JP2004283736A - Treating method of waste solution - Google Patents

Treating method of waste solution Download PDF

Info

Publication number
JP2004283736A
JP2004283736A JP2003079674A JP2003079674A JP2004283736A JP 2004283736 A JP2004283736 A JP 2004283736A JP 2003079674 A JP2003079674 A JP 2003079674A JP 2003079674 A JP2003079674 A JP 2003079674A JP 2004283736 A JP2004283736 A JP 2004283736A
Authority
JP
Japan
Prior art keywords
compound
waste liquid
fluorine
alkali metal
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003079674A
Other languages
Japanese (ja)
Other versions
JP3635643B2 (en
Inventor
Toshihiro Nishiyama
智弘 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHAMA STAINLESS CHEM KK
Nishiyama Stainless Chemical Co Ltd
Original Assignee
NISHAMA STAINLESS CHEM KK
Nishiyama Stainless Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHAMA STAINLESS CHEM KK, Nishiyama Stainless Chemical Co Ltd filed Critical NISHAMA STAINLESS CHEM KK
Priority to JP2003079674A priority Critical patent/JP3635643B2/en
Publication of JP2004283736A publication Critical patent/JP2004283736A/en
Application granted granted Critical
Publication of JP3635643B2 publication Critical patent/JP3635643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treating method of waste solution by which fluorine and boron can be removed from the waste solution containing boron fluoride compounds and fluorine can be removed from the waste solution containing silicon fluoride compounds. <P>SOLUTION: The treating method of the waste solution comprises treatment in which solid matter produced by adding an alkaline metal compound to the waste solution containing one or both among the boron fluoride compound and silicon fluoride compound is removed by a solid-liquid separation means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、溶液からフッ素およびホウ素のいずれか一方または双方の除去に関する発明であり、特に、工場廃液からフッ素、ホウ素を除去する廃液の処理方法に関するものである。
【0002】
【従来の技術】
ホウフッ素化合物を含有する廃液は、半田メッキ工場、有機合成のアルキル化、異性化、又は縮合・重合反応の際の触媒として使用する化学工場、その他、ホウフッ素化合物を製造する化学工場などで発生する。これらの廃液をそのまま一般の河川に排水することは、環境衛生上の観点から好ましくなく、水質汚濁防止法でもフッ素分は8mg/リットル以下、ホウ素分は10mg/リットル以下にして排水するように排水基準が改定され、都道府県によっては更に厳しい基準が制定されている。
【0003】
【発明が解決しようとする課題】
しかしながら、ホウフッ素化合物は、化学的に安定な化合物であり、通常のフッ素或いはホウ素除去処理法としての石灰との反応では、殆ど除去することができない。また、ホウフッ素化合物を含有する廃液を処理する技術としては、特許文献1、特許文献2、特許文献3および特許文献4などに記載の方法が提案されているが、これらにはそれぞれ次のような欠点がある。
【0004】
【特許文献1】特公昭52−32747号公報
【特許文献2】特公昭54−5628号公報
【特許文献3】特公昭54−18064号公報
【特許文献4】特公昭58−34193号公報
【0005】
先ず、特許文献1に記載の方法は、ホウフッ素化合物を含有する廃液に、カルシウム化合物を加え、フッ素を水に難溶性のフッ化カルシウム(CaF)として固定して分離する方法である。しかし、この場合には廃液を処理する際の条件が、ゲージ圧1kg/cm以上に加圧しつつ、100℃以上の高温にする必要があり、操作が煩雑である。
