JP2004285496A - Sheath-core type conjugated fiber and fiber structure comprising the fibers and method for producing the same - Google Patents

Sheath-core type conjugated fiber and fiber structure comprising the fibers and method for producing the same Download PDF

Info

Publication number
JP2004285496A
JP2004285496A JP2003077496A JP2003077496A JP2004285496A JP 2004285496 A JP2004285496 A JP 2004285496A JP 2003077496 A JP2003077496 A JP 2003077496A JP 2003077496 A JP2003077496 A JP 2003077496A JP 2004285496 A JP2004285496 A JP 2004285496A
Authority
JP
Japan
Prior art keywords
fiber
core
sheath
component
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003077496A
Other languages
Japanese (ja)
Inventor
Masakazu Ochi
将一 越智
Kiyoshi Kawai
清 河合
Tetsuhiro Yoshida
哲弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003077496A priority Critical patent/JP2004285496A/en
Publication of JP2004285496A publication Critical patent/JP2004285496A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sheath-core type conjugated fiber which has excellent amenity, excellent heat insulating property, excellent lightweight touch, and a characteristic soft (comfortable) and moist texture, to provide a fiber structure comprising the fibers, to provide a method for producing the fiber structure which is friendly for the environment and can easily be formed in a hollow shape. <P>SOLUTION: This sheath-core type conjugated fiber comprising at least two components of a biodegradable polymer as the core component A and a polyamide polymer as the sheath component B is characterized by adhering a silicone component to the fibers in an amount of ≥0.01 wt. % based on the weight of the fibers and satisfying the following fiber physical properties (1) to (5). (1) The fineness of the single fiber is 0.9 to 11.0 dtex. (2) The number of crimps is 5 to 25 mountains / 25 mm. (3) The crimping degree is 5 to 30 %. (4) Dry strength is 0.5 to 10.0 cN/dtex. (5) Dry elongation is 15 to 100 %. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、芯鞘型複合繊維および該繊維を用いてなる繊維構造体とその製造方法に関する。
【0002】
更に詳しくは、保温性や軽量感及びソフトな(心地良い)風合い、生産性(生産収率)に優れたナイロン中空繊維からなる繊維構造体と環境に優しく中空化しやすい該繊維構造体の製造方法に関する。
【0003】
【従来の技術】
従来、複合繊維は、ポリエステルをはじめ、ナイロン、アクリル、ポリエチレン、ポリプロピレン等、あらゆる繊維素材で生産されており、今日においてもなお、国内外を問わずさまざまな研究・開発がされている。
【0004】
しかしながら、複合繊維の製造プロセスは主として単一成分ポリマのみを用いた非複合繊維と比較すると複雑となり生産性は高くない。特に、紡糸工程で溶融条件、紡糸後の糸冷却(チムニ)等の条件設定が、複数の成分ポリマを扱うため非複合繊維と比べて複雑となり、その製造条件およびプロセスは、より高度な技術が必要となっている。
【0005】
また、複合繊維を用いて繊維構造体(織物等)を製造する際、高次加工(紡績績工程、製織工程、染色工程等)において非複合繊維対比でその通過性(生産性)は悪く、コスト上昇という問題があった。
【0006】
更に、近年にはこの複合繊維に加えて添加剤をポリマに含有させた抗菌、消臭、防汚、難燃、吸放湿繊維や2成分のポリマを張り合せたストレッチ繊維、また芯鞘構造を利用した防透け、熱接着繊維、特殊な口金(ノズル)を使用して紡糸させた異型断面繊維等の機能性を持たせた複合繊維が数多く開発され広く知られている。
【0007】
この中でも保温性と軽量感とを両方持ち合せた中空断面繊維は布団綿等の寝装具(ファイバーフィル)用途やジャンパー・コート中入れ綿等の衣料用途に幅広く用いられている。
【0008】
また、近年ではウインタースポーツ(スキーウェア、スノーボードウェア)用途の需要が高く、防寒着として保温性を重視しながら、かつスポーツ衣料であるための運動性(動き易さ)を保持した軽量繊維が好ましく激しい運動でも清涼感が得られる吸放湿性のある繊維が望まれてきた。)該用途に適した合成繊維素材としては、その優れた強さ・イージーケア性などの面からポリエステル、ポリアミド(ポリカプラミド、ポリヘキサメチレンアジパミド)等が挙げられる。
【0009】
しかしながら、ポリエステルは安価でドライ感があり、中空繊維としても嵩が高くボリュームがある反面、吸放湿性、風合(肌触り)に乏しい。
【0010】
一方、ナイロン繊維は吸放湿性が高く、風合が良好である反面、ポリマが高価でまた中空繊維とする際にポリマ自体の比熱が高いために紡糸製造時において中空部が熱によって融着し高中空構造になりにくい。これに加えて、ナイロンポリマー自体のモジュラスが低いことから、高次加工(紡績績工程、製織工程、染色工程等)を通過する際に中空構造が潰れてしまうという問題点があった。そのため、高い中空率を持った繊維を得るには、例えばイソフタル酸、アルキレングリコール、スルフォイソフタル酸アルカリ金属塩などを供重合させたポリエステルを芯成分とする芯鞘複合繊維を紡糸した後、アルカリ水溶液で処理して芯成分であるポリエステルを除去させてなる中空繊維及びその製造方法が提案されている(特許文献1、2)。
【0011】
しかしながら、この芯成分であるポリエステルは自然界で分解しにくいポリマーであるため、抽出した溶剤を回収し、処理するための設備や労力を必要とした。これに加えてアルカリ溶解時間も長いため、生産能力が低く、鞘成分の耐アルカリ性のポリマーにも悪影響を与え、製品の品位低下を招くという問題があった。
【0012】
【特許文献1】特開平6−33319公報
【0013】
【特許文献2】特開平7−278947号公報
【0014】
【発明が解決しようとする課題】
そこで、本発明は、上記のような従来技術では得ることができなかった快適性に優れ、かつ保温性と軽量感に優れていてソフト(心地良い)でしっとり感のある独特な風合を有する芯鞘型複合繊維および該繊維からなる繊維構造体と環境に優しく中空化しやすい該繊維構造体の製造方法(繊維製造方法・繊維構造体製造方法)を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明の芯鞘型複合繊維は、芯成分Aが生分解性ポリマーで、鞘成分Bがポリアミドポリマーの少なくとも2成分からなる芯鞘型複合繊維であって、下記の繊維物性(1)〜(5)を満足し、該繊維にはシリコン成分が繊維重量に対して0.01wt%以上付着していることを特徴とする芯鞘型複合繊維である。
【0016】
(1)繊 度・・・0.9dtex以上11.0dtex
(2)捲縮数・・・5山/25mm以上25山/25mm以下
(3)捲縮率・・・5%以上30%以下
(4)乾強度・・・0.5cN/dtex以上10.0cN/dtex以下
(5)乾伸度・・・15%以上100%以下
また、本発明の芯鞘型複合繊維の製造方法は、上記した本発明にかかる芯鞘型複合繊維を用いて繊維構造体を形成し、しかる後、該芯鞘型複合繊維中の芯成分(A)を溶液等により溶出除去し該繊維を中空化せしめ、繊維構造体を得ることを特徴とする繊維構造体の製造方法である。
【0017】
【発明の実施の形態】
以下、本発明の芯鞘型複合繊維について、詳細に説明をする。
【0018】
本発明の芯鞘型複合繊維は、芯成分と鞘成分を有し、芯成分Aが生分解性ポリマーで、鞘成分Bがポリアミドポリマーの少なくとも2成分からなり、該繊維にはシリコン成分が繊維重量に対して0.01wt%以上付着している芯鞘型複合繊維である。
【0019】
本発明において、芯成分Aのポリマーは芯成分をアルカリによって溶出除去する上で環境に優しく中空化しやすいという観点から生分解性ポリマーでなければならない。
【0020】
本発明でいう生分解ポリマーとは、例えば、澱粉や澱粉とエチレンとの共重合体等の澱粉系、キトサン系、セルロース系等の天然高分子系のポリマー、ε−カプロラクトン、バイオセルロース系、グリコール系、脂肪族ポリエステル系、乳酸系等が挙げられる。この中でも取り扱いに容易なアルカリ水溶液の溶出除去性が良好である観点から脂肪族ポリエステル系、乳酸系の生分解性ポリマー(ポリ乳酸)が好ましい。
【0021】
一方、鞘成分Bを構成するポリアミドポリマーとしてはナイロン6、ナイロン66、ナイロン4/6、ナイロン6/10、ナイロン11、ナイロン12等が挙げられるが、中でも製造コスト、繊維製造時の紡糸性、耐熱性、耐摩耗性に優れている観点からナイロン6、ナイロン66が好ましい。また、ナイロン66を用いる場合、繊維の風合いが良好である観点からセバシン酸、イソフタル酸、パラキシレンジアミドなどを構成成分とするポリヘキサメチレンアジパミドあるいはこれらの共重合ポリヘキサメチレンアジパミド等を用いることが好ましい。より具体的には、ポリマーの溶融時におけるゲル化が抑制でき、紡糸性が良好となる観点からラクタムを0.01wt%以上10wt%以下の範囲で共重合したものが好ましい。また更に好ましくは、0.1wt%以上2wt%以下の範囲で共重合すると良い。
【0022】
本発明でいうゲル化とは、液状ポリマーが加熱によりある程度の弾性を保ったまま固化することである。もしラクタムの共重合率が0.01wt%未満の場合、上記の理由で紡糸性が悪くなり、逆にラクタムの共重合率が10wt%よりも高い場合、繊維の風合い、寸法安定性、原綿物性(糸の強伸度)等に悪影響を与える。
【0023】
本発明において該繊維には特に繊維生産性及び高次加工性を良好とする観点から、シリコン成分が繊維重量に対して0.01wt%以上付着していなければならならなず、更に好ましく0.02wt%以上である。もしシリコン成分の付着量が0.01wt%未満の場合には、繊維と金属間の摩擦低減効果が不十分となり複合繊維製造工程における捲縮付与性の低下や高次加工(紡績工程、製織工程、染色工程等)の際、複合繊維に過度の応力が付与され、成分間(芯と鞘)の剥離(芯が抜け)が発生して加工時に中空部が潰れて保温性や軽量感が失われたり、紡績工程(練条工程)で潰れた繊維または細分化された繊維がローラーに巻付いて生産性が低下するため好ましくない。
