JP2004283930A - Hob for cutting and gear processing method - Google Patents

Hob for cutting and gear processing method Download PDF

Info

Publication number
JP2004283930A
JP2004283930A JP2003077352A JP2003077352A JP2004283930A JP 2004283930 A JP2004283930 A JP 2004283930A JP 2003077352 A JP2003077352 A JP 2003077352A JP 2003077352 A JP2003077352 A JP 2003077352A JP 2004283930 A JP2004283930 A JP 2004283930A
Authority
JP
Japan
Prior art keywords
cutting
layer
film
hob
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003077352A
Other languages
Japanese (ja)
Inventor
Norihiro Katou
範博 加藤
Masaru Sonobe
勝 園部
Masayuki Tsuno
正行 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2003077352A priority Critical patent/JP2004283930A/en
Publication of JP2004283930A publication Critical patent/JP2004283930A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hob for cutting having a film structure capable of sufficiently exhibiting resistance to the oxidation of a TiAlSiN system film and securing the adhesion and hardness of a covered parent material as a tool basic body and a hard film and to provide a gear processing method using such a hob for cutting. <P>SOLUTION: This tool is constituted of high-speed steel as a parent material and covered with the hard film on it by an arc discharge ion plating method, components of the hard film are an (a) layer made of a chemical composition of (Ti<SB>x</SB>Al<SB>1-x-y</SB>Si<SB>y</SB>)(C<SB>z</SB>N<SB>1-z</SB>) shown by 0.28≤x≤0.45, 0.1<y≤0.3, 0≤z≤0.4 in the atomic fraction of a metal element and a (b) layer made of a chemical composition of Ti(C<SB>u</SB>N<SB>1-u</SB>) shown by 0≤z≤0.5 in the atomic fraction of the metal element, one or more layers of which are alternately applied on the tool, and the (b) layer is on the surface of the covered parent material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、高速度工具鋼を母材とする刃部を有するホブを用いて歯形を形成させる歯車加工方法及び切削用ホブに関する。
【0002】
【従来の技術】これまで歯車加工においては切削中に油剤を用いる湿式法が主流であったが、最近では環境問題を考慮にいれた、切削時に油剤を全く用いない乾式方法が登場している。工具本体のホブについても、耐熱性を向上させたTiAlN膜をホブに被覆して高速切削加工を乾式で行うことが可能となった。例えば特許文献1では、高速度工具鋼製の刃部を備えたホブを用いて、
(Ti1−x Al)(N1−y ) 0.2≦x≦0.85、
0.25≦y≦1.0 の組成からなる膜を少なくとも1層コーティングしたホブを用い、切削速度が120m/min をこえて400m/min 以下の範囲で、切削油剤を用いずドライカット、または切削部にエアを吹き付けて歯形を創成することを特徴とする歯車加工方法を提唱している。
【0003】
また特許文献2ではギヤシャーパにおいて窒化物形成元素をMとし、実質的に(TiAl1−z−x (1−w) (N1−y ただし
0.2≦x≦0.9、 0.2≦y≦1.0、 0.1≦z≦0.8、
0.7≦(z+x)<1.0、 0.45≦w≦0.55