【0006】
次に特許文献2に記載の方法は、ホウフッ素化合物を含有する廃液に水酸化アルミニウムを添加し、20〜100℃の範囲で反応させ、ホウフッ素化合物をホウ素とアルミニウムフッ素化物とに分解し、次に、この液にカルシウム化合物を添加しアルミニウムフッ素化物をフッ化カルシウム(CaF)として固定して分離する方法である。しかし、この方法では、処理できる廃液中のフッ素化合物の濃度が最大5000ppmであるとの制約がある。
【0007】
また、特許文献3に記載の方法は、ホウフッ素化合物を含有する廃液に、硫酸アルミニウム、臭化アルミニウム、アルミニウムの塩化物、又は第二鉄塩の一種又は二種以上を添加して、ホウフッ素化合物を分解し、次いで、この廃液にカルシウム化合物の1つである水酸化カルシウムを添加して難溶性フッ化物として固液分離し、水溶性アルミニウム化合物として硫酸を添加してフロックを形成させてフッ素を分離除去する方法である。しかし、この方法によって常温で処理するには処理時間が長くなり、処理時間を短縮するには狭い範囲での温度制御(50±2℃)が必要である。また、処理できる廃液中のフッ素化合物の濃度が最大500ppm以下であるという制約もある。
【0008】
更に、特公昭58−34193号公報に記載の方法は、ホウフッ素化合物を含有する廃液に、金属アルミニウム、アルミン酸ナトリウム、硝酸アルミニウム、酢酸アルミニウム、またはミョウバンの内の少なくとも一種以上を分解剤として使用し、この廃液にカルシウム塩を添加又は添加しないで、生成沈殿物を分離除去する方法である。しかし、この方法によるときは、ホウフッ素化合物を分解させるのに長時間を要し、かつ、処理できる廃液中のフッ素化合物の濃度が最大7500ppm以下であるという制約がある。
【0009】
その他、上記の各方法の他に、ホウフッ素化合物に硝酸カリウムを添加して水に難溶性のホウフッ化カリウム塩(KBF)として、固定・回収する方法も定款されているが、処理後の廃液中に硝酸イオンが多量に存在し、固定・回収操作に加えて、処理後の廃液に別途中和処理を施さないと、排水基準を満たさないという問題があった。
【0010】
本発明は、上述した従来技術の問題点に鑑みてなされたものであって、煩雑な操作が必要とされず、また処理対象物の濃度にも特段の制約がない工場廃液の簡易な処理方法を提供することを課題とする。即ち、本発明は工場廃液からフッ素除去、および、当該廃液にホウ素が含まれている場合にはフッ素とホウ素除去を可能とする工場廃液の処理方法を課題とするものである。
【0011】
【課題を解決するための手段】
上記の課題を解決するため、本発明では、廃液にアルカリ金属化合物を添加することで生ずる固形分を固液分離手段で除去することを特徴とするものである。ホウフッ素化合物を含む廃液からの固形分分離回収では、廃液からホウ素及びフッ素を除去することができる。一方、珪フッ素化合物を含む廃液からの固形分分離回収では、フッ素を除去することができる。
【0012】
本発明の特徴であるアルカリ金属を含む薬品を添加し固形物を除去する処理は、廃液中のホウフッ素化合物の濃度が低濃度か高濃度であるかを選ばず、フッ素およびホウ素の除去を可能とするものである。同様に、珪フッ素化合物の濃度の高低を選ばず、フッ素の除去を可能とするものである。たとえ、廃液におけるホウフッ素化合物および珪フッ素化合物の濃度が飽和濃度であっても、本発明によればフッ素およびホウ素を除去できる。
【0013】
また、高濃度ホウフッ素化合物廃液からのフッ素除去処理に不向きであるカルシウム塩の添加によるフッ素除去処理を行う場合には、これに先だってアルカリ金属化合物を添加することで生ずる固形物を除去し、その後、カルシウム塩添加によるフッ素除去処理を行うことによってフッ素分を確実に除去することができる。
【0014】
一方、カルシウム塩を添加してのフッ素除去処理後にアルカリ金属化合物を添加して生成する固形物を除去することにより、ホウ素および残存するフッ素を除去することができる。
【0015】
さらに、アルカリ金属化合物を添加することで生成する固形分除去後に残存するホウ素は、アルミニウム金属、硫酸アルミニウム、硝酸アルミニウム、酢酸アルミニウム等のアルミニウム金属またはアルミニウム化合物のうち1種以上を添加(以下、単に「アルミニウム金属等を添加」することで生ずる固形分を分離除去することで容易に除去される。この処理を、上述のアルカリ金属化合物またはカルシウム塩の添加による処理前または後に行うかは、廃液に含まれるホウフッ素化合物および珪フッ素化合物濃度に応じて選択される。すなわち、ホウフッ素化合物および珪フッ素化合物が高濃度である廃液の場合、後述する多量のスラッジ発生を防止するため、アルカリ金属化合物添加処理を優先することになる。
【0016】
廃液へアルカリ金属化合物を添加しての固形分生成をアルカリ性条件下行った場合、スラッジ発生量は酸性条件下で固形分生成させるよりも5〜10倍の発生量となる。そのため、廃液へアルカリ金属添加を添加して固形分を生成させるには、酸性条件下で行うのが好ましい。通常、ホウフッ素化合物や珪フッ素化合物を含む廃液は酸性の廃液であるので、本発明によれば、廃液からのフッ素、ホウ素除去処理に先立ってなんら廃液のpH調整を行うことなく当該除去処理に入ることができる。
【0017】
廃液に添加するアルカリ金属化合物は、典型的にはアルカリ金属塩であり、好ましくは、ナトリウム塩又はカリウム塩、より好ましくはカリウム塩である。好ましいナトリウム塩としては、塩化ナトリウム、硫酸ナトリウムを例示することができる。また、好ましいカリウム塩としては、塩化カリウム、硫酸カリウム、フッ化カリウムを例示することができる。さらに好ましくは、塩化カリウムである。