【0024】
好ましく用いられるシリコン成分としてはジメチルポリシロキサン、アミノ変性ポリシロキサン、メチルハイドロジエンポリシロキサン、ポリエチレングリコール変性ポリシロキサン、ポリプロピレングリコール変性ポリシロキサン等が挙げられる。かかるシリコン成分を複合繊維に付与するには、繊維用油剤として常用されている平滑剤、乳化剤、制電剤、その他増白剤、酸化防止剤、紫外線吸収剤、顔料、染料などを必要に応じて併用したシリコン系油剤として付与すれば良い。この際、油剤中に高次加工性が良好である観点から平滑剤成分としてワックスまたは鉱物油等を付与することが好ましく、この中でもワックス成分が好ましい。またワックス成分としてはパフィンワックス乳化物が好ましい。また本発明の複合繊維に付着したワックス成分の付着率については、高次加工性が良好である観点から繊維重量に対して0.01wt%以上付着していることが好ましく、更に高次加工性が良好となる観点から0.05wt%以上付着していることがより好ましい。
【0025】
また、制電剤としては、アルキルホスフェート塩、アルキルスルホネート塩等のアニオン界面活性剤、第4級アンモニウム塩、アルキルイミダゾリン塩等のカチオン界面活性剤、ベタイン型両性界面活性剤等のいずれをも使用可能であるが、経時的に繊維の内部に浸透しやすいものは好ましくないので、常温で固体状のものを少なくとも一部に用いるのが好ましい。また制電剤の配合量は、本発明の複合繊維の場合は、シリコン成分に対して100〜500wt%の範囲内とするのが好ましい。
【0026】
上述のシリコン系油剤は、複合繊維を製造する任意の段階で付与すればよいが、通常は延伸前と延伸後の2回にわたって付与されることが好ましい。
【0027】
次に、本発明の複合繊維の物性について、該繊維における単糸の繊度は風合いが良好であるという観点から0.9デシテックス以上11.0デシテックス以下であることが必要で、1.3デシテックス以上6.6デシテックス以下であれば好ましく、繊維の風合がより良好になるという理由から1.5デシテックス(T)以上2.0デシテックス以下であればより好ましい。もし繊度が0.9T未満の場合、紡糸性(紡糸製造時の収率)、及び紡績性(繊維構造体の生産性)が悪くなり、11.0Tより高い場合、風合いが悪くなる。
【0028】
本発明の複合繊維において、捲縮形態は特に限定はされないが、紡績性(繊維構造体の生産性)が良好であるという観点から、2次元捲縮、あるいはスパイラル捲縮が好ましく、その中でも2次元捲縮がより好ましい。捲縮数については紡績性(繊維構造体の生産性)の観点から5山/25mm以上25山/25mm以下であることが必要で、好ましくは12山/25mm以上20山/25mm以下である。捲縮率については紡績性(繊維構造体の生産性)の観点から、5%以上30%以下であることが必要で好ましくは10%以上20%以下である。
【0029】
捲縮数が5山/25mm未満で、かつ、捲縮率が5%未満であると、短繊維(ステープル)同士の絡合性が低いため高次加工時に紡績性が悪くなるので好ましくない。捲縮数が25山/25mmを越え、捲縮率が30%よりも高くても紡績性が悪くなる。
【0030】
また、乾強度については、本発明の複合繊維を用いた繊維構造体(織物等)の耐久性の観点から0.5cN/dtex以上10.0cN/dtex以下であることが必要で、好ましくは2.0cN/dtex以上6.0cN/dtex以下である。乾強度が0.5cN/dtexよりも低いと、破裂強度が低くなるので好ましくない。逆に乾強度が10cN/dtexを超えると繊維の風合いが硬くなるので好ましくない。
【0031】
本発明の複合繊維において、乾伸度は紡績性の観点から15%以上100%以下であることが必要であり、好ましくは20%以上70%以下である。乾伸度が15%より低いと、繊維の風合いが硬くなるので好ましくない。100%よりも高いと繊維構造体(織物等)にした場合の絡合強度が低下するので好ましくない。
【0032】
本発明における繊維形態としては、低コスト、加工のしやすさという点から短繊維(ステープル)が望ましく、その繊維長については紡績性の観点から考慮して20mm以上115mm以下であれば好ましく、30mm以上70mm以下であればより好ましい。
【0033】
本発明の複合繊維の繊維断面形状については、芯鞘構造であれば良く、特に限定されるものではないが、同心円状の芯鞘型複合繊維が代表的であり生産性(紡糸性)が好ましい。しかしながら、芯鞘が相対的に偏芯しているものや、全体が丸型、四角形、三角形、五角形、あるいはさらにそれ以上の多角形や、十字型、雲形等のいずれの形でもよい。また、芯が、単一の芯ではなく多芯状であってもよい。
【0034】
芯鞘型複合繊維における「芯成分(A)/鞘成分(B)」の複合割合(重量%:wt%)は「(A)20/(B)80〜(A)80/(B)20」の範囲が好ましく、「(A)40/(B)60〜(A)60/(B)40」の範囲であれば精度良く(紡糸生産性が良好で)、良好な軽量感または保温性を得られるという観点からより好ましいものである。
【0035】
なお、本発明では芯成分をアルカリによって溶出除去するため、芯成分の複合割合とは該繊維の中空率を意味する。
【0036】
A成分の重量%=繊維単糸の中空率
また、本発明で言う中空率とは、該繊維の断面を顕微鏡付きカメラで約400倍の倍率で撮影し、でき上がった写真から下記式にて算出された値を言う。
【0037】
繊維単糸の中空率(%)=中空部分の面積/繊維断面全体の面積×100
つまり、A成分の割合(重量%)が高いほど中空率は高くなり、該繊維からなる繊維構造体(織物等)の保温性や軽量感が良好なものとなる。したがって、保温性のわりに高度な軽量感と低目付感が実現できる。
【0038】
本発明で言う繊維構造体には、糸や、織物や編物、不織布、フェルト、植毛加工品(立毛品)、毛皮ライクなパイル立毛品、モケット(カーシート)等が挙げられるが、軽量感・保温性を兼ね備えた素材であるため、織物が好ましい。
【0039】
また、用途としては、衣料用途や資材用途に好適に用いられ、本発明で言う衣料用途とは身体に着用する布地製品を指し、冬物・春物・秋物のカジュアル衣料(防寒着を含む)や、アウトドアー衣料(キャンプ衣料、登山服等)・スポーツ衣料(スキー、スノーボード等のウインタースポーツ衣料、バイクのライダーウェア等のモータースポーツ衣料等)、帽子生地、スラックス(靴下)に、より好適に用いられる。
【0040】
また、本発明でいう資材用途とは衣料用途以外で、全ての物を作る素となり得る材料を指し、具体的には鞄地(旅行鞄、スポーツバック、手提げ袋、通学鞄、通勤鞄、ビジネス鞄等)、寝装具(布団カバー、枕カバー、シーツ等)、タオル(ハンドタオル、ハンカチ、バスタオル等)、椅子・ソファーカバー、椅子・ソファー表層材、マスク等に好ましく用いることができる。この中でも衣料用途に関しては軽量感・保温性に優れている点からスキー、スノーボード等のウインタースポーツ衣料用途がより好ましい。一方、資材用途に関しては、持ったときの感触(風合い)が良好で、軽量感に優れている観点から鞄地用途がより好ましい。
【0041】
本発明における複合繊維の繊維形態(種類)について特に限定はされないが、短繊維(ステープル)や長繊維(フィラメント)が好ましく、その中でも捲縮による優れたボリューム感と風合が得られるという特質から短繊維(ステープル)がより好ましい。
【0042】
次に、本発明にかかる繊維の製造方法について説明する。
【0043】
一般的な方法で、紡糸、延伸更には切断し芯鞘型複合繊維を短繊維(ステープル)として得ることが好ましい。
【0044】
次に、該繊維からなる繊維構造体(織物等)の製造方法について詳細に説明する。本発明では、その製造方法について特に限定はされないが、生分解性ポリマーとポリアミドポリマーの芯鞘型複合繊維からなる紡績糸を使用して布帛を形成した後、染色加工にてアルカリ処理を行い、芯部の生分解性ポリマーを溶出除去して中空構造を形成することにより、単位面積あたりの繊維構造体(織物等)の重さ(目付)が軽く、かつ中空部に熱伝導率の小さい空気層が存在することによって、軽量かつ保温性に優れた繊維構造体(織物等)を得ることが可能である観点から、該製造方法が好ましい。
【0045】
本発明に係る繊維構造体(織物等)において、目付は300g/m以下でかつ保温性を示すCLO値が0.75以上であることが好ましい。
【0046】
一般に、衣服の保温性が高いときの要因ファクターとして考えられることは、その素材自体の熱伝導率が低いこと、その繊維構造体(織物等)の厚みが大きいこと、すなわち、空気層を多く含むこと等が挙げられる。従って、保温性を高めるためには目付が大きくなるように繊維構造体(織物等)設計をすればよい。しかし、それでは繊維構造体としての密度が高いものとなり、軽量感が損なわれる。更に織物重量の他にも各種の副素材の重量が加わり最終製品としてかなりの重量となる。従って、生地の目付としては300g/m以下とすることが好ましく、更に好ましくは260g/m以下である。
【0047】
本発明に係る繊維構造体(織物等)は、かかる軽量感を実現した上で、保温性を表すCLO値が0.75以上との高い値を呈し得るのであり、該CLO値が0.75以上は、冬季下(15℃以下)での軽い運動時に必要な保温性能を満足するものである。
【0048】
本発明において紡績糸とは、芯鞘型複合繊維の短繊維(ステープル)を少なくとも用いて紡績して得られる紡績糸をいう。紡績工程において、上述の繊維を100%で使用することが本発明の本来のねらいであり、保温性や軽量感などの特性を十分に発揮する上でより効果的であるが、本発明にかかる繊維構造体(織物等)は、該繊維100%使いのものに限られず、他の繊維との混紡品やあるいはフィラメント糸との精紡交撚(いわゆる長短複合紡績糸)品であっても良く、いずれにあっても従来技術では得られない特徴ある繊維構造体(織物等の)商品を創出できるものである。
【0049】
この際に、染色加工工程でアルカリ処理による溶出除去を行うため、アルカリに対して耐久性のある素材との組合せを考慮することが実際的である。その例として、ポリアミド繊維(ナイロン6、ナイロン66、ナイロン4/6、ナイロン6/10、ナイロン11、ナイロン12)、アクリル繊維、ポリオレフィン繊維等が挙げられるが、アルカリに対して耐久性のある素材であればよく、特に限定はされない。
【0050】
製織工程は、通常のスパン繊維構造体(織物等)と同様の工程で行えばよい。使用できる織機は特に限定されず、エアジェット織機、レピア織機などの革新織機にも十分対応が可能である。
【0051】
芯部の生分解性ポリマーを溶出除去するためのアルカリ処理には薬剤として苛性アルカリ、例えば、苛性ソーダ、苛性カリ等を用いればよい。その処理条件は、芯鞘複合比率や布帛を構成する該繊維の混用比率等によっても相違するが、一般的には苛性アルカリ濃度は10〜80g/リットル、処理温度は80〜120℃の条件を用いればよい。染色はポリアミド染着のための通常用いられる染料および染色条件を採用すればよい。
【0052】
本発明により得られる構造体(織物等)は、その軽量感・保温性を兼ね備えた特徴から、冬季のスポーツ衣料用途や鞄地等の資材用途等に好適に用いられ、その機能特性を十分に発揮できるものである。
【0053】
すなわち、該用途に使用される繊維構造体(織物等)について、従来は高密度、太番手で繊維構造体(織物等)に形成されることから必然的に高重量となり、一般的には400g/m2 前後の目付が普通であったものであるが、該重量感は快適性を著しく損ねる結果となっていた。かかる問題が、本発明によれば、例えば40%のポリ乳酸成分の複合比率にした場合には、そのまま40%程度の軽量化を実現できことになる。
【0054】
更に、これが使用されるシーンを想定すれば、保温性も必要不可欠なものであり、軽量感と保温性との両方をも有する繊維構造体(織物等)を提供できる。
【0055】
【実施例】
以下、本発明を実施例により更に説明する。
【0056】
表1〜表4に実施例、比較例の結果を示す。また表1〜表4に示す条件および特性は、以下の方法により求めた。また、表1〜表4においては、ポリマー種類名を下記の表現として表している。
【0057】
A.ポリ乳酸ポリマー(生分解性ポリマー):PLA
B.ポリカプラミド :ナイロン6(N6)
C.ポリヘキサメチレンアジパミドポリマー:ナイロン66(N66)
(1)芯成分割合
芯成分割合を下記式で表す。
【0058】
芯成分割合(wt%)=芯成分ポリマーの重量/(芯成分ポリマーの重量+鞘成分ポリマーの重量)×100