の組成の膜を少なくとも一層を、少なくとも逃げ面にコーティングしたものを用い、切削油剤を用いずに、切削速度300m/min 以下で加工することを特徴とするギヤシェーパ加工方法およびギヤシェーパを提唱している。そして窒化物形成元素Mの1つとしてしてV,Bなどの各種の第3元素も含めて、「窒化物形成元素MはTiAlと置換可能で良質な窒化物を形成できる」として第3元素を添加した実施例を述べているが、第3元素が積極的な効果を有するなどの提唱はしていない。また切削加工についてもあくまでも「窒化物形成元素を添加しない場合と同一」加工が実現できるとして、実施例でもV,Bの微量添加の場合に対しても影響のないこと実証しているにすぎない。したがって上記引用例においてはいずれもTiAlN膜の効果の範疇をでることはなく、高速切削条件下でのホブの早期摩耗は避けることができず、いずれも高速切削に対応したコーティング被覆ホブおよびそれを用いた加工法を提案しているとはいえない。
【0004】
【特許文献1】特許第3165658号 請求項1
【特許文献2】特許第2961106号 請求項1
【特許文献3】特許第2793773号 請求項1
【特許文献4】特許第3089252号 請求項2、〔0014〕表1
【0005】
【解決しようとする課題】しかしながら、特許文献1、特許文献2の発明を用いて歯車加工をした場合には、高速でドライカットは実現されるが、近年の加工機械の能力向上に伴って切削速度がさらに向上し、TiAlN被膜でも耐熱性が不十分なためクレータ摩耗の進行がはやくなり、実用的な摩耗限界幅までに早期に至るという欠点がある。これに対してTiAlN膜の耐熱性を向上させる添加元素についての研究が行われ、特許文献3に記述され
の向上に対して有効であることが分かった。しかしながら、金属元素の原子分率でSiの含有量が10%を越えると耐熱性自身は向上するものの被膜自身の密着性が低下し、かつ被膜の硬度が低下するため、十分な耐摩耗性が得られなかった。このためSiの含有量が10%を越えても被膜の密着性と硬度が確保されている硬質被膜の開発が期待されていた。
この他にも金属加工の高能率化を目的としてTiAlN被膜にSiを添加した例がいくつかあるが、それぞれ次の様な問題があった。特許文献4ではTiAlSi合金を成膜しているが、スパッタリング法ではターゲット材料に用いている材料元素のスパッタ収率の相違により成分が継続的に変化しやすいため、この変化を見込んだ組成のターゲットを要する。また、工具母材の上に直接TiAlSiN膜を被膜するので、被膜膜の密着性が必ずしも良好でなく、複雑な形状の基材を被覆する場合の生産性も低い。さらにスパッタ粒子のイオン化率が低いため、基板に突入するイオンの量が少なく、従って十分な膜硬さが得られないという欠点があった。さらに成膜速度が遅く量産化が困難である。
【0006】
本発明の課題は、TiAlSiN系膜の優れた耐酸化性に注目し、金属元素の原子分率でSiの含有量が10%を越えてもTiAlSiN系膜の耐酸化性を充分に発揮することのでき、工具基体である被覆母材と硬質被膜との密着性と硬度が確保された膜構造を有する切削用ホブ及びかかる切削用ホブを用いた歯車加工方法を提供することにある。
【0007】
【課題を解決するための手段】このため本発明は、高速度鋼を母材質とし、アーク放電イオンプレーティング法により硬質被膜を被覆してなる工具であって、前記硬質被膜の成分が、(TiAl1−x−y Si)(C1−z )、ただし、金属元素の原子分率で 0.28≦x≦0.45, 0.1<y≦0.3,
0≦z≦0.4 で示される化学組成からなるa層と、
前記硬質被膜の成分が、Ti(C1−U )、ただし、金属元素の原子分率で
0≦z≦0.5 で示される化学組成からなるb層と、
がそれぞれ1層以上交互に被覆されたものであり、
かつ、b層が被覆母材表面上にあることを特徴とする切削用ホブを提供することにより、上述した本発明の課題を解決した。
【0008】
【発明の効果】本発明のかかる構成により、金属元素の原子分率でSiの含有量が10%を越えてもTiAlSiN系膜の耐酸化性を充分に発揮することのできるa層と、かかるa層を被覆母材に被覆したTiCN層のb層上に被覆することにより、工具基体である被覆母材と硬質被膜との密着性と硬度が確保された膜構造を有する切削用ホブを提供するものとなり、従来のTiAlN膜又はTiAlSiN系膜を被覆したものに較べてすくい面のクレータ摩耗とフランク面の逃げ面摩耗の進行を遅れさせることができ、その結果、逃げ面摩耗も大きく進行することなく高速切削おけるホブの寿命を大幅に延ばすことが可能となった。
【0009】
本発明の硬質被膜a層を構成する金属元素中のTiの原子比率は、膜硬度の測定結果から、金属元素の原子分率で28%以上、45%以下を満足することが必要である。より好ましくは28%以上、33%以下である。同じく硬質被膜a層におけるSiの添加量は、耐酸化性の観点から金属元素の原子分率で10%こえて多ければ多いほど効果が高いが、30%を越えると密着性が低下し、切削に耐えることが出来ない。より好ましくは13%以上、28%以下である
本発明において硬質被膜a層の密着性を向上し、被膜の硬度低下を抑制する下地の硬質被膜b層のTi(C1−u )膜としてはa層と結晶構造の等しいTiCN系の被膜である必要がある。従って硬質被膜b層における金属元素中の炭素の原子分率で、0≦u≦0.5を満足する必要があり、0%、すなわちTiNでもかまわない。より好ましくは10%以上、40%以下である。
【0010】
請求項3では、請求項1又は請求項2記載の切削用ホブを用いて、切削速度が100m/min から300m/min の範囲で、かつ完全乾式または微少な油剤scc/minただし0<s≦20を噴霧状にして切削部に吹き付けて切削を行うことを特徴とする歯車加工方法を提供するものであり、完全乾式あるいはエアを吹き付けた時の寿命を大幅に向上させることができ、また微小な油剤の噴霧吹き付けによりさらに摩耗の進行を防ぎ、より効果的な歯車加工が実現できる歯車加工方法を提供するものとなった。