【0018】
例えば、アルカリ金属化合物である塩化カリウムを添加する場合、理論的にはホウフッ素化合物と珪フッ素化合物の総モル数と1対1の割合で反応して固形分を生成するが、固形分生成を完全にならしめるため、ホウフッ素化合物と珪フッ素化合物の総モル数よりもアルカリ金属化合物を過剰に添加することが好ましい。また、固形分生成温度は、10〜40℃の常温で十分にホウ素及びフッ素含有固形分を反応生成させることができる。
【0019】
本発明において、アルカリ金属塩を添加して得られる固形分には、ケイフッ化カリウム、ケイフッ化ナトリウム、ホウフッ化カリウム、ホウフッ化ナトリウムその他のケイフッ化アルカリ金属塩の何れか一種以上が含まれている。固形分を分離回収するには、適宜な耐酸性の固液分離手段が使用されるが、好ましくは、耐酸フィルタープレスが使用される。なお、本発明は工場廃液中のフッ素及びホウ素の除去を主目的としたものであり、ホウフッ素化合物および珪フッ素化合物のいずれか一方又は双方を含有する廃液からのフッ素及びホウ素の除去である限り、工場廃液の処理に用途が限定されるものではない。
【0020】
本発明は、好ましくは、特徴であるアルカリ金属添加による生成固形分をする手段の後、カルシウム塩を添加して固形分を生成し、これを除去する処理を更に設けることである。より好ましくは、当該処理の後に残存するフッ素を除去するため、塩化カルシウムを添加して攪拌後、更に好ましくは、消石灰を添加して攪拌を更に設けることである。これらの操作によって生ずるフッ化カルシウムを固液分離することで、廃液に残存するフッ素をさらに除去できる。
【0021】
さらに、アルミニウム金属等を添加してホウフッ化物を分解し、消石灰を添加する処理を設けることが好ましい。この操作によって生ずるホウ素含有固形分を固液分離すれば、廃液に残存するホウ素をさらに除去することができる。
【0022】
アルミニウム金属等を添加する量は、廃液に含有されるホウフッ素化合物のモル数よりも多く添加するのが好ましい。さらに好ましくは、10倍以上のモル数を添加するのが良い。このアルミニウム金属等を添加することによって、ホウフッ素化合物が分解される。分解反応は廃液の凝固点以上であれば進行するが、温度が上昇すれば分解反応が促進される関係上、温度が高いほど好ましいことになる。一方、常温である10〜40℃の分解反応温度においても、ホウフッ素化合物を十分に分解させることができる。
【0023】
分解に要する時間は、廃液中のホウフッ素化合物の濃度に応じて調整されるべきものであるが、好ましくは1時間以上で、より好ましくは3時間以上である。
【0024】
アルミニウム金属等を添加することによるホウフッ素化合物の分解反応は、アルカリ性条件下で行い、当該分解処理後、消石灰を添加することで生ずる固形分を固液分離除去することで、廃液からのホウ素除去ができる。
【0025】
【発明の実施の形態】
以下、実施例に基づいて本発明をより具体的に説明するが、本発明は、以下の実施例に何ら限定されるものではない。
【0026】
【実施例1】
ガラス処理工場で使用されたホウフッ素化合物及び珪フッ素化合物を含有する廃液100mLに塩化カリウムを10重量%添加し、常温で一時間攪拌した後、廃液中に生じた固形分を濾過により固液分離した。
【0027】
この廃液処理前後のフッ素およびホウ素濃度を測定した結果、フッ素は74000mg/Lから28100mg/Lに減少し、ホウ素は1570mg/Lから122mg/Lに減少していた。なお、ケイ素は12600mg/Lから2800mg/Lに減少していた。
【0028】
ここで、フッ素濃度分析はイオンクロマト法で測定し、ホウ素及びケイ素濃度分析はICP発光分光分析法によって測定した。この点は、以下の実施例の場合も同様である。
【0029】
【実施例2】
図1に示すように、ガラス処理工場で使用されたホウフッ素化合物及び珪フッ素化合物を含有する廃液13リットルに、塩化カリウムを1.3Kg添加して常温で一時間攪拌した後(第一工程)、フィルタープレスで濾過することによって生じた固形分を固液分離した(第二工程)。
【0030】
第二工程の濾液に35重量%塩化カルシウム水廃液を0.32L添加して30分攪拌後、20重量%消石灰水廃液を0.13L添加して攪拌を一時間行った。その後、苛性ソーダを添加してpHを5に調整し、30分攪拌した(第三工程)。
次に、フィルタープレスにより濾過して廃液に生じている固形分を固液分離した(第四工程)。
【0031】
その後、第四工程の濾液に50重量%硫酸アルミニウム水溶液を0.27L添加して3時間攪拌した。次いで、pHが12になるように消石灰を添加して30分攪拌した(第五工程)。次に、再度フィルタープレスにより濾過して廃液に生じている固形分を固液分離した(第六工程)。
【0032】
これらの廃液処理前後のフッ素およびホウ素濃度を測定した結果、フッ素が120000ppmから7ppmまで減少し、ホウ素は3000ppmから8ppmに減少していた。
【0033】
水質汚濁防止法では、フッ素分は8ppm以下、ホウ素は10ppm以下であることを要するが、上記の結果は、この水質汚濁防止法の基準を満たしていることが確認された。
【0034】
【発明の効果】
以上説明したように、本発明によれば、ホウフッ素化合物を含む廃液からフッ素及びホウ素を除去することができ、珪フッ素化合物を含む廃液からフッ素を除去することができる。また、ホウフッ素化合物および珪フッ素化合物の濃度に特段の制約なく廃液の処理を可能とするものである。
【図面の簡単な説明】
