JP2002231974A - Light receiving device, mounting structure thereof, and method of manufacturing the same - Google Patents

Light receiving device, mounting structure thereof, and method of manufacturing the same

Info

Publication number
JP2002231974A
JP2002231974A JP2001022368A JP2001022368A JP2002231974A JP 2002231974 A JP2002231974 A JP 2002231974A JP 2001022368 A JP2001022368 A JP 2001022368A JP 2001022368 A JP2001022368 A JP 2001022368A JP 2002231974 A JP2002231974 A JP 2002231974A
Authority
JP
Japan
Prior art keywords
substrate
multilayer substrate
light receiving
optical
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001022368A
Other languages
Japanese (ja)
Inventor
Hideki Iwaki
秀樹 岩城
Tetsuyoshi Ogura
哲義 小掠
Yutaka Taguchi
豊 田口
Minehiro Itagaki
峰広 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001022368A priority Critical patent/JP2002231974A/en
Publication of JP2002231974A publication Critical patent/JP2002231974A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light receiving device, which has a semiconductor element mounted with a small parasitic inductance caused by mounting and has flat frequency characteristics over a wide range, and which can efficiently radiate an amplifier without disturbing an optical coupling part between an optical fiber and a light receiving element. SOLUTION: In the light receiving device which includes an optical fiber, a light receiving element for receiving an optical signal from the optical fiber, a multilayered substrate having a capacitive element built therein, and an amplifier element for amplifying a signal from the light receiving element; the light receiving element and the signal amplifier element are connected in a flip-chip connection manner as opposed to each other via the multilayered substrate, thus enabling efficient heat radiation of the amplifier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、広帯域において低
歪特性に優れた光信号を受信する光受信装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical receiver for receiving an optical signal having excellent low distortion characteristics in a wide band.

【0002】[0002]

【従来の技術】近年、メタリックケーブルや無線などを
用いる通信に代わって、多量の情報を低損失で送ること
ができる光ファイバー通信が実現されている。
2. Description of the Related Art In recent years, instead of communication using a metallic cable or wireless communication, optical fiber communication capable of transmitting a large amount of information with low loss has been realized.

【0003】光ファイバーを用いて映像信号を受信する
場合、受光フロントエンド部には光信号を受けこれに対
応する微少な電流を発生するフォトダイオード(PD)
などの受光素子と、この微少電流を電流−電圧変換した
上で後段に接続されるテレビ受像器などに必要な受信感
度にまでその信号を増幅し復調する素子により構成され
る光受信装置が用いられる。
When an image signal is received using an optical fiber, a photodiode (PD) that receives an optical signal and generates a small current corresponding to the optical signal is received at a light receiving front end portion.
A light receiving device composed of a light receiving element such as a light receiving element and an element for amplifying and demodulating the signal to a receiving sensitivity required for a television receiver or the like connected after the current after converting the minute current into a voltage is used. Can be

【0004】このような映像信号を受信する光受信装置
の扱う信号の周波数帯域は、CATVなどの場合にはチ
ャンネル数の増加につれて高周波側にのび、現在では1
GHzにまで達しようとしている。
[0004] In the case of CATV or the like, the frequency band of a signal handled by an optical receiving apparatus for receiving such a video signal extends to a high frequency side as the number of channels increases, and is currently 1
It is about to reach GHz.

【0005】光ファイバーを使用して多チャンネルの映
像信号を配信するシステムにおいては、特願2000−
163182に記載されている広帯域において低歪特性
に優れた特性を有する、容量素子を基板に内蔵した広帯
域光受信装置が提案されている。これは、図18に示す
ように、バイアス端子105と接地端子106間に容量
が内蔵された多層基板103の容量層が形成された直上
に受光素子101と電気信号を増幅する広帯域増幅器1
02をフリップチップ実装することにより共振周波数を
高周波化することで、広帯域特性を改善して、群遅延偏
差を低減するものである。
A system for distributing multi-channel video signals using optical fibers is disclosed in Japanese Patent Application No. 2000-2000.
A broadband optical receiving apparatus having a characteristic that is excellent in low distortion characteristics in a wide band described in US Pat. As shown in FIG. 18, this is a wideband amplifier 1 that amplifies an electric signal with a light receiving element 101 directly above a capacitance layer of a multilayer substrate 103 having a capacitance built in between a bias terminal 105 and a ground terminal 106.
By increasing the resonance frequency by flip-chip mounting 02, the wide band characteristics are improved and the group delay deviation is reduced.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、広帯域
の光信号をフォトダイオードなどの受光素子にて電気信
号に変換し、信号増幅及び復調する際には、複数の増幅
用の素子を必要とする。特に復調用素子の発熱量が大き
く、かつ同一面上に隣接して受光素子が配置されている
ために、従来の構成において発熱量の大きい素子の裏面
から放熱するためにヒートシンクを直接接合する構成を
する場合、光ファイバと受光素子の光結合部を阻害する
ことなくヒートシンクを接合し、かつ効率的な熱伝導路
を確保する必要がある。
However, when a broadband optical signal is converted into an electric signal by a light-receiving element such as a photodiode, and the signal is amplified and demodulated, a plurality of amplifying elements are required. In particular, since the heat generation amount of the demodulation element is large and the light receiving element is arranged adjacently on the same surface, the heat sink is directly joined to the conventional structure to radiate heat from the back surface of the element having the large heat generation amount. In this case, it is necessary to join the heat sink without obstructing the optical coupling portion between the optical fiber and the light receiving element, and to secure an efficient heat conduction path.

【0007】ところが、増幅器を効率的に放熱するため
ヒートシンクを増幅器へ接合しようとすると光結合部を
阻害してしまうため、受光部を避けて放熱する場合には
必然的に効率的な放熱性を有する構成を得られない。
However, when an attempt is made to join a heat sink to the amplifier in order to efficiently dissipate the heat from the amplifier, the optical coupling portion is hindered. Cannot be obtained.

【0008】さらに、基板側から放熱するには、容量素
子を内蔵した多層基板が発熱する増幅器と放熱板との間
に必ず挿入されることから熱抵抗を低減することが困難
となっていた。
Furthermore, in order to radiate heat from the substrate side, it is difficult to reduce the thermal resistance because a multilayer substrate having a built-in capacitive element is always inserted between the heat-generating amplifier and the radiator plate.

【0009】すなわち、広帯域において低歪特性に優れ
た特性を有する光受信装置の増幅器を光結合部を阻害す
ることなく効率的に放熱させることが出来ないという課
題がある。
That is, there is a problem that an amplifier of an optical receiving device having excellent characteristics with low distortion in a wide band cannot be efficiently dissipated without disturbing an optical coupling portion.

【0010】本発明は、上記課題を考慮し、光ファイバ
と受光素子間の光結合部を妨げることなく増幅器を効率
的に放熱して、しかも実装に起因する寄生インダクタン
スを小さい状態で半導体素子を搭載して広帯域において
平坦な周波数特性を得ることを両立することが出来る光
受信装置、光受信装置の実装構造、光受信装置の製造方
法を提供することを目的とするものである。
The present invention has been made in consideration of the above problems, and efficiently dissipates heat from an amplifier without hindering an optical coupling portion between an optical fiber and a light receiving element. An object of the present invention is to provide an optical receiving device, a mounting structure of the optical receiving device, and a method of manufacturing the optical receiving device, which can be mounted to obtain a flat frequency characteristic in a wide band.

【0011】また、本発明は、上記課題を考慮し、本体
基板に搭載する際の部品点数を低減することができ、製
造時の放熱特性のばらつきが少なく安定して製造するこ
とが出来る光受信装置、光受信装置の実装構造の製造方
法、光受信装置の製造方法を提供することを目的とする
ものである。
Further, in consideration of the above problems, the present invention can reduce the number of components when mounted on a main body substrate, and can stably manufacture with little variation in heat radiation characteristics during manufacturing. It is an object of the present invention to provide an apparatus, a method of manufacturing a mounting structure of an optical receiver, and a method of manufacturing an optical receiver.

【0012】[0012]

【課題を解決するための手段】上述した課題を解決する
ために、第1の本発明(請求項1に対応)は、光ファイ
バと、前記光ファイバからの光信号を受信する受光素子
と、容量素子を内蔵する多層基板と、前記受光素子の信
号を増幅する増幅素子とを備え、前記受光素子及び前記
増幅素子は、前記多層基板の互いに異なった面にそれぞ
れ取り付けられており、前記増幅素子の周囲には、放熱
部材を取り付け得る空間が存在する光受信装置である。
In order to solve the above-mentioned problems, a first invention (corresponding to claim 1) comprises an optical fiber, a light receiving element for receiving an optical signal from the optical fiber, A multi-layer substrate having a built-in capacitance element, and an amplification element for amplifying a signal of the light-receiving element, wherein the light-receiving element and the amplification element are attached to different surfaces of the multi-layer substrate, respectively, Is a light receiving device having a space around which the heat radiation member can be attached.

【0013】また、第2の本発明(請求項2に対応)
は、前記受光素子と前記増幅素子とは、互いに重なるよ
うに前記多層基板にそれぞれ取り付けられている第1の
本発明に記載の光受信装置である。
Further, a second aspect of the present invention (corresponding to claim 2)
Is the optical receiver according to the first aspect of the present invention, wherein the light receiving element and the amplifying element are attached to the multilayer substrate so as to overlap each other.

【0014】また、第3の本発明(請求項3に対応)
は、前記受光素子の出力端子と前記信号増幅素子の入力
端子とが互いに重なるように前記多層基板にそれぞれ取
り付けられている第1または2の本発明に記載の光受信
装置である。
A third aspect of the present invention (corresponding to claim 3)
Is the optical receiving device according to the first or second aspect of the present invention, wherein the output terminal of the light receiving element and the input terminal of the signal amplifying element are attached to the multilayer substrate so as to overlap each other.

【0015】また、第4の本発明(請求項4に対応)
は、前記多層基板は周囲に端子電極を有し、前記増幅素
子は、前記多層基板の前記端子電極が形成されている面
に搭載されている第1〜3の本発明のいずれかに記載の
光受信装置である。
A fourth aspect of the present invention (corresponding to claim 4)
The multi-layer substrate has a peripheral terminal electrode, and the amplifying element is mounted on a surface of the multi-layer substrate on which the terminal electrode is formed. An optical receiver.

【0016】また、第5の本発明(請求項5に対応)
は、前記端子電極の厚さは、前記多層基板の前記端子電
極が形成されている面から前記増幅素子の前記多層基板
が存在する側の面とは反対側の面までの距離より大きい
第4の本発明に記載の光受信装置である。
A fifth aspect of the present invention (corresponding to claim 5)
The fourth thickness of the terminal electrode is larger than a distance from a surface of the multilayer substrate on which the terminal electrode is formed to a surface of the amplifying element opposite to the surface on which the multilayer substrate is present. Is an optical receiving device according to the present invention.

【0017】また、第6の本発明(請求項6に対応)
は、光ファイバと、前記光ファイバからの光信号を受信
する受光素子と、容量素子を内蔵する多層基板と、前記
受光素子の信号を増幅する増幅素子とを備え、前記増幅
素子は前記多層基板の主面に取り付けられており前記受
光素子は前記多層基板の側面に取り付けられており、前
記増幅素子の周囲には、放熱部材を取り付け得る空間が
存在する光受信装置である。
The sixth invention (corresponding to claim 6)
Comprises an optical fiber, a light receiving element for receiving an optical signal from the optical fiber, a multilayer substrate having a built-in capacitance element, and an amplifier element for amplifying a signal of the light receiving element, wherein the amplifier element is the multilayer substrate The light receiving device is mounted on a main surface of the multi-layer substrate, and the light receiving device is mounted on a side surface of the multilayer substrate.

【0018】また、第7の本発明(請求項7に対応)
は、光ファイバと、前記光ファイバからの光信号を受信
する受光素子と、容量素子を内蔵しかつ周囲に端子電極
を有する多層基板と、前記受光素子の信号を増幅する増
幅素子とを備え、前記受光素子は前記増幅素子の面のう
ち、前記多層基板が存在する側の面に直接取り付けられ
ており、前記増幅素子は前記多層基板上に取り付けられ
ており、光ファイバの先端が前記受光素子に当接してお
り、前記増幅素子の周囲には、放熱部材を取り付け得る
空間が存在する光受信装置である。
The seventh invention (corresponding to claim 7)
An optical fiber, a light receiving element for receiving an optical signal from the optical fiber, a multilayer substrate having a built-in capacitive element and having a terminal electrode around, and an amplification element for amplifying the signal of the light receiving element, The light receiving element is directly mounted on the surface of the amplification element on the side where the multilayer substrate is present, the amplification element is mounted on the multilayer substrate, and the tip of an optical fiber is the light receiving element. And there is a space around the amplifying element where a heat radiation member can be attached.

【0019】また、第8の本発明(請求項8に対応)
は、前記受光素子は裏面入射型のフォトダイオードであ
る第1〜7の本発明のいずれかに記載の光受信装置であ
る。
An eighth aspect of the present invention (corresponding to claim 8)
The light receiving device according to any one of the first to seventh aspects of the present invention, wherein the light receiving element is a back-illuminated photodiode.

【0020】また、第9の本発明(請求項9に対応)
は、前記増幅素子は、複数のチップで構成される第1〜
6の本発明のいずれかに記載の光受信装置である。
A ninth aspect of the present invention (corresponding to claim 9)
Are the first to the first, each of which includes a plurality of chips.
An optical receiver according to any one of the sixth to sixth aspects of the present invention.