(2)鞘成分割合
鞘成分割合を下記式で表す。
【0059】
鞘成分割合(wt%)=鞘成分ポリマーの重量/(芯成分ポリマーの重量+鞘成分ポリマーの重量)×100
<繊維の物性>
(1)捲縮数:
短繊維弾性試験機を用い、試料に単糸繊度(デシテックス)当たり0.18mNの初荷重を与えたときの繊維長さと掴み間隔内の山数を読み取り、25mmあたりの捲縮数(山数)に換算して求めた。
【0060】
捲縮数(山/25mm)=(Cn×25)/(2×L)
Cn:捲縮の山と谷の数の平均値(山)
L :初荷重を掛けたときの繊維長の平均値(mm)
(2)捲縮率
単糸繊度(デシテックス)当たり13.23mNの規定荷重を与えて、捲縮が伸ばされたときの繊維長さを測り、0.18mNの初荷重を与えたときの繊維の長さとの差を規定荷重を掛けたときの長さに対する百分率で求めた。
【0061】
捲縮率(%)=(L2−L1)/L2×100
L1:初荷重2mgを掛けたときの繊維長さの平均値(mm)
L2:規定荷重150mgを掛けたときの繊維長さの平均値(mm)
(3)乾強度および乾伸度
短繊維(ステープル)を滑沢紙に貼り付け、マッケンジー短繊維引張試験機または自動引張試験機を用いて引張速度20g/分のスピードで、短繊維(ステープル)を引張り、繊維が切断したときの強力および伸度を求めた。
【0062】
なお、前提条件としてこのときの引っ張り速度は20g/分とした。
【0063】
乾強度(cN/dtex)=0.9807×S/d
注)dtex:デシテックス
S:標準状態(室温20℃、湿度65%RH)における切断強力の平均値(g)
d:試料の単糸繊度(dtex)
乾伸度(%)=(E2−E1)/(L+E1)×100
L :繊維単糸の掴み間隔(mm)
E1 :緩み長平均値(mm)
E2 :標準状態(室温20℃、湿度65%RH)における切断伸びの平均値(mm)
(4)繊維長
グリセリン塗布したスケール板上で繊維の捲縮がなくなる程度に伸ばして繊維の長さを標準状態(室温20℃、湿度65%RH)下で測り100本の平均値で平均繊維長を求めた。
【0064】
平均繊維長(mm)=L/100
L:100本の短繊維長の和
以下、生産性・繊維構造体の性能について下記に表す基準で評価を実施した。
<評価基準>
◎:著しく良い
○:良い
△:悪い
×:著しく悪い
<繊維・繊維構造体の生産性>
(5)紡糸性(繊維の生産性)
複合口金で紡出せしめた糸条を9℃±2℃の範囲内で冷却器で均一に冷却し、次いで800〜1500m/分の速度で引取って未延伸糸とする紡糸工程において、生産量1tに対して口金直下での単糸切れの回数を測定した。
【0065】
なお、単糸切れとは紡糸生産におけるトラブルであり、これによってマシン正常復帰まで屑が発生する。従って、糸切れ回数が増加することは、生産収率の低下を意味するものである。
【0066】
◎:0.5回/t未満
○:0.5回/t以上1.0回/t未満
△:1.0回/t以上5.0回/t未満
×:5.0回/t以上
(6)紡績性(繊維構造体の生産性)
複合繊維の紡績工程中の練条工程における単位生産量(t)当りにロ−ラ−に巻付いた回数を表1〜表4に示す基準で判定した。なお、計算式と判定基準は以下の通りである。
【0067】
単位生産量(t)当りのローラー巻付回数=ローラー巻付回数(回)/複合繊維の生産量(t)
◎:1.5回/t未満
○:1.5回/t以上4.0回/t未満
△:4.0回/t以上8.0回/t未満
×:8.0回/t以上
<繊維構造体の性能>
(7)軽量感(目付)
本発明の繊維構造体から25cm×25cmの織物(布帛試験片)を作成し、平衡水分率以下となるまで十分に乾燥後、20℃、65%RHの室内に24時間放置し、水分平衡とした後に、その試験片の重量を測定した。得られた試験片の重量を1mあたりに換算し、布帛片2枚について平均値で表した。
【0068】
◎:200g/m未満
○:200g/m以上、260g/m未満
△:260g/m以上、300g/m未満
×:300g/m以上
(8)破裂強度試験
破裂強度試験とは編み地の強度を評価するものであり、ミューレン形法でJIS L1018(A法)に準じた方法で試験を実施し、以下の4段階で表したものである。
【0069】
◎:5.0kg/cm以上
○:4.0kg/cm以上5.0kg/cm未満
△:3.0kg/cm以上4.0kg/cm未満
×:3.0kg/cm未満
(9)風合い
全ての実施例・比較例で得られた織物を10人の判定者が手の平での触感により官能判定したものであり、以下の4段階で表したものである。なお、ピリング性が良好であれば風合いソフトな織物が仕上がる。
【0070】
◎:10人全員が風合い良好と判定
○:7人〜9人が良好と判定
△:4人〜6人が良好と判定
×:3人以下が良好と判定
(10)CLO値(保温性)
50cm×50cm試験片を2枚採取する。ASTM保温性試験器を用い、熱板温度40℃の熱板に試験片を取り付けて60分間放置する。測定時間放置後の積算電力計の通電時間(秒)、および測定器の外気温度(℃)を読みとる。
【0071】
試験片を取り付けない状態積算電力計の通電時間(秒)を読みとる。上記で求めた試験片を取り付けないときの通電時間(秒)、試験片を取り付けたときの通電時間(秒)および外気温度から次式により、CLO値を求め2枚の平均値で表す。
保温率(%)=(a−b)/a×100
CLO値={(6.54×(40−t)}/b/0.18
ここで、a:試験片を取り付けないときの通電時間(sec/Hr)
b:試験片を取り付けたときの通電時間 (sec/Hr)
t:測定器の示す外気温度(℃)
CLO値での保温性判定基準
◎:0.80以上
○:0.75以上、0.80未満
△:0.50以上、0.75未満
×:0.50未満
なお、CLO値についてはその数値が高いほど、暖かく保温性に優れているものである。
<判定基準>
以上の実施例の項目に関して判定基準として、以下の4段階で表示した。
【0072】
◎:著しく良い
○:良い
△:悪い
×:著しく悪い
実施例1
芯成分にポリ乳酸ポリマー(PLA)を用い、一方の鞘成分にはポリカプラミドポリマー(N6)を用いて「芯成分(A)/鞘成分(B)」の複合割合(重量%)を45%(A)/55%(B)として紡糸速度を1300m/分で紡糸した後、ジメチルシリコン乳化物が油剤成分中に5%含有し、更にパフィンワックス乳化物も油剤成分中に10wt%含有された油剤を延伸前と延伸後に合計2回付与し、3.0倍で通常の延伸を行い、捲縮付与後、カットして下記(1)〜(8)の繊維物性(短繊維の品質)を有する芯鞘型複合繊維を得た。
【0073】
(1)繊 度・・・1.7dtex
(2)捲縮数・・・16山/25mm
(3)捲縮率・・・14%
(4)乾強度・・・3.5cN/dtex
(5)乾伸度・・・55%
(6)繊維長・・・44mm
(7)繊維重量に対するシリコン成分の付着率:0.03wt%
(8)繊維重量に対するワックス成分の付着率:0.06wt%
続いて、該繊維(短繊維)100%を用いて、通常の紡績方式で0.76番手の粗糸を作り、精紡ドラフト約21倍、撚数16.1t/インチ、綿番手16sの複合紡績糸を製造した。
【0074】
この紡績糸を経糸と緯糸に使用して織上密度を縦101本/インチ×横82本/インチ、織物組織を斜子織とし、エアジェットルームにて製織した。
【0075】
こうして得られた織物を染色加工において、精錬、リラックス後に苛性ソーダ水溶液50g/リットルの濃度とし、処理温度110℃で液流染色機を用いて芯側成分のポリ乳酸(PLA)の溶出除去を行い、該織物の構成繊維を中空繊維とした。このときの芯成分であるポリ乳酸が100%溶出できた時間を計測した。
【0076】
引き続き、これを100℃の熱を掛け45分間染色し、仕上げ後の密度が縦115本/インチ×横94本/インチの織物を得た。
実施例2
芯鞘型複合繊維の重量に対するシリコン成分の付着率を0.01wt%とした以外は実施例1と同様な方法および条件で織物を作成した。
実施例3
鞘成分にラクタムを1.0wt%共重合したポリヘキサメチレンアジパミドポリマー(N66)を用いた以外は、実施例1と同様な方法および条件で織物を作成した。
実施例4
鞘成分にラクタムを4wt%共重合したポリヘキサメチレンアジパミドポリマー(N66)を用いた以外は実施例1と同様な方法および条件で織物を作成した。
実施例5
鞘成分にラクタムを0.05wt%共重合したポリヘキサメチレンアジパミドポリマー(N66)を用いた以外は実施例1と同様な方法および条件で織物を作成した。
実施例6
芯鞘型複合繊維の芯鞘比率(芯成分:鞘成分の割合)を30%:70%とした以外は実施例1と同様な方法および条件で織物を作成した。
実施例7
芯鞘型複合繊維の芯鞘比率(芯成分:鞘成分の割合)を70%:30%とした以外は実施例1と同様な方法および条件で織物を作成した。
実施例8
芯鞘型複合繊維に対してワックス成分が全く付着していないこと以外は実施例1と同様な方法および条件で織物を作成した。
比較例1
芯成分に5−ナトリウムスルフォン酸ジメチルを8wt%共重合したポリエステル(PET)を用いた以外は実施例1と同様な方法および条件で織物を作成した。
比較例2
芯鞘型複合繊維繊維にシリコン成分が全く付着していないこと以外は実施例1と同様な方法および条件で高次加工を行って織物を作成した。
比較例3
鞘成分にラクタムを15wt%共重合したポリヘキサメチレンアジパミドポリマー(N66)を用いた以外は実施例1と同様な方法および条件で紡績、製織、染色工程を行って布帛を作成した。
比較例4
鞘成分にラクタムを全く共重合していないポリヘキサメチレンアジパミドポリマー(N66)を用いた以外は実施例1と同様な方法および条件で紡績、製織、染色工程を行って布帛を作成した。
比較例5
芯鞘型複合繊維の芯鞘比率(芯成分:鞘成分の割合)を10%:90%とした以外は実施例1と同様な方法および条件で高次加工を行って織物を作成した。
比較例6
芯鞘型複合繊維の芯鞘比率(芯成分:鞘成分の割合)を90%:10%とした以外は実施例1と同様な方法および条件で高次加工を行って織物を作成した。
比較例7
ポリカプラミドポリマー(N6)を100%用いて、芯鞘複合とはせず、実施例1と同様な方法で織物を行って、該織物を染色加工において精錬、リラックス後、通常のナイロン染色条件にて加工し織物を得た。
比較例8
ポリヘキサメチレンアジパミドポリマー(N66)を100%用いて、芯鞘複合とはせず、実施例1と同様な方法で織物を行って、該織物を染色加工において精錬、リラックス後、通常のナイロン染色条件にて加工し織物を得た。
比較例9
5−ナトリウムスルフォン酸ジメチルが共重合されていないポリエステル(PET)を100%用いて、芯、鞘複合とはせず、実施例1と同様な方法で織物を行って、該織物を染色加工において精錬、リラックス後、通常のナイロン染色条件にて加工し織物を得た。
比較例10
ポリカプラミドポリマー(N6)を100%用いて、中空構造を有した口金(ノズル)を用いて直接的に中空繊維として紡糸し、実施例1と同様な方法で織物を行って、該織物を染色加工において精錬、リラックス後、通常のナイロン染色条件にて加工し織物を得た。
比較例11
ポリヘキサメチレンアジパミドポリマー(N66)を100%用いて、中空構造を有した口金(ノズル)を用いて直接的に中空繊維として紡糸し、実施例1と同様な方法で織物を行って、該織物を染色加工において精錬、リラックス後、通常のナイロン染色条件にて加工し織物を得た。
比較例12
5−ナトリウムスルフォン酸ジメチルが共重合されていないポリエステル(PET)を100%用いて、中空断面糸の紡糸可能な構造を有した口金(ノズル)を用いて直接的に中空繊維として紡糸し、実施例1と同様な方法で織物を行って、該織物を染色加工において精錬、リラックス後、通常のナイロン染色条件にて加工し織物を得た。
【0077】
以上の全ての実施例と比較例の評価結果一覧表を表1〜表4に示す。
表1は実施例の繊維、織物の作成条件の一覧表であり、表2は実施例の生産性、性能結果の一覧表であり、表3は比較例の繊維、織物の作成条件の一覧表であり、表4は比較例の生産性、性能結果の一覧表である。
【0078】
【表1】

Figure 2004285496
【0079】
【表2】
Figure 2004285496
【0080】
【表3】
Figure 2004285496
【0081】
【表4】
Figure 2004285496
【0082】
【発明の効果】