【図1】本発明の実施例2を説明する図面である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the removal of either or both of fluorine and boron from a solution, and more particularly to a method for treating a waste liquid for removing fluorine and boron from a factory waste liquid.
[0002]
[Prior art]
Waste solutions containing fluorinated fluorine compounds are generated at solder plating plants, chemical plants used as catalysts in the alkylation, isomerization, or condensation / polymerization reactions of organic synthesis, and chemical plants that produce fluorinated fluorine compounds. I do. It is not preferable from the viewpoint of environmental sanitation to discharge these waste liquids into ordinary rivers as they are. Even in the Water Pollution Control Law, the fluorine content should be 8 mg / l or less, and the boron content should be 10 mg / l or less. Standards have been revised, and more stringent standards have been enacted in some prefectures.
[0003]
[Problems to be solved by the invention]
However, the fluorinated boron compound is a chemically stable compound, and can hardly be removed by a reaction with lime as a usual method for removing fluorine or boron. Further, as a technique for treating a waste liquid containing a borofluorine compound, methods described in Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, and the like have been proposed. Disadvantages.
[0004]
[Patent Document 1] Japanese Patent Publication No. 52-32747 [Patent Document 2] Japanese Patent Publication No. 54-5628 [Patent Document 3] Japanese Patent Publication No. 54-18064 [Patent Document 4] Japanese Patent Publication No. 58-34193 [0005] ]
First, the method described in Patent Literature 1 is a method in which a calcium compound is added to a waste liquid containing a fluorinated fluorine compound, and fluorine is fixed as calcium fluoride (CaF 2 ), which is hardly soluble in water, and separated. However, in this case, it is necessary to heat the waste liquid to a high temperature of 100 ° C. or more while applying a gauge pressure of 1 kg / cm 2 or more, and the operation is complicated.
[0006]
Next, in the method described in Patent Document 2, aluminum hydroxide is added to a waste liquid containing a borofluoride compound, and reacted at a temperature in the range of 20 to 100 ° C. to decompose the borofluoride compound into boron and an aluminum fluoride, Next, a calcium compound is added to the liquid, and the aluminum fluoride is fixed as calcium fluoride (CaF 2 ) and separated. However, this method has a limitation that the concentration of the fluorine compound in the waste liquid that can be treated is up to 5000 ppm.