【0021】また、第10の本発明(請求項10に対
応)は、第4または5の本発明に記載の光受信装置と、
前記多層基板の前記端子電極に導電性電極を介して接続
された本体基板と、前記増幅素子の前記多層基板が存在
する面とは反対側の面に接続された放熱板とを備えた光
受信装置の実装構造である。
A tenth aspect of the present invention (corresponding to claim 10) is an optical receiving device according to the fourth or fifth aspect of the present invention,
An optical receiver comprising: a main body substrate connected to the terminal electrode of the multilayer substrate via a conductive electrode; and a radiator plate connected to a surface of the amplifying element opposite to a surface on which the multilayer substrate exists. This is the mounting structure of the device.

【0022】また、第11の本発明(請求項11に対
応)は、前記放熱板は、熱伝導性を有する樹脂組成物を
介して前記面に接続されている第9の本発明に記載の光
受信装置の実装構造である。
According to an eleventh aspect of the present invention (corresponding to claim 11), in the ninth aspect of the present invention, the radiator plate is connected to the surface via a resin composition having thermal conductivity. 4 is a mounting structure of the optical receiver.

【0023】また、第12の本発明(請求項12に対
応)は、第4または5の本発明に記載の光受信装置と、
前記多層基板と対向し、前記多層基板の前記端子電極に
接続された本体基板とを備え、少なくとも前記増幅素子
の前記多層基板が存在する側面とは反対側の面と前記本
体基板との間隙が熱伝導性を有する樹脂組成物で充填さ
れている光受信装置の実装構造である。
A twelfth aspect of the present invention (corresponding to claim 12) is an optical receiving apparatus according to the fourth or fifth aspect,
A main body substrate facing the multi-layer substrate and connected to the terminal electrode of the multi-layer substrate, wherein a gap between the main body substrate and at least a surface of the amplifying element opposite to a side surface on which the multi-layer substrate is present is provided. 1 is a mounting structure of an optical receiver filled with a resin composition having thermal conductivity.

【0024】また、第13の本発明(請求項13に対
応)は、前記樹脂組成物は、前記増幅素子と前記本体基
板との間隙に等しい粒径の球状フィラーが分散されてい
る第12の本発明に記載の光受信装置の実装構造であ
る。
According to a thirteenth aspect of the present invention (corresponding to claim 13), the resin composition according to the twelfth aspect, wherein a spherical filler having a particle diameter equal to the gap between the amplifying element and the main substrate is dispersed. 4 is a mounting structure of the optical receiver according to the present invention.

【0025】また、第14の本発明(請求項14に対
応)は、第4または5の本発明に記載の光受信装置と、
前記多層基板と対向し、前記多層基板の前記端子電極に
接続された本体基板とを備え、前記増幅素子及び前記多
層基板と、本体基板との間隙が熱伝導性樹脂組成物で充
填されている光受信装置の実装構造である。
A fourteenth aspect of the present invention (corresponding to claim 14) is an optical receiving device according to the fourth or fifth aspect of the present invention,
A main body substrate facing the multi-layer substrate and connected to the terminal electrodes of the multi-layer substrate, wherein a gap between the amplifying element and the multi-layer substrate and the main substrate is filled with a thermally conductive resin composition. 4 is a mounting structure of the optical receiver.

【0026】また、第15の本発明(請求項15に対
応)は、前記熱伝導性樹脂組成物で充填されていると
は、前記増幅素子と前記本体基板との間隙が第1の熱伝
導性樹脂組成物で充填されており、前記多層基板と前記
本体基板との間隙が第2の熱伝導性樹脂組成物で充填さ
れていることである第14の本発明に記載の光受信装置
の実装構造である。
According to a fifteenth aspect of the present invention (corresponding to claim 15), the filling with the thermally conductive resin composition means that a gap between the amplifying element and the main body substrate has a first thermal conductivity. The optical receiver according to the fourteenth aspect of the present invention, wherein the optical receiving device is filled with a conductive resin composition, and a gap between the multilayer substrate and the main substrate is filled with a second heat conductive resin composition. The mounting structure.

【0027】また、第16の本発明(請求項16に対
応)は、前記第1の熱伝導性樹脂組成物の熱伝導率は、
前記第2の熱伝導性樹脂組成物の熱伝導率より高い第1
5の本発明に記載の光受信装置の実装構造である。
According to a sixteenth aspect of the present invention (corresponding to claim 16), the thermal conductivity of the first thermally conductive resin composition is as follows:
The first thermal conductive resin composition has a first thermal conductivity higher than that of the second thermal conductive resin composition.
5 is a mounting structure of the optical receiver according to the fifth aspect of the present invention.

【0028】また、第17の本発明(請求項17に対
応)は、前記熱伝導性樹脂組成物は、無機物の粒子を含
むことを特徴特徴とする第12〜16の本発明のいずれ
かに記載の光受信装置の実装構造である。
According to a seventeenth aspect of the present invention (corresponding to claim 17), the heat conductive resin composition contains inorganic particles. It is a mounting structure of the optical receiver of description.

【0029】また、第18の本発明(請求項18に対
応)は、前記熱伝導性樹脂組成物は、絶縁性フィラーと
してアルミナ,AlN,窒化ケイ素,ベリリア(Be
O)の少なくとも1つを含む第12〜16の本発明のい
ずれかに記載の光受信装置の実装構造である。
According to an eighteenth aspect of the present invention (corresponding to claim 18), the heat conductive resin composition comprises alumina, AlN, silicon nitride, beryllia (Be) as an insulating filler.
17) A mounting structure of the optical receiver according to any one of the twelfth to sixteenth aspects of the present invention, including at least one of O).

【0030】また、第19の本発明(請求項19に対
応)は、容量素子を内蔵した多層基板の表面及び裏面に
受光素子と増幅素子をそれぞれ搭載する工程と、前記多
層基板の表面と前記受光素子との間と、前記多層基板の
裏面と前記増幅素子との間とを樹脂組成物で封止する工
程と、前記多層基板の裏面と本体基板とを前記多層基板
の端子電極を介して電気的に接続する工程と、熱伝導性
樹脂組成物を前記増幅素子と前記本体基板との間に充填
する工程とを備えた光受信装置の製造方法である。
According to a nineteenth aspect of the present invention (corresponding to claim 19), a step of mounting a light receiving element and an amplifying element on the front and back surfaces of a multilayer substrate having a built-in capacitive element, respectively, A step of sealing the space between the light-receiving element and the back surface of the multilayer substrate and the space between the amplifying element with a resin composition, and the back surface of the multilayer substrate and the main body substrate via terminal electrodes of the multilayer substrate A method for manufacturing an optical receiving device, comprising: a step of electrically connecting; and a step of filling a heat conductive resin composition between the amplifying element and the main body substrate.

【0031】また、第20の本発明(請求項20に対
応)は、容量素子を内蔵した多層基板の表面及び裏面に
受光素子と増幅素子とをそれぞれ搭載する工程と、前記
多層基板の表面と前記受光素子との間と、前記多層基板
の裏面と前記増幅素子との間とを樹脂組成物で封止する
工程と、均一の粒径のフィラーが分散された樹脂組成物
を本体基板に供給する工程と、前記多層基板の裏面と前
記本体基板とを前記多層基板及び/または前記増幅素子
を加圧しながら前記本体基板に搭載する工程とを備えた
光受信装置の実装構造の製造方法である。
According to a twentieth aspect of the present invention (corresponding to claim 20), a step of mounting a light receiving element and an amplifying element on the front and back surfaces of a multilayer substrate having a built-in capacitance element, respectively, A step of sealing the space between the light-receiving element and the space between the back surface of the multilayer substrate and the amplification element with a resin composition, and supplying the resin composition in which a filler having a uniform particle size is dispersed to the main body substrate And mounting the rear surface of the multilayer substrate and the main substrate on the main substrate while pressing the multi-layer substrate and / or the amplifying element. .

【0032】また、第21の本発明(請求項21に対
応)は、受光素子を増幅素子の能動面に搭載する工程
と、端面が光軸に対して斜めに加工されかつ反射膜が形
成された光ファイバを多層基板上に固定する工程と、前
記増幅素子を前記多層基板上に取り付けて電気的接続を
行うとともに前記受光素子と前記光ファイバ間の光結合
とを同時に行う工程と、前記増幅素子と前記多層基板間
を前記光ファイバを伝搬する信号光に対して透明な材料
で充填する工程とを備えた光受信装置の製造方法であ
る。
According to a twenty-first aspect of the present invention (corresponding to claim 21), the step of mounting the light receiving element on the active surface of the amplifying element, the step of processing the end surface obliquely with respect to the optical axis and forming the reflection film. Fixing the optical fiber on the multilayer substrate, performing the electrical connection while attaching the amplifying element on the multilayer substrate, and simultaneously performing the optical coupling between the light receiving element and the optical fiber; and Filling a space between an element and the multilayer substrate with a material that is transparent to signal light propagating through the optical fiber.

【0033】本発明は上記のような構成にすることで、
光ファイバと受光素子間の光結合部を妨げることなく従
来よりも増幅器を効率的に放熱することができる。
The present invention is configured as described above,
The amplifier can be dissipated more efficiently than before without disturbing the optical coupling portion between the optical fiber and the light receiving element.

【0034】[0034]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図1から図17を用いて詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to FIGS.

【0035】(第1の実施の形態)図1は、本発明の第
1の実施の形態における高放熱広帯域光受信装置の構成
の概略を示す断面図である。
(First Embodiment) FIG. 1 is a cross-sectional view schematically showing a configuration of a high heat radiation broadband optical receiver according to a first embodiment of the present invention.

【0036】図1において、101は受光素子、102
は増幅器、103は多層基板、105はバイアス端子、
106は接地端子、107はバンプ、108はビア導
体、109は容量素子である。以下に本実施の形態1に
おける光受信装置について図1を参照しながら説明す
る。
In FIG. 1, reference numeral 101 denotes a light receiving element;
Is an amplifier, 103 is a multilayer substrate, 105 is a bias terminal,
106 is a ground terminal, 107 is a bump, 108 is a via conductor, and 109 is a capacitor. Hereinafter, the optical receiver according to the first embodiment will be described with reference to FIG.

【0037】図1に示すように、光入力信号を電気信号
に変換する受光素子101及び増幅器102の端子電極
を設けた所定の位置と多層基板103上の電極端子はバ
ンプ107を介して素子の能動面が基板側に向けた状態
のフェイスダウン状態で接続されるフリップチップ実装
されている。特に、受光素子101と増幅素子102は
多層基板103を挟んで対向して実装されている。
As shown in FIG. 1, a predetermined position where the terminal electrodes of the light receiving element 101 and the amplifier 102 for converting an optical input signal into an electric signal are provided and an electrode terminal on the multilayer substrate 103 are connected via bumps 107 to the element. Flip-chip mounting is performed in which the active surface is connected face-down with the substrate facing the substrate. In particular, the light receiving element 101 and the amplifying element 102 are mounted facing each other with the multilayer substrate 103 interposed therebetween.

【0038】受光素子101は一端がバイアス端子10
5に接続されており、増幅器102の一端は接地端子に
接続されており、増幅器102の他端は受光素子101
に接続されている。受光素子としては裏面入射型のフォ
トダイオードが用いられ、増幅器としてはガリウム砒素
電界効果トランジスタを用いたトランスインピーダンス
型の回路方式を初段に用いた増幅器などが用いられる。
The light receiving element 101 has one end connected to the bias terminal 10.
5, one end of the amplifier 102 is connected to the ground terminal, and the other end of the amplifier 102 is connected to the light receiving element 101.
It is connected to the. A back illuminated photodiode is used as the light receiving element, and an amplifier using a transimpedance circuit system using a gallium arsenide field effect transistor in the first stage is used as the amplifier.

【0039】多層基板103の内部にはビア導体108
を介してバイアス端子105と接地端子106に接続さ
れた対向電極による容量素子109が形成されている。
The via conductor 108 is provided inside the multilayer substrate 103.
A capacitive element 109 is formed by a counter electrode connected to the bias terminal 105 and the ground terminal 106 through the capacitor.

【0040】容量素子109を多層基板103の内部に
形成する方法としては、図2の(a)に示すように複数
枚の絶縁層用グリーンシート112でコンデンサ層11
4を挟持してなるものがある。図2の(b)に示すよう
にあらかじめパンチングにより所定部分に穴形成し、印
刷によりビア導体108で穴を埋めたセラミック成分が
ホウケイ酸ガラスとアルミナの混合物によりなるコンデ
ンサ層114の両側の所定部分にスクリーン印刷にてに
コンデンサ用電極113を形成し、その両側から表層に
電極パターンが印刷されビア導体108が形成された絶
縁層用グリーンシート112を積層し焼成することでコ
ンデンサ層114の両側からコンデンサ用電極113で
挟んだ対向電極により容量素子を内部に形成した多層基
板が得られる。
As shown in FIG. 2A, a method of forming the capacitor element 109 inside the multilayer substrate 103 is as follows.
4 is sandwiched. As shown in FIG. 2B, holes are formed in predetermined portions by punching in advance, and the holes are filled with via conductors 108 by printing. The ceramic components are made of a mixture of borosilicate glass and alumina. A capacitor electrode 113 is formed by screen printing, and an insulating layer green sheet 112 on which an electrode pattern is printed on the surface layer and a via conductor 108 is formed from both sides thereof is laminated and fired to form a capacitor electrode 114 from both sides. A multilayer substrate in which a capacitor is formed by the counter electrode sandwiched between the capacitor electrodes 113 is obtained.

