JP2004230515A - Tool for highly functional processing - Google Patents

Tool for highly functional processing Download PDF

Info

Publication number
JP2004230515A
JP2004230515A JP2003022734A JP2003022734A JP2004230515A JP 2004230515 A JP2004230515 A JP 2004230515A JP 2003022734 A JP2003022734 A JP 2003022734A JP 2003022734 A JP2003022734 A JP 2003022734A JP 2004230515 A JP2004230515 A JP 2004230515A
Authority
JP
Japan
Prior art keywords
layer
film
tool
coating
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003022734A
Other languages
Japanese (ja)
Inventor
Norihiro Katou
範博 加藤
Masaru Sonobe
勝 園部
Yoshio Kizawa
敬男 木沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2003022734A priority Critical patent/JP2004230515A/en
Publication of JP2004230515A publication Critical patent/JP2004230515A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tool for highly functional processing of a film structure which sufficiently displays resistance of oxidization of a TiAlSiN film even when a content of Si exceeds 10% on a parent material of high speed steel and a cemented carbide alloy, and secures adhesivity between the covered parent material which is a tool base body and a hard coat, and hardness. <P>SOLUTION: This tool is alternately and respectively covered with, by arc discharge ion plating, more than one layers each of of an (a) layer made of a chemical composition a component of the hard coat of which is shown as (Ti<SB>x</SB>Al<SB>l-x-y</SB>Si<SB>y</SB>)(C<SB>z</SB>N<SB>l-z</SB>), where 0.3≤x≤0.45, 0.1<y≤0.3, 0≤z≤0.4 in atomic fraction of a metallic element and a (b) layer made of a chemical composition shown as (Ti<SB>x</SB>Al<SB>l-x</SB>)(C<SB>z</SB>N<SB>l-z</SB>), where 0.3≤x≤0.7, 0≤z≤0.2 in the atomic fraction of the metallic element, and the (b) layer is on a surface of the covered parent material. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、複層コーティングを施した金属材料などのフライス加工、切削加工、穿孔加工用の加工工具に関し、特に高能率加工でき高温下での耐酸化性、耐摩耗性及び密着性に優れた硬質被膜を被覆した工具に関する。
【0002】
【従来の技術】従来の硬質被膜を被覆した工具として、TiN、TiC、TiCNなどなどのセラミックスを単層又は複層にコーティングしたものが開発され、実用に供されてきた。これらの硬質被膜では切削工具の寿命延長を図る目的で耐摩耗性に優れた高硬度の硬質被膜が求められてきた。そして金属加工の高能率化と共に切削工具に要求される機能も従来の工具寿命から高能率加工時の刃先保護へと変化して来た。高能率加工では切削速度の増加に従って加工時の発熱量も増大しており、それに伴って硬質被膜も従来のTiC、TiCN被膜から例えば特開平2−194159号公報に開示するような耐熱性に優れたTiAlN被膜へと変遷して来た。ところが、近年の加工機械の能力向上に伴って切削速度がさらに向上し、TiAlN被膜でも耐熱性が不十分になってきた。これに対してTiAlN膜の耐熱性を向上させる添加元素についての研究が行われ、特許文献1に記述されているSiの添加が耐熱性の向上に対して有効であることが分かった。しかしながら、金属元素の原子分率でSiの含有量が10%を越えると耐熱性自身は向上するものの被膜自身の密着性が低下し、かつ被膜の硬度が低下するため、十分な耐摩耗性が得られなかった。このためSiの含有量が10%を越えても被膜の密着性と硬度が確保されている硬質被膜の開発が期待されていた。
【0003】
【特許文献1】特許2793773 請求項1、〔0010〕
【特許文献2】特許3089262 請求項2、〔0014〕表1
【特許文献3】特開2002−96205 請求項1、〔0029〕表3
【特許文献4】特開2002−337002 請求項1、〔0018〕表1
【特許文献5】特開2002−337006 請求項1、〔0022〕表1
【0004】