[0007]
In addition, the method described in Patent Document 3 discloses a method in which one or more of aluminum sulfate, aluminum bromide, aluminum chloride, or a ferric salt is added to a waste liquid containing a borofluorine compound, and borofluoride is added. The compound is decomposed, and then calcium hydroxide, which is one of calcium compounds, is added to the waste liquid to perform solid-liquid separation as a sparingly soluble fluoride, and sulfuric acid is added as a water-soluble aluminum compound to form flocs and form fluorine. This is a method of separating and removing. However, this method requires a long processing time for processing at room temperature, and requires a temperature control (50 ± 2 ° C.) in a narrow range to shorten the processing time. There is also a restriction that the concentration of the fluorine compound in the waste liquid that can be treated is 500 ppm or less at the maximum.
[0008]
Furthermore, the method described in Japanese Patent Publication No. 58-34193 discloses a method of using at least one of metal aluminum, sodium aluminate, aluminum nitrate, aluminum acetate, or alum as a decomposing agent in a waste liquid containing a fluorinated compound. In this method, a precipitate is separated and removed without adding or adding a calcium salt to the waste liquid. However, according to this method, it takes a long time to decompose the fluorinated fluorine compound, and there is a restriction that the concentration of the fluorinated compound in the waste liquid that can be treated is 7500 ppm or less at the maximum.
[0009]
In addition to the above-mentioned methods, a method of adding potassium nitrate to a fluorinated compound to fix and recover as a water-insoluble potassium borofluoride salt (KBF 4 ) is also provided. There is a problem that the wastewater does not meet the drainage standard unless a large amount of nitrate ions are present therein and the wastewater after the treatment is not separately neutralized in addition to the fixing / recovery operation.
[0010]
The present invention has been made in view of the above-described problems of the related art, and does not require complicated operations, and has a simple method for treating a factory waste liquid without any particular limitation on the concentration of a substance to be treated. The task is to provide That is, an object of the present invention is to provide a method for treating a factory waste liquid that enables removal of fluorine from a factory waste liquid and, when the waste liquid contains boron, removal of fluorine and boron.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is characterized in that a solid content generated by adding an alkali metal compound to a waste liquid is removed by a solid-liquid separation means. In the separation and recovery of a solid content from a waste liquid containing a borofluorine compound, boron and fluorine can be removed from the waste liquid. On the other hand, in the separation and recovery of solids from waste liquid containing a fluorine compound, fluorine can be removed.
[0012]
The treatment for removing solids by adding a chemical containing an alkali metal, which is a feature of the present invention, enables removal of fluorine and boron regardless of whether the concentration of the borofluoride compound in the waste liquid is low or high. It is assumed that. Similarly, fluorine can be removed regardless of the concentration of the fluorine compound. Even if the concentration of the fluorinated compound and the fluorinated compound in the waste liquid is a saturated concentration, according to the present invention, fluorine and boron can be removed.
[0013]
In addition, when performing a fluorine removal treatment by adding a calcium salt that is unsuitable for the fluorine removal treatment from a high-concentration borane fluorine compound waste liquid, remove solids generated by adding an alkali metal compound prior to this, and then By performing the fluorine removal treatment by adding a calcium salt, the fluorine content can be reliably removed.
[0014]
On the other hand, boron and remaining fluorine can be removed by removing the solid matter generated by adding an alkali metal compound after the fluorine removal treatment by adding a calcium salt.
[0015]
Further, boron remaining after solid content removal generated by adding an alkali metal compound is added with one or more of aluminum metal or aluminum metal such as aluminum metal, aluminum sulfate, aluminum nitrate, and aluminum acetate (hereinafter, simply referred to as “metal”). It is easily removed by separating and removing the solid content generated by “adding aluminum metal etc.” Whether this treatment is performed before or after the above-mentioned treatment by addition of the alkali metal compound or calcium salt is carried out in the waste liquid. The selection is made in accordance with the concentration of the fluorinated compound and the fluorinated compound contained in the waste liquid having a high concentration of the fluorinated compound and the fluorinated compound. Processing will be given priority.