【0041】フリップチップ実装法としては例えば、次
のような方法で行われる。図3(a)に示すように受光
素子101の端子電極の上にワイヤボンディング法又は
めっき法によってAuなどからなる突起電極を形成し、
次に、図3(b)に示すようにこの突起電極をフレーク
状のAg粒子が分散された導電性接着剤を介して多層基
板103の電極端子に接続する。このとき、突起電極に
導電性接着剤を転写した後、多層基板103の電極端子
に導電性接着剤が当接するように位置あわせを行い、導
電性接着剤を硬化させることにより、受光素子101と
多層基板103との電気的接続が実現されている。さら
に、図3(c)に示すように接続を補強するために、受
光素子101と多層基板103で形成される空間を液状
の樹脂組成物で封止し硬化させる。この場合、樹脂組成
物はエポキシ系の樹脂とシリカなどのフィラーとを含
み、フィラーは樹脂組成物内に均一に分散されている。
As a flip chip mounting method, for example, the following method is used. As shown in FIG. 3A, a protruding electrode made of Au or the like is formed on the terminal electrode of the light receiving element 101 by a wire bonding method or a plating method.
Next, as shown in FIG. 3B, the protruding electrodes are connected to the electrode terminals of the multilayer substrate 103 via a conductive adhesive in which flake-shaped Ag particles are dispersed. At this time, after transferring the conductive adhesive to the protruding electrodes, alignment is performed so that the conductive adhesive is in contact with the electrode terminals of the multilayer substrate 103, and the conductive adhesive is cured, so that the light-receiving element 101 and the light receiving element 101 are cured. Electrical connection with the multilayer substrate 103 is realized. Further, as shown in FIG. 3C, in order to reinforce the connection, a space formed by the light receiving element 101 and the multilayer substrate 103 is sealed with a liquid resin composition and cured. In this case, the resin composition contains an epoxy resin and a filler such as silica, and the filler is uniformly dispersed in the resin composition.

【0042】同様の方法を用いて、受光素子101を多
層基板103上に実装した後、多層基板103の受光素
子101が搭載されていない面に増幅器102がフリッ
プチップ実装される。
After mounting the light receiving element 101 on the multilayer substrate 103 by using the same method, the amplifier 102 is flip-chip mounted on the surface of the multilayer substrate 103 where the light receiving element 101 is not mounted.

【0043】光ファイバからの光信号と受光素子との結
合は図4に示すように裏面入射型のフォトダイオードを
用い、素子の裏面から光信号を受光素子に入射する構成
が用いられる。光ファイバを多層基板上に形成された溝
に固定して光信号と受光素子との結合を行う場合には表
面入射プレーナ型のフォトダイオードを用いて素子の表
面から光信号を受光素子に入射する構成が用いられる。
The coupling between the optical signal from the optical fiber and the light-receiving element uses a back-illuminated photodiode as shown in FIG. 4, and the optical signal is incident on the light-receiving element from the back of the element. In the case where an optical fiber is fixed to a groove formed on a multilayer substrate to couple an optical signal and a light receiving element, an optical signal is incident on the light receiving element from the surface of the element using a surface-incident planar photodiode. A configuration is used.

【0044】一方、高放熱広帯域光受信装置が本体基板
に図4に示すように実装される。多層基板103の周囲
に設けられた接続端子122と本体基板側の接続端子1
23とを導電性電極121を用いて電気的に接続し、増
幅器102は放熱板134に熱伝導性樹脂組成物124
を介して熱的に接続された構成となる。導電性電極は電
気抵抗の低いチップ部品などを用い、それを半田などを
用いて接続することができる。熱伝導性樹脂組成物とし
ては、熱伝導率の高いフィラーが樹脂成分中に分散され
たペースト状のものや、圧力により変形可能なフィルム
状のものなどを用いることができる。また、増幅器と本
体基板間の熱膨張率が近い砒化ガリウム基板を用いた増
幅器とアルミナを材料とした本体基板を用いた場合(そ
れぞれの熱膨張係数:6.0×10-6/℃,7.0×1
-6/℃)、増幅器と本体基板間は半田等の金属による
接合を用いることで熱的な接続信頼性を確保し、しかも
放熱効果をさらに高めることができる。
On the other hand, a high heat radiation broadband optical receiver is mounted on a main body substrate as shown in FIG. The connection terminal 122 provided around the multilayer substrate 103 and the connection terminal 1 on the body substrate side
23 is electrically connected using a conductive electrode 121, and the amplifier 102 is connected to a heat sink 134 by a heat conductive resin composition 124.
Is thermally connected via the. As the conductive electrode, a chip component or the like having a low electric resistance can be used, and it can be connected using solder or the like. As the thermally conductive resin composition, a paste-like one in which a filler having a high thermal conductivity is dispersed in a resin component, a film-like one that can be deformed by pressure, and the like can be used. Further, when an amplifier using a gallium arsenide substrate having a similar thermal expansion coefficient between the amplifier and the main body substrate and a main body substrate made of alumina are used (the respective thermal expansion coefficients are 6.0 × 10 −6 / ° C. 0.0 × 1
0 −6 / ° C.), the connection between the amplifier and the main body substrate is made of metal such as solder, so that thermal connection reliability can be ensured and the heat radiation effect can be further enhanced.

【0045】図5は本実施の形態の高放熱広帯域光受信
装置の実装構造における増幅素子の消費電力と、周囲温
度と増幅素子の温度差の関係を示し、(a)が従来の構
成における特性、(b)が本発明の実施の形態による特
性である。図から明らかなように本発明の実施の形態に
おいて増幅器を直接放熱板に接合できるため、増幅器の
放熱を効率的におこなうことができる。
FIG. 5 shows the relationship between the power consumption of the amplifying element and the difference between the ambient temperature and the temperature difference of the amplifying element in the mounting structure of the high heat radiation broadband optical receiver according to the present embodiment. And (b) are characteristics according to the embodiment of the present invention. As is apparent from the figure, in the embodiment of the present invention, the amplifier can be directly joined to the heat sink, so that the heat dissipation of the amplifier can be efficiently performed.

【0046】このような構成にしたことにより、光ファ
イバからの光信号が受光素子に入力することを妨げるこ
となく、増幅器の素子の裏面に直接放熱板を接合するこ
とができるため、増幅器を効率的に放熱することがで
き、しかも実装に起因する寄生インダクタンスを小さく
することができ広帯域において平坦な周波数特性を得る
ことができる。
By adopting such a configuration, the heat radiation plate can be directly bonded to the back surface of the element of the amplifier without preventing the optical signal from the optical fiber from being input to the light receiving element. The heat can be dissipated efficiently, and the parasitic inductance due to the mounting can be reduced, and a flat frequency characteristic can be obtained in a wide band.

【0047】また、多層基板103と放熱板134の間
隙を熱伝導性樹脂組成物124で充填する際、熱伝導性
樹脂組成物として電気的に絶縁性を示す材料を用いるこ
とで、使用環境の変化による熱伝導性樹脂組成物の変質
などによる電気的な抵抗のわずかな変化による特性の変
動を防ぐことができるため、信頼性の高い高放熱広帯域
光受信装置の実装構造体を得ることができる。
When the gap between the multilayer substrate 103 and the heat radiating plate 134 is filled with the heat conductive resin composition 124, a material having an electrically insulating property is used as the heat conductive resin composition, so that the use environment can be reduced. Since a change in characteristics due to a slight change in electrical resistance due to a change in the thermal conductive resin composition due to a change can be prevented, a highly reliable mounting structure of a high heat radiation broadband optical receiver can be obtained. .

【0048】本実施の形態において増幅器が1つの素子
で構成される例を用いて説明したが、複数の素子を用い
て構成した場合、増幅器の単位面積当たりの発熱密度が
下がるためより効率的に放熱を行うことができる。
Although the present embodiment has been described using an example in which the amplifier is composed of one element, when the amplifier is composed of a plurality of elements, the heat generation density per unit area of the amplifier is reduced, so that the efficiency is improved. Heat can be dissipated.

【0049】(第2の実施の形態)図6は、本発明の第
2の実施の形態における高放熱広帯域光受信装置の構成
の概略を示す断面図である。
(Second Embodiment) FIG. 6 is a cross-sectional view schematically showing a configuration of a high heat radiation broadband optical receiver according to a second embodiment of the present invention.

【0050】第1の実施の形態においては、受光素子と
増幅器が多層基板を挟んで対向してフリップチップ実装
されていたのに対し、本実施の形態2においては、受光
素子と増幅器が多層基板を介して重なるように対向して
フリップチップ実装されているものである。
In the first embodiment, the light receiving element and the amplifier are flip-chip mounted facing each other with the multi-layer substrate interposed therebetween. In the second embodiment, the light receiving element and the amplifier are mounted on the multi-layer substrate. And are flip-chip mounted facing each other so as to overlap with each other.

【0051】受光素子101及び増幅器102の端子電
極を設けた所定の位置と多層基板103上の電極端子は
バンプ107を介して素子の能動面が基板側に向けた状
態のフェイスダウン状態で接続されるようにフリップチ
ップ実装されている。
The predetermined positions where the terminal electrodes of the light receiving element 101 and the amplifier 102 are provided and the electrode terminals on the multilayer substrate 103 are connected via bumps 107 in a face-down state with the active surface of the element facing the substrate. So that it is flip-chip mounted.

【0052】特に、受光素子101と増幅素子102は
多層基板103を挟んで重なるように対向して実装され
ている。受光素子101は一端がバイアス端子105に
接続されており、増幅器102の一端は接地端子に接続
されており、増幅器102の他端は受光素子101に接
続されている。多層基板103の内部にはビア導体10
8を介してバイアス端子105と接地端子106に接続
された対向電極による容量素子109が形成されてい
る。
In particular, the light receiving element 101 and the amplifying element 102 are mounted so as to face each other with the multilayer substrate 103 interposed therebetween. The light receiving element 101 has one end connected to the bias terminal 105, one end of the amplifier 102 connected to the ground terminal, and the other end of the amplifier 102 connected to the light receiving element 101. Via conductor 10 is provided inside multilayer substrate 103.
A capacitance element 109 is formed by a counter electrode connected to the bias terminal 105 and the ground terminal 106 through the capacitor 8.

【0053】このような構成にしたことにより、受光素
子と増幅器間の接続距離と、多層基板内に形成されてい
る容量素子と受光素子及び増幅器間の接続距離を短くす
ることができることによる寄生インダクタンスの低減に
より、増幅器を効率的に放熱することができることに加
えて、広帯域においてさらに平坦な周波数特性を得るこ
とができる。
With this configuration, the connection distance between the light receiving element and the amplifier and the connection distance between the capacitance element formed in the multi-layer substrate, the light receiving element and the amplifier can be shortened. , It is possible to efficiently dissipate the heat from the amplifier and obtain a flatter frequency characteristic in a wide band.

【0054】(第3の実施の形態)図7は、本発明の第
3の実施の形態における高放熱広帯域光受信装置の構成
の概略を示す断面図である。
(Third Embodiment) FIG. 7 is a cross-sectional view schematically showing a configuration of a high heat radiation broadband optical receiver according to a third embodiment of the present invention.

【0055】第2の実施の形態においては、受光素子と
増幅器が多層基板を介して重なるように対向してフリッ
プチップ実装されていたのに対し、本実施の形態におい
ては、受光素子の出力端子と信号増幅素子の入力端子が
多層基板を介して対向して重なるようにそれぞれフリッ
プチップ接続されているものである。
In the second embodiment, the light receiving element and the amplifier are flip-chip mounted so as to face each other with the multilayer substrate interposed therebetween. On the other hand, in the present embodiment, the output terminal of the light receiving element is mounted. And the input terminals of the signal amplifying elements are flip-chip connected so that they overlap with each other via a multilayer substrate.

【0056】受光素子101及び増幅器102の端子電
極を設けた所定の位置と多層基板103上の電極端子は
バンプ107を介して素子の能動面が基板側に向けた状
態のフェイスダウン状態で接続されるフリップチップ実
装されており、特に、受光素子101の出力端子131
と増幅素子102の入力端子132は多層基板103を
挟んで重なるように対向して実装されており、出力端子
131と入力端子132はビア導体108を介して最短
距離で接続されている。
Predetermined positions where the terminal electrodes of the light receiving element 101 and the amplifier 102 are provided and the electrode terminals on the multilayer substrate 103 are connected via bumps 107 in a face-down state with the active surface of the element facing the substrate. In particular, the output terminal 131 of the light receiving element 101 is mounted.
The input terminal 132 of the amplifying element 102 and the input terminal 132 are mounted to face each other with the multilayer substrate 103 interposed therebetween, and the output terminal 131 and the input terminal 132 are connected via the via conductor 108 at the shortest distance.

【0057】このような構成にしたことにより、増幅器
を効率的に放熱することができるとともに、受光素子と
増幅器間の接続距離を最短にすることができるため、広
帯域においてさらに平坦な周波数特性を得ることができ
る。
With this configuration, the amplifier can be efficiently dissipated and the connection distance between the light receiving element and the amplifier can be minimized, so that a flatter frequency characteristic can be obtained in a wide band. be able to.

【0058】(第4の実施の形態)図8は、本発明の第
4の実施の形態における高放熱広帯域光受信装置の構成
の概略を示す断面図である。図8において133は端子
電極である。図8の(a)に、本実施の形態の高放熱広
帯域光受信装置の多層基板103と光ファイバ104の
部分を示す。図8の(a)に示すように、受光素子10
1及び増幅器102の端子電極を設けた所定の位置と多
層基板103上の電極端子はバンプ107を介して素子
の能動面が基板側に向けた状態のフェイスダウン状態で
接続されるフリップチップ実装されており、特に、受光
素子101の出力端子131と増幅素子102の入力端
子132は多層基板103を挟んで重なるように対向し
て実装されている。
(Fourth Embodiment) FIG. 8 is a sectional view schematically showing a configuration of a high heat radiation broadband optical receiver according to a fourth embodiment of the present invention. In FIG. 8, 133 is a terminal electrode. FIG. 8A shows a portion of the multilayer substrate 103 and the optical fiber 104 of the high heat radiation broadband optical receiver according to the present embodiment. As shown in FIG. 8A, the light receiving element 10
A predetermined position where terminal electrodes of the first and the amplifier 102 are provided and an electrode terminal on the multilayer substrate 103 are connected via a bump 107 in a face-down state with the active surface of the element facing the substrate side. In particular, the output terminal 131 of the light receiving element 101 and the input terminal 132 of the amplifying element 102 are mounted so as to face each other with the multilayer substrate 103 interposed therebetween.