この他にも金属加工の高能率化を目的としてTiAlN被膜にSiを添加した例がいくつかあるが、それぞれ次の様な問題があった。特許文献2ではTiAlSi合金をターゲット材料として用いスパッタリング法によりTiAlSiN膜を成膜しているが、スパッタリング法ではターゲット材料に用いている材 料元素のスパッタ収率の相違により成分が継続的に変化しやすいため、この変化を見込んだ組成のターゲットを要する。また、被膜の密着性が必ずしも良好でなく、複雑な形状の基材を被覆する場合の生産性も低い。さらにスパッタ粒子のイオン化率が低いため、基板に突入するイオンの量が少なく、従って十分な膜硬さが得られないという欠点があった。さらに成膜速度が遅く量産化が困難である。
【0005】
さらに、特許文献3では、工具基体に直接にTi、Al、Siからなる金属元素と、B、C、N、Oから選択される少なくとも1種以上の元素から構成される硬質層を1層以上被覆した硬質被覆工具において、該硬質層にSiの窒化物層を介在させたものが開示され、その〔0029〕表3では、TiAlSiN膜の上にTiAlN膜を被覆したものが開示されている。しかしながら工具基体に直接にTiAlSiN膜、又はTiAlSiN膜の上にTiAlN膜を被覆したものでは、工具基体とTiAlSiN膜との密着性が悪く、硬質被膜の硬度が低下するため、十分な耐摩耗性が得られなかった。
【0006】
また、特許文献4では、工具基体表面に直接にTi、Al、Siからなる金属元素と、B、C、N、Oから選択される少なくとも1種以上の元素から構成される硬質層を1層以上被覆した硬質被覆工具において、該硬質層にSiを含有し、相対的にSiに富みアモルファスであるTiとAlとSiとC、N、O、B、から選択されるすくなくとも1種以上の化合物相と、相対的にSiに乏しい結晶質のTiとAlとSiとC、N、O、B、から選択されるすくなくとも1種以上の化合物相と、から構成されたものが開示され、その〔0018〕表1では、Siに富む化合物相とSiに乏しい化合物相とから構成されたTiAlSiN膜と、比較例として被覆条件により均一な(TiAlSi)N固溶体被膜であるTiAlSiN膜と、かかる各TiAlSiN膜の上にTiAlN膜を被覆したものが開示されている。相対的にSiに富む化合物相と相対的にSiに乏しい化合物相とから構成されたTiAlSiN膜は製造が複雑で極めて厳格な工程管理を行なわないと所望の構成の被膜を形成することが難しく、多くの手間とコストを要するだけでなく、工具基体に直接にTiAlSiN膜、又はTiAlSiN膜の上にTiAlN膜を被覆したものでは、工具基体とTiAlSiN膜との密着性が悪く、硬質被膜の硬度が低下するため、十分な耐摩耗性が得られなかった。
【0007】
同様に、特許文献5では、その〔0022〕表1では特許文献4と同様な、Siに富む化合物相とSiに乏しい化合物相とから構成されたTiAlSiN膜と、かかるTiAlSiN膜の上にTiAlN膜を被覆したものが開示されている。相対的にSiに富む化合物相と相対的にSiに乏しい化合物相とから構成されたTiAlSiN膜は製造が複雑で極めて厳格な工程管理を行なわないと所望の構成の被膜を形成することが難しく、多くの手間とコストを要するだけでなく、工具基体に直接にTiAlSiN膜、又はTiAlSiN膜の上にTiAlN膜を被覆したものでは、工具基体とTiAlSiN膜との密着性が悪く、硬質被膜の硬度が低下するため、十分な耐摩耗性が得られなかった。
【0008】
【発明が解決しようとする課題】本発明の課題は、TiAlSiN系膜の優れた耐酸化性に注目し、金属元素の原子分率でSiの含有量が10%を越えてもTiAlSiN系膜の耐酸化性を充分に発揮することのでき、工具基体である被覆母材と硬質被膜との密着性と硬度が確保された膜構造を提供することにある。
【0009】
【課題を解決するための手段】このため本発明は、高速度鋼、超硬合金のいずれかを母材質とし、アーク放電イオンプレーティング法により硬質被膜を被覆してなる工具であって、前記硬質被膜の成分が、
(TiAl1−x−y Si)(C1−z )、ただし金属元素の原子分率で
0.3≦x≦0.45,0.1<y≦0.3, 0≦z≦0.4 で示される化学組成からなるa層と、
(TiAl1−x )(C1−z )、ただし金属元素の原子分率で、
0.3≦x≦1.0,0≦z≦0.2 で示される化学組成からなるb層と、
がそれぞれ1層以上交互に被覆されたものであり、
かつ、b層が被覆母材表面上にあることを特徴とする高機能加工工具を提供することによって上述した課題を解決した。
【0010】
より望ましくは、前記a層のx、y、zは金属元素の原子分率で、
0.31≦x≦0.39,0.11<y≦0.21,0≦z≦0.4,そして
前記b層のx、y、zは金属元素の原子分率で、 0.4≦x≦0.6,
0≦z≦0.2 である
【0011】
【発明の効果】本発明者らはTiAlSiN系膜の耐熱性をより一層向上させることを目的として大気中での耐酸化性を向上させることのできるSi添加量の範囲を調査した。その結果表1に示す様にSiの添加量が金属元素の原子分率で10%を越えた場合に耐酸化性向上の効果が高くSi添加量の増加に伴ってその効果が高くなることを見出した。しかしながら、特許文献1にも記載があるようにSi添加量の増加は結晶系が立方晶から六法晶に変化してしまい、被膜硬さが低下して十分な耐摩耗性を得ることが出来なくなる。一般に物理気相蒸着法により成膜された被覆膜は成膜される下地の結晶構造および結晶方位の影響を受け、結晶構造が等しく格子定数が近い結晶系では特にその傾向は顕著になることが一般的に知られている。本発明者らは気相合成法のこのような特性を利用し、上述した本発明の構成の、被覆母材とTiAlSiN系膜との界面に結晶学的に格子定数が近い立方晶系のTiAlN被膜を被覆することで、被覆母材上に直接にTiAlSiN膜、又はTiAlSiN膜の上にTiAlN膜を被覆したものに比べて、工具基体である被覆母材とTiAlN膜との密着性を良くし、TiAlN膜の上に被覆されたTiAlSiN膜とTiAlN膜との密着性を良くし、被覆母材上の硬質被膜の硬度の低下を防止して、TiAlN膜よりも優れた硬度と高い密着性を有する硬質被膜を得た。本発明における硬質被膜の構成を図1に示す。
【0012】
【表1】