【0011】
【発明の実施の形態】本発明品の切削用ホブのコーティング膜の構成を示すブロック図を図1に示す。本発明品の切削用ホブは、高速度鋼を母材質とし、アーク放電イオンプレーティング法により硬質被膜を被覆してなる工具20であって、前記硬質被膜の成分が、Ti(C1−u )、ただし、金属元素の原子分率で、0≦u≦0.5で示される化学組成からなるb層21を被覆し、b層21の上に、
前記硬質被膜の成分が、(TiAl1−x−y Si)(C1−z )、ただし、金属元素の原子分率で 0.28≦x≦0.45, 0.1<y≦0.3,
0≦z≦0.4 で示される化学組成からなるa層22を、
それぞれ1層以上交互に被覆されたものである。図1では各1層のみ示す。
【0012】
図2に図1の構成の硬質被膜を被覆した切削用ホブを使用しホブ盤を用いた本発明の歯車加工法の実施形態を示す概略側面図を示す。切削速度が100m/min から300m/min の範囲で、かつ完全乾式または微少な油剤scc/min、ただし
0<s≦20 を噴霧状にして切削部に吹き付けて切削を行うことを特徴とする歯車加工方法であり、完全乾式あるいはエアを吹き付けた時の寿命を大幅に向上させることができ、特に上記歯車加工において、20cc/min以下の微少な油剤を噴霧状にして切削部に吹き付けて歯形を形成する方法ではさらに完全乾式以上の効果が得られることも知見として得られた。これは微小油剤の油滴がワークとホブ切れ刃の間に入り込んで潤滑膜を形成し摩擦係数を減少させることで切削による発熱を押さえる効果となり、結果的に発熱擦過による摩耗の進行が抑制されることによるものと考えられる。ホブ23は回転機構をもつホブヘッド24のホブ軸に装着され、ワーク25は回転自在なテーブルの取り付け具に固定されている。ホブヘッド24は高速回転しながら、同期回転するワーク25に接近移動し切り込み送りがされる。ワーク25外周は送り込まれたホブ23の刃部26により削りとられてワークの歯型27が形成される。切削中は切削油剤は供給されず、完全乾式もしくは加工部近くに設置されたエアノズルよりエアを供給して行う。霧状の微小油剤を噴霧するときはエアノズル28を利用して切削中に供給する。
【0013】
〔実施例1〕切削用ホブは高速度鋼製で、TiAlSiの窒化物と、Tiの窒化物あるいは炭窒化物の図1の構成の積層構造をもつコーティング膜を施したものを使用した。また本発明品の比較としてTiAlN膜を被覆したものを用いた。
ホブの形状はモジュールm2.87で、圧力角15°、外径95mmである。ワークである被削歯車の緒元は、歯の大きさm2.87、圧力角15°、歯数48,ねじれ角31°、外径166.6mm、歯たけ、7.995,歯厚3.917でる。ワークの材質はSCM420Hで硬さは180HBのものを使用した。
歯車加工の切削速度は100m/min から300m/min の範囲で高速加工を完全乾式または切削部にエアを吹き付ける状態で行った。また微小油剤の潤滑効果を確認するため20cc/min以下の油剤を切削部に霧状に吹き付けて高速切削を行った。
【0014】
次に本発明品である切削用ホブの製作工程について説明する。本発明品の切削用ホブのコーティング膜を形成するイオンプレーティング装置の概略断面図を示す図3において、アーク方式イオンプレーティング装置1の工具取り付け治具3に図示しない切削用ホブを装着して、真空装置11で0.133Pa以下まで排気し、加熱用ヒータ12により400〜500℃に加熱した。所定の温度に達した後、ガス導入口6から導入したアルコンガスによってイオンボンバードを施した上、0.666〜0.4Paの窒素ガスをガス導入口7から導入して金属蒸発源5からTiを蒸発させて硬質被膜b層としてTiN膜またはTiCN膜を成膜した。その後硬質被膜b層の上に、Ti0.4 Al0.4 Si0.2 、Ti0.3 Al0.5 Si0.2 、Ti0.35Al0.35Si0.3 、Ti0.5 Al0.5 の元素分率で異なった組成を有する4つのターゲットを組み合わせて、基板電圧10〜100Vを印加して、表に示す金属元素の原子分率で示す種々の組成の硬質被膜a層を得た。また原子分率の組成は電子プローブアナリシスで行った。
【0015】
上記方式により請求項の範囲の各種コーティングしたホブを切削した結果を表1に示す。また切削用ホブ切削後の切刃の摩耗形態を表した概略斜視図を図4に模式的に示す。本発明品であるTiAlSiNを施したホブ(本発明1〜7)のクレータ摩耗は、従来例であるTiAlNのクレータ摩耗よりも少なく、逃げ面摩耗幅についても同様な結果となった。このようにSiの成分は切削中の耐熱効果に大きく効果を現しているが、本発明の硬質被膜a層を構成する金属元素中のTiの原子比率は、膜硬度の測定結果から、金属元素の原子分率で28%以上、45%以下を満足することが必要である。より好ましくは28%以上、33%以下である。同じく硬質被膜a層におけるSiの添加量は、10%未満のときはSiの含有量が少ないため耐酸化性の観点から耐熱効果が十分に発揮されない。金属元素の原子分率で10%こえて多ければ多いほど効果が高いが、Si含有が30%を越える場合ではコーティング膜が脆くなり密着性が低下し切削中にチッピング現象(膜飛び)が発生するためこの範囲が望ましい。より好ましくは13%以上、28%以下である。本発明において硬質被膜a層の密着性を向上し、被膜の硬度低下を抑制する下地の硬質被膜b層のTi(C1−u )膜としてはa層と結晶構造の等しいTiCN系の被膜である必要がある。従って硬質被膜b層における金属元素中の炭素の原子分率で、0≦u≦0.5を満足する必要があり、0%、すなわちTiNでもかまわない。より好ましくは10%以上、40%以下である。
【0016】
【表1】