本発明によれば、従来技術では得ることが困難であった、快適性に優れ、かつ保温性と軽量感に優れていてソフト(心地良い)でしっとり感のある独特な風合を有する芯鞘型複合繊維および該繊維からなる繊維構造体(織物、立毛、パイル織物、織物等)を得ることができ、該繊維構造体は、衣料用途(防寒衣料等)、各種の資材用途(鞄地等)などに好適に用いられ得るものである。
【0083】
また、芯成分として易溶解性である生分解性ポリマーを用いることにより、芯成分が従来技術に比べて溶解除去しやすく、溶解によって発生する処理液が生分解性の成分であるため、処理しやすいという利点がある。
【0084】
これと同時に、鞘成分として難除去性であるポリアミドポリマーを用いることについても溶解液に対して耐薬品性に優れているため、ピリング性が良好である。
【0085】
また、本発明の方法は、上記の芯鞘型複合繊維と繊維構造体を製造するに際して、良好な紡糸性、高次加工性(紡績性等)を実現し、高い生産収率性と生産性に優れたものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a core-in-sheath composite fiber, a fiber structure using the fiber, and a method for producing the same.
[0002]
More specifically, a fiber structure made of nylon hollow fiber having excellent heat retention, light weight, soft (comfortable) texture, and excellent productivity (production yield), and a method for producing the fiber structure that is environmentally friendly and easily hollowed About.
[0003]
[Prior art]
Conventionally, conjugate fibers have been produced from all kinds of fiber materials such as polyester, nylon, acrylic, polyethylene, and polypropylene, and various researches and developments have been made today in Japan and overseas.
[0004]
However, the production process of the conjugate fiber is complicated and the productivity is not high as compared with the non-conjugate fiber mainly using only a single component polymer. In particular, the setting of conditions such as melting conditions and yarn cooling after spinning (chimney) in the spinning process becomes more complicated than non-composite fibers due to the handling of multiple component polymers, and the production conditions and processes require more advanced technology. Is needed.
[0005]
Also, when fabricating a fibrous structure (such as a woven fabric) using a conjugate fiber, its permeability (productivity) is lower than that of a non-composite fiber in higher-order processing (a spinning process, a weaving process, a dyeing process, etc.) There was a problem of increased costs.
[0006]
In addition, in recent years, in addition to the composite fiber, an antimicrobial, deodorant, antifouling, flame-retardant, moisture-absorbing / desorbing fiber containing an additive in the polymer, a stretch fiber laminated with a two-component polymer, and a core-sheath structure A large number of conjugated fibers having functionalities such as anti-reflection, heat-bonded fibers, and irregular cross-section fibers spun using a special die (nozzle) have been developed and widely known.
[0007]
Among these, hollow cross-section fibers having both heat retention and lightness are widely used for bedding (fiber fill) such as futon cotton and clothing such as cotton put in jumpers and coats.
[0008]
In recent years, the demand for winter sports (ski wear, snowboard wear) applications is high, and lightweight fibers that maintain warmth (easiness of movement) for sports clothing while emphasizing heat retention as winter clothing are preferable and intense. Moisture-absorbing / desorbing fibers that can provide a refreshing feeling even during exercise have been desired. Examples of synthetic fiber materials suitable for this use include polyesters and polyamides (polycapramid, polyhexamethylene adipamide) in terms of their excellent strength and easy-care properties.
[0009]
However, polyester is inexpensive and has a dry feeling and is bulky and bulky as a hollow fiber, but has poor moisture absorption / desorption properties and feeling (feel).
[0010]
On the other hand, nylon fibers have high moisture absorption and desorption properties and good hand feeling, but because the polymer is expensive and the specific heat of the polymer itself is high when forming hollow fibers, the hollow parts are fused by heat during spinning production. Difficult to have high hollow structure. In addition, since the modulus of the nylon polymer itself is low, there is a problem that the hollow structure is crushed when passing through higher-order processing (spinning step, weaving step, dyeing step, etc.). Therefore, in order to obtain a fiber having a high hollow ratio, for example, after spinning a core-sheath conjugate fiber having a polyester as a core component obtained by polymerizing isophthalic acid, alkylene glycol, sulfoisophthalic acid alkali metal salt, etc. A hollow fiber obtained by treating with an aqueous solution to remove polyester as a core component and a method for producing the same have been proposed (Patent Documents 1 and 2).
[0011]
However, since the polyester as the core component is a polymer which is hardly decomposed in nature, equipment and labor for collecting and treating the extracted solvent are required. In addition to this, since the alkali dissolution time is long, there is a problem that the production capacity is low, and the alkali-resistant polymer of the sheath component is also adversely affected, thereby lowering the quality of the product.
[0012]
[Patent Document 1] JP-A-6-33319
[0013]
[Patent Document 2] JP-A-7-278947
[0014]
[Problems to be solved by the invention]
Therefore, the present invention has a unique feeling of softness (comfortable) which is excellent in comfort, excellent in heat retention and lightness, and soft (comfortable) which could not be obtained by the conventional technology as described above. An object of the present invention is to provide a core-sheath type composite fiber, a fiber structure comprising the fiber, and a method for producing the fiber structure which is environmentally friendly and easily hollow (fiber production method / fiber structure production method).