Figure 2004230515
【0013】
本発明の硬質被膜a層を構成する金属元素中のTiの原子比率は、図2に示した膜硬度の測定結果から、金属元素の原子分率で30%以上、45%以下、より望ましくは31%以上、39%以下を満足することが必要である。図2において左端のものは比較例である。同じく硬質被膜a層におけるSiの添加量は、耐酸化性の観点から金属元素の原子分率で10%以上で多ければ多いほど効果が高いが、30%を越えると密着性が低下し、切削に耐えることが出来ない。より望ましくは11%以上、21%以下である。
【0014】
本発明において硬質被膜a層の密着性を向上し、被膜の硬度低下を抑制する下地の硬質被膜b層TiAlCN膜としてはa層と結晶構造の等しいTiAlN系の被膜である必要がある。従って硬質被膜b層における金属元素中のTiの原子比率は金属元素の原子分率で70%以下を満足する必要があり、0%、すなわちTiNでもかまわないが、より望ましくは同40%以上60%以下である。
【0015】
又、本発明では硬質被膜a層およびb層の窒素の一部を炭素で置き換えることが可能であるが、硬質被膜a層においては炭素の添加量が増えると耐酸化性が低下することから金属元素の原子分率で40%以下、より望ましくは20%以下である必要があり、硬質被膜b層においては炭素の添加量が増えると密着性が低下するため20%以下である必要がある。
【0016】
切削工具としての適用する場合の硬質被膜a層の厚さとしては0.3μm以上10μm以下、より望ましくは2.1μm以上3.2μm以下であることが望ましいく、硬質被膜b層の厚さとしては0.2μm以上5μm以下、より望ましくは0.3μm以上0.6μm以下であることが望ましく、それぞれ下限値未満では膜自体の強度が不足し、また上限値以上では切削時の衝撃によって被膜にきれつが生じ、膜厚が薄い場合と同様に母材を保護することができない。そして全体の硬質被膜の厚さとしては0.5μm以上10μm以下、より望ましくは2.4μm以上3.7μm以下であることが望ましく、膜の厚さが0.5μm未満であると膜自体の強度が不足し、被膜に容易に亀裂が入るため、母材を発熱から保護することができない。また、被膜の厚さが10μmを越えると切削時の衝撃によって被膜にきれつが生じ、膜厚が薄い場合と同様に母材を保護することができない。
【0017】
【発明の実施の形態】〔実施例1〕図3に示すアーク方式イオンプレーティング装置に、12.7mm角の超硬合金チップ素材を装着して真空ポンプにて0.133Pa以下まで排気し、ヒータにより400〜500℃に加熱した。所定の温度に達した後、アルゴンガスによってイオンボンバードを施した上、0.666〜0.4Paの窒素ガスを導入して硬質被膜b層としてTiN膜又はTiCN膜を0.3μm成膜した。その後、硬質被膜b層の上にTi0.4 Al0.4 Si0.2 ,Ti0.3 Al0.5 Si0.2 またはTi0.5 Al0.5 ターゲットを組み合わせて、基板電圧50Vを印加して、表1に示す金属元素の原子分率で示す種々の組成の硬質被膜a層を得た。電子プローブマイクロアナリシスにより得られた硬質被膜bの金属成分の構成比とマイクロビッカース硬度計で測定した被膜の硬度を表1に示す。表1からSiの添加により膜硬度が向上していること、ならびにSi含有量が10%を越えた場合においても被膜の硬度低下が生じていないことがわかる。
【0018】
〔実施例2〕実施例1で作製した被覆超硬チップを大気中で1000℃、1時間加熱保持し、鋼球による擦過痕を利用したカロテスト法により酸化物層の膜厚を測定した結果を表1中に併記した。従来例1,2,3及び比較例2ではSi含有量が10%より少ないために耐酸化性が本発明品よりも劣っていた。
【0019】
〔実施例3〕実施例1に示したコーティング条件にて超硬製のエンドミルφ10に、表2に示す金属元素の原子分率で示す当該硬質被膜を被覆し、下記の切削条件にて切削試験を実施した。切削試験結果を表2に示す。
Figure 2004230515
【0020】
【表2】
Figure 2004230515