Figure 2004283930
【表2】
Figure 2004283930
【0017】
膜厚については実施例1では(TiAl1−x−y Si)(C1−z )、
ただし、金属元素の原子分率で0.28≦x≦0.45,0.1<y≦0.3,0≦z≦0.4 で示される化学組成からなるa層は、0.3μm〜5.0μmの範囲で、Ti(C1−u )、ただし、金属元素の原子分率で
0≦u≦0.5で示される化学組成からなるb層は0.3μm〜5.0μmの範囲で、b層を母材表面上にして、それぞれ1層以上に組み合わせ、全体の膜厚が2μm〜10μm以下であることが望ましい。これは全体の膜厚が2μm未満ではコーティング膜の効果は期待できず、10μmを越える膜厚ではチッピング(膜飛び)現象が起きる確率が高くなることによるものである。
【0018】
〔実施例2〕本発明品であるTiAlSiN膜(本発明品1、2、4、5)と従来例であるTiAlN膜の耐熱特性を比較するため、実施例1と同時に作成したコーティング被覆超硬チップを大気中で800℃、1時間加熱保持し、鋼球による擦過痕を利用したカロテスト法により表面からの酸化物層の厚さを測定した結果を表2に併記した。従来例のTiAlN膜は高温度の環境下でコーティング被覆膜の表面から酸化層が進行しているが、本発明品であるTiAlSiN膜は酸化層がほとんど観察されることが無く、耐酸化性はTiAlN膜よりも格段に優れている。
【0019】
〔実施例3〕実施例1と同じホブの高速歯切加工を、切削部に10cc/minの微小油剤を霧状に吹き付けて行った結果を表1の本発明5に示す。完全乾式と比較してクレータ摩耗の進行は進行することなく寿命を向上させている。これは微小な油剤がホブとワークの間で潤滑剤として作用することで摩擦係数を低減し、加工による発熱を押さえる働きをするためであると考えられる。この方式は微小潤滑(MQL:Minimum Quantity Lubrication)作用としてエンドミル加工などに使用されているが、ホブによる高速歯車加工においても効果を発揮し、本発明品であるTiAlSiN膜と併用することによりさらに効果的に作用する。
【0020】
〔本発明の実施の形態の効果〕上記の実施例から、本発明品であるTiAlSiN膜を含むコーティング膜を被覆したホブによる歯車加工は、従来のTiAlN膜又はTiAlSiN膜を被覆したものに較べてすくい面のクレータ摩耗とフランク面の逃げ面摩耗の進行を遅れさせることができ、完全乾式あるいはエアを吹き付けた時の寿命を大幅に向上させることができる。また微小な油剤の噴霧吹き付けによりさらに摩耗の進行を防ぎ、より効果的な歯車加工が実現できる。
【図面の簡単な説明】
【図1】本発明品の切削用ホブのコーティング膜の構成を示すブロック図。
【図2】図1の構成の硬質被膜を被覆した切削用ホブを使用したホブ盤を用いた本発明の歯車加工法の実施形態を示す概略側面図。
【図3】本発明品の切削用ホブのコーティング膜を形成するイオンプレーティング装置の概略断面図。
【図4】切削用ホブ切削後の切刃の摩耗形態を表した概略斜視図。
【符号の説明】
20・・工具母材 21・・硬質被膜a層 12・・硬質被膜b層[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gear machining method and a cutting hob for forming a tooth profile by using a hob having a blade portion made of high speed tool steel as a base material.
[0002]
2. Description of the Related Art In the past, in gear processing, a wet method using an oil agent during cutting has been the mainstream, but recently, a dry method using no oil agent at the time of cutting has appeared in consideration of environmental problems. . As for the hob of the tool body, it has become possible to dry-process high-speed cutting by coating the hob with a TiAlN film having improved heat resistance. For example, in Patent Document 1, using a hob provided with a blade portion made of high-speed tool steel,
(Ti 1-x Al x ) (N y C 1-y ) 0.2 ≦ x ≦ 0.85,
Using a hob coated with at least one layer of a film having a composition of 0.25 ≦ y ≦ 1.0, a cutting speed of not less than 120 m / min and not more than 400 m / min and dry cutting without using a cutting oil, or We propose a gear machining method characterized by creating a tooth profile by blowing air to the cutting part.
[0003]
The Patent Document 2 nitride forming elements and M in Giyashapa, substantially (Ti z Al x M 1- z-x) (1-w) (N y C 1-y) w however 0.2 ≦ x ≦ 0.9, 0.2 ≦ y ≦ 1.0, 0.1 ≦ z ≦ 0.8,
0.7 ≦ (z + x) <1.0, 0.45 ≦ w ≦ 0.55
A gear shaper processing method and a gear shaper characterized by processing at least a cutting speed of 300 m / min or less without using a cutting oil, using a film having at least one layer coated on at least a flank of a film having the following composition: . As one of the nitride-forming elements M, various third elements such as V and B are included, and the third element is described as "the nitride-forming element M can replace TiAl and form a high-quality nitride." Is added, but no proposal is made that the third element has a positive effect. In addition, the cutting process can be realized as "the same as when no nitride-forming element is added", and it is only demonstrated that there is no effect even in the case of adding a small amount of V and B in the examples. . Therefore, none of the above cited examples fall within the category of the effect of the TiAlN film, and the early wear of the hob under high-speed cutting conditions cannot be avoided. It cannot be said that the processing method used was proposed.
[0004]
[Patent Document 1] Japanese Patent No. 3165658 Claim 1
[Patent Document 2] Japanese Patent No. 2961106 Claim 1
[Patent Document 3] Japanese Patent No. 2793773 Claim 1
[Patent Document 4] Japanese Patent No. 3089252 Claim 2, [0014] Table 1
[0005]
However, when gears are machined using the inventions of Patent Documents 1 and 2, dry cutting can be performed at a high speed. The speed is further improved, and the heat resistance is insufficient even with the TiAlN film, so that the crater wear progresses quickly, and there is a disadvantage that the crater is quickly reached to a practical wear limit width. On the other hand, a study has been conducted on an additive element for improving the heat resistance of the TiAlN film, and it has been found that the additive element described in Patent Document 3 is effective for improvement. However, when the content of Si exceeds 10% in terms of the atomic ratio of the metal element, the heat resistance itself is improved, but the adhesion of the film itself is reduced, and the hardness of the film is reduced. Could not be obtained. For this reason, the development of a hard coating in which the adhesion and hardness of the coating are ensured even when the content of Si exceeds 10% has been expected.
In addition to these, there are some examples in which Si is added to a TiAlN film for the purpose of improving the efficiency of metal working, but each has the following problems. In Patent Literature 4, a TiAlSi alloy is formed. However, in the sputtering method, the components are apt to change continuously due to a difference in the sputtering yield of the material element used for the target material. Cost. Further, since the TiAlSiN film is directly coated on the tool base material, the adhesion of the film is not always good, and the productivity when coating a substrate having a complicated shape is low. Furthermore, since the ionization rate of sputtered particles is low, the amount of ions rushing into the substrate is small, so that there is a disadvantage that sufficient film hardness cannot be obtained. Furthermore, the film formation rate is low and mass production is difficult.
[0006]
An object of the present invention is to pay attention to the excellent oxidation resistance of a TiAlSiN-based film, and to sufficiently exhibit the oxidation resistance of a TiAlSiN-based film even when the content of Si exceeds 10% by atomic ratio of a metal element. It is an object of the present invention to provide a cutting hob having a film structure in which adhesion and hardness between a coating base material as a tool base and a hard coating are secured, and a gear machining method using the cutting hob.
[0007]
SUMMARY OF THE INVENTION Accordingly, the present invention provides a tool comprising a high speed steel as a base material and a hard coating coated by an arc discharge ion plating method, wherein the component of the hard coating is ( Ti x Al 1-x-y Si y) (C z N 1-z), however, 0.28 ≦ x ≦ 0.45 in atomic percent of the metal element, 0.1 <y ≦ 0.3,
An a layer having a chemical composition represented by 0 ≦ z ≦ 0.4,
Component of the hard coating, Ti (C U N 1- U), however, the b layer made of a chemical composition represented by 0 ≦ z ≦ 0.5 in atomic percent of metallic elements,
Are alternately coated by at least one layer,
The object of the present invention described above has been solved by providing a cutting hob characterized in that the layer b is on the surface of the coated base material.
[0008]
According to the structure of the present invention, an a layer capable of sufficiently exhibiting the oxidation resistance of a TiAlSiN-based film even when the content of Si exceeds 10% by atomic ratio of a metal element, and The present invention provides a cutting hob having a film structure in which the adhesion and hardness between a coated base material as a tool base and a hard coating are ensured by coating a layer on a b layer of a TiCN layer coated on a coated base material. Crater wear on the rake face and progress of flank wear on the flank face can be delayed as compared to those coated with a conventional TiAlN film or TiAlSiN-based film, and as a result, flank face wear also progresses greatly It has become possible to greatly extend the life of the hob in high-speed cutting without any problems.
[0009]
From the measurement results of the film hardness, it is necessary that the atomic ratio of Ti in the metal element constituting the hard coating a layer of the present invention satisfies the atomic ratio of the metal element of 28% or more and 45% or less. More preferably, it is 28% or more and 33% or less. Similarly, from the viewpoint of oxidation resistance, the more the amount of Si added to the hard coating a layer exceeds 10% in terms of the atomic ratio of the metal element, the higher the effect is. I can not stand it. In the present invention, the Ti ( CuN1 -u ) film of the underlying hard coating b layer which improves the adhesion of the hard coating a layer and suppresses the decrease in hardness of the coating is more preferably 13% or more and 28% or less. It must be a TiCN-based film having the same crystal structure as the a layer. Therefore, the atomic fraction of carbon in the metal element in the hard coating b layer must satisfy 0 ≦ u ≦ 0.5, and may be 0%, that is, TiN. More preferably, it is 10% or more and 40% or less.
[0010]
In a third aspect, the cutting hob according to the first or second aspect is used, the cutting speed is in a range of 100 m / min to 300 m / min, and a completely dry or minute oil agent scc / min, provided that 0 <s ≦ The present invention provides a gear machining method characterized in that cutting is performed by spraying 20 to a cutting portion and spraying the cutting portion, and the life when completely dry or when air is sprayed can be greatly improved. The present invention provides a gear machining method that can further prevent the progress of wear by spraying and spraying a suitable oil agent, thereby realizing more effective gear machining.
[0011]
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing the structure of a coating film of a cutting hob according to the present invention. The cutting hob of the present invention is a tool 20 having high-speed steel as a base material and coated with a hard coating by an arc discharge ion plating method, wherein the component of the hard coating is Ti ( CuN 1). -U ), provided that the b layer 21 having a chemical composition represented by 0 ≦ u ≦ 0.5 is coated on the b layer 21 by the atomic fraction of the metal element.
The components of the hard coating, (Ti x Al 1-x -y Si y) (C z N 1-z), however, 0.28 ≦ x ≦ 0.45 in atomic percent of metallic elements, 0.1 <Y ≦ 0.3,
A layer 22 having a chemical composition represented by 0 ≦ z ≦ 0.4,
One or more layers are alternately coated. FIG. 1 shows only one layer.
[0012]
FIG. 2 is a schematic side view showing an embodiment of a gear machining method of the present invention using a hobbing machine using a cutting hob coated with a hard coating having the configuration shown in FIG. A gear having a cutting speed in the range of 100 m / min to 300 m / min and a completely dry type or a fine oil agent scc / min, wherein 0 <s ≦ 20 is sprayed and sprayed to the cutting portion to perform cutting. This is a machining method that can greatly improve the life when completely dry or when air is blown. In particular, in the above-mentioned gear processing, a fine oil agent of 20 cc / min or less is sprayed and sprayed on the cutting portion to form a tooth profile. It has also been found that the method of forming can obtain more effects than the completely dry method. This has the effect of suppressing the heat generated by cutting by the oil droplets of the minute oil entering between the work and the cutting edge of the hob, forming a lubricating film and reducing the friction coefficient, and as a result, the progress of wear due to heat abrasion is suppressed. It is thought to be due to The hob 23 is mounted on a hob shaft of a hob head 24 having a rotating mechanism, and the work 25 is fixed to a rotatable table fixture. While the hob head 24 is rotating at a high speed, the hob head 24 moves close to the synchronously rotating work 25 and is fed by cutting. The outer periphery of the work 25 is shaved by the blade portion 26 of the fed hob 23 to form a tooth pattern 27 of the work. During cutting, the cutting oil is not supplied, but air is supplied from a completely dry type or an air nozzle installed near the processing section. When spraying a mist of fine oil, it is supplied during cutting using the air nozzle 28.
[0013]
Example 1 A cutting hob was made of high-speed steel, and was provided with a coating film having a laminated structure of TiAlSi nitride and Ti nitride or carbonitride as shown in FIG. Also, a product coated with a TiAlN film was used as a comparison of the present invention.
The hob has a module m of 2.87, a pressure angle of 15 °, and an outer diameter of 95 mm. The specifications of the work gear, which is a work, are: tooth size m 2.87, pressure angle 15 °, number of teeth 48, helix angle 31 °, outer diameter 166.6 mm, tooth height, 7.995, tooth thickness 3. 917. The work material was SCM420H and the hardness was 180HB.
High-speed cutting was performed in a completely dry type or in a state where air was blown to the cutting portion at a cutting speed of gear processing in a range of 100 m / min to 300 m / min. Further, in order to confirm the lubricating effect of the micro oil agent, high speed cutting was performed by spraying an oil agent of 20 cc / min or less in a mist state on the cutting portion.
[0014]
Next, the manufacturing process of the cutting hob according to the present invention will be described. In FIG. 3 showing a schematic sectional view of an ion plating apparatus for forming a coating film of a cutting hob of the present invention, a cutting hob (not shown) is mounted on a tool mounting jig 3 of an arc type ion plating apparatus 1. The gas was evacuated to 0.133 Pa or less by the vacuum device 11 and heated to 400 to 500 ° C. by the heater 12. After the temperature reaches a predetermined temperature, ion bombardment is performed using arcon gas introduced from the gas inlet 6 and nitrogen gas of 0.666 to 0.4 Pa is introduced from the gas inlet 7 and Ti Was evaporated to form a TiN film or a TiCN film as a hard film b layer. Then on the hard coating b layer, Ti 0.4 Al 0.4 Si 0.2, Ti 0.3 Al 0.5 Si 0.2, Ti 0.35 Al 0.35 Si 0.3, Ti 0 by combining the four targets having different composition in elemental fraction of .5 Al 0.5, by applying a substrate voltage 10~100V, hard coating of various compositions shown in atomic percent of metallic elements shown in Table a layer was obtained. The composition of the atomic fraction was determined by electron probe analysis.
[0015]
Table 1 shows the results of cutting various coated hobbs according to the above-mentioned method. FIG. 4 is a schematic perspective view schematically illustrating a wear mode of the cutting blade after cutting the cutting hob. The crater wear of the hob to which the TiAlSiN of the present invention was applied (the present inventions 1 to 7) was smaller than that of the conventional TiAlN, and the same result was obtained for the flank wear width. As described above, the Si component has a great effect on the heat resistance effect during cutting, but the atomic ratio of Ti in the metal element constituting the hard coating a layer of the present invention is determined by the measurement result of the film hardness. It is necessary to satisfy the atomic fraction of 28% or more and 45% or less. More preferably, it is 28% or more and 33% or less. Similarly, when the addition amount of Si in the hard coating a layer is less than 10%, the content of Si is small, so that the heat resistance effect is not sufficiently exhibited from the viewpoint of oxidation resistance. The effect increases as the atomic fraction of the metal element exceeds 10%, but the effect is higher, but when the Si content exceeds 30%, the coating film becomes brittle, the adhesiveness is reduced, and a chipping phenomenon (film jump) occurs during cutting. Therefore, this range is desirable. More preferably, it is 13% or more and 28% or less. In the present invention, the Ti ( CuN1 -u ) film of the underlying hard coating b layer which improves the adhesion of the hard coating a layer and suppresses the decrease in hardness of the coating is a TiCN-based film having the same crystal structure as the a layer. It must be a coating. Therefore, the atomic fraction of carbon in the metal element in the hard coating b layer must satisfy 0 ≦ u ≦ 0.5, and may be 0%, that is, TiN. More preferably, it is 10% or more and 40% or less.
[0016]
[Table 1]
Figure 2004283930
[Table 2]
Figure 2004283930
[0017]
In Example 1 for a film thickness (Ti x Al 1-x- y Si y) (C z N 1-z),
However, the layer a having a chemical composition represented by the following atomic ratio of the metal element: 0.28 ≦ x ≦ 0.45, 0.1 <y ≦ 0.3, 0 ≦ z ≦ 0.4 is 0.3 μm in the range of ~5.0μm, Ti (C u N 1 -u), provided that, b layer made of a chemical composition represented by 0 ≦ u ≦ 0.5 in atomic percent of metallic elements 0.3Myuemu~5. In the range of 0 μm, it is desirable that the layer b is combined with one or more layers on the surface of the base material, and the total film thickness is 2 μm to 10 μm or less. This is because the effect of the coating film cannot be expected if the total film thickness is less than 2 μm, and the probability of occurrence of chipping (film skipping) increases if the film thickness exceeds 10 μm.
[0018]
Example 2 In order to compare the heat resistance characteristics of the TiAlSiN film of the present invention (products of the present invention 1, 2, 4, and 5) and the TiAlN film of the conventional example, a coating-coated carbide formed simultaneously with Example 1 The chip was heated and held at 800 ° C. for 1 hour in the air, and the thickness of the oxide layer from the surface was measured by a calotest method using a scratch mark caused by a steel ball. In the TiAlN film of the conventional example, an oxidized layer progresses from the surface of the coating film under a high temperature environment. However, in the TiAlSiN film of the present invention, almost no oxidized layer is observed, and the oxidation resistance is high. Is much better than the TiAlN film.
[0019]
[Example 3] The results of the same high-speed gear cutting as in Example 1 performed by spraying a fine oil of 10 cc / min on the cut portion in the form of mist are shown in Table 1 of the present invention 5. The life of the crater is improved without progress of the crater wear as compared with the completely dry type. This is considered to be because the minute oil acts as a lubricant between the hob and the work to reduce the friction coefficient and to suppress the heat generated by processing. This method is used for end milling and the like as a function of minimum quantum lubrication (MQL), but is also effective in high-speed gear machining with a hob, and is further effective when used in combination with the TiAlSiN film of the present invention. Acts in a way.
[0020]
[Effects of the embodiment of the present invention] From the above examples, it can be seen that the gear machining by the hob coated with the coating film including the TiAlSiN film, which is the product of the present invention, is performed in comparison with the conventional gear coated with the TiAlN film or TiAlSiN film. The progress of the crater wear on the rake face and the progress of the flank wear on the flank face can be delayed, and the service life when completely dry or when air is blown can be greatly improved. Further, the spraying and spraying of a minute oil agent further prevents the progress of abrasion, thereby realizing more effective gear machining.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a coating film of a cutting hob of the present invention.
FIG. 2 is a schematic side view showing an embodiment of the gear machining method of the present invention using a hobbing machine using a cutting hob coated with a hard coating having the configuration of FIG. 1;
FIG. 3 is a schematic sectional view of an ion plating apparatus for forming a coating film of a cutting hob of the present invention.
FIG. 4 is a schematic perspective view showing a wear mode of the cutting blade after cutting the cutting hob.
[Explanation of symbols]
20 ・ ・ Tool base material 21 ・ ・ Hard coating a layer 12 ・ ・ Hard coating b layer