【0059】また、図8の(b)に本実施の形態の高放
熱広帯域光受信装置の多層基板103と本体基板135
の部分を示す。図8の(b)に示すように、多層基板1
03は端子電極133を介して本体基板135に電気的
に接続されている。このとき端子電極133の厚さより
も多層基板103から増幅器102の裏面までの距離が
短く構成されている。
FIG. 8B shows the multi-layer substrate 103 and the main substrate 135 of the high heat radiation broadband optical receiver of this embodiment.
Part is shown. As shown in FIG. 8B, the multilayer substrate 1
03 is electrically connected to the main substrate 135 via the terminal electrode 133. At this time, the distance from the multilayer substrate 103 to the back surface of the amplifier 102 is shorter than the thickness of the terminal electrode 133.

【0060】これにより、受光素子101と増幅器10
2が実装された多層基板103を端子電極133を介し
て本体基板に搭載すると、増幅器102の裏面と本体基
板134との間に間隙を設けることができ、この間隙を
熱伝導性樹脂組成物124で充填することで増幅器10
2からの放熱を効率的に行うことができる。
Thus, the light receiving element 101 and the amplifier 10
2 is mounted on the main substrate via the terminal electrode 133, a gap can be provided between the back surface of the amplifier 102 and the main substrate 134, and this gap is formed by the heat conductive resin composition 124. Filling with amplifier 10
2 can efficiently dissipate heat.

【0061】搭載を行う場合には端子電極として半田な
どを用い、本体基板135上の所定の領域に熱伝導性樹
脂組成物124がペースト状の場合、印刷もしくはディ
スペンスにより供給し、熱伝導性樹脂組成物124がフ
ィルム上の場合は、所定の形状に切断したフィルムを張
り付けた後、リフローなどにより本体基板に搭載するこ
とで実現できる。
When mounting is performed, solder or the like is used as a terminal electrode. When the heat conductive resin composition 124 is in a paste form in a predetermined area on the main body substrate 135, the heat conductive resin composition 124 is supplied by printing or dispensing. When the composition 124 is on a film, it can be realized by attaching a film cut into a predetermined shape and then mounting the film on a main substrate by reflow or the like.

【0062】このような構成にしたことにより、本体基
板に搭載する際の部品点数を低減することができ、製造
時の放熱性のばらつきが少ない高放熱広帯域光受信装置
を実現することができる。
With this configuration, it is possible to reduce the number of components when mounting on the main body substrate, and to realize a high-radiation broadband optical receiver with less variation in radiation characteristics during manufacturing.

【0063】(第5の実施の形態)図9は、本発明の第
5の実施の形態における高放熱広帯域光受信装置の構成
の概略を示す断面図である。
(Fifth Embodiment) FIG. 9 is a cross-sectional view schematically showing a configuration of a high heat radiation broadband optical receiver according to a fifth embodiment of the present invention.

【0064】第1の実施の形態においては、受光素子と
増幅器が多層基板を介して対向するようにフリップチッ
プ実装されていたのに対し、本実施の形態においては、
受光素子は多層基板の側面に実装されており、増幅素子
は多層基板の主面上にフリップチップ実装されている例
を示している。
In the first embodiment, the light receiving element and the amplifier are flip-chip mounted so as to face each other with the multilayer substrate interposed therebetween.
In this example, the light receiving element is mounted on the side surface of the multilayer substrate, and the amplifier element is flip-chip mounted on the main surface of the multilayer substrate.

【0065】特に受光素子101の信号出力端子と増幅
素子102の信号入力端子とは最短で電気的に接続され
ており、受光素子101及び増幅素子102の電源端子
及び接地端子はそれぞれ多層基板103内部の容量素子
に接続されている。
In particular, the signal output terminal of the light receiving element 101 and the signal input terminal of the amplifying element 102 are electrically connected at the shortest distance, and the power supply terminal and the ground terminal of the light receiving element 101 and the amplifying element 102 Connected to the capacitive element.

【0066】このような構成にすることで、光ファイバ
と受光素子との光結合部を増幅素子102から立体的に
隔離することができるため増幅素子のチップ裏面に直接
放熱板を接合することができるため、光結合部を阻害す
ることなく効率的に増幅器を放熱することができる。
With such a configuration, the optical coupling portion between the optical fiber and the light receiving element can be three-dimensionally isolated from the amplifying element 102, so that the heat radiating plate can be directly bonded to the chip back surface of the amplifying element. Accordingly, the amplifier can be efficiently dissipated without disturbing the optical coupling portion.

【0067】増幅器の放熱効率を改善するために増幅素
子と放熱板との間にペースト状の高熱伝導性の樹脂組成
物を充填する場合、増幅器裏面に高熱伝導性樹脂組成物
を塗布した後に放熱板を接合すると接合時の圧力により
樹脂組成物が変形することにより広がりが生じるが、光
結合部と増幅器とは立体的に隔離されているため光結合
部に影響を与えることがないため、より効率的に放熱す
ることが可能である。
When a paste-like high thermal conductive resin composition is filled between the amplifying element and the heat radiating plate in order to improve the heat radiation efficiency of the amplifier, the heat radiation is performed after applying the high thermal conductive resin composition to the back surface of the amplifier. When joining the plates, the resin composition is deformed by the pressure at the time of joining, and the spread occurs, but since the optical coupling portion and the amplifier are three-dimensionally isolated, they do not affect the optical coupling portion. It is possible to radiate heat efficiently.

【0068】(第6の実施の形態)図10は、本発明の
第6の実施の形態における高放熱広帯域光受信装置の構
成の概略を示す断面図である。
(Sixth Embodiment) FIG. 10 is a sectional view schematically showing a configuration of a high heat radiation broadband optical receiver according to a sixth embodiment of the present invention.

【0069】実施の形態1から5においては受光素子と
増幅素子とは多層基板内もしくは多層基板上の配線を介
して電気的に接続されていたのに対し、本実施の形態6
においては、受光素子は増幅素子の能動面上に直接フリ
ップチップ実装されている例を示している。
In the first to fifth embodiments, the light receiving element and the amplifying element are electrically connected to each other through the wiring in the multilayer substrate or on the multilayer substrate.
1 shows an example in which the light receiving element is flip-chip mounted directly on the active surface of the amplifying element.

【0070】受光素子101がフリップチップ実装され
た増幅素子102は多層基板103にバンプ107を介
してフリップチップ実装されている。バンプ107の高
さは、受光素子101の素子厚さと受光素子101と増
幅素子102との間隙の和よりも高く実装されている。
例えば、受光素子の厚さが約100μm,受光素子と増
幅素子間を約60μmで接続した場合、約200μm程
度の間隔で、増幅素子と多層基板間がバンプを介して接
続される。
The amplifying element 102 on which the light receiving element 101 is flip-chip mounted is flip-chip mounted on the multilayer substrate 103 via the bump 107. The height of the bump 107 is mounted higher than the sum of the element thickness of the light receiving element 101 and the gap between the light receiving element 101 and the amplification element 102.
For example, when the thickness of the light receiving element is about 100 μm and the distance between the light receiving element and the amplification element is about 60 μm, the amplification element and the multi-layer substrate are connected via the bump at an interval of about 200 μm.

【0071】バンプ107としてははんだもしくはAu
等による合金接続が行われる。多層基板103上には端
面が光軸に対して斜めに加工された光ファイバ104が
搭載されており、好ましくは端面に反射膜が形成されて
いる。光ファイバ104が搭載されている多層基板10
3には光ファイバ104の固定用溝が形成されている。
また、光ファイバコアの屈折率よりも小さい屈折率で受
光素子で受信する光の波長に対して透明な樹脂を用いて
増幅素子102と多層基板103との間隙を封止するこ
とで、増幅素子102と多層基板103との接続信頼性
を向上させることができる。
The bump 107 is made of solder or Au
And so on. An optical fiber 104 whose end face is obliquely processed with respect to the optical axis is mounted on the multilayer substrate 103, and a reflection film is preferably formed on the end face. Multilayer substrate 10 on which optical fiber 104 is mounted
3 is provided with a fixing groove for the optical fiber 104.
The gap between the amplifying element 102 and the multilayer substrate 103 is sealed with a resin transparent to the wavelength of light received by the light receiving element with a refractive index smaller than the refractive index of the optical fiber core. The connection reliability between the multilayer substrate 102 and the multilayer substrate 103 can be improved.

【0072】このような構成にすることで光ファイバか
らの光信号が受光素子に入力することを妨げることな
く、増幅器の素子の裏面に直接放熱板を接合することが
でき、同時に受光素子と増幅素子を電気的にきわめて短
く接続することができるため、効率的に放熱することが
できると同時に電気的に良好な周波数特性を得ることが
できる。
With this configuration, the heat sink can be directly bonded to the back surface of the amplifier element without preventing the optical signal from the optical fiber from being input to the light receiving element. Since the elements can be electrically connected very short, heat can be efficiently dissipated and good electrical frequency characteristics can be obtained.

【0073】(第7の実施の形態)図11は、本発明の
第7の実施の形態における高放熱広帯域光受信装置の実
装構造の概略を示す断面図である。
(Seventh Embodiment) FIG. 11 is a sectional view schematically showing a mounting structure of a high heat radiation broadband optical receiver according to a seventh embodiment of the present invention.

【0074】本実施の形態においては、多層基板の両側
に対向して受光素子と増幅素子がフリップチップ実装さ
れており、多層基板上の増幅素子が搭載された面の周囲
に端子電極が形成された高放熱広帯域光受信装置を本体
基板へ搭載する際に、増幅素子と本体基板間の間隙を均
一の粒径を持ったフィラーが分散された熱伝導性樹脂組
成物で充填された実装構造の例を示している。
In this embodiment, the light receiving element and the amplifier are flip-chip mounted on both sides of the multilayer substrate, and terminal electrodes are formed around the surface of the multilayer substrate on which the amplifier is mounted. When mounting the high heat radiation broadband optical receiver on the main body substrate, the gap between the amplification element and the main body substrate has a mounting structure filled with a thermally conductive resin composition in which a filler having a uniform particle size is dispersed. An example is shown.

【0075】フィラーの粒径として、増幅素子と本体基
板の間隙と等しいもしくは小さいものが選ばれ、例え
ば、フィラーとしては無機物の粒子が用いられ、絶縁性
フィラーとしてアルミナ,AlN,窒化ケイ素,ベリリ
ア(BeO)の少なくとも1つを選ぶことでさらに放熱
性を向上させることができる。フィラーの粒径は最大粒
径が約18μm±2μmのものが選ばれ、さらに粒径の
小さい約3〜5μmのフィラーが分散されることで、粒
径の大きなフィラー間の隙間に分散され、放熱効果を改
善する。
The particle size of the filler is selected to be equal to or smaller than the gap between the amplifying element and the main body substrate. For example, inorganic particles are used as the filler and alumina, AlN, silicon nitride, beryllia ( By selecting at least one of BeO), the heat dissipation can be further improved. A filler having a maximum particle size of about 18 μm ± 2 μm is selected, and a filler having a small particle diameter of about 3 to 5 μm is dispersed. Improve the effect.

【0076】このような実装構造にすることで、光信号
を広帯域において低歪特性の優れた電気信号に変換でき
ると同時に、光ファイバと受光素子の光結合部を阻害す
ることなく域増幅器を効率的に放熱でき、しかも、実装
体を製造する際に、増幅器と本体基板間の間隔が均一と
なり、個々の高放熱広帯域光受信装置の実装体における
放熱特性のばらつきが小さくなるため、特性が均一な製
品を安定して製造することができる。
By adopting such a mounting structure, an optical signal can be converted into an electric signal having excellent low distortion characteristics in a wide band, and at the same time, the efficiency of the area amplifier can be improved without disturbing the optical coupling portion between the optical fiber and the light receiving element. In manufacturing the package, the spacing between the amplifier and the main board becomes uniform, and the dispersion of the heat radiation characteristics in the package of each high-radiation broadband optical receiver becomes small. Product can be manufactured stably.

【0077】(第8の実施の形態)図12は、本発明の
第8の実施の形態における高放熱広帯域光受信装置の実
装構造の概略を示す断面図である。
(Eighth Embodiment) FIG. 12 is a sectional view schematically showing a mounting structure of a high heat radiation broadband optical receiver according to an eighth embodiment of the present invention.

【0078】本実施の形態においては、多層基板の両側
に対向して受光素子と増幅素子がフリップチップ実装さ
れており、多層基板上の増幅素子が搭載された面の周囲
に端子電極が形成された高放熱広帯域光受信装置の本体
基板へ搭載される実装構造の例を示している。
In this embodiment, the light receiving element and the amplifier are flip-chip mounted on both sides of the multilayer substrate, and terminal electrodes are formed around the surface of the multilayer substrate on which the amplifier is mounted. 1 shows an example of a mounting structure mounted on a main substrate of a high heat radiation broadband optical receiver.

【0079】多層基板103と本体基板135とは端子
電極133を介して電気的に接続されており、多層基板
103及び増幅素子102と本体基板135との間隙は
熱伝導性樹脂組成物124で充填されている。
The multilayer substrate 103 and the main substrate 135 are electrically connected via the terminal electrode 133, and the gap between the multilayer substrate 103 and the amplifying element 102 and the main substrate 135 is filled with the heat conductive resin composition 124. Have been.

