensor package and camera module including the same
KR20220028368A (en) Image sensor package and camera device comprising the same
KR20210088975A (en) Sensing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070702

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees