JP2004284550A - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
JP2004284550A
JP2004284550A JP2003082081A JP2003082081A JP2004284550A JP 2004284550 A JP2004284550 A JP 2004284550A JP 2003082081 A JP2003082081 A JP 2003082081A JP 2003082081 A JP2003082081 A JP 2003082081A JP 2004284550 A JP2004284550 A JP 2004284550A
Authority
JP
Japan
Prior art keywords
hybrid vehicle
planetary gear
power
connection
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003082081A
Other languages
English (en)
Other versions
JP3864920B2 (ja
Inventor
Koichi Kondo
宏一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003082081A priority Critical patent/JP3864920B2/ja
Publication of JP2004284550A publication Critical patent/JP2004284550A/ja
Application granted granted Critical
Publication of JP3864920B2 publication Critical patent/JP3864920B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】内燃機関を燃料消費効率の高いポイントで運転しつつ、動力循環による動力の伝達効率の低下を抑制することができるハイブリッド車両を提供する。
【解決手段】ハイブリッド車両は、ラビニオ式遊星歯車機構110を動力分配装置100に設け、キャリア113cをエンジン200に連結し、サンギヤ111sをモータジェネレータ300に連結し、サンギヤ115sをモータジェネレータ400および駆動輪500に連結するとともに、摩擦材同士の係合によるリングギヤ118rと固定端との連結によって、リングギヤ118rの回転を制止することが可能なクラッチ180を備えた。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関と電動機とを動力源として走行するハイブリッド車両に関し、詳しくは、内燃機関と電動機との双方の動力を駆動輪に伝達して走行することが可能なパラレル方式のハイブリッド車両に関する。
【0002】
【従来の技術】
近年、内燃機関と電動機とを動力源として走行するハイブリッド車両が提案され、動力源として内燃機関を搭載した車両における燃料消費効率の向上や排出ガスの低減が図られている。ハイブリッド車両としては、内燃機関と電動機との双方の動力を駆動輪に伝達して走行することが可能なパラレル方式のハイブリッド車両がある。このパラレル方式のハイブリッド車両は、動力分配手段によって、内燃機関の動力を分配することができる。分配された動力の一部は、駆動輪に機械的に直接伝達される。その残余の動力は、発電機によって電力に一旦変換される。この電力が電動機によって再び動力に変換されることにより、残余の動力が駆動輪に最終的に伝達される。この動力と電力との変換によって、パラレル方式のハイブリッド車両は、内燃機関の動力を任意の回転数およびトルクに変換して駆動輪に伝達することができる。その結果、パラレル方式のハイブリッド車両は、内燃機関を燃料消費効率の高いポイントで運転することができる。したがって、燃料消費効率の向上や排出ガスの低減を図ることができる。
【0003】
一般に、動力と電力との変換には、所定のエネルギ損失を伴うことが知られている。パラレル方式のハイブリッド車両においても、変換に伴うエネルギ損失によって動力の伝達効率が低下する。特に、動力循環が発生する運転状態では、動力の伝達効率が著しく低下してしまう問題があった。この動力循環とは、電動機と発電機との間で、動力と電気との変換を循環して繰り返すことによって、エネルギ損失を繰り返す状態である。
【0004】
従来、動力循環による動力の伝達効率の低下を抑制するため、電動機および発電機として働くモータジェネレータの回転を機械的に制止することが可能なパラレル方式のハイブリッド車両が知られている。このハイブリッド車両は、内燃機関と駆動輪とを機械的に直結することによって、動力と電力との変換を介することなく、内燃機関の動力を駆動輪に直接伝達することができる。
【0005】
ここで、従来のハイブリッド車両の一例について説明する。図17は、従来のハイブリッド車両における動力伝達系統の概略構成の一例を示す説明図である。以下の説明では、ギヤ機構の図示は、その半分の図示で代えている。このハイブリッド車両は、動力分配手段910、内燃機関920、モータジェネレータ930,940、駆動輪950を備える。動力分配手段910は、遊星歯車機構911、ブレーキ918を備える。遊星歯車機構911は、サンギヤ912s、ピニオンギヤ913pを軸支するキャリア914c、リングギヤ915rの3つの回転要素から構成されている。ブレーキ918は、サンギヤ912sの回転を制止することが可能に連結されている。内燃機関920はキャリア914cに連結され、モータジェネレータ930はサンギヤ912sに連結され、モータジェネレータ940および駆動輪950はリングギヤ915rに連結されている。
【0006】
遊星歯車機構911は、サンギヤ912s,キャリア914c,リングギヤ915rの各回転要素の回転数に以下の関係が成立することが機構学上よく知られている。即ち、上記3つの回転要素のうち、2つの回転要素の回転数が決定されると、以下の関係式に基づいて残余の回転要素の回転数が決定される。
【0007】
Ncs=((1+ρc)/ρc)・Ncc−(1/ρc)・Ncr
Ncc=(1/(1+ρc))・Ncr+(ρc/(1+ρc))・Ncs
Ncr=(−ρc)・Ncs+(1+ρc)・Ncc …(1)
【0008】
ここで、Ncsはサンギヤ912sの回転数であり、Nccはキャリア914cの回転数であり、Ncrはリングギヤ915rの回転数である。ρcは、サンギヤ912sとリングギヤ915r間のギヤ比であり、「ρc=サンギヤ912sの歯数/リングギヤ915rの歯数」である。
【0009】
図18は、従来のハイブリッド車両における遊星歯車機構911の回転状態を示す説明図である。図18は、横軸には、左から順に、サンギヤ912s(Scと記す)、キャリア914c(Ccと記す)、リングギヤ915r(Rcと記す)に対応する座標をとる。これら各座標間の距離は、Sc−Cc間の距離とCc−Rc間との距離が1:ρcの関係になるようにとられている。縦軸には、各座標において各回転要素の回転数をとる。この回転数は、内燃機関920が回転を行う方向を正とする。この回転数が負の場合は、その回転要素が逆回転している状態を表している。この図18は、遊星歯車機構911の共線図を表す。式(1)から明らかな通り、各回転要素の回転数は比例関係にあり、各要素の回転数は、共線図上の動作共線と呼ばれる直線上に並ぶ。それぞれの回転要素に連結されている装置を、これらの回転速度軸の下部に示す。モータジェネレータ930(MG1と記す)およびブレーキ918(BRKと記す)をサンギヤ912s軸の下部に示し、内燃機関920(ENGと記す)をキャリア914c軸の下部に示し、モータジェネレータ940(MG2と記す)および駆動輪950(OUTと記す)をリングギヤ915r軸の下部に示す。
【0010】
この構成のハイブリッド車両においては、ブレーキ918によってサンギヤ912sの回転を制止することなく、リングギヤ915rの回転数がキャリア914cの回転数を超えて、サンギヤ912sが逆転する状態では、動力循環が発生する運転状態(以下、循環運転状態という)となってしまう。図18中の直線Lc1は、循環運転状態の回転状態を示し、各回転要素の回転数は直線Lc1上に並ぶ。この状態では、キャリア914cの回転数、即ち、内燃機関920の回転数はNce1である。
【0011】
この循環運転状態から、リングギヤ915rの回転数、即ち車速を保持したまま、ブレーキ918によってサンギヤ912sの回転、即ち、モータジェネレータ930の回転を制止すると、内燃機関920と駆動輪950とが機械的に直結された状態(以下、直結運転状態という)となる。図18中の直線Lc2は、直結運転状態の回転状態を示し、各回転要素の回転数は直線Lc2上に並ぶ。この直結運転状態では、モータジェネレータ930の回転数は逆転状態から制止状態となり、内燃機関920の回転数はNce1からNc2に上昇する。内燃機関の動力は、動力と電力との変換を介することなく駆動輪に伝達される。
【0012】
図19は、従来のハイブリッド車両における内燃機関920の運転ポイントと燃料消費効率との関係について示す説明図である。図19は、横軸には内燃機関の回転数をとり、縦軸には内燃機関920のトルクをとり、内燃機関920の運転状態を示している。曲線α1からα5までは、内燃機関920の燃料消費効率が一定となる領域を示している。α1からα5の順に燃料消費効率は低くなる。曲線Dcは、あらかじめ設定された燃料消費効率が良い燃費最適線を示す。内燃機関920は、通常では、この燃費最適線Dcに近いポイントで運転されている。曲線Pcは、内燃機関920から出力される動力(回転数×トルク)が一定となる曲線を示す。内燃機関920は、上述の循環運転状態では、運転ポイントDc1で運転される。上述の直結運転状態となると、回転数がNce1からNc2となり運転ポイントDc2で運転される。
【0013】
かかる従来のハイブリッド車両によれば、モータジェネレータ930の回転を機械的に制止することにより、内燃機関920と駆動輪950とを機械的に直結することができる。その結果、動力循環が発生する運転状態になったとしても、モータジェネレータ930の回転を機械的に制止することにより、動力と電力との変換を介することなく、内燃機関920の動力を駆動輪に直接伝達し、動力循環を回避することができる。したがって、動力循環による動力の伝達効率の低下を抑制することができる。
【0014】
下記特許文献には、モータジェネレータの回転を機械的に制止することが可能なパラレル方式のハイブリッド車両が記載されている。
【特許文献1】
特開平8−322108号公報
【0015】
【発明が解決しようとする課題】
しかしながら、かかる従来のハイブリッド車両においては、循環運転状態から直結運転状態に移行すると、内燃機関の回転数が上昇してしまうため、この上昇した回転数によっては内燃機関を燃料消費効率の高いポイントで運転することができなくなってしまうという問題があった。図19に示した通り、運転ポイントDc1から運転ポイントDc2に移行することによって、燃料消費効率の高い曲線α1で囲まれた領域から、燃料消費効率の低い曲線α2からα3との間の領域に移行してしまっている。この場合、動力循環による動力の伝達効率の低下を抑制することができるが、内燃機関920の燃料消費効率を低下させるため、却って、ハイブリッド車両の特性である省資源性および排気浄化性を十分に引き出すことができなかった。
【0016】
本発明は、上記した問題点を解決するためになされたものであり、内燃機関を燃料消費効率の高いポイントで運転しつつ、動力循環による動力の伝達効率の低下を抑制することができるハイブリッド車両を提供することを目的とする。
【0017】
【課題を解決するための手段およびその作用・効果】
上記した課題を解決するため、本発明のハイブリッド車両は、内燃機関の動力を、車両の走行を行う駆動輪と、第1または第2のモータジェネレータとに分配して伝達するとともに、前記第1または第2のモータジェネレータによって回生した電力で駆動する前記第2または第1のモータジェネレータの動力を前記駆動輪に伝達することが可能な動力分配手段を備えたハイブリッド車両であって、3つの回転要素によってそれぞれ構成される第1および第2の遊星歯車機構を、前記動力分配手段に設け、前記第1の遊星歯車機構における第1の回転要素を、前記内燃機関に連結し、前記第1の遊星歯車機構における第2の回転要素を、前記第1のモータジェネレータに連結し、前記第1の遊星歯車機構における第3の回転要素を、前記第2のモータジェネレータおよび前記駆動輪に連結するとともに、前記第2の遊星歯車機構における第1および第2の回転要素と、前記第1の遊星歯車機構におけるいずれか2つの回転要素とを、それぞれ1対1の関係で連結する第1および第2の連結手段と、前記第2の遊星歯車機構における第3の回転要素と、固定端とを連結する第3の連結手段とを備え、前記第1ないし第3の連結手段のうちの少なくとも1つは、該連結を切り離して非連結とする非連結手段を備えたことを特徴とする。
【0018】
かかるハイブリッド車両によれば、非連結手段によって第1ないし第3の連結手段のうち少なくとも1つが非連結の状態では、一般に知られているハイブリッド車両と同様に、第1の遊星歯車機構の作用によって動力を分配することができる。一方、第1ないし第3の連結手段の全てが連結することによって、第1,第2の遊星歯車機構における2つの回転要素がそれぞれ1対1で連結されるとともに、第2の遊星歯車機構の1つの回転要素が制止される状態となる。この状態では、内燃機関と駆動輪とは所定の変速比で機械的に直結される。これにより、動力と電力との変換を介することなく、内燃機関の動力を駆動輪に直接伝達し、動力循環を回避することができる。さらに、固定端と連結される第2の遊星歯車機構における第3の回転要素のギヤ比を適切に設定することによって、直結運転状態へ移行する際に、内燃機関の回転数の変動を抑制することができる。これにより、内燃機関の燃料消費効率の低下を抑制することができる。その結果、内燃機関を燃料消費効率の高いポイントで運転しつつ、動力循環による動力の伝達効率の低下を抑制することができる。また、複雑な機構や制御を必要とすることなく、燃料消費効率の向上や排出ガスの低減を図ることができる。
【0019】
上記の構成を有する本発明のハイブリッド車両は、以下の態様を採ることもできる。前記動力分配手段は、前記第1ないし3の連結手段の全てが連結することによって、内燃機関と駆動輪とを所定の変速比で機械的に直結する手段であるとしても良い。これにより、この所定の変速比を、動力循環の発生する速度域に対応して予め設定することによって、動力と電力との変換を介することなく、内燃機関の動力を駆動輪に直接伝達し、動力循環を回避することができる。
【0020】
また、前記非連結手段を備えた連結手段は、摩擦材同士を係合および非係合することによって、連結および非連結を行う摩擦係合機構であるとしても良い。これにより、複雑な構成や制御を必要とすることなく、連結手段における連結および非連結を行うことができる。
【0021】
また、前記第1および第2の遊星歯車機構は、1つのラビニオ式遊星歯車機構を構成する回転要素の組み合わせから成るとしても良い。これによって、動力分配手段の小型化を図ることができる。その結果、ハイブリッド車両の軽量化を図ることができる。この軽量化は、燃料消費効率の向上や排出ガスの低減に繋がる。
【0022】
また、前記ラビニオ式遊星歯車機構を、第1および第2のサンギヤと、キャリアと、リングギヤとによって構成し、前記第1の遊星歯車機構は、前記第1および第2のサンギヤと、前記キャリアとから成り、前記第2の遊星歯車機構は、前記第2のサンギヤと、前記キャリアと、前記リングギヤとから成り、前記第1の遊星歯車機構における第1の回転要素は、前記キャリアであり、前記第1の遊星歯車機構における第2の回転要素は、前記第1のサンギヤであり、前記第1の遊星歯車機構における第3の回転要素は、前記第2のサンギヤであり、前記第1の連結手段は、両遊星歯車機構において前記キャリアが共有されることによって実現される手段であり、前記第2の連結手段は、両遊星歯車機構において前記第2のサンギヤが共有されることによって実現される手段であり、前記第3の連結手段は、前記リングギヤと固定端とを連結する手段であり、前記非連結手段は、前記第3の連結手段に備えられたとしても良い。
【0023】
また、前記第1の遊星歯車機構を、第1のサンギヤと、第1のキャリアと、第1のリングギヤとによって構成し、前記第2の遊星歯車機構を、第2のサンギヤと、第2のキャリアと、第2のリングギヤとによって構成し、前記第1の遊星歯車機構における第1の回転要素は、前記第1のキャリアであり、前記第1の遊星歯車機構における第2の回転要素は、前記第1のサンギヤであり、前記第1の遊星歯車機構における第3の回転要素は、前記第1のリングギヤであり、前記第1の連結手段は、前記第1のリングギヤと前記第2のサンギヤとを連結する手段であり、前記第2の連結手段は、前記第1のキャリアと前記第2のキャリアとを連結する手段であり、前記第3の連結手段は、前記第2のリングギヤと固定端とを連結する手段であり、前記非連結手段は、前記第2または第3の連結手段に備えられたとしても良い。
【0024】
また、前記第1の遊星歯車機構を、第1のサンギヤと、第1のキャリアと、第1のリングギヤとによって構成し、前記第2の遊星歯車機構を、第2のサンギヤと、第2のキャリアと、第2のリングギヤとによって構成し、前記第1の遊星歯車機構における第1の回転要素は、前記第1のキャリアであり、前記第1の遊星歯車機構における第2の回転要素は、前記第1のサンギヤであり、前記第1の遊星歯車機構における第3の回転要素は、前記第1のリングギヤであり、前記第1の連結手段は、前記第1のキャリアと前記第2のサンギヤとを連結する手段であり、前記第2の連結手段は、前記第1のサンギヤと前記第2のリングギヤとを連結する手段であり、前記第3の連結手段は、前記第2のキャリアと固定端とを連結する手段であり、前記非連結手段は、前記第2または第3の連結手段に備えられたとしても良い。
【0025】
また、前記第1の遊星歯車機構を、第1のサンギヤと、第1のキャリアと、第1のリングギヤとによって構成し、前記第2の遊星歯車機構を、第2のサンギヤと、第2のキャリアと、第2のリングギヤとによって構成し、前記第1の遊星歯車機構における第1の回転要素は、前記第1のキャリアであり、前記第1の遊星歯車機構における第2の回転要素は、前記第1のサンギヤであり、前記第1の遊星歯車機構における第3の回転要素は、前記第1のリングギヤであり、前記第1の連結手段は、前記第1のサンギヤと前記第2のサンギヤとを連結する手段であり、前記第2の連結手段は、前記第1のキャリアと前記第2のリングギヤとを連結する手段であり、前記第3の連結手段は、前記第2のキャリアと固定端とを連結する手段であり、前記非連結手段は、前記第2または第3の連結手段に備えられたとしても良い。
【0026】
また、前記第1の遊星歯車機構を、第1のサンギヤと、第1のキャリアと、第1のリングギヤとによって構成し、前記第2の遊星歯車機構を、第2のサンギヤと、第2のキャリアと、第2のリングギヤとによって構成し、前記第1の遊星歯車機構における第1の回転要素は、前記第1のキャリアであり、前記第1の遊星歯車機構における第2の回転要素は、前記第1のサンギヤであり、前記第1の遊星歯車機構における第3の回転要素は、前記第1のリングギヤであり、前記第1の連結手段は、前記第1のキャリアと前記第2のキャリアとを連結する手段であり、前記第2の連結手段は、前記第1のリングギヤと前記第2のリングギヤとを連結する手段であり、前記第3の連結手段は、前記第2のサンギヤと固定端とを連結する手段であり、前記非連結手段は、前記第2または第3の連結手段に備えられたとしても良い。
【0027】
また、前記第2のモータジェネレータと前記駆動輪との連結を切り離して非連結とするモータ非連結手段を備えても良い。内燃機関と駆動輪とを機械的に直結している場合には、駆動輪に連結されている第2のモータジェネレータによる回転損失が大きくなる。この場合に、第2のモータジェネレータと駆動輪とを非連結にすることによって、第2のモータジェネレータによる回転損失を低減することができる。その結果、ハイブリッド車両におけるエネルギ効率を向上させることができる。なお、第2のモータジェネレータと駆動輪とを非連結としている場合、車両に必要な電力は、第1のモータジェネレータを回生することで対応することができる。この際、内燃機関は、回生する電力分の動力を出力する。
【0028】
また、前記駆動輪の目標動力を、目標回転数および目標トルクの組み合わせで設定する目標動力設定手段と、前記目標動力に応じ、燃料消費効率を優先して設定された回転数およびトルクで前記内燃機関を運転する内燃機関制御手段と、前記目標動力に応じ、前記非連結手段を備えた連結手段における連結および非連結を制御する連結制御手段と、前記連結制御手段による連結および非連結の制御に応じて、前記第1,第2のモータジェネレータによる力行または回生を制御するモータジェネレータ制御手段とを備えても良い。これによって、運転状態に応じて、ハイブリッド車両を円滑に運転することができる。
【0029】
また、前記連結制御手段は、前記目標動力が第1の所定動力を下回る際に、連結を開始して維持する制御を行い、前記目標動力が前記第1の目標動力よりも大きな第2の所定動力を上回る際に、非連結を開始して維持する制御を行う手段であるとしても良い。これによって、連結と非連結との切り換えが頻繁に行われるのを回避するために、切り換えの判断処理に一定のヒステリシスを持たせることができる。
【0030】
また、前記モータジェネレータ制御手段は、前記連結制御手段が連結を開始する制御を行う際に、前記第1の遊星歯車機構における第2の回転要素の回転数が、該連結を開始した場合の回転数となるように、前記第1のモータジェネレータによる力行または回生を制御する手段であるとしても良い。これによって、直結運転状態を開始する際に、内燃機関の急激な回転数およびトルクの変動を抑制するといった対応ができ、車両の振動や騒音を抑制することができる。また、急激なトルク変動に起因する衝撃力による駆動系統の耐久性低下を回避することができる。
【0031】
また、前記モータジェネレータ制御手段は、前記連結制御手段が連結を維持する制御を行っている際に、前記目標動力に応じて、前記第1および第2のモータジェネレータによる力行を制御する手段であるとしても良い。これによって、連結と非連結との切り換えが頻繁に行われるのを回避しつつ、必要な動力を駆動輪に伝達することができる。また、連結と非連結との切り換えが頻繁に行われるのを回避しつつ、内燃機関を燃料消費効率の良いポイントで運転することができる。なお、この際に、第1および第2のモータジェネレータの発熱状態または運転効率から、これらの使用比率を変化させても良い。
【0032】
また、前記モータジェネレータ制御手段は、連結制御手段が非連結を開始する制御を行う際に、前記内燃機関の反力とつり合うように、前記第1のモータジェネレータによる力行を制御する手段であるとしても良い。これによって、直結運転状態を終了する際に、内燃機関の急激な回転数およびトルクの変動を抑制するといった対応ができ、車両の振動や騒音を抑制することができる。また、急激なトルク変動に起因する衝撃力による駆動系統の耐久性低下を回避することができる。
【0033】
また、前記非連結手段を備えた連結手段を連結の状態にして前記第1および第2のモータジェネレータで回生する回生状態と、該連結手段を非連結にするとともに前記内燃機関を停止した状態にして前記第2のモータジェネレータで回生する回生状態とを、エネルギ効率を優先して選択する回生選択手段を備えても良い。連結状態の場合には、前記第1および第2のモータジェネレータの両方で回生することができるため、回生量を多く取ることができる。また、非連結の場合には、内燃機関を停止させてポンピングロスを低減させることができる。これによって、ハイブリッド車両の減速時や制動時において、ハイブリッド車両におけるエネルギ効率を向上させることができる。なお、この際に、第1および第2のモータジェネレータの発熱状態または運転効率から、これらの使用比率を変化させても良い。
【0034】
また、上記した課題を解決するため、本発明のハイブリッド車両は、内燃機関の動力を、車両の走行を行う駆動輪と、第1または第2のモータジェネレータとに分配して伝達するとともに、前記第1または第2のモータジェネレータによって回生した電力で駆動する前記第2または第1のモータジェネレータの動力を前記駆動輪に伝達することが可能な動力分配手段を備えたハイブリッド車両であって、第1および第2のサンギヤと、キャリアと、リングギヤとによって構成されるラビニオ式遊星歯車機構を、前記動力分配手段に設け、前記キャリアを前記内燃機関に連結し、前記第1のサンギヤを前記第1のモータジェネレータに連結し、前記第2のサンギヤを、前記第2のモータジェネレータおよび前記駆動輪に連結するとともに、前記リングギヤと固定端とを連結することによって、前記リングギヤの回転を制止することが可能な制止手段を備えたことを特徴とする。
【0035】
かかるハイブリッド車両によれば、制止手段がリングギヤと固定端との連結を行わずに、リングギヤの回転が制止されない状態では、一般に知られているハイブリッド車両と同様に、ラビニオ式遊星歯車機構の作用によって動力を分配することができる。一方、制止手段がリングギヤと固定端との連結を行い、リングギヤの回転が制止されている状態では、内燃機関と駆動輪とは所定の変速比で機械的に直結される。これにより、動力と電力との変換を介することなく、内燃機関の動力を駆動輪に直接伝達し、動力循環を回避することができる。さらに、リングギヤのギヤ比を適切に設定することによって、直結運転状態へ移行する際に、内燃機関の回転数の変動を抑制することができる。これにより、内燃機関の燃料消費効率の低下を抑制することができる。その結果、内燃機関を燃料消費効率の高いポイントで運転しつつ、動力循環による動力の伝達効率の低下を抑制することができる。また、複雑な機構や制御を必要とすることなく、燃料消費効率の向上や排出ガスの低減を図ることができる。
【0036】
【発明の実施の形態】
以上説明した本発明の構成及び作用を一層明らかにするために、以下本発明を適用したハイブリッド車両について、次の順序で説明する。
目次
A.第1の実施例
A−(1).第1の実施例におけるハイブリッド車両の動力系統のハード構成
A−(2).第1の実施例における動力分配装置100のハード構成
A−(3).第1の実施例におけるハイブリッド車両の動作
A−(4).第1の実施例における連結状態のハイブリッド車両の動作
A−(5).第1の実施例におけるハイブリッド車両の運転制御処理
B.第2の実施例
C.第3の実施例
D.第4ないし第10の実施例
E.その他の実施形態
【0037】
A.第1の実施例:
A−(1).第1の実施例におけるハイブリッド車両の動力系統のハード構成:
はじめに、本発明の第1の実施例におけるハイブリッド車両の動力系統の構成について説明する。図1は、本発明の一形態であるハイブリッド車両の動力系統の概略構成を示す説明図である。このハイブリッド車両の動力系統には、車両の走行を行う駆動輪500、動力源の一つとしてエンジン200、エンジン200とは特性の異なる動力源としてモータジェネレータ300,400、これらの動力源の出力する動力を駆動輪500に伝達することが可能な動力分配装置100、この動力系統における種々の制御を行う動力制御ユニット600などが設けられている。この他、エンジン200と駆動輪500とを機械的に直結するためのクラッチ180が、動力分配装置100に設けられている。
【0038】
エンジン200は、通常のガソリンエンジンであり、燃料の爆発燃焼によって連結されたクランク軸210を回転させる。エンジン200の運転は、電気的に接続されたECU220により制御されている。ECU220は、内部にCPU,ROM,RAM等を有するワンチップ・マイクロコンピュータである。このCPUは、ROMに記録されたプログラムに従い、エンジン200の燃料噴射量や点火時期その他の制御を実行する。これらの制御を可能とするために、ECU220には、エンジン200の運転状態を検出する種々のセンサが電気的に接続されている。そのうちの一つとしてクランク軸210の回転数を検出する回転数センサ211がある。その他のセンサおよびスイッチなどの図示は省略した。ECU220は、動力制御ユニット600とも電気的に接続されており、動力制御ユニット600との間で種々の情報のやり取りを行っている。ECU220は、動力制御ユニット600からエンジン200の運転状態に関する種々の指令値の入力を受けてエンジン200を制御している。ECU220は、エンジン200の回転数などの情報を動力制御ユニット600へ出力している。
【0039】
モータジェネレータ300,400は、交流同期電動機であり、それぞれモータ軸310,410を備える。モータジェネレータ300,400は、インバータ320を介してバッテリ330に電気的に接続されている。インバータ320は、モータジェネレータ300,400をそれぞれ駆動する駆動回路321,322を備える。駆動回路321,322は、スイッチング素子としてのトランジスタを備えたトランジスタインバータである。駆動回路321,322は、動力制御ユニット600とも電気的に接続されている。動力制御ユニット600からの制御信号によって駆動回路321,322のトランジスタがスイッチングされるとバッテリ330とモータジェネレータ300,400との間に電流が流れる。モータジェネレータ300,400は、バッテリ330からの電力の供給を受けて、それぞれモータ軸310,410を回転させる電動機として動作することができる(以下、この動作状態を力行という)。一方、モータ軸310,410が外力により回転している場合には、起電力を生じさせてバッテリ330を充電する発電機として動作することができる(以下、この動作状態を回生という)。動力制御ユニット600は、インバータ320が備える駆動回路321,322のトランジスタのスイッチングを調整する。これによって、モータジェネレータ300,400のコイルに流れる電流を制御して、力行時に出力する動力(回転数×トルク)や、回生時における回生電力を制御することができる。
【0040】
駆動輪500は、ディファレンシャルギヤ520を介して出力軸510に連結されている。出力軸510から出力された動力は、ディファレンシャルギヤ520を介して駆動輪500に伝達される。駆動輪500は、この動力によって回転し車両の走行を行う。
【0041】
動力制御ユニット600は、ECU220と同様、内部にCPU,ROM,RAM等を有するワンチップ・マイクロコンピュータである。このCPUは、ROMに記録されたプログラムに従い動力系統における種々の制御処理を実行する。これらの制御を可能とするために、動力制御ユニット600には、種々のセンサおよびスイッチが電気的に接続されている。動力制御ユニット600に接続されているセンサおよびスイッチとしては、アクセルペダルの操作量を検出するためのアクセルポジションセンサ610、シフトレバーの位置を検出するシフトポジションセンサ620、出力軸510の回転数を検出する回転数センサ511、バッテリ330の充放電状態を検出するバッテリセンサ331などがある。なお、これらのセンサは、ECU220など他の制御装置を介して、検出信号を動力制御ユニット600に入力するよう構成することも一般的である。動力制御ユニット600は、クラッチ180とも電気的に接続されており、これらのセンサなどから検出した動力系統の状態に基づいてクラッチ180に制御信号を出力する。
【0042】
A−(2).第1の実施例における動力分配装置100のハード構成:
次に、第1の実施例における動力分配装置100の構成について説明する。図2は、第1の実施例における動力分配装置100の構成を示す説明図である。動力分配装置100は、ラビニオ式遊星歯車機構110を備える。ラビニオ式遊星歯車機構110は、中心で回転するサンギヤ111s,115s、サンギヤ111sの周囲を自転しながら公転するピニオンギヤ112p、ピニオンギヤ112pの外周で回転するとともに、サンギヤ115sの周囲を自転しながら公転するピニオンギヤ116p、ピニオンギヤ112pおよび116pを軸支するキャリア113c、ピニオンギヤ116pの外周で回転するリングギヤ118rから構成されている。
【0043】
ラビニオ式遊星歯車機構110は、2つの遊星歯車機構を組み合わせた特性を有する遊星歯車機構である。この2つの遊星歯車機構うち第1の遊星歯車機構は、サンギヤ111s,115s、キャリア113cの3つの回転要素から成る。第2の遊星歯車機構は、サンギヤ115s、キャリア113c、リングギヤ118rの3つの回転要素から成る。これら第1および第2の遊星歯車機構の関係は、キャリア113cおよびサンギヤ115sを双方で共有する関係にある。この共有は、第2の遊星歯車機構におけるいずれか2つの回転要素と、第1の遊星歯車機構におけるいずれか2つの回転要素とが、それぞれ1対1の関係で連結されていると見ることができる。これらが、第1および第2の連結手段に相当する。
【0044】
キャリア113cは、クランク軸210を介してエンジン200に連結されている。サンギヤ111sは、モータ軸310を介してモータジェネレータ300に連結されている。サンギヤ115sは、モータ軸410を介してモータジェネレータ400に連結されるとともに、ギヤ512,513および出力軸510などを介して駆動輪500に連結されている。
【0045】
クラッチ180は、摩擦材同士を係合および非係合することによって、連結および非連結を行う摩擦係合機構である。クラッチ180は、摩擦材同士を係合することによって、リングギヤ118rと固定端とを連結する第3の連結手段として動作する。なお、リングギヤ118rと固定端との連結は、リングギヤ118rを電磁ロックで固定する機構であっても良い。一方、摩擦材同士を非係合することによって、リングギヤ118rと固定端との連結を切り離して非連結とする非連結手段として動作する。クラッチ180がリングギヤ118rと固定端とを連結する状態(以下、連結状態という)では、リングギヤ118rは回転を制止される。一方、クラッチ180がリングギヤ118rと固定端とを非連結にする状態(以下、非連結状態という)では、リングギヤ118rは回転可能となる。連結状態および非連結状態の切り換えは、動力制御ユニット600によって制御される。
【0046】
A−(3).第1の実施例におけるハイブリッド車両の動作:
次に、第1の実施例におけるハイブリッド車両の動作を説明するために、まず、ラビニオ式遊星歯車機構110の動作について説明する。ラビニオ式遊星歯車機構110は、サンギヤ111s,キャリア113c,サンギヤ115s,およびリングギヤ118rの各回転要素の回転数に以下の関係が成立することが機構学上よく知られている。即ち、上記4つの回転要素のうち、2つの回転要素の回転数が決定されると、以下の関係式に基づいて残余の2つの回転要素の回転数が決定される。
【0047】
Figure 2004284550
【0048】
ここで、Ns1はサンギヤ111sの回転数であり、Ncはキャリア113cの回転数、Ns2はサンギヤ115sの回転数であり、Nrはリングギヤ118rの回転数である。ρ1は、サンギヤ111s,115s間のギヤ比であり、「ρ1=サンギヤ111sの歯数/サンギヤ115sの歯数」である。ρ2は、サンギヤ115sとリングギヤ118r間のギヤ比であり、「ρ2=サンギヤ115sの歯数/リングギヤ118rの歯数」である。
【0049】
図3は、ラビニオ式遊星歯車機構110の回転状態を示す説明図である。図3は、横軸には、左から順に、サンギヤ111s(S1と記す),リングギヤ118r(Rと記す),キャリア113c(Cと記す)およびサンギヤ115s(S2と記す)に対応する座標をとる。これらの各座標間の距離は、S1−C間の距離とC−S1間の距離とが(1/ρ1):1の関係になるように、R−C間の距離とC−S2間の距離とがρ2:1の関係になるようにとられている。縦軸には、各座標において各回転要素の回転数をとる。この回転数は、エンジン200が回転を行う方向を正とする。この回転数が負の場合は、その回転要素が逆回転している状態を表している。これによって、図3は、ラビニオ式遊星歯車機構110の共線図を表す。式(2)から明らかな通り、各回転要素の回転数は比例関係にあり、各要素の回転数は、共線図上の動作共線と呼ばれる直線上に並ぶ。それぞれの回転要素に連結されている装置を、これらの回転速度軸の下部に示す。モータジェネレータ300(MG1と記す)をサンギヤ111s軸の下部に示し、クラッチ180(CLTと記す)をリングギヤ118r軸の下部に示し、エンジン200(ENGと記す)をキャリア113c軸の下部に示し、モータジェネレータ400(MG2と記す)および出力軸510(OUTと記す)をサンギヤ115s軸の下部に示す。なお、以下、説明を容易なものとするため、ギヤ512,513およびディファレンシャルギヤ520のギヤ比の値は1であるものとして説明する。即ち、駆動輪500の回転数およびトルクは、サンギヤ115sの回転数およびトルクと等しいものとする。
【0050】
第1の実施例におけるハイブリッド車両の動作について説明する。まず、ハイブリッド車両の動作のうち、非連結状態のハイブリッド車両の動作について説明する。この場合、リングギヤ118rは、クラッチ180によって固定端と非連結にされている。よって、リングギヤ118rは、他の回転要素の回転状態に影響を与えることなく、式(2)から明らかな通り、他の回転要素の回転状態によって回転数Nrが決定される。その結果、この状態のハイブリッド車両は、一般に知られている動力分配手段として1つの遊星歯車機構を備えたハイブリッド車両と同様の動作を行うことが可能である。即ち、この状態のハイブリッド車両は、動力分配手段としてサンギヤ111s,115s、キャリア113cの3つの回転要素から成る1つの遊星歯車機構を備えた一般的なハイブリッド車両と同様の動作を行うことができる。
【0051】
この一般的な動作の運転モードとして、EV(Electric Vehicle)走行モードやHV(Hybrid Vehicle)走行モードなどがある。EV走行モードは、モータジェネレータ400の動力のみで走行する運転モードである。ハイブリッド車両は、低速走行などエンジン200の燃料消費効率の低い領域では、EV走行モードで走行を行う。HV走行モードは、エンジン200およびモータジェネレータ300,400の動力で走行する運転モードである。HV走行モードでは、エンジン200が出力する動力を、動力分配装置100によって分配する。分配された動力の一部は、駆動輪500に機械的に直接伝達される。その残余の動力は、モータジェネレータ300,400によって、動力と電力との変換を介して駆動輪500に伝達される。これによって、エンジン200の動力を、要求された回転数およびトルクに変換して駆動輪500に伝達することができる。これらの動力の伝達経路の割合は、動力制御ユニット600が、エンジン200およびモータジェネレータ300,400の運転状態を制御することによって、動力の伝達効率が高くなるように決定される。
【0052】
次に、HV走行モードにおいて動力循環が発生する循環運転状態について説明する。図3中の直線L1は、循環運転状態におけるラビニオ式遊星歯車機構110の回転状態を示す動作共線である。この状態の各回転要素の回転数は動作共線L1上に並ぶ。この際、エンジン200の回転数、即ち、キャリア113cの回転数はNe1である。HV走行モードにおいて、式(2)の回転数Ns1から明らかな通り、「((1+ρ1)/ρ1)・Nc」の値が「(1/ρ1)・Ns2」の値よりも小さくなる程に回転数Ns2が高くなると、サンギヤ111sの回転数Ns1は負となり逆回転する。つまり、モータジェネレータ300は、電力の供給を受けて逆転方向に力行する。その際に消費される電力は、モータジェネレータ400によって回生される。この場合には、下流側に位置するモータジェネレータ400から、上流側に位置するモータジェネレータ300に電力が供給されるため、動力循環が発生する循環運転状態となってしまう。この際には、動力循環によって、動力の伝達効率は低下してしまう。
【0053】
A−(4).第1の実施例における連結状態のハイブリッド車両の動作:
次に、ハイブリッド車両の動作のうち、連結状態のハイブリッド車両の動作について説明する。図3中の直線L1は、この場合、リングギヤ118rは、クラッチ180によって固定端と連結されている。よって、リングギヤ118rは、他の回転要素の回転状態に影響を与える。この場合、「リングギヤ118rの回転数Nr=0」である。したがって、式(2)から明らかな通り、キャリア113cの回転数Ncとサンギヤ115sの回転数Ns2との関係は次式(3)で表される。
【0054】
Ns2=((1+ρ2)/ρ2)・Nc …(3)
【0055】
式(3)から明らかな通り、エンジン200から出力された動力は、変速比が((1+ρ2)/ρ2)のハイギヤ比で増速されて、駆動輪500に機械的な動力として直接出力される。即ち、動力と電力との変換を介することなく、駆動輪500に動力を伝達することができる。よって、動力循環による動力の伝達効率の低下を抑制することができる。以下、この状態の運転モードを直結走行モードという。
【0056】
前述の循環運転状態にあるHV走行モードから、直結走行モードへ移行した状態について説明する。図3中の直線L2は、直結モードへ移行したラビニオ式遊星歯車機構110の回転状態を示す動作共線である。この状態の各回転要素の回転数は動作共線L2上に並ぶ。この際、車両の速度、即ち、サンギヤ115sの回転数Ns2は一定であり、「リングギヤ118rの回転数Nr=0」となる。エンジン200の回転数は、Ne1からNe2へ上昇する。このエンジン200の回転数Ne2は、式(3)を変形して次式(4)で表される。
【0057】
Ne2=(ρ2/(1+ρ2))・Ns2 …(4)
【0058】
ここで、仮に、リングギヤ118rを制止するのではなく、従来のハイブリッド車両と同様にして、サンギヤ111sを制止することによって、前述の循環運転状態にあるHV走行モードから、直結走行モードへ移行した状態におけるエンジン200の回転数について説明する。図3の直線L3は、サンギヤ111sを制止した状態におけるラビニオ式遊星歯車機構110の回転状態を示す動作共線である。この状態の各回転要素の回転数は動作共線L3上に並ぶ。この際、サンギヤ115sの回転数Ns2は一定であり、「サンギヤ111sの回転数Ns1=0」となる。エンジン200の回転数は、Ne1からNe3へ上昇する。このエンジン200の回転数Ne3は、式(2)から明らかな通り、次式(5)で表される。
【0059】
Figure 2004284550
【0060】
エンジン200の回転数Ne2,Ne3の関係を説明する。ラビニオ式遊星歯車機構110におけるギヤ比の関係から、「(1/ρ1)>ρ2」であることは明らかである。よって、式(4),(5)から明らかな通り、「Ne2<Ne3」である。即ち、本実施例のハイブリッド車両は、従来のハイブリッド車両と比較して、直結モードにおけるエンジン200の回転数の上昇を抑制することができる。
【0061】
図4は、本実施例のハイブリッド車両におけるエンジン200の運転ポイントと燃料消費効率との関係について示す説明図である。図4は、横軸にはエンジン200の回転数をとり、縦軸にはエンジン200のトルクをとり、エンジン200の運転状態を示している。曲線α1からα5までは、エンジン200の燃料消費効率が一定となる運転ポイントを示している。α1からα5の順に燃料消費効率は低くなる。曲線Dは、あらかじめ設定されたエンジン200の燃費最適線を示す。曲線Pは、エンジン200から出力される動力が一定となる曲線を示す。前述の図3に示した状態において、エンジン200は曲線P上の運転ポイントで運転される。図3の動作共線L1で示された状態では、回転数Ne1およびトルクTe1である運転ポイントD1で運転される。図3の動作共線L2で示された状態では、回転数Ne2およびトルクTe2である運転ポイントD2で運転される。図3の動作共線L3で示された状態では、回転数Ne3およびトルクTe3である運転ポイントD3で運転される。
【0062】
図3において動作共線L1から動作共線L3へ回転状態が移行する際には、エンジン200の運転ポイントは、図4の運転ポイントD1から運転ポイントD3へ移行する。この際、運転ポイントD3は、燃費最適線Dを大きく外れて、燃料消費効率の高い曲線α1で囲まれた領域から、燃料消費効率の低い曲線α2からα3との間の領域に移行してしまっている。
【0063】
一方、図3において動作共線L1から動作共線L2へ回転状態が移行する際には、エンジン200の運転ポイントは、図4の運転ポイントD1から運転ポイントD2へ移行する。この際、運転ポイントD2は、燃費最適線Dを大きく外れることなく、燃料消費効率の高い曲線α1で囲まれた領域内で移行する。即ち、HV走行モードから直結運転モードに移行しても、エンジン200を燃料消費効率の高いポイントで運転することができる。なお、その際にバッテリ330の蓄電量が減っている場合には、エンジン200から出力する動力量を上昇させることによって、燃料消費効率を最適に保っても良い。
【0064】
以上説明した本実施例のハイブリッド車両によれば、クラッチ180によってリングギヤ118rと固定端とを非連結とした状態では、ラビニオ式遊星歯車機構110の作用によって従来のハイブリッド車両と同様に動力を分配することができる。一方、クラッチ180によってリングギヤ118rと固定端とを非連結した状態では、エンジン200と駆動輪500とが((1+ρ2)/ρ2)のハイギヤ比で機械的に直結される。これにより、動力と電力との変換を介することなく、エンジン200の動力を駆動輪500に直接伝達し、動力循環を回避することができる。さらに、固定端と連結されるリングギヤ118rのギヤ比を適切に設定することによって、直結運転状態へ移行する際に、エンジン200の回転数の変動を抑制することができる。これにより、エンジン200の燃料消費効率の低下を抑制することができる。その結果、エンジン200を燃料消費効率の高いポイントで運転しつつ、動力循環による動力の伝達効率の低下を抑制することができる。また、複雑な機構や制御を必要とすることなく、燃料消費効率の向上や排出ガスの低減を図ることができる。
【0065】
また、リングギヤ118rと固定端との連結および非連結を、複雑な構成や制御を必要とすることなく、単一のクラッチ180で行うことができる。ラビニオ式遊星歯車機構110を用いているため、動力分配手段の小型化を図ることができる。その結果、ハイブリッド車両の軽量化を図ることができる。
【0066】
A−(5).第1の実施例におけるハイブリッド車両の運転制御処理:
次に、第1の実施例におけるハイブリッド車両の運転制御処理について説明する。前述の通り、本実施例のハイブリッド車両は、EV走行モード,HV走行モード,直結走行モードなど種々の運転モードによって走行することができる。動力制御ユニット600に内蔵されたCPUは、車両の走行状態に適した運転モードを判定し、それぞれのモードについてエンジン200、モータジェネレータ300,400、クラッチ180の制御を実行する。これらの制御は種々の制御処理ルーチンを周期的に実行することによって行われる。
【0067】
動力制御ユニット600に内蔵されたCPUが実行する運転制御処理の一つとして、HV走行モードおよび直結走行モードにおけるトルク制御処理について説明する。図5は、動力制御ユニット600のトルク制御処理を示すフローチャートである。動力制御ユニット600のCPUは、所定のタイミングでトルク制御処理を開始すると、エンジン200から出力すべき要求動力Peを算出する(ステップS110)。要求動力Peは、駆動輪500に出力すべき走行動力Pdと、充放電電力Pbと、補機駆動動力Phとを総和した値である。走行動力Pdは、アクセルポジションセンサ610により検出されたアクセルの踏み込み量と、車速とに基づいて設定される。充放電電力Pbは、バッテリ330を充電する必要がある場合には正の値をとり、放電する場合には負の値をとる。補機駆動動力Phは、エアコンなどの補機を駆動するために必要となる電力である。
【0068】
要求動力Peを算出した後(ステップS110)、モード切り換え制御処理を開始する(ステップS120)。この処理では、HV走行モードと直結走行モードとの切り換えが必要な場合には、運転モードの切り換えが行われる。このモード切り換え処理の詳細については後述する。モード切り換え制御処理を終了すると(ステップS120)、運転モードが直結走行モードであるか否かを判断する(ステップS130)。
【0069】
運転モードが直結走行モードである場合には(ステップS130)、直結走行モードにおけるエンジン200およびモータジェネレータ300,400の目標回転数,目標トルクの設定を行う(ステップS140)。この際、エンジン200が、燃料消費効率の高いポイントで要求動力Peを出力することができるか否かを判断する。単独で出力できる場合には、エンジン200の目標回転数および目標トルクを、その運転ポイントに設定する。モータジェネレータ300,400は力行も回生も行わないように設定する。一方、単独で出力できない場合には、エンジン200の目標回転数および目標トルクを、燃料消費効率の高いポイントに設定する。モータジェネレータ300,400の目標回転数および目標トルクは、エンジン200の動力では不足する動力を補うように設定する。これによって、クラッチ180による連結と非連結との切り換えが頻繁に行われるのを回避しつつ、必要な動力を駆動輪500に伝達することができる。また、連結と非連結との切り換えが頻繁に行われるのを回避しつつ、エンジン200を燃料消費効率の高いポイントで運転することができる。なお、この際に、モータジェネレータ300,400の発熱状態または運転効率から、これらの使用比率を変化させても良い。
【0070】
運転モードが直結走行モードではない場合、即ち、HV走行モードである場合には(ステップS130)、HV走行モードにおけるエンジン200およびモータジェネレータ300,400の目標回転数,目標トルクの設定を行う(ステップS150)。この場合には、一般に知られているハイブリッド車両と同様に、エンジン200およびモータジェネレータ300,400の目標回転数,目標トルクの設定を行う。
【0071】
これらの目標回転数および目標トルクの設定を行った後(スッテップS140,S150)、設定した目標回転数および目標トルクに基づいて、エンジン200およびモータジェネレータ300,400の制御を行い(ステップS160)、トルク制御処理を終了する。このトルク制御処理によって、運転状態に応じて、ハイブリッド車両を円滑に運転することができる。
【0072】
次に、前述のモード切り換え制御処理(図5中のステップS120)の詳細を説明するために、まず、本実施例のハイブリッド車両の運転モードの使い分けについて説明する。図6は、運転モードの使い分けの様子を示す説明図である。図6は、横軸にハイブリッド車両の車速をとり、縦軸にハイブリッド車両の走行トルクをとる。図6中の曲線LMは、ハイブリッド車両が走行することのできる走行可能領域を示す。即ち、曲線LM,縦軸および横軸で囲まれた領域内のポイントで走行を行うことができる。図6中の領域EVは、EV走行モードで走行を行う領域を示す。このEV走行モードは、車速および走行トルクが比較的低い領域で用いられる。領域EV以外の走行可能領域では、HV走行モードと直結走行モードとが用いられる。図6中の曲線RLは、平坦路を定常走行した場合を想定したロードロード(Road Load)を示す。このロードロードRLは、平坦路を定常走行した場合の車両の空気抵抗と転がり抵抗との和である。なお、実際の走行における走行抵抗は、坂道走行の際の勾配抵抗や、加減速走行の際の加速抵抗などの抵抗を、ロードロードRLに加算した抵抗となる。
【0073】
HV走行モードから直結走行モードへのモード切り換えについて説明する。図6中の曲線Lαは、ロードロードRLと比べてトルクがトルクαだけ高い負荷(以下、この負荷を「RL+α」と表記する)を示す。前述のトルク制御処理(図5中のステップS110)で算出した要求動力Peが、例えば、図6中のポイントPα1からポイントPα2に移行する場合のように図6の上方から下方へ移行中に曲線Lαと交わる際に、V走行モードで動力循環が発生しているならば、効率の良い直結走行モードに切り換えて走行する。
【0074】
直結走行モードからHV走行モードへのモード切り換えについて説明する。図6中の曲線Lβは、ロードロードRLと比べてトルクがトルクβだけ高い負荷(以下、この負荷を「RL+β」と表記する)を示す。トルクβは、トルクαよりも大きなトルクである。前述のトルク制御処理(図5中のステップS110)で算出した要求動力Peが、例えば、図6中のポイントPβ1からポイントPβ2に移行する場合のように図6の下方から上方へ移行中に曲線Lβと交わる際に、直結走行モードであれば、高トルクを出力可能なHV走行モードに切り換えて走行する。
【0075】
次に、前述のモード切り換え制御処理(図5中のステップS120)の詳細を説明する。図7は、動力制御ユニット600のモード切り換え制御処理を示すフローチャートである。動力制御ユニット600のCPUは、処理を開始すると、運転モードが直結走行モードであるか否かを判断する(ステップS210)。
【0076】
直結走行モードではないと判断した場合には(ステップS210)、動力循環が発生する循環運転状態であるか否かを判断する(ステップS220)。循環運転状態でない場合には(ステップS220)、直結走行モードに切り換える必要はないためモード切り換え制御処理を終了する。循環運転状態である場合には(ステップS220)、前述のトルク制御処理(図5中のステップS110)で算出した要求動力Peが「RL+α」を下回るか否かを判断する(ステップS230)。要求動力Peが「RL+α」を下回らない場合には(ステップS230)、高トルクを出力可能なHV走行モードを維持するため、運転モードの切り換えを行わずにモード切り換え制御処理を終了する。要求動力Peが「RL+α」を下回る場合には(ステップS230)、効率の良い直結走行モードに切り換えるため、直結開始制御処理を開始する(ステップS240)。
【0077】
直結開始制御処理を開始すると(ステップS240)、サンギヤ111sの回転数Ns1が、連結状態を開始した場合の回転数となるように、モータジェネレータ300による力行を制御する。モータジェネレータ300が目標とする回転数Nm1は、式(2)に「リングギヤ118rの回転数Nr=0」を代入することで、式(6)で表される。
【0078】
Figure 2004284550
【0079】
サンギヤ111sの回転数Ns1を、式(6)に表した回転数Nm1とした後、クラッチ180を連結とする制御を行う。クラッチ180によって連結状態とした後、直結開始制御処理を終了する。この直結開始制御処理によって、直結走行モードを開始する際に、エンジン200の急激な回転数およびトルクの変動を抑制するといった対応ができ、車両の振動や騒音を抑制することができる。また、急激なトルク変動に起因する衝撃力による駆動系統の耐久性低下を回避することができる。直結開始制御処理を終了した後(ステップS240)、モード切り換え制御処理を終了する。
【0080】
一方、直結走行モードであると判断した場合には(ステップS210)、前述のトルク制御処理(図5中のステップS110)で算出した要求動力Peが、「RL+β」を上回るか否かを判断する(ステップS250)。要求動力Peが、「RL+β」を上回らない場合には、効率の良い直結走行モードを維持するため、運転モードの切り換えを行わずにモード切り換え制御処理を終了する。要求動力Peが、「RL+β」を上回る場合には(ステップS250)、高トルクを出力可能なHV走行モードに切り換えるため、直結解除制御処理を開始する(ステップS260)。
【0081】
直結解除制御処理を開始すると(ステップS260)、非連結状態を開始した場合に、エンジン200の反力とつり合うように、モータジェネレータ300による力行を制御する。モータジェネレータ300のトルクを、エンジン200の反力につり合わせた後、クラッチ180を非連結とする制御を行う。クラッチ180によって非連結状態とした後、直結解除制御処理を終了する。この直結解除制御処理によって、直結走行モードからHV走行モードに移行する際に、エンジン200の急激な回転数およびトルクの変動を抑制するといった対応ができ、車両の振動や騒音を抑制することができる。また、急激なトルク変動に起因する衝撃力による駆動系統の耐久性低下を回避することができる。直結解除制御処理を終了した後(ステップS260)、モード切り換え制御処理を終了する。このモード切り換え制御処理によって、クラッチ180による連結と非連結との切り換えが頻繁に行われるのを回避するために、切り換えの判断処理に一定のヒステリシスを持たせることができる。
【0082】
なお、前述のトルク制御処理におけるモード切り換え制御処理では、加速および定常走行時の運転モードの切り換えを行うが、減速および制動時においても、モードの切り換えを行うようにしても良い。例えば、連結状態でモータジェネレータ300,400によって回生する回生状態と、非連結状態でエンジン200を停止した状態にしてモータジェネレータ400によって回生する回生状態とを、エネルギ効率を優先して選択して、運転モードの切り換えを行っても良い。これによって、ハイブリッド車両の減速時や制動時において、ハイブリッド車両におけるエネルギ効率を向上させることができる。なお、この際に、モータジェネレータ300,400の発熱状態または運転効率から、これらの使用比率を変化させても良い。
【0083】
以上説明した第1の実施例におけるハイブリッド車両によれば、エンジン200を燃料消費効率の高いポイントで運転しつつ、動力循環による動力の伝達効率の低下を抑制することができる。したがって、省資源性および排気浄化性を向上させることができる。また、クラッチ180のみを制御することによって、ハイブリッド車両の連結状態と非連結状態との切り換えが可能であるため、この切り換えのための制御構成を簡略化できる。
【0084】
B.第2の実施例:
次に、第2の実施例におけるハイブリッド車両について説明する。このハイブリッド車両は、第1の実施例におけるハイブリッド車両とは動力分配装置100の構成のみが異なり、その他は同一である。図8は、第2の実施例におけるハイブリッド車両の動力分配装置101の構成を示す説明図である。このハイブリッド車両の動力系統の概略構成は、図1に示した通りである。動力制御ユニット600の運転制御処理などは、第1の実施例と同様である。図8に示した第2の実施例の動力分配装置101は、図2に示した第1の実施例の動力分配装置100と異なり、モータジェネレータ400と駆動輪500との連結の間に、モータクラッチ181を備える。
【0085】
モータクラッチ181は、摩擦材同士を係合および非係合することによって、連結および非連結を行う摩擦係合機構である。モータクラッチ181は、摩擦材同士を係合することによって、モータジェネレータ400と駆動輪500とを連結するモータ連結手段として動作する。一方、摩擦材同士を非係合することによって、モータジェネレータ400と駆動輪500との連結を切り離して非連結とするモータ非連結手段として動作する。モータクラッチ181がモータジェネレータ400と駆動輪500とを連結する状態では、モータジェネレータ400および駆動輪500間における動力の伝達が可能となる。一方、モータクラッチ181がモータジェネレータ400と駆動輪500とを非連結にする状態では、モータジェネレータ400および駆動輪500間における動力の伝達を遮断する。動力制御ユニット600は、モータクラッチ181とも電気的に接続されており、これらのセンサなどから検出した動力系統の状態に基づいてクラッチ180に制御信号を出力する。
【0086】
動力制御ユニット600に内蔵されたCPUは、運転制御処理において、モータクラッチ181による連結および非連結の切り換えを制御する。加速または定常走行時において、クラッチ180によって連結状態とする制御を行っている際には、モータクラッチ181によってモータジェネレータ400と駆動輪500とを非連結とする制御を行う。一方、クラッチ180によって非連結状態とする制御を行っている際には、モータクラッチ181によってモータジェネレータ400と駆動輪500とを連結する制御を行う。なお、モータジェネレータ400と駆動輪500とを非連結としている場合、車両に必要な電力は、モータジェネレータ300を回生することで対応することができる。この際、エンジン200は、回生する電力分の動力を出力する。
【0087】
以上説明した第2の実施例におけるハイブリッド車両によれば、第1の実施例と同様の作用効果を奏する上、直結走行モードでの加速または定常走行時において、モータクラッチ181を非連結とすることによって、モータジェネレータ400の回転損失を低減することができる。その結果、ハイブリッド車両におけるエネルギ効率を向上させることができる。
【0088】
C.第3の実施例:
次に、第3の実施例におけるハイブリッド車両について説明する。このハイブリッド車両は、第1の実施例におけるハイブリッド車両とは動力分配装置100の構成のみが異なり、その他は同一である。図9は、第3の実施例におけるハイブリッド車両の動力分配装置100Aの構成を示す説明図である。このハイブリッド車両の動力系統の概略構成は、図1に示した通りである。動力制御ユニット600の運転制御処理などは、第1の実施例と同一である。図9に示した第3の実施例の動力分配装置100Aは、図2に示した第1の実施例の動力分配装置100と異なり、ラビニオ式遊星歯車機構110に変えて、第1の遊星歯車機構110Aおよび第2の遊星歯車機構110Bを備える。この他、それぞれ遊星歯車機構の回転要素を連結する連結手段182,183を備える。
【0089】
第1の遊星歯車機構は、中心で回転するサンギヤ111s、サンギヤ111sの周囲を自転しながら公転するピニオンギヤ112p、ピニオンギヤ112pを軸支するキャリア113c、ピニオンギヤ112pの外周で回転するリングギヤ114rから構成されている。第2の遊星歯車機構は、中心で回転するサンギヤ115s、サンギヤ115sの周囲を自転しながら公転するピニオンギヤ116p、ピニオンギヤ116pを軸支するキャリア117c、ピニオンギヤ116pの外周で回転するリングギヤ118rから構成されている。
【0090】
連結手段182は、キャリア113cとキャリア117cとを連結している。連結手段183は、リングギヤ114rとサンギヤ115sとを連結している。キャリア113cは、クランク軸210などを介してエンジン200に連結されている。サンギヤ111sは、モータ軸310などを介してモータジェネレータ300に連結されている。サンギヤ115sは、連結手段183,モータ軸410などを介してモータジェネレータ400に連結されるとともに、ギヤ512,513および出力軸510などを介して駆動輪500に連結されている。クラッチ180は、摩擦材同士を係合することによって、リングギヤ118rと固定端とを連結する第3の連結手段として動作する。一方、摩擦材同士を非係合することによって、リングギヤ118rと固定端との連結を切り離して非連結とする非連結手段として動作する。これによって、第1の実施例と同様の効果を奏することができる。
【0091】
D.第4ないし第10の実施例:
次に、第4ないし第10の実施例におけるハイブリッド車両について説明する。これらのハイブリッド車両は、第3の実施例におけるハイブリッド車両と、クラッチ180および連結手段182,183を設ける部位のみが異なり、その他は同一である。
【0092】