【0080】多層基板103と本体基板135間の間隙
が全て熱伝導性樹脂組成物で充填することで増幅器から
の放熱はさらに効果的に向上する。
By filling all the gaps between the multilayer substrate 103 and the main substrate 135 with the heat conductive resin composition, the heat radiation from the amplifier is further effectively improved.

【0081】この場合、熱伝導性樹脂組成物としてエポ
キシ系の樹脂組成物を用いた場合、接着及び硬化収縮に
より多層基板103と本体基板135間の接続信頼性を
向上することができる。
In this case, when an epoxy resin composition is used as the heat conductive resin composition, the connection reliability between the multilayer substrate 103 and the main substrate 135 can be improved by adhesion and curing shrinkage.

【0082】このような構成は、熱伝導性樹脂組成物と
して熱硬化タイプの流動性のあるものを用いた場合、受
光素子101及び増幅器102がフリップチップ実装さ
れ、本体基板にリフローにより電気的に接続された後、
多層基板103と本体基板135間の間隙にアンダーフ
ィルとして注入封止することで実現することができる。
In this configuration, when a thermosetting resin having fluidity is used as the heat conductive resin composition, the light receiving element 101 and the amplifier 102 are flip-chip mounted, and are electrically connected to the main body substrate by reflow. After being connected,
This can be realized by injecting and sealing the gap between the multilayer substrate 103 and the main substrate 135 as an underfill.

【0083】このような構成にすることで、高放熱広帯
域光受信装置の実装構造を製造する際に、増幅器と本体
基板間に充填する熱伝導性樹脂組成物と、多層基板と本
体基板間の接続信頼性を向上させる樹脂組成物を一種の
材料で一括して形成することができるため低コストな高
放熱広帯域光受信装置の実装構造体を得ることができ
る。
With this configuration, when manufacturing the mounting structure of the high heat radiation broadband optical receiver, the heat conductive resin composition to be filled between the amplifier and the main body substrate and the multi-layer substrate and the main body substrate Since the resin composition for improving the connection reliability can be collectively formed of one kind of material, it is possible to obtain a low-cost, high-radiation, broadband optical receiver mounting structure.

【0084】(第9の実施の形態)図13は、本発明の
第9の実施の形態における高放熱広帯域光受信装置の実
装構造の概略を示す断面図である。
(Ninth Embodiment) FIG. 13 is a sectional view schematically showing a mounting structure of a high heat radiation broadband optical receiver according to a ninth embodiment of the present invention.

【0085】第8の実施の形態においては、多層基板及
び増幅素子と本体基板との間隙が一様な樹脂組成物で充
填されていたのに対し、本実施の形態8においては、増
幅素子と本体基板との間隙に充填された樹脂組成物1と
多層基板と本体基板との間隙に充填された樹脂組成物2
とが異なる組成で形成されている例を示している。
In the eighth embodiment, the gap between the multi-layer substrate and the amplifying element and the main substrate is filled with a uniform resin composition. On the other hand, in the eighth embodiment, the amplifying element Resin composition 1 filled in gap between main substrate and resin composition 2 filled in gap between multilayer substrate and main substrate
3 shows an example in which a different composition is formed.

【0086】このような例としてまず図13(a)に示
すような高放熱広帯域光受信装置の実装構造がある。す
なわち、図13(a)において、増幅器102と本体基
板103との間隙は、樹脂組成物1よりも熱伝導率の高
い樹脂組成物2が充填されている。樹脂組成物2は熱伝
導性樹脂組成物として高熱伝導率のアルミナや窒化アル
ミ等の球状のフィラーが樹脂中に分散されたものが用い
られる。これにより、効率的に放熱することが出来る。
An example of such an example is a mounting structure of a high heat radiation broadband optical receiver as shown in FIG. That is, in FIG. 13A, the gap between the amplifier 102 and the main substrate 103 is filled with the resin composition 2 having higher thermal conductivity than the resin composition 1. As the resin composition 2, a thermally conductive resin composition in which a spherical filler such as alumina or aluminum nitride having high thermal conductivity is dispersed in a resin is used. Thereby, heat can be efficiently dissipated.

【0087】さらに別の例として、図13(b)に示す
ような高放熱広帯域光受信装置の実装構造がある。すな
わち、図13(b)に示すように、増幅器102と本体
基板135との間隙は被圧縮性の樹脂組成物2が充填さ
れており、多層基板103と本体基板135との間にエ
ポキシ等からなる硬化時に収縮する樹脂組成物1で充填
されている。このような構成とすることで、製造時に増
幅器102と本体基板135との間に圧縮力が働くた
め、完成した光受信装置の実装構造体においては、被圧
縮性の樹脂組成物2が圧縮され、樹脂組成物2中に分散
されたフィラーの充填率が圧縮される前の状態よりも高
くなる。これにより樹脂組成物2単体の状態よりも光受
信装置の実装構造体における樹脂組成物2の熱伝導率が
高くなるため、極めて効率的に放熱することが出来る。
As still another example, there is a mounting structure of a high heat radiation broadband optical receiver as shown in FIG. That is, as shown in FIG. 13B, the gap between the amplifier 102 and the main body substrate 135 is filled with the compressible resin composition 2 and the space between the multilayer substrate 103 and the main body substrate 135 is made of epoxy or the like. It is filled with a resin composition 1 that shrinks when cured. With such a configuration, a compressive force acts between the amplifier 102 and the main body substrate 135 at the time of manufacturing, so that the compressible resin composition 2 is compressed in the completed mounting structure of the optical receiver. The filling rate of the filler dispersed in the resin composition 2 is higher than that before the compression. As a result, the thermal conductivity of the resin composition 2 in the mounting structure of the optical receiver becomes higher than that of the resin composition 2 alone, so that heat can be radiated extremely efficiently.

【0088】このような構成にすることで、増幅素子を
効率的に放熱することができることに加えて、多層基板
と本体基板間の機械的強度を増すことができるため、多
層基板と本体基板との電気的接続信頼性を向上させるこ
とができる。
With this structure, the amplification element can be efficiently dissipated and the mechanical strength between the multilayer substrate and the main substrate can be increased. Can improve the electrical connection reliability.

【0089】(第10の実施の形態)図14は、本発明
の第10の実施の形態における高放熱広帯域光受信装置
の製造方法の概略を示す断面図であり、図15は本発明
の第10の実施の形態における高放熱広帯域光受信装置
の実装構造の製造方法の概略を示す断面図である。
(Tenth Embodiment) FIG. 14 is a sectional view schematically showing a method of manufacturing a high heat radiation broadband optical receiver according to a tenth embodiment of the present invention, and FIG. It is sectional drawing which shows the outline of the manufacturing method of the mounting structure of the high heat radiation broadband optical receiver in 10th Embodiment.

【0090】本実施の形態において、まず、図14の
(a)に示すように、内部に容量素子を内蔵した多層基
板103上の所定の領域に印刷法などによりペースト状
の共晶半田を供給したのち、高温半田を組成とするボー
ルや銅等の金属に半田等をコートした球状の端子電極1
33を搭載し、リフローを行うことで、図14の(b)
に示すように、端子電極が形成された多層基板103を
得る。
In this embodiment, first, as shown in FIG. 14A, paste-like eutectic solder is supplied by a printing method or the like to a predetermined region on a multilayer substrate 103 having a built-in capacitive element. After that, a spherical terminal electrode 1 is formed by coating a metal such as a ball or copper having a high-temperature solder with solder or the like.
By mounting the device 33 and performing reflow, (b) of FIG.
As shown in (1), a multilayer substrate 103 on which terminal electrodes are formed is obtained.

【0091】このとき、球状の端子電極133の大きさ
は、増幅器102のチップ厚さとフリップチップ実装後
の増幅器102と多層基板103との間隔と本体基板1
03へ実装する際の本体基板103と増幅器102との
間隔の和に等しい直径のものが選ばれる。
At this time, the size of the spherical terminal electrode 133 depends on the chip thickness of the amplifier 102, the distance between the amplifier 102 and the multilayer substrate 103 after flip-chip mounting, and the size of the main substrate 1.
A substrate having a diameter equal to the sum of the intervals between the main body substrate 103 and the amplifier 102 when mounting on the substrate 03 is selected.

【0092】その後に、図14の(c)に示すように、
多層基板103上の端子電極133が搭載された側の所
定の位置に増幅器102を位置あわせの後フェイスダウ
ンで実装し、図14の(d)に示すように、アンダーフ
ィルにより増幅器102と多層基板103との間隙を封
止する。
Thereafter, as shown in FIG.
After positioning the amplifier 102 at a predetermined position on the side on which the terminal electrode 133 is mounted on the multilayer substrate 103, the amplifier 102 is mounted face-down, and as shown in FIG. The gap with 103 is sealed.

【0093】続いて、図14の(e)に示すように、受
光素子101を多層基板103上の増幅器102が搭載
された面に対向する面に位置あわせの後フェイスダウン
で実装し、図14の(f)に示すように、増幅器102
と同様に多層基板103と受光素子101との間隙を封
止することで高放熱広帯域光受信装置を製造する。
Subsequently, as shown in FIG. 14E, the light receiving element 101 is positioned face-to-face with the surface on which the amplifier 102 is mounted on the multilayer substrate 103, and then mounted face-down. As shown in FIG.
Similarly to the above, a gap between the multilayer substrate 103 and the light receiving element 101 is sealed to manufacture a high heat radiation broadband optical receiver.

【0094】次に、図15の(a)に示すように、本体
基板135上に熱伝導性樹脂組成物124を印刷法もし
くはディスペンス法などにより増幅器102と本体基板
135が熱的に接合する領域に形成した後、高放熱広帯
域光受信装置の端子電極133と本体基板135との位
置あわせを行った後に、高放熱広帯域光受信装置を本体
基板135に塔載しリフローなどの熱プロセスを行うこ
とにより多層基板103と本体基板135間の電気的な
接合と増幅器102と本体基板135間の熱的な接合を
同時に行うことが出来、図15の(b)に示すような高
放熱広帯域光受信装置の実装構造体を製造することがで
きる。
Next, as shown in FIG. 15A, a region where the amplifier 102 and the main substrate 135 are thermally bonded on the main substrate 135 by applying the heat conductive resin composition 124 by a printing method or a dispensing method. After the alignment, the terminal electrode 133 of the high-radiation broadband optical receiver and the main substrate 135 are aligned, and the high-radiation broadband optical receiver is mounted on the main substrate 135 and subjected to a heat process such as reflow. As a result, electrical bonding between the multilayer substrate 103 and the main substrate 135 and thermal bonding between the amplifier 102 and the main substrate 135 can be performed at the same time, and a high heat radiation broadband optical receiver as shown in FIG. Can be manufactured.

【0095】このように製造することにより、本体基板
135に実装した時に形成される増幅器102と本体基
板135間の間隙を球状の端子電極133の大きさで制
御することができるため、本体基板135に実装後の増
幅器102と本体基板135との間隙のばらつきを押さ
えた高放熱広帯域光受信装置を提供することができる。
By manufacturing in this manner, the gap between the amplifier 102 and the main body substrate 135 formed when mounted on the main body substrate 135 can be controlled by the size of the spherical terminal electrode 133. In this case, it is possible to provide a high-radiation broadband optical receiver that suppresses variations in the gap between the amplifier 102 and the main body substrate 135 after mounting.

【0096】(第11の実施の形態)図16は、本発明
の第11の実施の形態における高放熱広帯域光受信装置
の実装構造の製造方法の概略を示す断面図である。
(Eleventh Embodiment) FIG. 16 is a sectional view schematically showing a method of manufacturing a mounting structure of a high heat radiation broadband optical receiver according to an eleventh embodiment of the present invention.

【0097】第10の実施の形態においては、高放熱広
帯域光受信装置を本体基板135に搭載する際に、本体
基板135に熱伝導性樹脂組成物124を供給していた
のに対し、本実施の形態においては、高放熱広帯域光受
信装置を本体基板135に搭載する前に、均一の粒径を
持ったフィラーが分散された熱伝導性樹脂組成物124
を本体基板に供給し、その後、高放熱広帯域光受信装置
を加圧しながら本体基板135に搭載する例を示してい
る。
In the tenth embodiment, the heat conductive resin composition 124 is supplied to the main substrate 135 when the high heat radiation broadband optical receiver is mounted on the main substrate 135. In the embodiment, before mounting the high heat radiation broadband optical receiver on the main body substrate 135, the heat conductive resin composition 124 in which a filler having a uniform particle size is dispersed is used.
Is supplied to the main body substrate, and then mounted on the main body substrate 135 while applying pressure to the high heat radiation broadband optical receiver.

【0098】図16の(a)に示すように、高放熱広帯
域光受信装置を本体基板135へ搭載する場合、本体基
板135上の高放熱光受信装置の端子電極133が搭載
される領域にクリーム半田等を印刷形成し、その後、増
幅素子102と本体基板135が対向する領域に均一の
粒径を持ったフィラーが分散された熱伝導性樹脂組成物
124を本体基板135に印刷もしくはディスペンス等
により、供給する。その際、フィラーの粒径として、増
幅素子102と本体基板135の間隙と等しいもしくは
小さいものが選ばれ、例えば、無機物の絶縁性フィラー
として絶縁性フィラーとしてアルミナ,AlN,窒化ケ
イ素,ベリリア(BeO)の少なくとも1つを選ぶこと
ができる。
As shown in FIG. 16A, when the high heat radiation broadband optical receiver is mounted on the main body substrate 135, the cream is provided on the main substrate 135 in the area where the terminal electrode 133 of the high heat radiation light receiver is mounted. A solder or the like is formed by printing, and then, a heat conductive resin composition 124 in which a filler having a uniform particle size is dispersed in a region where the amplifying element 102 and the main substrate 135 are opposed to each other is printed or dispensed on the main substrate 135. Supply. At this time, the particle size of the filler is selected to be equal to or smaller than the gap between the amplifying element 102 and the main body substrate 135. For example, as an inorganic insulating filler, alumina, AlN, silicon nitride, beryllia (BeO) is used as the insulating filler. At least one can be selected.