[0015]
[Means for Solving the Problems]
The core-sheath conjugate fiber of the present invention is a core-sheath conjugate fiber in which the core component A is a biodegradable polymer and the sheath component B is at least two components of a polyamide polymer, and has the following fiber properties (1) to ( The core-in-sheath type conjugate fiber which satisfies 5) and is characterized in that a silicon component is attached to the fiber in an amount of 0.01 wt% or more based on the weight of the fiber.
[0016]
(1) Fineness: 0.9 dtex or more and 11.0 dtex
(2) Number of crimps: 5 peaks / 25 mm or more and 25 peaks / 25 mm or less
(3) Crimp rate: 5% or more and 30% or less
(4) Dry strength: 0.5 cN / dtex or more and 10.0 cN / dtex or less
(5) Dry elongation: 15% or more and 100% or less
Further, the method for producing a core-in-sheath type conjugate fiber of the present invention comprises forming a fiber structure using the above-mentioned core-in-sheath type conjugate fiber of the present invention, and thereafter, a core component ( A) A method for producing a fiber structure, wherein A) is eluted and removed with a solution or the like to hollow the fiber to obtain a fiber structure.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the core-sheath type composite fiber of the present invention will be described in detail.
[0018]
The core-sheath type conjugate fiber of the present invention has a core component and a sheath component, the core component A is a biodegradable polymer, the sheath component B is at least two components of a polyamide polymer, and the silicone component is a fiber. It is a core-sheath type conjugate fiber adhered to at least 0.01 wt% based on the weight.
[0019]
In the present invention, the polymer of the core component A must be a biodegradable polymer from the viewpoint that it is environmentally friendly and easily hollowed out when the core component is removed by elution with alkali.
[0020]
The biodegradable polymer referred to in the present invention includes, for example, starch-based polymers such as starch and copolymers of starch and ethylene, chitosan-based polymers, natural polymer-based polymers such as cellulose-based, ε-caprolactone, biocellulose-based, and glycols. System, aliphatic polyester system, lactic acid system and the like. Among these, aliphatic polyester-based and lactic acid-based biodegradable polymers (polylactic acid) are preferable from the viewpoint of easy elution and removal of an alkaline aqueous solution that is easy to handle.
[0021]
On the other hand, examples of the polyamide polymer constituting the sheath component B include nylon 6, nylon 66, nylon 4/6, nylon 6/10, nylon 11, nylon 12, and the like. Among them, production cost, spinnability during fiber production, Nylon 6 and nylon 66 are preferred from the viewpoint of excellent heat resistance and wear resistance. When nylon 66 is used, polyhexamethylene adipamide containing sebacic acid, isophthalic acid, paraxylene diamide, or the like, or a copolymer thereof, such as polyhexamethylene adipamide, is used from the viewpoint of good texture of the fiber. It is preferable to use More specifically, it is preferable to use a copolymer of lactam in the range of 0.01 wt% to 10 wt% from the viewpoint of suppressing gelation of the polymer at the time of melting and improving spinnability. More preferably, it is preferable to copolymerize in the range of 0.1 wt% or more and 2 wt% or less.
[0022]
The gelation referred to in the present invention means that the liquid polymer is solidified by heating while maintaining a certain degree of elasticity. If the lactam copolymerization ratio is less than 0.01 wt%, the spinnability becomes poor for the above reasons. Conversely, if the lactam copolymerization ratio is higher than 10 wt%, the fiber texture, dimensional stability and raw cotton physical properties (Strong elongation of the yarn).
[0023]
In the present invention, from the viewpoint of improving the fiber productivity and higher processability, the silicon component must be attached to the fiber in an amount of 0.01% by weight or more based on the weight of the fiber. It is at least 02 wt%. If the adhesion amount of the silicon component is less than 0.01 wt%, the effect of reducing the friction between the fiber and the metal becomes insufficient, and the crimp imparting property in the composite fiber manufacturing process is reduced, and higher-order processing (spinning process, weaving process, etc.) , Dyeing process, etc.), excessive stress is applied to the conjugate fiber, peeling (core coming off) between components (core and sheath) occurs, and the hollow part is crushed during processing, losing heat retention and lightness. The fibers that are crushed or crushed in the spinning process (drawing process) or the finely divided fibers are undesirably wrapped around a roller to reduce productivity.
[0024]
Preferred examples of the silicon component include dimethylpolysiloxane, amino-modified polysiloxane, methylhydrogenpolysiloxane, polyethylene glycol-modified polysiloxane, and polypropylene glycol-modified polysiloxane. In order to impart such a silicone component to the conjugate fiber, a smoothing agent, an emulsifier, an antistatic agent, other whitening agents, an antioxidant, an ultraviolet absorber, a pigment, a dye, etc., which are commonly used as a fiber oil agent, are used as required. What is necessary is just to give as a silicone oil agent used together. In this case, it is preferable to add a wax or a mineral oil as a smoothing component from the viewpoint of good workability in the oil agent, and among these, a wax component is preferable. Further, as the wax component, a puffin wax emulsion is preferable. Regarding the adhesion ratio of the wax component adhering to the conjugate fiber of the present invention, it is preferable that the wax component adheres to the fiber weight in an amount of 0.01 wt% or more from the viewpoint of good high order workability. It is more preferable that 0.05 wt% or more is adhered from the viewpoint of improving the surface roughness.
[0025]
As the antistatic agent, any of anionic surfactants such as alkyl phosphate salts and alkyl sulfonate salts, cationic surfactants such as quaternary ammonium salts and alkyl imidazoline salts, and betaine-type amphoteric surfactants are used. Although it is possible, it is not preferable that the fiber easily penetrates into the interior of the fiber over time. Therefore, it is preferable to use at least a part of the fiber which is solid at room temperature. In the case of the composite fiber of the present invention, the compounding amount of the antistatic agent is preferably in the range of 100 to 500 wt% with respect to the silicon component.
[0026]
The above-mentioned silicon-based oil agent may be applied at any stage of producing the conjugate fiber, but is usually preferably applied twice before and after drawing.
[0027]
Next, regarding the physical properties of the conjugate fiber of the present invention, the fineness of a single yarn in the fiber is required to be 0.9 dtex or more and 11.0 dtex or less from the viewpoint of good texture, and 1.3 dtex or more. It is preferably 6.6 decitex or less, and more preferably 1.5 decitex (T) or more and 2.0 decitex or less because the texture of the fiber becomes better. If the fineness is less than 0.9 T, the spinnability (yield during the production of the spinning) and the spinnability (productivity of the fibrous structure) are poor, and if it is higher than 11.0 T, the hand is poor.
[0028]
In the composite fiber of the present invention, the crimped form is not particularly limited, but from the viewpoint of good spinnability (productivity of the fibrous structure), two-dimensional crimping or spiral crimping is preferable. A dimensional crimp is more preferred. The number of crimps is required to be 5 ridges / 25 mm or more and 25 ridges / 25 mm or less, and preferably 12 ridges / 25 mm or more and 20 ridges / 25 mm or less from the viewpoint of spinnability (productivity of the fibrous structure). The crimp ratio is required to be 5% or more and 30% or less, and preferably 10% or more and 20% or less, from the viewpoint of spinnability (productivity of the fibrous structure).
[0029]
If the number of crimps is less than 5 ridges / 25 mm and the crimp rate is less than 5%, the spinning properties during high-order processing deteriorate because the entanglement between short fibers (staples) is low, which is not preferable. Even if the number of crimps exceeds 25 peaks / 25 mm and the crimping ratio is higher than 30%, the spinnability deteriorates.
[0030]
Further, the dry strength is required to be 0.5 cN / dtex or more and 10.0 cN / dtex or less from the viewpoint of durability of a fibrous structure (woven fabric or the like) using the conjugate fiber of the present invention, and preferably 2 cN / dtex. 2.0 cN / dtex or more and 6.0 cN / dtex or less. If the dry strength is lower than 0.5 cN / dtex, the burst strength is undesirably low. Conversely, if the dry strength exceeds 10 cN / dtex, the texture of the fiber becomes hard, which is not preferable.
[0031]
In the composite fiber of the present invention, the dry elongation needs to be 15% or more and 100% or less from the viewpoint of spinnability, and preferably 20% or more and 70% or less. If the dry elongation is lower than 15%, the texture of the fiber becomes hard, which is not preferable. If it is higher than 100%, the entanglement strength in a fibrous structure (such as a woven fabric) is undesirably reduced.
[0032]
As the fiber form in the present invention, short fibers (staples) are desirable in terms of low cost and ease of processing, and the fiber length is preferably 20 mm or more and 115 mm or less from the viewpoint of spinnability, and is preferably 30 mm. It is more preferable that the thickness be at least 70 mm.
[0033]
The fiber cross-sectional shape of the conjugate fiber of the present invention is not particularly limited as long as it has a core-sheath structure, but concentric core-sheath conjugate fibers are typical, and productivity (spinnability) is preferable. . However, the core-sheath may be relatively eccentric, the whole may be round, square, triangular, pentagonal, or even more polygonal, cross-shaped, or cloud-shaped. Further, the core may be a multi-core instead of a single core.
[0034]
The composite ratio (wt%: wt%) of “core component (A) / sheath component (B)” in the core-sheath composite fiber is “(A) 20 / (B) 80 to (A) 80 / (B) 20. ”Is preferable, and if it is in the range of“ (A) 40 / (B) 60 to (A) 60 / (B) 40 ”, the spinning accuracy is high (the spinning productivity is good), and a good lightweight feeling or heat retention property is obtained. It is more preferable from the viewpoint that it can be obtained.
[0035]
In the present invention, since the core component is eluted and removed by alkali, the composite ratio of the core component means the hollowness of the fiber.
[0036]
Weight% of component A = hollow ratio of fiber single yarn
In addition, the hollow ratio referred to in the present invention means a value calculated by the following formula from a photograph obtained by photographing a cross section of the fiber with a camera equipped with a microscope at a magnification of about 400 times.
[0037]
Hollow ratio (%) of fiber single yarn = area of hollow portion / area of entire fiber cross section × 100
In other words, the higher the proportion (% by weight) of the component A, the higher the hollow ratio, and the better the heat retention and lightness of the fiber structure (such as a woven fabric) made of the fiber. Therefore, a high level of lightweight feeling and low weight perception can be realized in spite of heat retention.
[0038]
Examples of the fiber structure referred to in the present invention include yarn, woven or knitted fabric, non-woven fabric, felt, flocking product (nap product), fur-like pile nap product, moquette (car seat), etc. A woven fabric is preferred because it is a material having heat retention.
[0039]
In addition, the use is suitably used for apparel use and material use, the apparel use referred to in the present invention refers to fabric products worn on the body, such as winter, spring and autumn casual clothes (including winter clothes), It is more suitably used for outdoor clothing (camp clothing, mountain climbing clothing, etc.), sports clothing (interior sports clothing such as skis and snowboards, motor sports clothing such as motorcycle rider wear), hat cloth, and slacks (socks).
[0040]
In addition, the material use in the present invention refers to a material that can be a base material for making everything, other than clothing use, and specifically, a bag (a travel bag, a sports bag, a handbag, a school bag, a commuter bag, a business bag). Etc.), bedding (futon covers, pillowcases, sheets, etc.), towels (hand towels, handkerchiefs, bath towels, etc.), chair / sofa covers, chair / sofa surface materials, masks, etc. Among them, winter sports clothing such as skiing and snowboarding is more preferred for use in clothing because of its excellent lightness and heat retention. On the other hand, with respect to the use of materials, luggage use is more preferable from the viewpoint that the feel (feel) when held and the lightness are excellent.
[0041]
Although there is no particular limitation on the fiber form (type) of the conjugate fiber in the present invention, short fibers (staples) and long fibers (filaments) are preferable, and among them, from the characteristic that an excellent volume feeling and feeling can be obtained by crimping. Short fibers (staples) are more preferred.
[0042]
Next, a method for producing a fiber according to the present invention will be described.
[0043]
It is preferable that the core-sheath type conjugate fiber is obtained as a short fiber (staple) by spinning, drawing and further cutting by a general method.
[0044]
Next, a method for producing a fibrous structure (such as a woven fabric) made of the fibers will be described in detail. In the present invention, the production method is not particularly limited, but after forming a fabric using a spun yarn consisting of a core-sheath type composite fiber of a biodegradable polymer and a polyamide polymer, an alkali treatment is performed by dyeing, The hollow structure is formed by eluting and removing the biodegradable polymer from the core, so that the weight (basis weight) of the fibrous structure (fabric, etc.) per unit area is light, and the air with low thermal conductivity is formed in the hollow. The production method is preferred from the viewpoint that the presence of the layer makes it possible to obtain a fiber structure (such as a woven fabric) that is lightweight and excellent in heat retention.
[0045]
In the fiber structure (woven fabric, etc.) according to the present invention, the basis weight is 300 g / m. 2 It is preferable that the CLO value which is less than or equal to the value and the heat retaining property is 0.75 or more.
[0046]
Generally, factors considered when the heat insulation of clothes is high include that the thermal conductivity of the material itself is low and the thickness of the fibrous structure (such as woven fabric) is large, that is, the air layer contains a large amount of air. And the like. Therefore, in order to enhance the heat retention, a fiber structure (woven fabric or the like) may be designed so as to increase the basis weight. However, in that case, the density as a fiber structure becomes high, and the lightness is impaired. Furthermore, in addition to the weight of the fabric, the weight of various auxiliary materials is added, so that the weight of the final product is considerable. Therefore, the basis weight of the dough is 300 g / m 2 It is preferably set to the following, more preferably 260 g / m 2 It is as follows.
[0047]
The fiber structure (such as a woven fabric) according to the present invention can exhibit a CLO value representing heat retention as high as 0.75 or more after realizing such a lightweight feeling, and the CLO value is 0.75 or more. The above satisfies the required heat retaining performance during light exercise in winter (15 ° C. or less).
[0048]
In the present invention, a spun yarn refers to a spun yarn obtained by spinning at least using short fibers (staples) of core-sheath type composite fibers. In the spinning process, the use of the above fibers at 100% is the original aim of the present invention, and is more effective in sufficiently exhibiting properties such as heat retention and light weight. The fibrous structure (woven fabric, etc.) is not limited to the one using 100% of the fiber, and may be a blended product with other fibers or a spin-twist with filament yarn (so-called long and short composite spun yarn). In any case, it is possible to create a unique fibrous structure (such as a woven fabric) product that cannot be obtained by the conventional technology.
[0049]
At this time, in order to perform elution removal by alkali treatment in the dyeing process, it is practical to consider a combination with a material that is resistant to alkali. Examples thereof include polyamide fibers (nylon 6, nylon 66, nylon 4/6, nylon 6/10, nylon 11, nylon 12), acrylic fibers, polyolefin fibers, and the like. It is sufficient if it is not particularly limited.
[0050]
The weaving step may be performed in the same step as for a normal spun fiber structure (woven fabric or the like). The loom that can be used is not particularly limited, and it can sufficiently cope with innovative looms such as an air jet loom and a rapier loom.
[0051]
In the alkali treatment for eluting and removing the biodegradable polymer from the core, a caustic alkali such as caustic soda and caustic potash may be used as a chemical. The processing conditions vary depending on the core-sheath composite ratio, the mixing ratio of the fibers constituting the fabric, and the like. In general, the conditions are such that the caustic alkali concentration is 10 to 80 g / liter and the processing temperature is 80 to 120 ° C. It may be used. Dyeing may be carried out using dyes and dyeing conditions commonly used for dyeing polyamide.
[0052]
The structure (woven fabric, etc.) obtained by the present invention is suitable for use in winter sports clothing and materials such as luggage, etc., due to its light weight and heat retention properties, and has sufficient functional characteristics. It can be demonstrated.
[0053]
That is, the fiber structure (woven fabric or the like) used for the purpose is inevitably high in weight because the fiber structure (woven fabric or the like) is conventionally formed at a high density and a thick count, and generally 400 g. Although the basis weight of about / m2 was normal, the feeling of weight resulted in significantly impairing comfort. According to the present invention, such a problem, for example, when the compounding ratio of the polylactic acid component is 40%, the weight reduction of about 40% can be realized as it is.
[0054]
Furthermore, assuming a scene in which this is used, heat retention is also indispensable, and a fiber structure (such as a woven fabric) having both lightness and heat retention can be provided.
[0055]
【Example】
Hereinafter, the present invention will be further described with reference to examples.
[0056]
Tables 1 to 4 show the results of Examples and Comparative Examples. The conditions and characteristics shown in Tables 1 to 4 were determined by the following methods. Further, in Tables 1 to 4, the polymer type names are represented as the following expressions.
[0057]
A. Polylactic acid polymer (biodegradable polymer): PLA
B. Polycapramid: Nylon 6 (N6)
C. Polyhexamethylene adipamide polymer: nylon 66 (N66)
(1) Core component ratio
The core component ratio is represented by the following formula.
[0058]
Core component ratio (wt%) = weight of core component polymer / (weight of core component polymer + weight of sheath component polymer) × 100
(2) Ratio of sheath components
The sheath component ratio is represented by the following formula.
[0059]
Ratio of sheath component (wt%) = weight of sheath component polymer / (weight of core component polymer + weight of sheath component polymer) × 100
<Physical properties of fiber>
(1) Number of crimps:
Using a short fiber elasticity tester, read the fiber length and the number of crests within the gripping interval when an initial load of 0.18 mN per single fiber fineness (decitex) is applied to the sample, and determine the number of crimps per 25 mm (number of crests) Was calculated.
[0060]
Number of crimps (crests / 25 mm) = (Cn × 25) / (2 × L)
Cn: average value of the number of peaks and valleys of crimps (peaks)
L: Average value of fiber length when initial load is applied (mm)
(2) Crimp rate
A specific load of 13.23 mN per single fiber fineness (decitex) is given, the fiber length when the crimp is stretched is measured, and the difference from the fiber length when an initial load of 0.18 mN is given is defined. It was determined as a percentage of the length when a load was applied.
[0061]
Crimp rate (%) = (L2−L1) / L2 × 100
L1: Average value of the fiber length when an initial load of 2 mg is applied (mm)
L2: Average value of fiber length when a specified load of 150 mg is applied (mm)
(3) Dry strength and dry elongation
The short fiber (staple) is stuck on the lubricating paper, and the short fiber (staple) is pulled at a pulling speed of 20 g / min using a Mackenzie short fiber tensile tester or an automatic tensile tester to cut the fiber. Strength and elongation were determined.
[0062]
As a precondition, the pulling speed at this time was 20 g / min.
[0063]
Dry strength (cN / dtex) = 0.9807 × S / d
Note) dtex: decitex
S: Average value (g) of cutting strength under standard conditions (room temperature 20 ° C., humidity 65% RH)
d: Single yarn fineness (dtex) of the sample
Dry elongation (%) = (E2-E1) / (L + E1) × 100
L: Interval of gripping single fiber yarn (mm)
E1: Loose length average value (mm)
E2: Average value of elongation at break (mm) under standard conditions (room temperature 20 ° C, humidity 65% RH)
(4) Fiber length
The fiber was stretched to such an extent that the fiber was not crimped on the glycerin-coated scale plate, and the length of the fiber was measured under standard conditions (room temperature, 20 ° C., humidity, 65% RH), and the average fiber length was determined by the average value of 100 fibers.
[0064]
Average fiber length (mm) = L / 100
L: Sum of 100 short fiber lengths
Hereinafter, the productivity and the performance of the fiber structure were evaluated based on the following criteria.
<Evaluation criteria>
◎: remarkably good
○: Good
△: Bad
×: extremely poor
<Productivity of fiber and fiber structure>
(5) Spinnability (fiber productivity)
In the spinning process, the yarn spun with the composite die is uniformly cooled with a cooler within a range of 9 ° C ± 2 ° C, and then taken out at a speed of 800 to 1500 m / min to obtain an undrawn yarn. The number of single yarn breaks immediately below the mouthpiece for 1 t was measured.
[0065]
The single yarn breakage is a trouble in the spinning production, and waste is generated until the machine returns to normal. Therefore, an increase in the number of times of yarn breakage means a decrease in production yield.
[0066]
◎: less than 0.5 times / t
:: 0.5 times / t or more and less than 1.0 times / t
Δ: 1.0 times / t or more and less than 5.0 times / t
×: 5.0 times / t or more
(6) Spinnability (fibre structure productivity)
The number of windings on the roller per unit production amount (t) in the drawing process in the spinning process of the conjugate fiber was determined based on the criteria shown in Tables 1 to 4. The calculation formula and the criteria are as follows.
[0067]
Number of roller windings per unit production amount (t) = Number of roller windings (times) / Amount of composite fiber production (t)
◎: less than 1.5 times / t
:: 1.5 times / t or more and less than 4.0 times / t
Δ: 4.0 times / t or more and less than 8.0 times / t
×: 8.0 times / t or more
<Performance of fiber structure>
(7) Light weight (basis weight)
A woven fabric (fabric test piece) of 25 cm × 25 cm was prepared from the fiber structure of the present invention, sufficiently dried until the water content became equal to or less than the equilibrium moisture content, and then left in a room at 20 ° C. and 65% RH for 24 hours to obtain a moisture equilibrium. After that, the weight of the test piece was measured. The weight of the obtained test piece is 1 m 2 The average value was calculated for two pieces of cloth.
[0068]
◎: 200 g / m 2 Less than
:: 200 g / m 2 Above, 260 g / m 2 Less than
Δ: 260 g / m 2 Above, 300 g / m 2 Less than
×: 300 g / m 2 that's all
(8) Burst strength test
The burst strength test is for evaluating the strength of a knitted fabric, and the test is carried out according to the JIS L1018 (method A) by the Murren method and expressed in the following four stages.
[0069]
A: 5.0 kg / cm 2 that's all
:: 4.0 kg / cm 2 5.0 kg / cm or more 2 Less than
Δ: 3.0 kg / cm 2 4.0 kg / cm or more 2 Less than
×: 3.0 kg / cm 2 Less than
(9) Texture
The woven fabrics obtained in all Examples and Comparative Examples were subjected to sensory evaluation by ten judges using the tactile sensation in the palm, and are expressed in the following four stages. In addition, if the pilling property is good, a soft-textured fabric is finished.
[0070]
◎: All 10 persons judged that the texture was good
:: 7 to 9 persons are judged to be good
Δ: 4 to 6 persons judged good
×: 3 or less judged good
(10) CLO value (heat retention)
Two 50 cm × 50 cm test pieces are collected. Using an ASTM heat retention tester, the test piece is attached to a hot plate having a hot plate temperature of 40 ° C. and left for 60 minutes. Read the power-on time (seconds) of the integrating wattmeter after leaving the measurement time, and the outside air temperature (° C) of the measuring instrument.
[0071]
With no test piece attached Read the power-on time (seconds) of the integrating wattmeter. The CLO value is calculated from the following formula based on the energizing time (sec) when the test piece is not attached, the energizing time (sec) when the test piece is attached, and the outside air temperature, and is expressed as an average value of two sheets.
Heat retention rate (%) = (ab) / a × 100
CLO value = {(6.54 × (40−t)}} / b / 0.18
Here, a: energization time when no test piece is attached (sec / Hr)
b: Energizing time when the test piece was attached (sec / Hr)
t: Outside air temperature indicated by the measuring instrument (° C)
Insulation criteria for CLO value
◎: 0.80 or more
:: 0.75 or more and less than 0.80
Δ: 0.50 or more and less than 0.75
×: less than 0.50
The higher the CLO value, the warmer and more excellent the heat retention.
<Judgment criteria>
The items of the above embodiments are displayed in the following four stages as criteria.
[0072]
◎: remarkably good
○: Good
△: Bad
×: extremely poor
Example 1
Using a polylactic acid polymer (PLA) for the core component and a polycapramide polymer (N6) for the one sheath component, the composite ratio (wt%) of “core component (A) / sheath component (B)” was 45%. % (A) / 55% (B) after spinning at a spinning speed of 1300 m / min, the dimethylsilicone emulsion contained 5% in the oil component, and the parffin wax emulsion also contained 10 wt% in the oil component. The applied oil is applied twice before and after the stretching in total, and normal stretching is performed at 3.0 times, and after crimping is applied, cut and cut to obtain the following fiber properties (quality of short fibers) of (1) to (8). Was obtained.
[0073]
(1) Fineness: 1.7 dtex
(2) Number of crimps: 16 peaks / 25 mm
(3) Crimp rate: 14%
(4) Dry strength: 3.5 cN / dtex
(5) Dry elongation: 55%
(6) Fiber length: 44 mm
(7) Adhesion rate of silicon component to fiber weight: 0.03 wt%
(8) Adhesion rate of wax component to fiber weight: 0.06 wt%
Subsequently, using the 100% of the fiber (short fiber), a roving yarn of 0.76 count is made by a normal spinning method, and a spinning draft of about 21 times, a twist number of 16.1 t / inch, and a cotton count of 16 s are combined. A spun yarn was manufactured.
[0074]
The spun yarn was used for the warp and the weft, and the weaving density was 101 yarns / inch × 82 yarns / inch, and the woven fabric was a slant weave, and woven in an air jet loom.
[0075]
The woven fabric thus obtained is subjected to refining and relaxation in a dyeing process to a concentration of 50 g / liter of an aqueous caustic soda solution, and elution and removal of polylactic acid (PLA) as a core component using a liquid jet dyeing machine at a treatment temperature of 110 ° C. The constituent fibers of the woven fabric were hollow fibers. At this time, the time during which 100% of the polylactic acid as the core component could be eluted was measured.
[0076]
Subsequently, this was heated at 100 ° C. and dyed for 45 minutes to obtain a finished fabric having a density of 115 lines / inch × 94 lines / inch.
Example 2
A woven fabric was prepared in the same manner and under the same conditions as in Example 1 except that the adhesion ratio of the silicon component to the weight of the core-sheath type composite fiber was 0.01 wt%.
Example 3
A woven fabric was prepared in the same manner and under the same conditions as in Example 1, except that a polyhexamethylene adipamide polymer (N66) obtained by copolymerizing 1.0 wt% of a lactam as a sheath component was used.
Example 4
A woven fabric was prepared in the same manner and under the same conditions as in Example 1 except that a polyhexamethylene adipamide polymer (N66) obtained by copolymerizing 4 wt% of a lactam as a sheath component was used.
Example 5
A woven fabric was produced in the same manner and under the same conditions as in Example 1 except that a polyhexamethylene adipamide polymer (N66) obtained by copolymerizing lactam at 0.05 wt% as a sheath component was used.
Example 6
A woven fabric was prepared in the same manner and under the same conditions as in Example 1, except that the core-sheath ratio (core component: sheath component ratio) of the core-sheath type composite fiber was 30%: 70%.
Example 7
A woven fabric was prepared in the same manner and under the same conditions as in Example 1 except that the core-sheath ratio (core component: sheath component ratio) of the core-sheath composite fiber was 70%: 30%.
Example 8
A woven fabric was prepared in the same manner and under the same conditions as in Example 1 except that no wax component was attached to the core-sheath type composite fiber.
Comparative Example 1
A woven fabric was produced in the same manner and under the same conditions as in Example 1 except that a polyester (PET) obtained by copolymerizing 8% by weight of dimethyl 5-sodium sulfonate as a core component was used.
Comparative Example 2
Higher-order processing was performed in the same manner and under the same conditions as in Example 1 except that the silicon component did not adhere to the core-sheath type composite fiber at all, to produce a woven fabric.
Comparative Example 3
A spinning, weaving and dyeing process was performed in the same manner and under the same conditions as in Example 1 except that a polyhexamethylene adipamide polymer (N66) obtained by copolymerizing 15 wt% of lactam as a sheath component was used to prepare a fabric.
Comparative Example 4
A spinning, weaving and dyeing process was performed in the same manner and under the same conditions as in Example 1 except that a polyhexamethylene adipamide polymer (N66) having no lactam copolymerized at all was used as a sheath component, to prepare a fabric.
Comparative Example 5
Higher-order processing was performed in the same manner and under the same conditions as in Example 1 except that the core / sheath ratio (the ratio of the core component: the sheath component) of the core / sheath type conjugate fiber was 10%: 90% to prepare a woven fabric.
Comparative Example 6
Higher-order processing was performed in the same manner and under the same conditions as in Example 1 except that the core-sheath ratio (core component: sheath component ratio) of the core-sheath type conjugate fiber was 90%: 10% to prepare a woven fabric.
Comparative Example 7
A 100% polycapramide polymer (N6) was used, and the fabric was formed in the same manner as in Example 1 without forming the core-sheath composite. To obtain a woven fabric.
Comparative Example 8
A 100% polyhexamethylene adipamide polymer (N66) was used to fabricate a fabric in the same manner as in Example 1 without forming a core-sheath composite. Processing was performed under nylon dyeing conditions to obtain a woven fabric.
Comparative Example 9
Using 100% of polyester (PET) in which dimethyl 5-sodium sulfonate has not been copolymerized, a woven fabric is formed in the same manner as in Example 1 without forming a core / sheath composite. After refining and relaxing, the fabric was processed under normal nylon dyeing conditions to obtain a woven fabric.
Comparative Example 10
Using 100% of the polycapramide polymer (N6), it is directly spun as a hollow fiber using a die having a hollow structure (nozzle), and woven in the same manner as in Example 1. After refining and relaxing in the dyeing process, the fabric was processed under ordinary nylon dyeing conditions to obtain a woven fabric.
Comparative Example 11
Using 100% of polyhexamethylene adipamide polymer (N66), it was directly spun as a hollow fiber using a die having a hollow structure (nozzle), and woven in the same manner as in Example 1. The woven fabric was refined and relaxed in a dyeing process, and then processed under normal nylon dyeing conditions to obtain a woven fabric.
Comparative Example 12
Using 100% polyester (PET) in which dimethyl 5-sodium sulfonate has not been copolymerized, spinning as hollow fibers directly using a die (nozzle) having a structure capable of spinning hollow cross-section yarns A woven fabric was prepared in the same manner as in Example 1, and the woven fabric was refined in a dyeing process, relaxed, and then processed under a normal nylon dyeing condition to obtain a woven fabric.
[0077]
Tables 1 to 4 show a list of evaluation results of all the examples and comparative examples.
Table 1 is a list of conditions for producing fibers and fabrics of Examples, Table 2 is a list of productivity and performance results of Examples, and Table 3 is a list of conditions for producing fibers and fabrics of Comparative Examples. Table 4 is a list of productivity and performance results of the comparative example.
[0078]
[Table 1]
Figure 2004285496
[0079]
[Table 2]
Figure 2004285496
[0080]
[Table 3]
Figure 2004285496
[0081]
[Table 4]
Figure 2004285496
[0082]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it was difficult to obtain with the prior art, it is excellent in comfort, and it is excellent in heat retention and lightness, and has a soft (comfortable) moist feeling and a unique sheath. It is possible to obtain a type composite fiber and a fiber structure (fabric, raised hair, pile woven fabric, woven fabric, etc.) composed of the fiber, and the fiber structure is used for clothing (such as winter clothing) and various materials (for example, luggage). ) And the like.