まず、第4の実施例におけるハイブリッド車両について説明する。図10は、第4の実施例におけるハイブリッド車両の動力分配装置100Bの構成を示す説明図である。このハイブリッド車両の動力系統の概略構成は、図1に示した通りである。動力制御ユニット600の運転制御処理などは、第1の実施例と同一である。図10に示した第4の実施例の動力分配装置100Bは、図9に示した第3の実施例の動力分配装置100Aと異なり、クラッチ180および連結手段182を設ける部位が異なる。連結手段182は、リングギヤ118rと固定端とを連結している。クラッチ180は、摩擦材同士を係合することによって、キャリア113cとキャリア117cとを連結する第3の連結手段として動作する。一方、摩擦材同士を非係合することによって、キャリア113cとキャリア117cとの連結を切り離して非連結とする非連結手段として動作する。これによって、第1の実施例と同様の効果を奏することができる。
【0093】
次に、第5の実施例におけるハイブリッド車両について説明する。図11は、第5の実施例におけるハイブリッド車両の動力分配装置100Cの構成を示す説明図である。このハイブリッド車両の動力系統の概略構成は、図1に示した通りである。動力制御ユニット600の運転制御処理などは、第1の実施例と同一である。図11に示した第5の実施例の動力分配装置100Cは、図9に示した第3の実施例の動力分配装置100Aと異なり、クラッチ180および連結手段182,183を設ける部位が異なる。連結手段182は、サンギヤ111sとリングギヤ118rとを連結している。連結手段183は、キャリア113cとサンギヤ115sとを連結している。クラッチ180は、摩擦材同士を係合することによって、キャリア117cと固定端とを連結する第3の連結手段として動作する。一方、摩擦材同士を非係合することによって、キャリア117cと固定端との連結を切り離して非連結とする非連結手段として動作する。これによって、第1の実施例と同様の効果を奏することができる。
【0094】
次に、第6の実施例におけるハイブリッド車両について説明する。図12は、第6の実施例におけるハイブリッド車両の動力分配装置100Dの構成を示す説明図である。このハイブリッド車両の動力系統の概略構成は、図1に示した通りである。動力制御ユニット600の運転制御処理などは、第1の実施例と同一である。図12に示した第6の実施例の動力分配装置100Dは、図11に示した第5の実施例の動力分配装置100Cと異なり、クラッチ180および連結手段182を設ける部位が異なる。連結手段182は、キャリア117cと固定端とを連結している。クラッチ180は、摩擦材同士を係合することによって、サンギヤ111sとリングギヤ118rとを連結する第3の連結手段として動作する。一方、摩擦材同士を非係合することによって、サンギヤ111sとリングギヤ118rとの連結を切り離して非連結とする非連結手段として動作する。これによって、第1の実施例と同様の効果を奏することができる。
【0095】
次に、第7の実施例におけるハイブリッド車両について説明する。図13は、第7の実施例におけるハイブリッド車両の動力分配装置100Eの構成を示す説明図である。このハイブリッド車両の動力系統の概略構成は、図1に示した通りである。動力制御ユニット600の運転制御処理などは、第1の実施例と同一である。図13に示した第7の実施例の動力分配装置100Eは、図9に示した第3の実施例の動力分配装置100Aと異なり、クラッチ180および連結手段182,183を設ける部位が異なる。連結手段182は、サンギヤ111sとサンギヤ115sとを連結している。連結手段183は、キャリア113cとリングギヤ118rとを連結している。クラッチ180は、摩擦材同士を係合することによって、キャリア117cと固定端とを連結する第3の連結手段として動作する。一方、摩擦材同士を非係合することによって、キャリア117cと固定端との連結を切り離して非連結とする非連結手段として動作する。これによって、第1の実施例と同様の効果を奏することができる。
【0096】
次に、第8の実施例におけるハイブリッド車両について説明する。図14は、第8の実施例におけるハイブリッド車両の動力分配装置100Fの構成を示す説明図である。このハイブリッド車両の動力系統の概略構成は、図1に示した通りである。動力制御ユニット600の運転制御処理などは、第1の実施例と同一である。図14に示した第8の実施例の動力分配装置100Fは、図13に示した第7の実施例の動力分配装置100Eと異なり、クラッチ180および連結手段183を設ける部位が異なる。連結手段183は、キャリア117cと固定端とを連結している。クラッチ180は、摩擦材同士を係合することによって、キャリア113cとリングギヤ118rとを連結する第3の連結手段として動作する。一方、摩擦材同士を非係合することによって、キャリア113cとリングギヤ118rとの連結を切り離して非連結とする非連結手段として動作する。これによって、第1の実施例と同様の効果を奏することができる。
【0097】
次に、第9の実施例におけるハイブリッド車両について説明する。図15は、第9の実施例におけるハイブリッド車両の動力分配装置100Gの構成を示す説明図である。このハイブリッド車両の動力系統の概略構成は、図1に示した通りである。動力制御ユニット600の運転制御処理などは、第1の実施例と同一である。図15に示した第9の実施例の動力分配装置100Gは、図9に示した第3の実施例の動力分配装置100Aと異なり、クラッチ180および連結手段182,183を設ける部位が異なる。連結手段182は、キャリア113cとキャリア117cとを連結している。連結手段183は、リングギヤ114rとリングギヤ118rとを連結している。クラッチ180は、摩擦材同士を係合することによって、サンギヤ115sと固定端とを連結する第3の連結手段として動作する。一方、摩擦材同士を非係合することによって、サンギヤ115sと固定端との連結を切り離して非連結とする非連結手段として動作する。これによって、第1の実施例と同様の効果を奏することができる。
【0098】
次に、第10の実施例におけるハイブリッド車両について説明する。図16は、第10の実施例におけるハイブリッド車両の動力分配装置100Hの構成を示す説明図である。このハイブリッド車両の動力系統の概略構成は、図1に示した通りである。動力制御ユニット600の運転制御処理などは、第1の実施例と同一である。図16に示した第10の実施例の動力分配装置100Hは、図15に示した第9の実施例の動力分配装置100Gと異なり、クラッチ180および連結手段183を設ける部位が異なる。連結手段183は、サンギヤ115sと固定端とを連結している。クラッチ180は、摩擦材同士を係合することによって、リングギヤ114rとリングギヤ118rとを連結する第3の連結手段として動作する。一方、摩擦材同士を非係合することによって、リングギヤ114rとリングギヤ118rとの連結を切り離して非連結とする非連結手段として動作する。これによって、第1の実施例と同様の効果を奏することができる。
【0099】
E.その他の実施形態:
以上、本発明の実施の形態について説明したが、本発明はこうした実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内において様々な形態で実施し得ることは勿論である。例えば、本発明のハイブリッド車両では、エンジン200としてガソリンエンジンを用いたが、ディーゼルエンジンその他の動力源となる装置を用いても良い。また、モータジェネレータ300,400として交流同期モータを用いたが、その他の交流モータおよび直流モータを用いても良い。また、種々の制御処理を動力制御ユニット600に内蔵するCPUが、ソフトウェアを実行することにより実現しているが、かかる制御処理をハード的に実現しても良い。また、動力制御ユニット600によって連結状態および非連結状態の切り換え制御を行っているが、手動で切り換える態様、または自動での切り換えと手動での切り換えとを選択可能な態様で構成しても良い。
【図面の簡単な説明】
【図1】本発明の一形態であるハイブリッド車両の動力系統の概略構成を示す説明図である。
【図2】第1の実施例における動力分配装置100の構成を示す説明図である。
【図3】ラビニオ式遊星歯車機構110の回転状態を示す説明図である。
【図4】本実施例のハイブリッド車両におけるエンジン200の運転ポイントと燃料消費効率との関係について示す説明図である。
【図5】動力制御ユニット600のトルク制御処理を示すフローチャートである。
【図6】運転モードの使い分けの様子を示す説明図である。
【図7】動力制御ユニット600のモード切り換え制御処理を示すフローチャートである。
【図8】第2の実施例におけるハイブリッド車両の動力分配装置101の構成を示す説明図である。
【図9】第3の実施例におけるハイブリッド車両の動力分配装置100Aの構成を示す説明図である。
【図10】第4の実施例におけるハイブリッド車両の動力分配装置100Bの構成を示す説明図である。
【図11】第5の実施例におけるハイブリッド車両の動力分配装置100Cの構成を示す説明図である。
【図12】第6の実施例におけるハイブリッド車両の動力分配装置100Dの構成を示す説明図である。
【図13】第7の実施例におけるハイブリッド車両の動力分配装置100Eの構成を示す説明図である。
【図14】第8の実施例におけるハイブリッド車両の動力分配装置100Fの構成を示す説明図である。
【図15】第9の実施例におけるハイブリッド車両の動力分配装置100Gの構成を示す説明図である。
【図16】第10の実施例におけるハイブリッド車両の動力分配装置100Hの構成を示す説明図である。
【図17】従来のハイブリッド車両における動力伝達系統の概略構成の一例を示す説明図である。
【図18】従来のハイブリッド車両における遊星歯車機構911の回転状態を示す説明図である。
【図19】従来のハイブリッド車両における内燃機関920の運転ポイントと燃料消費効率との関係について示す説明図である。
【符号の説明】
100,100A〜H,101…動力分配装置
110…ラビニオ式遊星歯車機構
110A…第1の遊星歯車機構
110B…第2の遊星歯車機構
111s,115s…サンギヤ
112p,116p…ピニオンギヤ
113c,117c…キャリア
114r,118r…リングギヤ
180…クラッチ
181…モータクラッチ
182,183…連結手段
200…エンジン
210…クランク軸
211…回転数センサ
220…ECU
300,400…モータジェネレータ
310,410…モータ軸
320…インバータ
321,322…駆動回路
330…バッテリ
331…バッテリセンサ
500…駆動輪
510…出力軸
511…回転数センサ
512,513…ギヤ
520…ディファレンシャルギヤ
600…動力制御ユニット
610…アクセルポジションセンサ
620…シフトポジションセンサ
910…動力分配手段
911…遊星歯車機構
912s…サンギヤ
913p…ピニオンギヤ
914c…キャリア
915r…リングギヤ
918…ブレーキ
920…内燃機関
930,940…モータジェネレータ
950…駆動輪

Claims (17)

  1. 内燃機関の動力を、車両の走行を行う駆動輪と、第1または第2のモータジェネレータとに分配して伝達するとともに、前記第1または第2のモータジェネレータによって回生した電力で駆動する前記第2または第1のモータジェネレータの動力を前記駆動輪に伝達することが可能な動力分配手段を備えたハイブリッド車両であって、
    3つの回転要素によってそれぞれ構成される第1および第2の遊星歯車機構を、前記動力分配手段に設け、
    前記第1の遊星歯車機構における第1の回転要素を、前記内燃機関に連結し、
    前記第1の遊星歯車機構における第2の回転要素を、前記第1のモータジェネレータに連結し、
    前記第1の遊星歯車機構における第3の回転要素を、前記第2のモータジェネレータおよび前記駆動輪に連結するとともに、
    前記第2の遊星歯車機構における第1および第2の回転要素と、前記第1の遊星歯車機構におけるいずれか2つの回転要素とを、それぞれ1対1の関係で連結する第1および第2の連結手段と、
    前記第2の遊星歯車機構における第3の回転要素と、固定端とを連結する第3の連結手段と
    を備え、
    前記第1ないし第3の連結手段のうちの少なくとも1つは、該連結を切り離して非連結とする非連結手段を備えた
    ハイブリッド車両。
  2. 請求項1記載のハイブリッド車両であって、
    前記動力分配手段は、前記第1ないし3の連結手段の全てが連結することによって、内燃機関と駆動輪とを所定の変速比で機械的に直結する手段である
    請求項1記載のハイブリッド車両。
  3. 前記非連結手段を備えた連結手段は、摩擦材同士を係合および非係合することによって、連結および非連結を行う摩擦係合機構である請求項1または2記載のハイブリッド車両。
  4. 前記第1および第2の遊星歯車機構は、1つのラビニオ式遊星歯車機構を構成する回転要素の組み合わせから成る請求項1ないし3のいずれか記載のハイブリッド車両。