【図面の簡単な説明】
【図1】本発明の実施の形態の膜構成を示す説明図。
【図2】本発明の実施例1によって得られた被膜の硬度分布を示すグラフ。
【図3】本発明の実施例実施例1〜3に使用したアーク方式イオンプレーティング装置のブロック図。
【符号の説明】
1・・真空装置 2・・電子銃 3・・工具取り付け治具
4・・アノード 5・・金属蒸発源 6・・アルゴンガス導入口
7・・窒素ガス導入口 8・・金属蒸発源用直流電源 9・・電子銃用直流電源
10・・基板用直流電源 11・・真空排気口 12・・加熱用ヒータ[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a machining tool for milling, cutting, and drilling a metal material having a multi-layer coating, and more particularly to a high-efficiency machining, oxidation resistance and abrasion resistance at high temperatures. The present invention relates to a tool coated with a hard coating having excellent properties and adhesion.
[0002]
2. Description of the Related Art As a conventional tool coated with a hard film, a tool coated with ceramics such as TiN, TiC, TiCN or the like in a single layer or a plurality of layers has been developed and put to practical use. For these hard coatings, high hardness hard coatings having excellent wear resistance have been demanded in order to extend the life of cutting tools. The functions required for cutting tools have been changing from the conventional tool life to the protection of the cutting edge during high-efficiency machining with the increase in metal machining efficiency. In high-efficiency machining, the calorific value at the time of machining increases as the cutting speed increases. Accordingly, the hard coating is also superior to conventional TiC and TiCN coatings in heat resistance as disclosed in, for example, JP-A-2-194159. Has changed to a TiAlN coating. However, the cutting speed has been further improved with the recent improvement in processing machine performance, and even with a TiAlN film, the heat resistance has become insufficient. On the other hand, a study has been conducted on an additive element for improving the heat resistance of the TiAlN film, and it has been found that the addition of Si described in Patent Document 1 is effective for improving the heat resistance. However, when the content of Si exceeds 10% in terms of the atomic ratio of the metal element, the heat resistance itself is improved, but the adhesion of the film itself is reduced, and the hardness of the film is reduced. Could not be obtained. For this reason, the development of a hard coating in which the adhesion and hardness of the coating are ensured even when the content of Si exceeds 10% has been expected.
[0003]
[Patent Document 1] Japanese Patent 2793773 Claim 1, [0010]
[Patent Document 2] Japanese Patent No. 3089262 Claim 2, [0014] Table 1
[Patent Document 3] JP-A-2002-96205 Claim 1, [0029] Table 3
[Patent Document 4] JP-A-2002-337002 Claim 1, [0018] Table 1
[Patent Document 5] JP-A-2002-337006 Claim 1, [0022] Table 1
[0004]
In addition to these, there are some examples in which Si is added to a TiAlN film for the purpose of improving the efficiency of metal working, but each has the following problems. In Patent Document 2, a TiAlSiN film is formed by a sputtering method using a TiAlSi alloy as a target material. However, in the sputtering method, components continuously change due to a difference in a sputtering yield of a material element used in the target material. Therefore, a target having a composition that allows for this change is required. Further, the adhesion of the coating is not always good, and the productivity when coating a substrate having a complicated shape is low. Furthermore, since the ionization rate of sputtered particles is low, the amount of ions rushing into the substrate is small, so that there is a disadvantage that sufficient film hardness cannot be obtained. Furthermore, the film formation rate is low and mass production is difficult.
[0005]
Further, in Patent Document 3, one or more hard layers composed of a metal element composed of Ti, Al, and Si and at least one element selected from B, C, N, and O are directly provided on a tool base. A coated hard-coated tool in which a silicon nitride layer is interposed in the hard layer is disclosed. [0029] Table 3 discloses a tool in which a TiAlN film is coated on a TiAlSiN film. However, if the tool base is directly coated with a TiAlSiN film or a TiAlSiN film coated with a TiAlN film, the adhesion between the tool base and the TiAlSiN film is poor, and the hardness of the hard coating is reduced. Could not be obtained.
[0006]