【0099】その後、図16の(b)に示すように、高
放熱広帯域光受信装置を加圧しながら本体基板135へ
搭載し、リフローなどの熱プロセスを行うことにより多
層基板103と本体基板135が電気的に接続され、増
幅素子102と本体基板135との間隙はフィラーの粒
径以下になることはなく、必然的に増幅素子102と本
体基板135とは一定の間隙に熱伝導性樹脂組成物12
4が充填された構造となる。
Thereafter, as shown in FIG. 16B, the high-radiation broadband optical receiver is mounted on the main body substrate 135 while applying pressure, and a heat process such as reflow is performed to form the multilayer substrate 103 and the main body substrate 135. It is electrically connected, and the gap between the amplification element 102 and the main body substrate 135 does not become smaller than the particle diameter of the filler. 12
4 is filled.

【0100】このような製造方法とすることで、多層基
板103にそりが発生した場合においても増幅器102
と本体基板135間の間隙を均一に制御することができ
るため、きわめて安定した放熱特性を有する高放熱広帯
域光受信装置の実装構造体を得ることができる。
By adopting such a manufacturing method, even when warpage occurs in the multilayer substrate 103, the amplifier 102
Therefore, the mounting structure of the high heat radiation wide band optical receiver having extremely stable heat radiation characteristics can be obtained.

【0101】(第12の実施の形態)図17は、本発明
の第12の実施の形態における高放熱広帯域光受信装置
の実装構造の製造方法の概略を示す断面図である。
(Twelfth Embodiment) FIG. 17 is a sectional view schematically showing a method of manufacturing a mounting structure of a high heat radiation broadband optical receiver according to a twelfth embodiment of the present invention.

【0102】本実施の形態においては、受光素子101
は増幅素子102の能動面上に直接フリップチップ実装
され、増幅素子102は光ファイバ104が固定された
多層基板103上へフリップチップ実装される高放熱広
帯域光受信装置の実装構造の製造方法の例を示してい
る。
In the present embodiment, the light receiving element 101
Is an example of a manufacturing method of a mounting structure of a high heat radiation broadband optical receiver in which the amplifier 102 is flip-chip mounted directly on the active surface of the amplifier 102 and the amplifier 102 is flip-chip mounted on the multilayer substrate 103 to which the optical fiber 104 is fixed. Is shown.

【0103】まず、図17の(a)に示すように、増幅
素子102の能動面に直接受光素子101をフリップ実
装される。このときフリップチップ実装として、受光素
子101上に例えば直径が18μmの金線を用いて突起
電極をワイヤボンド等により形成し、受光素子101に
形成した突起電極と増幅素子102の電極とを位置あわ
せしたのち超音波と加熱と加圧により金属的な接合を行
う方法等を用いる。
First, as shown in FIG. 17A, the light receiving element 101 is directly mounted on the active surface of the amplifying element 102 by flip mounting. At this time, as the flip-chip mounting, a projecting electrode is formed on the light receiving element 101 by using, for example, a gold wire having a diameter of 18 μm by wire bonding or the like, and the projecting electrode formed on the light receiving element 101 and the electrode of the amplification element 102 are aligned. After that, a method of performing metallic bonding by ultrasonic waves, heating and pressurizing is used.

【0104】このとき、受光素子101の素子厚さを1
00μmのものを使うと、受光素子101の背面から増
幅素子102の表面までは130μm以下に形成するこ
とができる。
At this time, the element thickness of the light receiving element 101 is set to 1
If the one having a thickness of 00 μm is used, the distance from the back surface of the light receiving element 101 to the surface of the amplification element 102 can be formed to be 130 μm or less.

【0105】その後、図17の(b)、(c)に示すよ
うに、光ファイバ104が固定された多層基板103と
位置あわせを行い、受光素子101を増幅素子102上
に実装した方法と同様の方法を用いて増幅素子102を
多層基板103上にフリップチップ実装する。このとき
の増幅素子102は、受光素子101をフリップチップ
実装したときに形成した金属バンプよりも高背の金属バ
ンプを同様の方法により形成する。
After that, as shown in FIGS. 17B and 17C, the optical fiber 104 is aligned with the multilayer substrate 103 to which the optical fiber 104 is fixed, and the light receiving element 101 is mounted on the amplifying element 102 in the same manner. The amplifying element 102 is flip-chip mounted on the multilayer substrate 103 by using the above method. At this time, the amplifying element 102 forms a metal bump higher in height than the metal bump formed when the light receiving element 101 is flip-chip mounted by the same method.

【0106】例えば、直径が50μmの金線を用いるこ
とで高さが150μm以上の突起電極を形成することが
できるため、実装時の加圧力の調整により受光素子10
1の裏面と光ファイバ104間の距離を制御することが
できる。さらに増幅器102と多層基板103間に光フ
ァイバ104を伝送する光に対して透過率の高い樹脂組
成物を用いて封止することで、より接続信頼性の高い接
合を実現することができる。
For example, a bump electrode having a height of 150 μm or more can be formed by using a gold wire having a diameter of 50 μm.
The distance between the back surface of the optical fiber 104 and the optical fiber 104 can be controlled. Further, by using a resin composition having a high transmittance for light transmitted through the optical fiber 104 between the amplifier 102 and the multilayer substrate 103, the connection with higher connection reliability can be realized.

【0107】さらに、図17の(c)、(d)に示すよ
うに、増幅器102の裏面に熱伝導性樹脂組成物124
を介して放熱板134を接合することで増幅器102を
効率的に放熱することができる。
Further, as shown in FIGS. 17C and 17D, the heat conductive resin composition 124
The amplifier 102 can be efficiently dissipated by joining the heat sink 134 via the heat sink.

【0108】このような構成にすることで、増幅器10
2の多層基板103への搭載と、受光素子101と光フ
ァイバ104との位置あわせを同時に行うことができる
ため、製造工程を簡略化して安価に高放熱広帯域光受信
装置の実装構造を製造することができる。
With such a configuration, the amplifier 10
2 can be simultaneously mounted on the multilayer substrate 103 and the positioning of the light receiving element 101 and the optical fiber 104 can be performed at the same time, thereby simplifying the manufacturing process and manufacturing the mounting structure of the high heat radiation broadband optical receiver at low cost. Can be.

【0109】[0109]

【発明の効果】以上説明したところから明らかなよう
に、本発明は、光ファイバと受光素子間の光結合部を妨
げることなく増幅器を効率的に放熱することができる光
受信装置、光受信装置の実装構造、および光受信装置の
製造方法を提供することが出来る。
As is apparent from the above description, the present invention provides an optical receiving apparatus and an optical receiving apparatus capable of efficiently dissipating heat from an amplifier without hindering an optical coupling portion between an optical fiber and a light receiving element. And a method of manufacturing the optical receiving device can be provided.

【0110】また、本発明は、実装に起因する寄生イン
ダクタンスを小さい状態で半導体素子を搭載でき広帯域
において平坦な周波数特性を得ることができる光受信装
置、光受信装置の実装構造、および光受信装置の製造方
法を提供することが出来る。
Further, the present invention provides an optical receiving device, a mounting structure of an optical receiving device, and an optical receiving device capable of mounting a semiconductor element with a small parasitic inductance due to mounting and obtaining a flat frequency characteristic in a wide band. Can be provided.

【0111】また、本発明は、本体基板に搭載する際の
部品点数を低減することができ、製造時の放熱特性のば
らつきが少ない光受信装置を安定して製造することがで
きる光受信装置、光受信装置の実装構造、および光受信
装置の製造方法を提供することが出来る。
Further, according to the present invention, an optical receiving device which can reduce the number of components when mounted on a main body substrate and can stably manufacture an optical receiving device with less variation in heat radiation characteristics during manufacturing. The mounting structure of the optical receiver and the method for manufacturing the optical receiver can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における光受信装置
の概略構成を示す断面図である。
FIG. 1 is a cross-sectional view illustrating a schematic configuration of an optical receiving device according to a first embodiment of the present invention.

【図2】(a)本発明の第1の実施の形態における容量
素子を多層基板の内部に形成する際に用いられるコンデ
ンサ層が形成された絶縁層用グリーンシートを積層する
前の構成を示す図である。 (b)本発明の第1の実施の形態における容量素子を多
層基板の内部に形成された多層基板を示す図である。
FIG. 2A shows a configuration before laminating an insulating layer green sheet on which a capacitor layer used in forming a capacitive element in a multilayer substrate according to a first embodiment of the present invention is formed. FIG. FIG. 2B is a diagram illustrating a multilayer substrate in which the capacitive element according to the first embodiment of the present invention is formed inside the multilayer substrate.

【図3】(a)本発明の第1の実施の形態における多層
基板上への受光素子の実装工程のうち受光素子に突起電
極を形成する工程を示す断面図である。 (b)本発明の第1の実施の形態における多層基板上へ
の受光素子の実装工程のうち受光素子を多層基板上へ搭
載する工程を示す断面図である。 (c)本発明の第1の実施の形態における多層基板上へ
の受光素子の実装工程のうち多層基板上に搭載された受
光素子を樹脂組成物で封止する工程を示す断面図であ
る。
FIG. 3A is a cross-sectional view illustrating a step of forming a protruding electrode on the light receiving element in the step of mounting the light receiving element on the multilayer substrate according to the first embodiment of the present invention. FIG. 4B is a cross-sectional view illustrating a step of mounting the light receiving element on the multilayer substrate in the step of mounting the light receiving element on the multilayer substrate according to the first embodiment of the present invention. FIG. 3C is a cross-sectional view illustrating a step of sealing the light receiving element mounted on the multilayer substrate with a resin composition in the step of mounting the light receiving element on the multilayer substrate according to the first embodiment of the present invention.

【図4】本発明の第1の実施の形態における高放熱広帯
域光受信装置の実装構造の概略構成を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing a schematic configuration of a mounting structure of the high heat radiation broadband optical receiver according to the first embodiment of the present invention.

【図5】本発明の第1の実施の形態における高放熱広帯
域光受信装置の実装構造体における放熱特性を示すグラ
フである。
FIG. 5 is a graph showing heat radiation characteristics of the mounting structure of the high heat radiation broadband optical receiver according to the first embodiment of the present invention.

【図6】本発明の第2の実施の形態における高放熱広帯
域光受信装置の概略構成を示す断面図である。
FIG. 6 is a cross-sectional view illustrating a schematic configuration of a high heat radiation broadband optical receiver according to a second embodiment of the present invention.

【図7】本発明の第3の実施の形態における高放熱広帯
域光受信装置の概略構成である。
FIG. 7 is a schematic configuration of a high heat radiation broadband optical receiver according to a third embodiment of the present invention.

【図8】(a)本発明の第4の実施の形態における高放
熱広帯域光受信装置の概略図である。 (b)本発明の第4の実施の形態における高放熱広帯域
光受信装置の本体基板への実装構造を示す断面図であ
る。
FIG. 8A is a schematic diagram of a high heat radiation broadband optical receiver according to a fourth embodiment of the present invention. (B) It is sectional drawing which shows the mounting structure to the main-body board | substrate of the high heat radiation broadband optical receiver in 4th Embodiment of this invention.

【図9】本発明の第5の実施の形態における高放熱広帯
域光受信装置の概略構成を示す断面図である。
FIG. 9 is a cross-sectional view illustrating a schematic configuration of a high heat radiation broadband optical receiver according to a fifth embodiment of the present invention.

【図10】本発明の第6の実施の形態における高放熱広
帯域光受信装置の概略構成を示す断面図である。
FIG. 10 is a cross-sectional view illustrating a schematic configuration of a high heat radiation broadband optical receiver according to a sixth embodiment of the present invention.

【図11】本発明の第7の実施の形態における高放熱広
帯域光受信装置の実装構造の概略を示す断面図である。
FIG. 11 is a cross-sectional view schematically illustrating a mounting structure of a high heat radiation broadband optical receiver according to a seventh embodiment of the present invention.

【図12】本発明の第8の実施の形態における高放熱広
帯域光受信装置の実装構造の概略を示す断面図である。
FIG. 12 is a cross-sectional view schematically illustrating a mounting structure of a high heat radiation broadband optical receiver according to an eighth embodiment of the present invention.

【図13】(a)本発明の第9の実施の形態における増
幅素子と本体基板との間隙に充填された樹脂組成物1と
多層基板と本体基板との間隙に充填された樹脂組成物2
とが異なる組成で形成されている高放熱広帯域光受信装
置の実装構造の概略を示す断面図である。 (b)本発明の第9の実施の形態における増幅素子と本
体基板との間隙に充填された樹脂組成物1と多層基板と
本体基板との間隙に充填された樹脂組成物2とが異なる
組成で形成されているもう一つの高放熱広帯域光受信装
置の実装構造の概略を示す断面図である。
FIG. 13 (a) A resin composition 1 filled in a gap between an amplifying element and a main substrate and a resin composition 2 filled in a gap between a multilayer substrate and a main substrate in a ninth embodiment of the present invention.
FIG. 4 is a cross-sectional view schematically showing a mounting structure of a high heat radiation broadband optical receiver formed of a composition different from that of FIG. (B) A resin composition 1 filled in the gap between the amplification element and the main substrate and a resin composition 2 filled in the gap between the multilayer substrate and the main substrate according to the ninth embodiment of the present invention are different. It is sectional drawing which shows the outline of the mounting structure of another high heat radiation broadband optical receiver formed by (1).