Claims (3)

高速度鋼を母材質とし、アーク放電イオンプレーティング法により硬質被膜を被覆してなる工具であって、前記硬質被膜の成分が、
(TiAl1−x−y Si)(C1−z )、ただし、金属元素の原子分率で
0.28≦x≦0.45, 0.1<y≦0.3, 0≦z≦0.4
で示される化学組成からなるa層と、
前記硬質被膜の成分が、Ti(C1−U )、ただし、金属元素の原子分率で
0≦u≦0.5 で示される化学組成からなるb層と、
がそれぞれ1層以上交互に被覆されたものであり、
かつ、b層が被覆母材表面上にあることを特徴とする切削用ホブ。
A tool comprising a high-speed steel as a base material and a hard coating coated by an arc discharge ion plating method, wherein the component of the hard coating is
(Ti x Al 1-x- y Si y) (C z N 1-z), however, 0.28 ≦ x ≦ 0.45 in atomic percent of the metal element, 0.1 <y ≦ 0.3, 0 ≦ z ≦ 0.4
A layer having a chemical composition represented by:
Component of the hard coating, Ti (C U N 1- U), however, the b layer made of a chemical composition represented by 0 ≦ u ≦ 0.5 in atomic percent of metallic elements,
Are alternately coated by at least one layer,
A cutting hob, wherein the b layer is on the surface of the coated base material.
高速度鋼を母材質とし、アーク放電イオンプレーティング法により硬質被膜を被覆してなる工具であって、前記硬質被膜の成分が、
(TiAl1−x−y Si)(C1−z )、ただし、金属元素の原子分率で
0.28≦x≦0.33, 0.13≦y≦0.28, 0≦z≦0.4
で示される化学組成からなるa層と、
Ti(C1−u )、ただし、金属元素の原子分率で、0.1≦u≦0.4
で示される化学組成からなるb層と、
がそれぞれ1層以上交互に被覆されたものであり、
かつ、b層が被覆母材表面上にあることを特徴とする切削工具。
A tool comprising a high-speed steel as a base material and a hard coating coated by an arc discharge ion plating method, wherein the component of the hard coating is
(Ti x Al 1-x- y Si y) (C z N 1-z), however, 0.28 ≦ x ≦ 0.33 in atomic percent of metallic elements, 0.13 ≦ y ≦ 0.28, 0 ≦ z ≦ 0.4
A layer having a chemical composition represented by:
Ti ( CuN1 -u ), where 0.1 <u <0.4
A b layer having a chemical composition represented by
Are alternately coated by at least one layer,
A cutting tool wherein the b layer is on the surface of the coated base material.
請求項1又は請求項2記載の切削用ホブを用いて、
切削速度が100m/min から300m/min の範囲で、かつ
完全乾式または微少な油剤scc/minただし0<s≦20を噴霧状にして切削部に吹き付けて切削を行うことを特徴とする歯車加工方法。
Using the cutting hob according to claim 1 or claim 2,
A gear cutting characterized in that the cutting speed is in the range of 100 m / min to 300 m / min, and that the cutting is performed by spraying a completely dry type or a fine oil agent scc / min, but 0 <s ≦ 20, to the cutting portion. Method.
JP2003077352A 2003-03-20 2003-03-20 Hob for cutting and gear processing method Pending JP2004283930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077352A JP2004283930A (en) 2003-03-20 2003-03-20 Hob for cutting and gear processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077352A JP2004283930A (en) 2003-03-20 2003-03-20 Hob for cutting and gear processing method