In Patent Document 4, one hard layer composed of a metal element composed of Ti, Al, and Si and at least one or more elements selected from B, C, N, and O is directly provided on a tool base surface. In the hard-coated tool coated as described above, at least one compound selected from Ti, Al, Si, and C, N, O, and B, which contains Si in the hard layer and is relatively rich and amorphous. A phase comprising at least one phase selected from the group consisting of crystalline Ti, Al, Si and C, N, O, and B, which are relatively low in Si, and at least one compound phase selected from the group consisting of C, N, O, and B. Table 1 shows that a TiAlSiN film composed of a compound phase rich in Si and a compound phase poor in Si, and a TiAlSiN film which is a uniform (TiAlSi) N solid solution film under coating conditions as a comparative example. Those coated with a TiAlN film on the TiAlSiN film is disclosed. The production of a TiAlSiN film composed of a relatively Si-rich compound phase and a relatively Si-poor compound phase is difficult, and it is difficult to form a film having a desired structure unless extremely strict process control is performed. Not only requires much labor and cost, but also in the case where a TiAlSiN film is directly coated on a tool base or a TiAlN film is coated on a TiAlSiN film, the adhesion between the tool base and the TiAlSiN film is poor, and the hardness of the hard coating is low. As a result, sufficient wear resistance was not obtained.
[0007]
Similarly, Patent Literature 5 discloses a TiAlSiN film composed of a Si-rich compound phase and a Si-poor compound phase in Table 1 as in Patent Literature 4, and a TiAlN film on the TiAlSiN film. Are disclosed. The production of a TiAlSiN film composed of a relatively Si-rich compound phase and a relatively Si-poor compound phase is difficult, and it is difficult to form a film having a desired structure unless extremely strict process control is performed. Not only requires much labor and cost, but also in the case where a TiAlSiN film is directly coated on a tool base or a TiAlN film is coated on a TiAlSiN film, the adhesion between the tool base and the TiAlSiN film is poor, and the hardness of the hard coating is low. As a result, sufficient wear resistance was not obtained.
[0008]
An object of the present invention is to focus on the excellent oxidation resistance of a TiAlSiN-based film, and even if the content of Si exceeds 10% by atomic ratio of a metal element, the TiAlSiN-based film has It is an object of the present invention to provide a film structure that can sufficiently exhibit oxidation resistance and that ensures the adhesion and hardness between a coating base material as a tool base and a hard coating.
[0009]
Accordingly, the present invention provides a tool comprising a high-speed steel or a cemented carbide as a base material and coated with a hard coating by an arc discharge ion plating method. The component of the hard coating is
(Ti x Al 1-x- y Si y) (C z N 1-z), except in atomic percent of metallic elements 0.3 ≦ x ≦ 0.45,0.1 <y ≦ 0.3, 0 A layer having a chemical composition represented by ≦ z ≦ 0.4,
(Ti x Al 1-x) (C z N 1-z), except in atomic percent of metallic elements,
A b layer having a chemical composition represented by 0.3 ≦ x ≦ 1.0 and 0 ≦ z ≦ 0.2;
Are alternately coated by at least one layer,
In addition, the above-mentioned problem has been solved by providing a high-performance machining tool characterized in that the layer b is on the surface of the coated base material.
[0010]
More preferably, x, y, and z of the a layer are atomic percentages of a metal element,
0.31 ≦ x ≦ 0.39, 0.11 <y ≦ 0.21, 0 ≦ z ≦ 0.4, and x, y, and z of the b layer are the atomic fractions of the metal elements, and 0.4 ≦ x ≦ 0.6,
0 ≦ z ≦ 0.2
The present inventors have investigated the range of the amount of Si that can improve the oxidation resistance in air for the purpose of further improving the heat resistance of the TiAlSiN-based film. As a result, as shown in Table 1, when the addition amount of Si exceeds 10% in the atomic fraction of the metal element, the effect of improving the oxidation resistance is high, and the effect increases as the addition amount of Si increases. I found it. However, as described in Patent Document 1, an increase in the amount of added Si changes the crystal system from a cubic system to a hexagonal system, and reduces the hardness of the coating, making it impossible to obtain sufficient wear resistance. . In general, coating films formed by physical vapor deposition are affected by the underlying crystal structure and crystal orientation, and this tendency is particularly pronounced in crystal systems with the same crystal structure and similar lattice constants. Is generally known. The present inventors take advantage of such characteristics of the vapor phase synthesis method, and have a cubic TiAlN having a crystallographically close lattice constant to the interface between the coating base material and the TiAlSiN-based film of the above-described configuration of the present invention. By coating the coating, the adhesion between the coating base material as the tool base and the TiAlN film is improved as compared with a TiAlSiN film directly on the coating base material or a TiAlN film coated on the TiAlSiN film. , To improve the adhesion between the TiAlN film and the TiAlSiN film coated on the TiAlN film, prevent the hardness of the hard coating on the coating base material from decreasing, and achieve a higher hardness and higher adhesion than the TiAlN film. To obtain a hard coating. FIG. 1 shows the configuration of the hard coating according to the present invention.