【図14】(a)本発明の第10の実施の形態における
高放熱広帯域光受信装置の製造工程のうち、多層基板1
03上の所定の領域に端子電極133を搭載する工程を
示す断面図である。 (b)本発明の第10の実施の形態における高放熱広帯
域光受信装置の製造工程のうち、多層基板103に端子
電極133を形成する工程を示す断面図である。 (c)本発明の第10の実施の形態における高放熱広帯
域光受信装置の製造工程のうち、多層基板103上の端
子電極133が搭載された側の所定の位置に増幅器10
2を位置あわせの後フェイスダウンで実装する工程を示
す断面図である。 (d)本発明の第10の実施の形態における高放熱広帯
域光受信装置の製造工程のうち、アンダーフィルにより
増幅器102と多層基板103との間隙を封止する工程
を示す断面図である。 (e)本発明の第10の実施の形態における高放熱広帯
域光受信装置の製造工程のうち、受光素子101を多層
基板103上の増幅器102が搭載された面に対向する
面に位置あわせの後フェイスダウンで実装する工程を示
す断面図である。 (f)本発明の第10の実施の形態における高放熱広帯
域光受信装置の製造工程のうち、増幅器102と同様に
多層基板103と受光素子101との間隙を封止する工
程を示す断面図である。
FIG. 14 (a) shows a multilayer substrate 1 in a manufacturing process of a high heat radiation broadband optical receiver according to a tenth embodiment of the present invention.
FIG. 13 is a cross-sectional view showing a step of mounting a terminal electrode 133 in a predetermined area on a surface 03. (B) It is sectional drawing which shows the process of forming the terminal electrode 133 in the multilayer substrate 103 among the manufacturing processes of the high heat radiation broadband optical receiver in 10th Embodiment of this invention. (C) In the manufacturing process of the high heat radiation broadband optical receiver according to the tenth embodiment of the present invention, the amplifier 10
FIG. 9 is a cross-sectional view showing a step of mounting face-down after positioning No. 2; (D) It is sectional drawing which shows the process of sealing the clearance gap between the amplifier 102 and the multilayer substrate 103 by underfill in the manufacturing process of the high heat radiation broadband optical receiver in 10th Embodiment of this invention. (E) In the manufacturing process of the high heat radiation broadband optical receiver according to the tenth embodiment of the present invention, after aligning the light receiving element 101 with the surface of the multilayer substrate 103 opposite to the surface on which the amplifier 102 is mounted. It is sectional drawing which shows the process of mounting by face-down. (F) is a cross-sectional view showing a step of sealing a gap between the multilayer substrate 103 and the light receiving element 101 in the same manner as the amplifier 102, in the manufacturing steps of the high heat radiation broadband optical receiver according to the tenth embodiment of the present invention. is there.

【図15】(a)本発明の第10の実施の形態における
高放熱広帯域光受信装置の実装構造の製造工程のうち、
本体基板135上の増幅素子102と対向する所定の領
域に熱伝導性樹脂組成物124を供給する工程を示す断
面図である。 (b)本発明の第10の実施の形態における高放熱広帯
域光受信装置の実装構造の製造工程のうち、端子電極1
33が搭載された多層基板103をリフローすることに
より、高放熱広帯域光受信装置を本体基板135へ搭載
する工程を示す断面図である。
FIG. 15 (a) shows a manufacturing process of a mounting structure of a high heat radiation broadband optical receiver according to a tenth embodiment of the present invention;
FIG. 9 is a cross-sectional view showing a step of supplying a thermally conductive resin composition 124 to a predetermined region on the main substrate 135 facing the amplification element 102. (B) The terminal electrode 1 in the manufacturing process of the mounting structure of the high heat radiation broadband optical receiver according to the tenth embodiment of the present invention.
FIG. 13 is a cross-sectional view showing a step of mounting the high heat radiation broadband optical receiver on the main body substrate 135 by reflowing the multilayer substrate 103 on which the substrate 33 is mounted.

【図16】(a)本発明の第11の実施の形態における
高放熱広帯域光受信装置の実装構造の製造工程のうち、
本体基板135上の高放熱光受信装置の端子電極133
を形成し、その後、増幅素子102と本体基板135が
対向する領域に熱伝導性樹脂組成物124を本体基板1
35に供給する工程を示す断面図である。 (b)本発明の第11の実施の形態における高放熱広帯
域光受信装置の実装構造の製造工程のうち、高放熱広帯
域光受信装置を加圧しながら本体基板135へ搭載し、
リフローなどの熱プロセスを行う工程を示す断面図であ
る。
FIG. 16A shows a step of manufacturing a mounting structure of a high heat radiation broadband optical receiver according to an eleventh embodiment of the present invention;
Terminal electrode 133 of high heat radiation light receiving device on main body substrate 135
Is formed, and then the heat conductive resin composition 124 is applied to the region where the amplification element 102 and the main body substrate 135 face each other.
It is sectional drawing which shows the process of supplying to 35. (B) In the manufacturing process of the mounting structure of the high-radiation broadband optical receiver according to the eleventh embodiment of the present invention, the high-radiation broadband optical receiver is mounted on the main body substrate 135 while pressing,
It is sectional drawing which shows the process of performing a thermal process, such as reflow.

【図17】(a)本発明の第12の実施の形態における
高放熱広帯域光受信装置の実装構造の製造工程のうち、
増幅素子102の能動面に直接受光素子101をフリッ
プ実装する工程を示す断面図である。 (b)本発明の第12の実施の形態における高放熱広帯
域光受信装置の実装構造の製造工程のうち、(a)の工
程で受光素子101が実装され、バンプ107が形成さ
れた増幅素子102を示す断面図である。 (c)本発明の第12の実施の形態における高放熱広帯
域光受信装置の実装構造の製造工程のうち、光ファイバ
104が固定された多層基板103と位置あわせを行
い、増幅素子102を多層基板103上にフリップチッ
プ実装する工程を示す断面図である。 (d)本発明の第12の実施の形態における高放熱広帯
域光受信装置の実装構造の製造工程のうち、増幅器10
2の裏面に熱伝導性樹脂組成物124を介して放熱板1
34を接合する工程を示す断面図である。 (e)本発明の第12の実施の形態における高放熱広帯
域光受信装置の実装構造の製造工程のうち、(d)の工
程が完了した高放熱広帯域光受信装置を示す断面図であ
る。
FIG. 17 (a) shows a manufacturing process of a mounting structure of a high heat radiation broadband optical receiver according to a twelfth embodiment of the present invention;
FIG. 9 is a cross-sectional view showing a step of flip-mounting the light receiving element 101 directly on the active surface of the amplification element 102. (B) In the manufacturing process of the mounting structure of the high heat radiation broadband optical receiver according to the twelfth embodiment of the present invention, the amplifying element 102 on which the light receiving element 101 is mounted in the step (a) and the bump 107 is formed in the step (a). FIG. (C) In the manufacturing process of the mounting structure of the high heat radiation broadband optical receiver according to the twelfth embodiment of the present invention, the amplifier element 102 is aligned with the multilayer substrate 103 to which the optical fiber 104 is fixed, and FIG. 10 is a cross-sectional view showing a step of flip-chip mounting on the semiconductor device 103. (D) The amplifier 10 in the manufacturing process of the mounting structure of the high heat radiation broadband optical receiver according to the twelfth embodiment of the present invention.
2 on the back surface of the heat sink 1 via the heat conductive resin composition 124
It is sectional drawing which shows the process of joining 34. (E) It is sectional drawing which shows the high heat radiation wide band optical receiver which completed the process of (d) among the manufacturing processes of the mounting structure of the high heat radiation wide band optical receiver in the 12th Embodiment of this invention.

【図18】従来の広帯域光受信装置の概略構成を示す断
面図である。
FIG. 18 is a cross-sectional view illustrating a schematic configuration of a conventional broadband optical receiver.

【符号の説明】[Explanation of symbols]

101 受光素子 102 増幅器 103 多層基板 104 光ファイバ 105 バイアス端子 106 接地端子 107 バンプ 108 ビア導体 109 容量素子 112 グリーンシート 113 コンデンサ用電極 114 コンデンサ層 121 導電性電極 122 接続端子 123 本体基板側の接続端子 124 熱伝導性樹脂組成物 131 出力端子 132 入力端子 133 端子電極 134 放熱板 135 本体基板 Reference Signs List 101 light receiving element 102 amplifier 103 multilayer substrate 104 optical fiber 105 bias terminal 106 ground terminal 107 bump 108 via conductor 109 capacitance element 112 green sheet 113 capacitor electrode 114 capacitor layer 121 conductive electrode 122 connection terminal 123 body terminal side connection terminal 124 Thermal conductive resin composition 131 Output terminal 132 Input terminal 133 Terminal electrode 134 Heat sink 135 Body board

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田口 豊 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 板垣 峰広 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4M109 AA01 BA03 CA05 DB02 EB12 EC06 GA01 GA05 4M118 AA10 AB05 CA02 GA02 HA20 HA22 HA23 HA24 HA31 5F088 AA01 BA16 BB01 EA07 JA03 JA09 JA14 JA20  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yutaka Taguchi 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Minehiro 1006 Kadoma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. F term (reference) 4M109 AA01 BA03 CA05 DB02 EB12 EC06 GA01 GA05 4M118 AA10 AB05 CA02 GA02 HA20 HA22 HA23 HA24 HA31 5F088 AA01 BA16 BB01 EA07 JA03 JA09 JA14 JA20