[0016]
When the solid content is generated by adding an alkali metal compound to the waste liquid under alkaline conditions, the amount of sludge generated is 5 to 10 times that generated under solid conditions under acidic conditions. For this reason, it is preferable that the addition of an alkali metal to the waste liquid to generate a solid content is performed under acidic conditions. Normally, the waste liquid containing a borofluoride compound or a fluorine compound is an acidic waste liquid.According to the present invention, the removal treatment is performed without any pH adjustment of the waste liquid prior to the removal treatment of fluorine and boron from the waste liquid. You can enter.
[0017]
The alkali metal compound to be added to the waste liquid is typically an alkali metal salt, preferably a sodium salt or a potassium salt, more preferably a potassium salt. Preferred examples of the sodium salt include sodium chloride and sodium sulfate. Preferred examples of the potassium salt include potassium chloride, potassium sulfate, and potassium fluoride. More preferably, it is potassium chloride.
[0018]
For example, when potassium chloride, which is an alkali metal compound, is added, it theoretically reacts with the total number of moles of the borofluoride compound and the silicofluoride compound at a ratio of 1 to 1 to generate a solid content. In order to complete the treatment completely, it is preferable to add an alkali metal compound in excess of the total number of moles of the fluorinated compound and the fluorinated compound. In addition, the solid content generation temperature can sufficiently generate boron and fluorine-containing solid components by reaction at room temperature of 10 to 40 ° C.
[0019]
In the present invention, the solid content obtained by adding the alkali metal salt contains any one or more of potassium silicate fluoride, sodium silicate fluoride, potassium borofluoride, sodium borofluoride and other alkali metal silicate salts. . In order to separate and recover the solid content, an appropriate acid-resistant solid-liquid separation means is used, and preferably, an acid-resistant filter press is used. The present invention is intended mainly for the removal of fluorine and boron in factory effluent, as long as the removal of fluorine and boron from a waste liquid containing one or both of a borofluoride compound and a silicofluoride compound. However, the application is not limited to the treatment of factory waste liquid.
[0020]
Preferably, the present invention further comprises a treatment for adding a calcium salt to produce a solid content and removing the solid content after the means for producing a solid content by adding an alkali metal, which is a characteristic feature. More preferably, in order to remove fluorine remaining after the treatment, calcium chloride is added and stirred, and more preferably, slaked lime is added and stirring is further provided. Fluorine remaining in the waste liquid can be further removed by solid-liquid separation of calcium fluoride generated by these operations.
[0021]
Further, it is preferable to provide a treatment for decomposing borofluoride by adding aluminum metal or the like and adding slaked lime. By solid-liquid separation of the boron-containing solid content generated by this operation, the boron remaining in the waste liquid can be further removed.
[0022]
The amount of the aluminum metal or the like to be added is preferably larger than the number of moles of the fluorinated fluorine compound contained in the waste liquid. More preferably, the number of moles is 10 times or more. By adding this aluminum metal or the like, the borofluorine compound is decomposed. The decomposition reaction proceeds if the temperature is equal to or higher than the freezing point of the waste liquid, but the higher the temperature, the higher the temperature. On the other hand, even at a decomposition reaction temperature of 10 to 40 ° C. which is a normal temperature, the fluorinated fluorine compound can be sufficiently decomposed.
[0023]
The time required for the decomposition should be adjusted according to the concentration of the fluorinated compound in the waste liquid, but is preferably 1 hour or more, and more preferably 3 hours or more.
[0024]
The decomposition reaction of the borofluoride compound by adding aluminum metal or the like is performed under alkaline conditions, and after the decomposition treatment, the solid content generated by adding slaked lime is removed by solid-liquid separation to remove boron from the waste liquid. Can be.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the examples below.
[0026]
Embodiment 1
10 mL of potassium chloride was added to 100 mL of a waste liquid containing a fluorinated compound and a fluorinated compound used in a glass processing plant, and the mixture was stirred at room temperature for 1 hour. did.
[0027]
As a result of measuring the concentrations of fluorine and boron before and after the waste liquid treatment, fluorine was reduced from 74000 mg / L to 28100 mg / L, and boron was reduced from 1570 mg / L to 122 mg / L. In addition, silicon was reduced from 12600 mg / L to 2800 mg / L.
[0028]
Here, the fluorine concentration analysis was measured by ion chromatography, and the boron and silicon concentration analysis was measured by ICP emission spectroscopy. This point is the same in the following embodiments.