[0012]
[Table 1]
Figure 2004230515
[0013]
From the measurement results of the film hardness shown in FIG. 2, the atomic ratio of Ti in the metal element constituting the hard coating a layer of the present invention is 30% or more and 45% or less in terms of the atomic ratio of the metal element, and more desirably. It is necessary to satisfy 31% or more and 39% or less. In FIG. 2, the one on the left is a comparative example. Similarly, from the viewpoint of oxidation resistance, the more the amount of Si added to the hard coating a layer is 10% or more in terms of the atomic ratio of the metal element, the more the effect is increased. I can not stand it. More preferably, it is 11% or more and 21% or less.
[0014]
In the present invention, the TiAlCN film having the same crystal structure as the a layer needs to be a TiAlN-based film as the underlying hard film b layer TiAlCN film which improves the adhesion of the hard film a layer and suppresses the decrease in hardness of the film. Therefore, the atomic ratio of Ti in the metal element in the hard coating b layer must satisfy 70% or less in terms of the atomic fraction of the metal element, and may be 0%, that is, TiN, but more preferably 40% or more. % Or less.
[0015]
Further, in the present invention, it is possible to replace a part of nitrogen in the hard coating a layer and the b layer with carbon. However, in the hard coating a layer, the oxidation resistance decreases as the amount of added carbon increases. The atomic fraction of the element must be 40% or less, more desirably 20% or less. In the hard coating b layer, if the amount of carbon added increases, the adhesion decreases, and therefore it needs to be 20% or less.
[0016]
When applied as a cutting tool, the thickness of the hard coating a layer is preferably not less than 0.3 μm and not more than 10 μm, more preferably not less than 2.1 μm and not more than 3.2 μm. Is preferably 0.2 μm or more and 5 μm or less, more preferably 0.3 μm or more and 0.6 μm or less. If the value is less than the lower limit, the strength of the film itself is insufficient. Cracks occur and the base material cannot be protected as in the case where the film thickness is small. The thickness of the entire hard coating is preferably 0.5 μm or more and 10 μm or less, more preferably 2.4 μm or more and 3.7 μm or less. If the thickness of the film is less than 0.5 μm, the strength of the film itself is reduced. Is insufficient and the coating is easily cracked, so that the base material cannot be protected from heat generation. On the other hand, if the thickness of the coating exceeds 10 μm, cracks occur in the coating due to impact during cutting, and the base material cannot be protected as in the case of a thin film.
[0017]
[Embodiment 1] A cemented carbide chip material of 12.7 mm square is mounted on an arc type ion plating apparatus shown in FIG. 3 and evacuated to 0.133 Pa or less by a vacuum pump. It heated to 400-500 degreeC with the heater. After reaching a predetermined temperature, ion bombardment was performed with an argon gas, and a nitrogen gas of 0.666 to 0.4 Pa was introduced to form a TiN film or a TiCN film of 0.3 μm as a hard coating b layer. Then, a Ti 0.4 Al 0.4 Si 0.2 , Ti 0.3 Al 0.5 Si 0.2 or a Ti 0.5 Al 0.5 target is combined on the hard coating b layer, and a substrate voltage is applied. A voltage of 50 V was applied to obtain hard coating layers a of various compositions represented by the atomic percentages of the metal elements shown in Table 1. Table 1 shows the composition ratio of the metal component of the hard coating b obtained by the electron probe microanalysis and the hardness of the coating measured by a micro Vickers hardness meter. It can be seen from Table 1 that the film hardness was improved by the addition of Si, and that the hardness of the film did not decrease even when the Si content exceeded 10%.
[0018]
Example 2 The coated carbide tip prepared in Example 1 was heated and held in the air at 1000 ° C. for 1 hour, and the result of measuring the thickness of the oxide layer by a calotest method using scratches caused by steel balls was used. Also shown in Table 1. In Conventional Examples 1, 2, 3, and Comparative Example 2, the oxidation resistance was inferior to that of the product of the present invention because the Si content was less than 10%.
[0019]
[Example 3] Under the coating conditions shown in Example 1, an end mill φ10 made of carbide was coated with the hard coating indicated by the atomic fraction of the metal element shown in Table 2, and a cutting test was performed under the following cutting conditions. Was carried out. Table 2 shows the cutting test results.
Figure 2004230515
[0020]
[Table 2]
Figure 2004230515