  5. 請求項4記載のハイブリッド車両であって、
    前記ラビニオ式遊星歯車機構を、第1および第2のサンギヤと、キャリアと、リングギヤとによって構成し、
    前記第1の遊星歯車機構は、前記第1および第2のサンギヤと、前記キャリアとから成り、
    前記第2の遊星歯車機構は、前記第2のサンギヤと、前記キャリアと、前記リングギヤとから成り、
    前記第1の遊星歯車機構における第1の回転要素は、前記キャリアであり、
    前記第1の遊星歯車機構における第2の回転要素は、前記第1のサンギヤであり、
    前記第1の遊星歯車機構における第3の回転要素は、前記第2のサンギヤであり、
    前記第1の連結手段は、両遊星歯車機構において前記キャリアが共有されることによって実現される手段であり、
    前記第2の連結手段は、両遊星歯車機構において前記第2のサンギヤが共有されることによって実現される手段であり、
    前記第3の連結手段は、前記リングギヤと固定端とを連結する手段であり、
    前記非連結手段は、前記第3の連結手段に備えられた
    ハイブリッド車両。
  6. 請求項1ないし3のいずれか記載のハイブリッド車両であって、
    前記第1の遊星歯車機構を、第1のサンギヤと、第1のキャリアと、第1のリングギヤとによって構成し、
    前記第2の遊星歯車機構を、第2のサンギヤと、第2のキャリアと、第2のリングギヤとによって構成し、
    前記第1の遊星歯車機構における第1の回転要素は、前記第1のキャリアであり、
    前記第1の遊星歯車機構における第2の回転要素は、前記第1のサンギヤであり、
    前記第1の遊星歯車機構における第3の回転要素は、前記第1のリングギヤであり、
    前記第1の連結手段は、前記第1のリングギヤと前記第2のサンギヤとを連結する手段であり、
    前記第2の連結手段は、前記第1のキャリアと前記第2のキャリアとを連結する手段であり、
    前記第3の連結手段は、前記第2のリングギヤと固定端とを連結する手段であり、
    前記非連結手段は、前記第2または第3の連結手段に備えられた
    ハイブリッド車両。
  7. 請求項1ないし3のいずれか記載のハイブリッド車両であって、
    前記第1の遊星歯車機構を、第1のサンギヤと、第1のキャリアと、第1のリングギヤとによって構成し、
    前記第2の遊星歯車機構を、第2のサンギヤと、第2のキャリアと、第2のリングギヤとによって構成し、
    前記第1の遊星歯車機構における第1の回転要素は、前記第1のキャリアであり、
    前記第1の遊星歯車機構における第2の回転要素は、前記第1のサンギヤであり、
    前記第1の遊星歯車機構における第3の回転要素は、前記第1のリングギヤであり、
    前記第1の連結手段は、前記第1のキャリアと前記第2のサンギヤとを連結する手段であり、
    前記第2の連結手段は、前記第1のサンギヤと前記第2のリングギヤとを連結する手段であり、
    前記第3の連結手段は、前記第2のキャリアと固定端とを連結する手段であり、
    前記非連結手段は、前記第2または第3の連結手段に備えられた
    ハイブリッド車両。
  8. 請求項1ないし3のいずれか記載のハイブリッド車両であって、
    前記第1の遊星歯車機構を、第1のサンギヤと、第1のキャリアと、第1のリングギヤとによって構成し、
    前記第2の遊星歯車機構を、第2のサンギヤと、第2のキャリアと、第2のリングギヤとによって構成し、
    前記第1の遊星歯車機構における第1の回転要素は、前記第1のキャリアであり、
    前記第1の遊星歯車機構における第2の回転要素は、前記第1のサンギヤであり、
    前記第1の遊星歯車機構における第3の回転要素は、前記第1のリングギヤであり、
    前記第1の連結手段は、前記第1のサンギヤと前記第2のサンギヤとを連結する手段であり、
    前記第2の連結手段は、前記第1のキャリアと前記第2のリングギヤとを連結する手段であり、
    前記第3の連結手段は、前記第2のキャリアと固定端とを連結する手段であり、
    前記非連結手段は、前記第2または第3の連結手段に備えられた
    ハイブリッド車両。
  9. 請求項1ないし3のいずれか記載のハイブリッド車両であって、
    前記第1の遊星歯車機構を、第1のサンギヤと、第1のキャリアと、第1のリングギヤとによって構成し、
    前記第2の遊星歯車機構を、第2のサンギヤと、第2のキャリアと、第2のリングギヤとによって構成し、
    前記第1の遊星歯車機構における第1の回転要素は、前記第1のキャリアであり、
    前記第1の遊星歯車機構における第2の回転要素は、前記第1のサンギヤであり、
    前記第1の遊星歯車機構における第3の回転要素は、前記第1のリングギヤであり、
    前記第1の連結手段は、前記第1のキャリアと前記第2のキャリアとを連結する手段であり、
    前記第2の連結手段は、前記第1のリングギヤと前記第2のリングギヤとを連結する手段であり、
    前記第3の連結手段は、前記第2のサンギヤと固定端とを連結する手段であり、
    前記非連結手段は、前記第2または第3の連結手段に備えられた
    ハイブリッド車両。
  10. 前記第2のモータジェネレータと前記駆動輪との連結を切り離して非連結とするモータ非連結手段を備えた請求項1ないし9のいずれか記載のハイブリッド車両。
  11. 請求項1ないし10のいずれか記載のハイブリッド車両であって、
    前記駆動輪の目標動力を、目標回転数および目標トルクの組み合わせで設定する目標動力設定手段と、
    前記目標動力に応じ、燃料消費効率を優先して設定された回転数およびトルクで前記内燃機関を運転する内燃機関制御手段と、
    前記目標動力に応じ、前記非連結手段を備えた連結手段における連結および非連結を制御する連結制御手段と、
    前記連結制御手段による連結および非連結の制御に応じて、前記第1,第2のモータジェネレータによる力行または回生を制御するモータジェネレータ制御手段と
    を備えたハイブリッド車両。
  12. 請求項11記載のハイブリッド車両であって、
    前記連結制御手段は、前記目標動力が第1の所定動力を下回る際に、連結を開始して維持する制御を行い、前記目標動力が前記第1の目標動力よりも大きな第2の所定動力を上回る際に、非連結を開始して維持する制御を行う手段である
    ハイブリッド車両。
  13. 請求項11または12記載のハイブリッド車両であって、
    前記モータジェネレータ制御手段は、前記連結制御手段が連結を開始する制御を行う際に、前記第1の遊星歯車機構における第2の回転要素の回転数が、該連結を開始した場合の回転数となるように、前記第1のモータジェネレータによる力行または回生を制御する手段である
    ハイブリッド車両。
  14. 請求項11ないし13のいずれか記載のハイブリッド車両であって、
    前記モータジェネレータ制御手段は、前記連結制御手段が連結を維持する制御を行っている際に、前記目標動力に応じて、前記第1および第2のモータジェネレータによる力行を制御する手段である
    ハイブリッド車両。
  15. 請求項11ないし14のいずれか記載のハイブリッド車両であって、
    前記モータジェネレータ制御手段は、連結制御手段が非連結を開始する制御を行う際に、前記内燃機関の反力とつり合うように、前記第1のモータジェネレータによる力行を制御する手段である
    ハイブリッド車両。
  16. 請求項1ないし15のいずれか記載のハイブリッド車両であって、
    前記非連結手段を備えた連結手段を連結の状態にして前記第1および第2のモータジェネレータで回生する回生状態と、該連結手段を非連結にするとともに前記内燃機関を停止した状態にして前記第2のモータジェネレータで回生する回生状態とを、エネルギ効率を優先して選択する回生選択手段を備えた
    ハイブリッド車両。
  17. 内燃機関の動力を、車両の走行を行う駆動輪と、第1または第2のモータジェネレータとに分配して伝達するとともに、前記第1または第2のモータジェネレータによって回生した電力で駆動する前記第2または第1のモータジェネレータの動力を前記駆動輪に伝達することが可能な動力分配手段を備えたハイブリッド車両であって、
    第1および第2のサンギヤと、キャリアと、リングギヤとによって構成されるラビニオ式遊星歯車機構を、前記動力分配手段に設け、
    前記キャリアを前記内燃機関に連結し、
    前記第1のサンギヤを前記第1のモータジェネレータに連結し、
    前記第2のサンギヤを、前記第2のモータジェネレータおよび前記駆動輪に連結するとともに、
    前記リングギヤと固定端とを連結することによって、前記リングギヤの回転を制止することが可能な制止手段を備えた
    ハイブリッド車両。
JP2003082081A 2003-03-25 2003-03-25 ハイブリッド車両およびその動力伝達装置 Expired - Fee Related JP3864920B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082081A JP3864920B2 (ja) 2003-03-25 2003-03-25 ハイブリッド車両およびその動力伝達装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082081A JP3864920B2 (ja) 2003-03-25 2003-03-25 ハイブリッド車両およびその動力伝達装置

Publications (2)

Publication Number Publication Date
JP2004284550A true JP2004284550A (ja) 2004-10-14
JP3864920B2 JP3864920B2 (ja) 2007-01-10

Family

ID=33295461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082081A Expired - Fee Related JP3864920B2 (ja) 2003-03-25 2003-03-25 ハイブリッド車両およびその動力伝達装置

Country Status (1)

Country Link
JP (1) JP3864920B2 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005014332A1 (de) * 2005-03-24 2006-09-28 Volkswagen Ag Antriebsstrang eines Kraftfahrzeugs
KR100829301B1 (ko) * 2006-09-25 2008-05-13 현대자동차주식회사 하이브리드 전기 자동차용 무단변속 동력전달장치
KR100830056B1 (ko) 2005-03-29 2008-05-16 아이신에이더블류 가부시키가이샤 하이브리드 구동장치
KR100836388B1 (ko) * 2006-10-31 2008-06-09 현대자동차주식회사 하이브리드 전기 자동차용 무단변속 동력전달장치
KR100863635B1 (ko) 2007-05-17 2008-10-15 현대자동차주식회사 하이브리드 차량의 동력전달장치
KR100863634B1 (ko) 2007-05-17 2008-10-15 현대자동차주식회사 하이브리드 차량의 동력전달장치
KR100872651B1 (ko) 2006-10-31 2008-12-09 현대자동차주식회사 하이브리드 전기 자동차용 무단변속 동력전달장치
JP2009061924A (ja) * 2007-09-06 2009-03-26 Toyota Motor Corp ハイブリッド車の駆動装置
KR100893438B1 (ko) 2007-08-29 2009-04-17 현대자동차주식회사 하이브리드 차량의 동력전달시스템
JP2009126233A (ja) * 2007-11-20 2009-06-11 Aisin Seiki Co Ltd ハイブリッド車両
KR100951967B1 (ko) 2008-06-23 2010-04-08 현대 파워텍 주식회사 자동화 수동변속기를 갖춘 하이브리드 전기자동차의파워트레인
KR100953311B1 (ko) 2008-04-28 2010-04-20 현대자동차주식회사 하이브리드 차량의 동력 전달 장치
KR101028401B1 (ko) 2005-04-11 2011-04-13 현대다이모스(주) 하이브리드 전기 자동차의 동력 전달 장치