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバと、 前記光ファイバからの光信号を受信する受光素子と、 容量素子を内蔵する多層基板と、 前記受光素子の信号を増幅する増幅素子とを備え、 前記受光素子及び前記増幅素子は、前記多層基板の互い
に異なった面にそれぞれ取り付けられており、 前記増幅素子の周囲には、放熱部材を取り付け得る空間
が存在する光受信装置。
An optical fiber, a light receiving element for receiving an optical signal from the optical fiber, a multilayer substrate having a built-in capacitance element, and an amplifying element for amplifying a signal from the light receiving element. The optical receiver, wherein the amplifying elements are attached to different surfaces of the multilayer substrate, respectively, and there is a space around the amplifying element where a heat radiation member can be attached.
【請求項2】 前記受光素子と前記増幅素子とは、互い
に重なるように前記多層基板にそれぞれ取り付けられて
いる請求項1記載の光受信装置。
2. The optical receiving device according to claim 1, wherein said light receiving element and said amplifying element are respectively mounted on said multilayer substrate so as to overlap each other.
【請求項3】 前記受光素子の出力端子と前記信号増幅
素子の入力端子とが互いに重なるように前記多層基板に
それぞれ取り付けられている請求項1または2に記載の
光受信装置。
3. The optical receiver according to claim 1, wherein an output terminal of the light receiving element and an input terminal of the signal amplifying element are attached to the multilayer substrate so as to overlap each other.
【請求項4】 前記多層基板は周囲に端子電極を有し、 前記増幅素子は、前記多層基板の前記端子電極が形成さ
れている面に搭載されている請求項1〜3のいずれかに
記載の光受信装置。
4. The multi-layer substrate according to claim 1, wherein the multi-layer substrate has a terminal electrode on a periphery thereof, and the amplification element is mounted on a surface of the multi-layer substrate on which the terminal electrode is formed. Optical receiver.
【請求項5】 前記端子電極の厚さは、前記多層基板の
前記端子電極が形成されている面から前記増幅素子の前
記多層基板が存在する側の面とは反対側の面までの距離
より大きい請求項4記載の光受信装置。
5. The thickness of the terminal electrode is determined by a distance from a surface of the multilayer substrate on which the terminal electrode is formed to a surface of the amplifying element opposite to a surface on which the multilayer substrate is present. The optical receiving device according to claim 4, which is large.
【請求項6】 光ファイバと、 前記光ファイバからの光信号を受信する受光素子と、 容量素子を内蔵する多層基板と、 前記受光素子の信号を増幅する増幅素子とを備え、 前記増幅素子は前記多層基板の主面に取り付けられてお
り前記受光素子は前記多層基板の側面に取り付けられて
おり、 前記増幅素子の周囲には、放熱部材を取り付け得る空間
が存在する光受信装置。
6. An optical fiber, comprising: a light receiving element for receiving an optical signal from the optical fiber; a multilayer substrate having a built-in capacitance element; and an amplifying element for amplifying a signal of the light receiving element. An optical receiving device attached to a main surface of the multilayer substrate, the light receiving element is attached to a side surface of the multilayer substrate, and a space around the amplifying element where a heat radiation member can be attached exists.
【請求項7】 光ファイバと、 前記光ファイバからの光信号を受信する受光素子と、 容量素子を内蔵しかつ周囲に端子電極を有する多層基板
と、 前記受光素子の信号を増幅する増幅素子とを備え、 前記受光素子は前記増幅素子の面のうち、前記多層基板
が存在する側の面に直接取り付けられており、 前記増幅素子は前記多層基板上に取り付けられており、 光ファイバの先端が前記受光素子に当接しており、 前記増幅素子の周囲には、放熱部材を取り付け得る空間
が存在する光受信装置。
7. An optical fiber, a light receiving element for receiving an optical signal from the optical fiber, a multilayer substrate having a built-in capacitance element and having a terminal electrode around it, and an amplifying element for amplifying a signal of the light receiving element Wherein the light receiving element is directly mounted on the surface of the amplification element on the side where the multilayer substrate is present, the amplification element is mounted on the multilayer substrate, and the tip of the optical fiber is An optical receiving device which is in contact with the light receiving element and has a space around the amplification element to which a heat radiation member can be attached.
【請求項8】 前記受光素子は裏面入射型のフォトダイ
オードである請求項1〜7のいずれかに記載の光受信装
置。
8. The optical receiver according to claim 1, wherein said light receiving element is a back-illuminated photodiode.
【請求項9】 前記増幅素子は、複数のチップで構成さ
れる請求項1〜6のいずれかに記載の光受信装置。
9. The optical receiving device according to claim 1, wherein said amplifying element is constituted by a plurality of chips.
【請求項10】 請求項4または5に記載の光受信装置
と、 前記多層基板の前記端子電極に導電性電極を介して接続
された本体基板と、 前記増幅素子の前記多層基板が存在する面とは反対側の
面に接続された放熱板とを備えた光受信装置の実装構
造。
10. The optical receiving device according to claim 4 or 5, a main substrate connected to the terminal electrode of the multilayer substrate via a conductive electrode, and a surface of the amplification element on which the multilayer substrate exists. And a heat sink connected to a surface on the opposite side of the optical receiver.
【請求項11】 前記放熱板は、熱伝導性を有する樹脂
組成物を介して前記面に接続されている請求項9記載の
光受信装置の実装構造。
11. The mounting structure for an optical receiver according to claim 9, wherein said heat sink is connected to said surface via a resin composition having thermal conductivity.
【請求項12】 請求項4または5に記載の光受信装置
と、 前記多層基板と対向し、前記多層基板の前記端子電極に
接続された本体基板とを備え、 少なくとも前記増幅素子の前記多層基板が存在する側面
とは反対側の面と前記本体基板との間隙が熱伝導性を有
する樹脂組成物で充填されている光受信装置の実装構
造。
12. The optical receiving device according to claim 4, further comprising: a main body substrate facing the multilayer substrate and connected to the terminal electrode of the multilayer substrate, wherein at least the multilayer substrate of the amplifying element is provided. The mounting structure of the optical receiving device, wherein a gap between the surface opposite to the side surface on which the surface exists and the main body substrate is filled with a resin composition having thermal conductivity.
【請求項13】 前記樹脂組成物は、前記増幅素子と前
記本体基板との間隙に等しい粒径の球状フィラーが分散
されている請求項12記載の光受信装置の実装構造。
13. The mounting structure of an optical receiver according to claim 12, wherein the resin composition has a spherical filler having a particle diameter equal to a gap between the amplifying element and the main substrate dispersed therein.
【請求項14】 請求項4または5に記載の光受信装置
と、 前記多層基板と対向し、前記多層基板の前記端子電極に
接続された本体基板とを備え、 前記増幅素子及び前記多層基板と、本体基板との間隙が
熱伝導性樹脂組成物で充填されている光受信装置の実装
構造。
14. The optical receiving device according to claim 4, further comprising: a main body substrate facing the multilayer substrate and connected to the terminal electrode of the multilayer substrate, wherein the amplifying element and the multilayer substrate And a mounting structure of the optical receiver in which a gap with the main substrate is filled with a thermally conductive resin composition.
【請求項15】 前記熱伝導性樹脂組成物で充填されて
いるとは、前記増幅素子と前記本体基板との間隙が第1
の熱伝導性樹脂組成物で充填されており、前記多層基板
と前記本体基板との間隙が第2の熱伝導性樹脂組成物で
充填されていることである請求項14記載の光受信装置
の実装構造。
15. The term “filled with the thermally conductive resin composition” means that a gap between the amplifying element and the main body substrate is the first.
15. The optical receiving device according to claim 14, wherein the gap between the multilayer substrate and the main body substrate is filled with a second heat conductive resin composition. Mounting structure.
【請求項16】 前記第1の熱伝導性樹脂組成物の熱伝
導率は、前記第2の熱伝導性樹脂組成物の熱伝導率より
高い請求項15記載の光受信装置の実装構造。
16. The mounting structure for an optical receiver according to claim 15, wherein the thermal conductivity of the first thermal conductive resin composition is higher than the thermal conductivity of the second thermal conductive resin composition.
【請求項17】 前記熱伝導性樹脂組成物は、無機物の
粒子を含むことを特徴特徴とする請求項12〜16のい
ずれかに記載の光受信装置の実装構造。
17. The mounting structure for an optical receiver according to claim 12, wherein the heat conductive resin composition includes inorganic particles.
【請求項18】 前記熱伝導性樹脂組成物は、絶縁性フ
ィラーとしてアルミナ,AlN,窒化ケイ素,ベリリア
(BeO)の少なくとも1つを含む請求項12〜16の
いずれかに記載の光受信装置の実装構造。
18. The optical receiver according to claim 12, wherein the thermally conductive resin composition contains at least one of alumina, AlN, silicon nitride, and beryllia (BeO) as an insulating filler. Mounting structure.
【請求項19】 容量素子を内蔵した多層基板の表面及
び裏面に受光素子と増幅素子をそれぞれ搭載する工程
と、 前記多層基板の表面と前記受光素子との間と、前記多層
基板の裏面と前記増幅素子との間とを樹脂組成物で封止
する工程と、 前記多層基板の裏面と本体基板とを前記多層基板の端子
電極を介して電気的に接続する工程と、 熱伝導性樹脂組成物を前記増幅素子と前記本体基板との
間に充填する工程とを備えた光受信装置の製造方法。
19. A step of mounting a light receiving element and an amplifying element respectively on a front surface and a back surface of a multilayer substrate having a built-in capacitance element; A step of sealing the space between the multi-layer substrate and the amplifying element with a resin composition; a step of electrically connecting the back surface of the multilayer substrate and the main substrate via terminal electrodes of the multilayer substrate; Filling the space between the amplifying element and the main body substrate.
【請求項20】 容量素子を内蔵した多層基板の表面及
び裏面に受光素子と増幅素子とをそれぞれ搭載する工程
と、 前記多層基板の表面と前記受光素子との間と、前記多層
基板の裏面と前記増幅素子との間とを樹脂組成物で封止
する工程と、 均一の粒径のフィラーが分散された樹脂組成物を本体基
板に供給する工程と、 前記多層基板の裏面と前記本体基板とを前記多層基板及
び/または前記増幅素子を加圧しながら前記本体基板に
搭載する工程とを備えた光受信装置の実装構造の製造方
法。
20. A step of mounting a light receiving element and an amplifying element respectively on a front surface and a back surface of a multilayer substrate having a built-in capacitance element; A step of sealing the space between the multi-layer substrate and the amplification element with a resin composition, a step of supplying a resin composition in which a filler having a uniform particle size is dispersed to the main substrate, Mounting the multi-layer substrate and / or the amplifying element on the main body substrate while applying pressure to the main body substrate.
【請求項21】 受光素子を増幅素子の能動面に搭載す
る工程と、 端面が光軸に対して斜めに加工されかつ反射膜が形成さ
れた光ファイバを多層基板上に固定する工程と、 前記増幅素子を前記多層基板上に取り付けて電気的接続
を行うとともに前記受光素子と前記光ファイバ間の光結
合とを同時に行う工程と、 前記増幅素子と前記多層基板間を前記光ファイバを伝搬
する信号光に対して透明な材料で充填する工程とを備え
た光受信装置の製造方法。
21. A step of mounting a light receiving element on an active surface of an amplifying element; a step of fixing an optical fiber having an end face processed obliquely to an optical axis and having a reflective film formed thereon, on a multilayer substrate; Attaching an amplifying element on the multilayer substrate to perform electrical connection while simultaneously performing optical coupling between the light receiving element and the optical fiber; and a signal propagating through the optical fiber between the amplifying element and the multilayer substrate. Filling with a material transparent to light.
JP2001022368A 2001-01-30 2001-01-30 Light receiving device, mounting structure thereof, and method of manufacturing the same Pending JP2002231974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001022368A JP2002231974A (en) 2001-01-30 2001-01-30 Light receiving device, mounting structure thereof, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001022368A JP2002231974A (en) 2001-01-30 2001-01-30 Light receiving device, mounting structure thereof, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002231974A true JP2002231974A (en) 2002-08-16

Family

ID=18887796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001022368A Pending JP2002231974A (en) 2001-01-30 2001-01-30 Light receiving device, mounting structure thereof, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002231974A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197929A (en) * 2001-12-27 2003-07-11 Mitsubishi Electric Corp Light receiving element carrier and light receiving device
WO2004068592A1 (en) * 2003-01-27 2004-08-12 Ngk Insulators, Ltd. Optical device
JP2004287215A (en) * 2003-03-24 2004-10-14 Fuji Photo Film Co Ltd Transmission type optical modulation apparatus and method for packaging the same
US7174062B2 (en) 2002-03-29 2007-02-06 Ngk Insulators, Ltd. Optical device and method of manufacturing same
WO2007088959A1 (en) * 2006-02-02 2007-08-09 Nec Corporation Optical module
JP2011071312A (en) * 2009-09-25 2011-04-07 Hamamatsu Photonics Kk Light detecting apparatus
CN102104037A (en) * 2010-12-09 2011-06-22 晶科电子(广州)有限公司 Luminous device with integrated circuit and manufacturing method thereof
JP2013182923A (en) * 2012-02-29 2013-09-12 Canon Inc Photoelectric conversion apparatus, imaging system, and photoelectric conversion apparatus manufacturing method
RU2515190C1 (en) * 2012-11-12 2014-05-10 Открытое акционерное общество "НПО "Орион" (ОАО "НПО "Орион") METHOD OF MAKING PHOTODETECTOR MODULE BASED ON PbSe
KR101501627B1 (en) * 2007-12-27 2015-03-11 신꼬오덴기 고교 가부시키가이샤 Electronic apparatus
JP2017059730A (en) * 2015-09-17 2017-03-23 富士通コンポーネント株式会社 Optical reception module and method of manufacturing optical reception module
JP2018014519A (en) * 2017-09-12 2018-01-25 キヤノン株式会社 Photoelectric conversion device, imaging system, and manufacturing method of photoelectric conversion device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197929A (en) * 2001-12-27 2003-07-11 Mitsubishi Electric Corp Light receiving element carrier and light receiving device
US7174062B2 (en) 2002-03-29 2007-02-06 Ngk Insulators, Ltd. Optical device and method of manufacturing same
WO2004068592A1 (en) * 2003-01-27 2004-08-12 Ngk Insulators, Ltd. Optical device
US7287915B2 (en) 2003-01-27 2007-10-30 Ngk Insulators, Ltd. Optical device
JP2004287215A (en) * 2003-03-24 2004-10-14 Fuji Photo Film Co Ltd Transmission type optical modulation apparatus and method for packaging the same
JP4505189B2 (en) * 2003-03-24 2010-07-21 富士フイルム株式会社 Transmission type light modulation device and mounting method thereof
WO2007088959A1 (en) * 2006-02-02 2007-08-09 Nec Corporation Optical module
KR101501627B1 (en) * 2007-12-27 2015-03-11 신꼬오덴기 고교 가부시키가이샤 Electronic apparatus
JP2011071312A (en) * 2009-09-25 2011-04-07 Hamamatsu Photonics Kk Light detecting apparatus
CN102104037A (en) * 2010-12-09 2011-06-22 晶科电子(广州)有限公司 Luminous device with integrated circuit and manufacturing method thereof
JP2013182923A (en) * 2012-02-29 2013-09-12 Canon Inc Photoelectric conversion apparatus, imaging system, and photoelectric conversion apparatus manufacturing method
US9368544B2 (en) 2012-02-29 2016-06-14 Canon Kabushiki Kaisha Photoelectric conversion device, image pickup system and method of manufacturing photoelectric conversion device
CN105789229A (en) * 2012-02-29 2016-07-20 佳能株式会社 Photoelectric conversion device, image pickup system and method of manufacturing photoelectric conversion device
US9881957B2 (en) 2012-02-29 2018-01-30 Canon Kabushiki Kaisha Photoelectric conversion device, image pickup system and method of manufacturing photoelectric conversion device
US10546891B2 (en) 2012-02-29 2020-01-28 Canon Kabushiki Kaisha Photoelectric conversion device, image pickup system and method of manufacturing photoelectric conversion device
RU2515190C1 (en) * 2012-11-12 2014-05-10 Открытое акционерное общество "НПО "Орион" (ОАО "НПО "Орион") METHOD OF MAKING PHOTODETECTOR MODULE BASED ON PbSe
JP2017059730A (en) * 2015-09-17 2017-03-23 富士通コンポーネント株式会社 Optical reception module and method of manufacturing optical reception module
JP2018014519A (en) * 2017-09-12 2018-01-25 キヤノン株式会社 Photoelectric conversion device, imaging system, and manufacturing method of photoelectric conversion device

Similar Documents

Publication Publication Date Title
TWI241621B (en) LSI package and method of assembling the same
JP3890947B2 (en) High frequency semiconductor device
US20040047539A1 (en) Optical waveguide and method for producing same
EP1351301A2 (en) Semiconductor built-in millimeter-wave band module
US9585287B2 (en) Electronic component, electronic apparatus, and method for manufacturing the electronic component
JPH09298255A (en) Ceramic circuit board and semiconductor device using the board
CN103378013A (en) Electronic component and electronic apparatus
US20090294158A1 (en) Electronic circuit and method for manufacturing same
JP2002231974A (en) Light receiving device, mounting structure thereof, and method of manufacturing the same
US7999376B2 (en) Semiconductor device and its manufacturing method
US10332937B2 (en) Semiconductor device having a protruding interposer edge face
JPH1145954A (en) Method and structure for flip-chip connection and electronic device employing it
TWI313498B (en) Wire bond-less electronic component for use with an external circuit and method of manufacture
JPH11145381A (en) Semiconductor multi-chip module
US20030123815A1 (en) Optical module
JP2001339077A (en) Semiconductor device-packaging device and optical communication device
JP4018575B2 (en) Semiconductor built-in millimeter-wave band module
JP3572254B2 (en) Circuit board
JP2004288949A (en) Semiconductor element-accommodating package and semiconductor device
JP3314163B2 (en) Package for storing semiconductor elements
JP2000183253A (en) Package for housing semiconductor element
WO2024033980A1 (en) Optical modulation device
US20230194905A1 (en) Optical module and manufacturing method of optical module for optical communication
JP3594771B2 (en) Semiconductor device mounting structure
JP3598058B2 (en) Circuit board