[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating a film configuration according to an embodiment of the present invention.
FIG. 2 is a graph showing a hardness distribution of a coating obtained according to Example 1 of the present invention.
FIG. 3 is a block diagram of an arc-type ion plating apparatus used in Examples 1 to 3 of the present invention.
[Explanation of symbols]
1. Vacuum device 2. Electron gun 3. Tool mounting jig 4. Anode 5. Metal evaporation source 6. Argon gas inlet 7. Nitrogen gas inlet 8. DC power supply for metal evaporation source 9 DC power supply for electron gun 10 DC power supply for substrate 11 Vacuum exhaust port 12 Heater for heating

Claims (8)

高速度鋼、超硬合金のいずれかを母材質とし、アーク放電イオンプレーティング法により硬質被膜を被覆してなる工具であって、前記硬質被膜の成分が、(TiAl1−x−y Si)(C1−z )、ただし、金属元素の原子分率で0.3≦x≦0.45, 0.1<y≦0.3, 0≦z≦0.4
で示される化学組成からなるa層と、
(TiAl1−x )(C1−z )、ただし、金属元素の原子分率で
0.3≦x≦1.0,0≦z≦0.2 で示される化学組成からなるb層と、
がそれぞれ1層以上交互に被覆されたものであり、
かつ、b層が被覆母材表面上にあることを特徴とする高機能加工工具。
High speed steel, one of the cemented carbide as a base material, a tool formed by coating a hard coating by arc discharge ion plating method, components of the hard coating, (Ti x Al 1-x -y Si y ) (C z N 1-z ), where 0.3 ≦ x ≦ 0.45, 0.1 <y ≦ 0.3, 0 ≦ z ≦ 0.4 in atomic fraction of the metal element
A layer having a chemical composition represented by:
(Ti x Al 1-x ) (C z N 1-z ), where the chemical composition is represented by 0.3 ≦ x ≦ 1.0 and 0 ≦ z ≦ 0.2 in terms of the atomic fraction of the metal element. b layer,
Are alternately coated by at least one layer,
A high-performance machining tool, wherein the b layer is on the surface of the coated base material.
高速度鋼、超硬合金のいずれかを母材質とし、アーク放電イオンプレーティング法により硬質被膜を被覆してなる工具であって、前記硬質被膜の成分が、(TiAl1−x−y Si)(C1−z )、ただし、金属元素の原子分率で0.31≦x≦0.39, 0.11<y≦0.21, 0≦z≦0.4で示される化学組成からなるa層と、
(TiAl1−x )(C1−z )、ただし、金属元素の原子分率で
0.4≦x≦0.6, 0≦z≦0.2 で示される化学組成からなるb層と、
がそれぞれ1層以上交互に被覆されたものであり、
かつ、b層が被覆母材表面上にあることを特徴とする高機能加工工具。
High speed steel, one of the cemented carbide as a base material, a tool formed by coating a hard coating by arc discharge ion plating method, components of the hard coating, (Ti x Al 1-x -y Si y ) (C z N 1-z ), where 0.31 ≦ x ≦ 0.39, 0.11 <y ≦ 0.21, and 0 ≦ z ≦ 0.4 in terms of the atomic fraction of the metal element. A layer comprising a chemical composition
(Ti x Al 1-x ) (C z N 1-z ), where the chemical composition is represented by 0.4 ≦ x ≦ 0.6 and 0 ≦ z ≦ 0.2 in terms of the atomic fraction of the metal element. b layer,
Are alternately coated by at least one layer,
A high-performance machining tool, wherein the b layer is on the surface of the coated base material.
前記a層の膜厚が0.3〜5μmであることを特徴とする請求項1又は請求項2記載の高機能加工工具。3. The high-performance machining tool according to claim 1, wherein the thickness of the a-layer is 0.3 to 5 [mu] m. 前記b層の膜厚が0.3〜5μmであることを特徴とする請求項3記載の高機能加工工具。4. The high-performance machining tool according to claim 3, wherein the thickness of the b layer is 0.3 to 5 [mu] m. 前記a層の膜厚が2.1〜3.2μmであることを特徴とする請求項1又は請求項2記載の高機能加工工具。3. The high-performance machining tool according to claim 1, wherein the thickness of the a-layer is 2.1 to 3.2 [mu] m. 前記b層の膜厚が0.3〜0.6μmであることを特徴とする請求項1又は請求項2記載の高機能加工工具。The high-performance machining tool according to claim 1, wherein the thickness of the b-layer is 0.3 to 0.6 μm. 前記a層及びb層を合わせた前記硬質被膜の膜厚が0.5〜10μmであることを特徴とする請求項3乃至請求項6のいずれか1に記載の高機能加工工具。7. The high-performance machining tool according to claim 3, wherein a thickness of the hard coating including the a-layer and the b-layer is 0.5 to 10 μm. 8. 前記a層及びb層を合わせた前記硬質被膜の膜厚が2.4〜3.7μmであることを特徴とする請求項3乃至請求項6のいずれか1に記載の高機能加工工具。The high-performance machining tool according to any one of claims 3 to 6, wherein a thickness of the hard coating including the a layer and the b layer is 2.4 to 3.7 µm.
JP2003022734A 2003-01-30 2003-01-30 Tool for highly functional processing Pending JP2004230515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003022734A JP2004230515A (en) 2003-01-30 2003-01-30 Tool for highly functional processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003022734A JP2004230515A (en) 2003-01-30 2003-01-30 Tool for highly functional processing