CN102022489A (zh) * 2009-09-15 2011-04-20 浙江吉利控股集团有限公司 一种双行星排四轴传动装置
KR101113573B1 (ko) 2009-11-12 2012-02-22 현대자동차주식회사 하이브리드 차량의 변속기
KR101189347B1 (ko) 2010-06-18 2012-10-09 현대자동차주식회사 하이브리드 차량의 변속기
KR101189332B1 (ko) 2010-06-18 2012-10-09 현대자동차주식회사 하이브리드 차량의 변속기
KR101189300B1 (ko) 2010-06-07 2012-10-09 현대자동차주식회사 하이브리드 차량의 변속기
KR101189410B1 (ko) 2010-06-18 2012-10-10 현대자동차주식회사 하이브리드 차량의 변속기
KR101251724B1 (ko) 2010-06-18 2013-04-05 현대자동차주식회사 하이브리드 차량의 변속기
KR101416422B1 (ko) * 2013-06-24 2014-07-09 현대자동차 주식회사 하이브리드 차량용 변속장치
KR101416420B1 (ko) 2013-06-24 2014-07-09 현대자동차 주식회사 하이브리드 차량용 변속장치
KR101483710B1 (ko) * 2013-12-17 2015-01-16 현대자동차 주식회사 하이브리드 자동차의 동력전달장치
KR101558351B1 (ko) 2013-12-04 2015-10-07 현대자동차 주식회사 하이브리드 차량용 변속장치
KR101611072B1 (ko) * 2014-09-12 2016-04-08 현대자동차주식회사 하이브리드 차량용 파워트레인
KR20160065308A (ko) * 2014-11-28 2016-06-09 현대자동차주식회사 하이브리드 차량의 변속기
KR20160071651A (ko) * 2014-12-12 2016-06-22 현대자동차주식회사 하이브리드 차량용 구동장치 및 그 제어방법
CN108116217A (zh) * 2017-12-20 2018-06-05 广州汽车集团股份有限公司 双行星排的混合动力耦合机构及机动车辆
CN108382183A (zh) * 2018-02-09 2018-08-10 重庆大学 基于双行星排的多模动力驱动装置
CN112236324A (zh) * 2018-02-20 2021-01-15 托海德有限责任公司 用于在不使用齿轮箱的情况下传递扭矩的系统和方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101992679B (zh) * 2009-08-24 2013-09-25 上海华普国润汽车有限公司 双行星排四轴混合动力传动装置

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005014332A1 (de) * 2005-03-24 2006-09-28 Volkswagen Ag Antriebsstrang eines Kraftfahrzeugs
KR100830056B1 (ko) 2005-03-29 2008-05-16 아이신에이더블류 가부시키가이샤 하이브리드 구동장치
KR101028401B1 (ko) 2005-04-11 2011-04-13 현대다이모스(주) 하이브리드 전기 자동차의 동력 전달 장치
KR100829301B1 (ko) * 2006-09-25 2008-05-13 현대자동차주식회사 하이브리드 전기 자동차용 무단변속 동력전달장치
KR100872651B1 (ko) 2006-10-31 2008-12-09 현대자동차주식회사 하이브리드 전기 자동차용 무단변속 동력전달장치
KR100836388B1 (ko) * 2006-10-31 2008-06-09 현대자동차주식회사 하이브리드 전기 자동차용 무단변속 동력전달장치
KR100863635B1 (ko) 2007-05-17 2008-10-15 현대자동차주식회사 하이브리드 차량의 동력전달장치
KR100863634B1 (ko) 2007-05-17 2008-10-15 현대자동차주식회사 하이브리드 차량의 동력전달장치
KR100893438B1 (ko) 2007-08-29 2009-04-17 현대자동차주식회사 하이브리드 차량의 동력전달시스템
JP2009061924A (ja) * 2007-09-06 2009-03-26 Toyota Motor Corp ハイブリッド車の駆動装置
JP2009126233A (ja) * 2007-11-20 2009-06-11 Aisin Seiki Co Ltd ハイブリッド車両
KR100953311B1 (ko) 2008-04-28 2010-04-20 현대자동차주식회사 하이브리드 차량의 동력 전달 장치
KR100951967B1 (ko) 2008-06-23 2010-04-08 현대 파워텍 주식회사 자동화 수동변속기를 갖춘 하이브리드 전기자동차의파워트레인
CN102022489A (zh) * 2009-09-15 2011-04-20 浙江吉利控股集团有限公司 一种双行星排四轴传动装置
KR101113573B1 (ko) 2009-11-12 2012-02-22 현대자동차주식회사 하이브리드 차량의 변속기
US8840498B2 (en) 2010-06-07 2014-09-23 Hyundai Motor Company Transmission for hybrid electric vehicle
KR101189300B1 (ko) 2010-06-07 2012-10-09 현대자동차주식회사 하이브리드 차량의 변속기
US8475312B2 (en) 2010-06-18 2013-07-02 Hyundai Motor Company Transmission for hybrid electric vehicle
KR101251724B1 (ko) 2010-06-18 2013-04-05 현대자동차주식회사 하이브리드 차량의 변속기
KR101189332B1 (ko) 2010-06-18 2012-10-09 현대자동차주식회사 하이브리드 차량의 변속기
US8579750B2 (en) 2010-06-18 2013-11-12 Hyundai Motor Company Transmission for hybrid electric vehicle
US8672789B2 (en) 2010-06-18 2014-03-18 Hyundai Motor Company Transmission for hybrid electric vehicle
KR101189347B1 (ko) 2010-06-18 2012-10-09 현대자동차주식회사 하이브리드 차량의 변속기
KR101189410B1 (ko) 2010-06-18 2012-10-10 현대자동차주식회사 하이브리드 차량의 변속기
KR101416422B1 (ko) * 2013-06-24 2014-07-09 현대자동차 주식회사 하이브리드 차량용 변속장치
KR101416420B1 (ko) 2013-06-24 2014-07-09 현대자동차 주식회사 하이브리드 차량용 변속장치
US9340098B2 (en) 2013-12-04 2016-05-17 Hyundai Motor Company Transmission system of hybrid electric vehicle
KR101558351B1 (ko) 2013-12-04 2015-10-07 현대자동차 주식회사 하이브리드 차량용 변속장치
KR101483710B1 (ko) * 2013-12-17 2015-01-16 현대자동차 주식회사 하이브리드 자동차의 동력전달장치
KR101611072B1 (ko) * 2014-09-12 2016-04-08 현대자동차주식회사 하이브리드 차량용 파워트레인
KR20160065308A (ko) * 2014-11-28 2016-06-09 현대자동차주식회사 하이브리드 차량의 변속기
KR101693940B1 (ko) * 2014-11-28 2017-01-10 현대자동차주식회사 하이브리드 차량의 변속기
US9744839B2 (en) 2014-11-28 2017-08-29 Hyundia Motor Company Transmission for hybrid vehicle
KR20160071651A (ko) * 2014-12-12 2016-06-22 현대자동차주식회사 하이브리드 차량용 구동장치 및 그 제어방법
KR101956402B1 (ko) 2014-12-12 2019-06-24 현대자동차주식회사 하이브리드 차량용 구동장치 및 그 제어방법
CN108116217A (zh) * 2017-12-20 2018-06-05 广州汽车集团股份有限公司 双行星排的混合动力耦合机构及机动车辆
CN108116217B (zh) * 2017-12-20 2019-10-15 广州汽车集团股份有限公司 双行星排的混合动力耦合机构及机动车辆
US11312224B2 (en) 2017-12-20 2022-04-26 Guangzhou Automobile Group Co., Ltd. Dual row planetary hybrid coupling mechanism and motor vehicle
CN108382183A (zh) * 2018-02-09 2018-08-10 重庆大学 基于双行星排的多模动力驱动装置
CN108382183B (zh) * 2018-02-09 2020-11-27 重庆大学 基于双行星排的多模动力驱动装置
CN112236324A (zh) * 2018-02-20 2021-01-15 托海德有限责任公司 用于在不使用齿轮箱的情况下传递扭矩的系统和方法

Also Published As

Publication number Publication date
JP3864920B2 (ja) 2007-01-10

Similar Documents

Publication Publication Date Title
JP3864920B2 (ja) ハイブリッド車両およびその動力伝達装置
JP4192814B2 (ja) 車両用駆動装置の制御装置
JP4229175B2 (ja) 動力出力装置、それを備えた自動車、および動力出力装置の制御方法
JP4229174B2 (ja) 動力出力装置、それを備えた自動車、および動力出力装置の制御方法
JP4229173B2 (ja) 動力出力装置、それを備えた自動車、および動力出力装置の制御方法
JP4222406B2 (ja) 動力出力装置およびハイブリッド自動車
JP3707411B2 (ja) 動力出力装置およびこれを備える自動車
JP4155244B2 (ja) 車両用駆動装置の制御装置
JP4102423B2 (ja) 動力出力装置およびこれを搭載する自動車
JP5092694B2 (ja) 車両用動力伝達装置の制御装置
JP2005295691A (ja) 動力出力装置およびこれを搭載する自動車
JPH08295140A (ja) ハイブリッド型車両
JP2008141810A (ja) 動力出力装置、それを備えた自動車、および動力出力装置の制御方法
JP2019081438A (ja) ハイブリッド車両の制御装置
JP4088574B2 (ja) 動力出力装置およびこれを搭載する自動車
JP6662359B2 (ja) ハイブリッド車両の駆動力制御装置
JP2008195320A (ja) 動力制御装置
JP2015112937A (ja) ハイブリッド駆動装置の制御装置
JPWO2013140544A1 (ja) ハイブリッド車両の駆動制御装置
JP4419988B2 (ja) ハイブリッド駆動装置
US9724991B2 (en) Hybrid vehicle driving apparatus
JP4088573B2 (ja) 動力出力装置およびこれを搭載する自動車
JP4225247B2 (ja) 車両用駆動装置の制御装置
JP4005589B2 (ja) 動力出力装置およびこれを搭載する自動車並びに動力伝達装置
JP2000355224A (ja) ハイブリッド型車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

LAPS Cancellation because of no payment of annual fees