[0083]
Also, by using a biodegradable polymer that is easily soluble as the core component, the core component is easily dissolved and removed as compared with the conventional technology, and the treatment liquid generated by dissolution is a biodegradable component. There is an advantage that it is easy.
[0084]
At the same time, the use of a polyamide polymer, which is difficult to remove, as the sheath component also has excellent pilling properties because of its excellent chemical resistance to the solution.
[0085]
Further, the method of the present invention realizes good spinnability and high-order workability (spinnability, etc.) in producing the above-mentioned core-sheath type conjugate fiber and fiber structure, and achieves high production yield and productivity. It is excellent.

Claims (14)

芯成分Aが生分解性ポリマーで、鞘成分Bがポリアミドポリマーの少なくとも2成分からなる芯鞘型複合繊維であって、下記の繊維物性(1)〜(5)を満足し、該繊維にはシリコン成分が繊維重量に対して0.01wt%以上付着していることを特徴とする芯鞘型複合繊維。
(1)繊 度・・・0.9dtex以上11.0dtex
(2)捲縮数・・・5山/25mm以上25山/25mm以下
(3)捲縮率・・・5%以上30%以下
(4)乾強度・・・0.5cN/dtex以上10.0cN/dtex以下
(5)乾伸度・・・15%以上100%以下
The core component A is a biodegradable polymer, and the sheath component B is a core-sheath type composite fiber comprising at least two components of a polyamide polymer, and satisfies the following fiber properties (1) to (5). A core-in-sheath type composite fiber, wherein a silicon component is attached in an amount of 0.01 wt% or more based on the weight of the fiber.
(1) Fineness: 0.9 dtex or more and 11.0 dtex
(2) Number of crimps: 5 peaks / 25 mm or more and 25 peaks / 25 mm or less (3) Crimp rate: 5% or more and 30% or less (4) Dry strength: 0.5 cN / dtex or more 0 cN / dtex or less (5) Dry elongation: 15% or more and 100% or less
芯成分Aである生分解性ポリマーがポリ乳酸であることを特徴とする請求項1に記載の芯鞘型複合繊維。The core-sheath type composite fiber according to claim 1, wherein the biodegradable polymer as the core component A is polylactic acid. 鞘成分Bがポリカプラミドポリマーであることを特徴とする請求項1または請求項2のどちらかに記載の芯鞘型複合繊維。3. The core-sheath type composite fiber according to claim 1, wherein the sheath component B is a polycapramid polymer. 鞘成分Bがラクタムを0.01wt%以上10wt%以下共重合したポリヘキサメチレンアジパミドポリマーであることを特徴とする請求項1または請求項2のどちらかに記載の芯鞘型複合繊維。3. The core-sheath type composite fiber according to claim 1, wherein the sheath component B is a polyhexamethylene adipamide polymer obtained by copolymerizing lactam in an amount of 0.01% by weight or more and 10% by weight or less. 芯鞘型複合繊維における芯成分(A)/鞘成分(B)の複合割合(重量%)が(A)20/(B)80〜(A)80/(B)20の範囲であることを特徴とする請求項1〜4のいずれかに記載の芯鞘型複合繊維。The composite ratio (% by weight) of the core component (A) / the sheath component (B) in the core-sheath type composite fiber is in the range of (A) 20 / (B) 80 to (A) 80 / (B) 20. The core-in-sheath type conjugate fiber according to any one of claims 1 to 4, characterized in that: 芯鞘型複合繊維の繊維長が20mm以上115mm以下の短繊維であることを特徴とする請求項1〜5のいずれかに記載の芯鞘型複合繊維。The core-sheath conjugate fiber according to any one of claims 1 to 5, wherein the core-sheath conjugate fiber is a short fiber having a fiber length of 20 mm or more and 115 mm or less. 芯鞘型複合繊維全体の重量に対してワックス成分が0.01wt%以上付着している請求項1〜6のいずれかに記載の芯鞘型複合繊維。The core-sheath conjugate fiber according to any one of claims 1 to 6, wherein the wax component is attached in an amount of 0.01 wt% or more based on the weight of the entire core-sheath conjugate fiber. 請求項1〜7のいずかに記載の芯鞘型複合繊維が用いられて、しかる後、該芯鞘型複合繊維から芯成分Aが除去された中空繊維から構成されていることを特徴とする繊維構造体。The core-in-sheath type composite fiber according to any one of claims 1 to 7 is used, and thereafter, the core-in-sheath type composite fiber is made of a hollow fiber from which the core component A has been removed. Fiber structure. 請求項1〜7のいずれかに記載の芯鞘型複合繊維が100%用いられ、しかる後、該芯鞘型複合繊維から芯成分Aが除去された中空繊維から構成されていて、かつ目付が300g/m以下で保温性を示すCLO値が0.75以上であることを特徴とする請求項8に記載の繊維構造体。The core-in-sheath type conjugate fiber according to any one of claims 1 to 7 is used by 100%, and thereafter, the core-in-sheath type conjugate fiber is made of a hollow fiber obtained by removing the core component A from the core-in-sheath type conjugate fiber, and has a basis weight. fibrous structure according to claim 8, CLO value indicating the thermal insulation and 300 g / m 2 or less and wherein the at least 0.75. 衣料用途に使用されるものであることを特徴とする請求項8または9に記載のいずれかに記載の繊維構造体。The fibrous structure according to claim 8, wherein the fibrous structure is used for clothing. 資材用途に使用されるものであることを特徴とする請求項8または9に記載の繊維構造体。The fibrous structure according to claim 8, wherein the fibrous structure is used for a material. 請求項1〜7のいずれかに記載の芯鞘型複合繊維を用いて繊維構造体を形成し、しかる後、該芯鞘型複合繊維中の芯成分(A)を溶液等により溶出除去し該繊維を中空化せしめ、繊維構造体を得ることを特徴とする繊維構造体の製造方法。A fiber structure is formed using the core-sheath composite fiber according to any one of claims 1 to 7, and thereafter, the core component (A) in the core-sheath composite fiber is eluted and removed with a solution or the like. A method for producing a fiber structure, comprising hollowing a fiber to obtain a fiber structure. 請求項1〜7のいずれかに記載の芯鞘型複合繊維の芯成分(A)を溶液等により溶出除去し該繊維を中空化せしめた後、該中空繊維を用いて繊維構造体を形成することを特徴とする繊維構造体の製造方法。The core component (A) of the core-sheath type conjugate fiber according to any one of claims 1 to 7 is eluted and removed by a solution or the like to hollow the fiber, and then a fiber structure is formed using the hollow fiber. A method for producing a fibrous structure. 芯成分を溶出除去させる溶液がアルカリ溶液であることを特徴とする請求項12または13記載の繊維構造体の製造方法。14. The method for producing a fiber structure according to claim 12, wherein the solution for eluting and removing the core component is an alkaline solution.
JP2003077496A 2003-03-20 2003-03-20 Sheath-core type conjugated fiber and fiber structure comprising the fibers and method for producing the same Pending JP2004285496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077496A JP2004285496A (en) 2003-03-20 2003-03-20 Sheath-core type conjugated fiber and fiber structure comprising the fibers and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077496A JP2004285496A (en) 2003-03-20 2003-03-20 Sheath-core type conjugated fiber and fiber structure comprising the fibers and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004285496A true JP2004285496A (en) 2004-10-14

Family

ID=33292242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077496A Pending JP2004285496A (en) 2003-03-20 2003-03-20 Sheath-core type conjugated fiber and fiber structure comprising the fibers and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004285496A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103232A2 (en) * 2005-03-31 2006-10-05 Oerlikon Textile Gmbh & Co. Kg Process for producing elastic and/or water degradable webs from composite filaments
JP2006322079A (en) * 2005-05-17 2006-11-30 Toray Ind Inc Polyamide woven or knitted fabric and method for producing the same
JP2007002395A (en) * 2005-05-25 2007-01-11 Toray Ind Inc Pile for hair transplantation and hair transplantation product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103232A2 (en) * 2005-03-31 2006-10-05 Oerlikon Textile Gmbh & Co. Kg Process for producing elastic and/or water degradable webs from composite filaments
WO2006103232A3 (en) * 2005-03-31 2007-05-24 M & J Fibretech As Process for producing elastic and/or water degradable webs from composite filaments
JP2006322079A (en) * 2005-05-17 2006-11-30 Toray Ind Inc Polyamide woven or knitted fabric and method for producing the same
JP2007002395A (en) * 2005-05-25 2007-01-11 Toray Ind Inc Pile for hair transplantation and hair transplantation product

Similar Documents

Publication Publication Date Title
EP1803844B1 (en) Woven or knit fabric containing crimped composite fiber having its air permeability enhanced by water wetting and relevant clothing
JP5547474B2 (en) Composite fiber with excellent antistatic, water absorption, and cool contact feeling
WO2010097970A1 (en) Woven fabric
JP2006118062A (en) Woven/knitted fabric reducing its porosity when wetted, and method for producing the same, and related textile product
KR20190045288A (en) Textile filling materials and textile products using them
JP2015108204A (en) Woven fabric made of composite spun yarn
JP2009024272A (en) Knitted fabric and fibrous product excellent in cool feeling
JP2006214056A (en) Woven fabric
JP2012036541A (en) Stretchable woven fabric
JP2010095813A (en) Woven and knitted fabric of multilayer structure and textile product
JP2009167565A (en) Stretchable knitted fabric, method for producing the same, and textile product
JP5216970B2 (en) Polyester knitted fabric, production method thereof and textile product
JP2004285496A (en) Sheath-core type conjugated fiber and fiber structure comprising the fibers and method for producing the same
JP2010007186A (en) Fabric for clothes and clothes
JP4414854B2 (en) Water-repellent knitted fabrics and textiles that improve air permeability when absorbing moisture
JP2004036035A (en) Conjugate fiber and textile structure
JP2003183935A (en) Sheath core type composite fiber, fibrous structural material consisting of the same and method for producing the same
JP2010053502A (en) Napped fabric and napped fabric product
JP2005171427A (en) Union cloth
JP2005307378A (en) Core-sheath hollow conjugate fiber and method for producing fiber structure
WO2022113695A1 (en) Woven/knitted article
JPH03124857A (en) Lightweight fabric excellent in heat insulating property and its production
WO2024070727A1 (en) Woven/knitted article
JP7400348B2 (en) woven and knitted fabrics
JP3992604B2 (en) Polyester blended yarn