Publications (1)

Publication Number Publication Date
JP2004230515A true JP2004230515A (en) 2004-08-19

Family

ID=32951738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003022734A Pending JP2004230515A (en) 2003-01-30 2003-01-30 Tool for highly functional processing

Country Status (1)

Country Link
JP (1) JP2004230515A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012035379A (en) * 2010-08-09 2012-02-23 Mitsubishi Materials Corp Surface-coated cutting tool
JP2013513027A (en) * 2009-12-06 2013-04-18 イスカーリミテッド Coated article and method for making a coated article
US20140234616A1 (en) * 2011-09-30 2014-08-21 Cemecon Ag Coating of substrates using hipims
KR20150076468A (en) * 2013-12-26 2015-07-07 재단법인 포항산업과학연구원 Nitride coating layer and the method thereof
JP2015178171A (en) * 2014-02-26 2015-10-08 三菱マテリアル株式会社 Surface coated cutting tool excellent in abnormal damage resistance and wear resistance
US10556273B2 (en) * 2014-11-27 2020-02-11 Mitsubishi Materials Corporation Surface-coated cutting tool having excellent chipping resistance and wear resistance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513027A (en) * 2009-12-06 2013-04-18 イスカーリミテッド Coated article and method for making a coated article
JP2012035379A (en) * 2010-08-09 2012-02-23 Mitsubishi Materials Corp Surface-coated cutting tool
US20140234616A1 (en) * 2011-09-30 2014-08-21 Cemecon Ag Coating of substrates using hipims
US9416440B2 (en) * 2011-09-30 2016-08-16 Cemecon Ag Coating of substrates using HIPIMS
KR20150076468A (en) * 2013-12-26 2015-07-07 재단법인 포항산업과학연구원 Nitride coating layer and the method thereof
KR101637945B1 (en) * 2013-12-26 2016-07-11 재단법인 포항산업과학연구원 Nitride coating layer and the method thereof
JP2015178171A (en) * 2014-02-26 2015-10-08 三菱マテリアル株式会社 Surface coated cutting tool excellent in abnormal damage resistance and wear resistance
US10556273B2 (en) * 2014-11-27 2020-02-11 Mitsubishi Materials Corporation Surface-coated cutting tool having excellent chipping resistance and wear resistance

Similar Documents

Publication Publication Date Title
KR101831014B1 (en) Coated cutting tool insert
JP5238687B2 (en) Coating
KR101779634B1 (en) Pvd hybrid method for depositing mixed crystal layers
JP5190971B2 (en) Coating, cutting tool, and manufacturing method of coating
JP5822997B2 (en) Cutting tools
JP5527415B2 (en) Coated tool
EP2201154B1 (en) Method of producing a layer by arc-evaporation from ceramic cathodes
JPH07310173A (en) Hard film coated tool and hard film coated member excellent in adhesion
EP2839051A1 (en) High performance tools exhibiting reduced crater wear in particular by dry machining operations
WO2009150887A1 (en) Hard coating layer and method for forming the same
JP2012521300A (en) PVD coated tool
JP5373781B2 (en) Tool having a multilayer metal oxide coating and method of manufacturing the coated tool
JP2010188461A (en) Surface coated cutting tool
JP2008290163A (en) Coating film, cutting tool and coating film making method
JP6789503B2 (en) Hard film film formation method
JP2006297519A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting
JP3927621B2 (en) Hard coating, hard coating covering member and cutting tool
JP4967396B2 (en) Si-containing composite nitride film and coated cutting tool
JP2004230515A (en) Tool for highly functional processing
JP2002346811A (en) Coated sintered tool
JP2015157975A (en) Hard film, and forming method thereof
JP6895631B2 (en) Hard film film formation method
JP2010236092A (en) Wear resistant member having hard film and method of manufacturing the same
JP6743350B2 (en) Cutting tools
JP5229826B2 (en) Coating, cutting tool, and manufacturing method of coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306