Publications (1)

Publication Number Publication Date
JP2004283930A true JP2004283930A (en) 2004-10-14

Family

ID=33292124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077352A Pending JP2004283930A (en) 2003-03-20 2003-03-20 Hob for cutting and gear processing method

Country Status (1)

Country Link
JP (1) JP2004283930A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736565A1 (en) * 2005-06-22 2006-12-27 Seco Tools Ab Composite coatings for finishing of hardened steels
JP2009255282A (en) * 2008-03-28 2009-11-05 Mitsubishi Materials Corp Cutting tool formed of surface-coated cubic boron nitride base ultra high-pressure sintered material
JP2012086323A (en) * 2010-10-21 2012-05-10 Mitsubishi Materials Corp Surface coating gear cutter which exhibits excellent wear resistance in high-speed cutting work

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736565A1 (en) * 2005-06-22 2006-12-27 Seco Tools Ab Composite coatings for finishing of hardened steels
JP2009255282A (en) * 2008-03-28 2009-11-05 Mitsubishi Materials Corp Cutting tool formed of surface-coated cubic boron nitride base ultra high-pressure sintered material
JP2012086323A (en) * 2010-10-21 2012-05-10 Mitsubishi Materials Corp Surface coating gear cutter which exhibits excellent wear resistance in high-speed cutting work

Similar Documents

Publication Publication Date Title
CN104662195B (en) Instrument with TiAlCrSiN PVD coatings
US5656383A (en) Coated member having excellent hardness and, adhesive properties
KR101635487B1 (en) Cutting tool
KR20130006666A (en) Cutting tool
JP3766003B2 (en) Coated cutting tool
JP2007119795A (en) Hard film, and coated tool with hard film
JP2007084899A (en) Coating member, and method for coating coating member
JP3586218B2 (en) Coated cutting tool
JP2004283930A (en) Hob for cutting and gear processing method
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP2007254785A (en) Si-CONTAINING COMPOUND NITRIDE FILM, AND COATED CUTTING TOOL
JP3543755B2 (en) Surface coated high-speed tool steel gear cutting tool with excellent chip lubrication property with a hard coating layer
JP2004322229A (en) Gear processing method and coated hob
JP4720987B2 (en) Surface-coated high-speed tool steel gear cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials
JP2008173756A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy
JP2008006574A (en) Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting of heat resistant alloy
JP6043192B2 (en) Laminated coating with excellent wear resistance
JP2008173752A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed cutting of heat resistant alloy
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JPWO2020026389A1 (en) Hard coating and hard coating covering member
JP4844879B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP2004230515A (en) Tool for highly functional processing
KR102001877B1 (en) Method for Forming Coating Layers which are made of Distributed Amorphous and Nanocrystalline Alloy on a Cutting Tool
JP2019118997A (en) Surface-coated cutting tool
WO2022208654A1 (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070529