[0029]
Embodiment 2
As shown in FIG. 1, 1.3 kg of potassium chloride was added to 13 liters of a waste liquid containing a fluorinated compound and a fluorinated compound used in a glass processing plant, and the mixture was stirred at room temperature for 1 hour (first step). The solid content generated by filtration with a filter press was subjected to solid-liquid separation (second step).
[0030]
To the filtrate in the second step, 0.32 L of 35% by weight calcium chloride waste water was added, and the mixture was stirred for 30 minutes. Then, 0.13 L of 20% by weight slaked lime water waste liquid was added, followed by stirring for 1 hour. Thereafter, the pH was adjusted to 5 by adding caustic soda, and the mixture was stirred for 30 minutes (third step).
Next, the solid content generated in the waste liquid was filtered by a filter press to perform solid-liquid separation (fourth step).
[0031]
Thereafter, 0.27 L of a 50% by weight aqueous solution of aluminum sulfate was added to the filtrate in the fourth step, followed by stirring for 3 hours. Next, slaked lime was added so that the pH became 12, followed by stirring for 30 minutes (fifth step). Next, the solution was again filtered by a filter press, and the solid content generated in the waste liquid was subjected to solid-liquid separation (sixth step).
[0032]
As a result of measuring the concentrations of fluorine and boron before and after the treatment of the waste liquid, fluorine was reduced from 120,000 ppm to 7 ppm, and boron was reduced from 3000 ppm to 8 ppm.
[0033]
According to the Water Pollution Control Law, the fluorine content needs to be 8 ppm or less and the boron content needs to be 10 ppm or less. However, it was confirmed that the above results satisfied the standards of the Water Pollution Control Law.
[0034]
【The invention's effect】
As described above, according to the present invention, fluorine and boron can be removed from a waste liquid containing a fluorinated compound, and fluorine can be removed from a waste liquid containing a silicon fluorinated compound. Further, it is possible to treat the waste liquid without any particular limitation on the concentrations of the borofluorine compound and the fluorinated silicon compound.
[Brief description of the drawings]
FIG. 1 is a drawing for explaining a second embodiment of the present invention.

Claims (8)

ホウフッ素化合物を含有する廃液に、アルカリ金属化合物を添加することで生ずる固形分を固液分離手段によって除去する処理を有することを特徴とする前記廃液の処理方法。The wastewater treatment method according to claim 1, further comprising a treatment for removing solids generated by adding an alkali metal compound to the wastewater containing the borofluoride compound by a solid-liquid separation means. アルカリ金属化合物を酸性状態の前記廃液に添加する請求項1に記載の廃液の処理方法。The wastewater treatment method according to claim 1, wherein an alkali metal compound is added to the wastewater in an acidic state. 珪フッ素化合物を含有する廃液に、アルカリ金属化合物を添加することで生ずる固形分を固液分離手段によって除去する処理を有することを特徴とする前記廃液の処理方法。A method for treating a waste liquid according to claim 1, further comprising a treatment for removing solids generated by adding an alkali metal compound to the waste liquid containing the fluorine compound by a solid-liquid separation means. アルカリ金属化合物を酸性状態の前記廃液に添加する請求項3に記載の廃液の処理方法。The wastewater treatment method according to claim 3, wherein an alkali metal compound is added to the acidic wastewater. 前記廃液に、アルミニウム金属またはアルミニウム化合物のうち1種以上を添加する処理を有する請求項1〜4のいずれかに記載の廃液の処理方法。The waste liquid treatment method according to any one of claims 1 to 4, further comprising a treatment of adding one or more of aluminum metal and an aluminum compound to the waste liquid. 前記廃液に、カルシウム塩を添加して固形分を生成し、これを固液分離除去する処理を有する請求項1〜5のいずれかに記載の廃水の処理方法。The wastewater treatment method according to any one of claims 1 to 5, further comprising a process of adding a calcium salt to the wastewater to generate a solid, and separating and removing the solid. アルカリ金属化合物が、塩化ナトリウム、硫酸ナトリウム、塩化カリウム、硫酸カリウム及びフッ化カリウムのうち一種以上である請求項1〜6のいずれかに記載の廃液の処理方法。The method for treating a waste liquid according to any one of claims 1 to 6, wherein the alkali metal compound is at least one of sodium chloride, sodium sulfate, potassium chloride, potassium sulfate, and potassium fluoride. ホウフッ素化合物および珪フッ素化合物のいずれか一種以上を含有する廃液から、ケイフッ化カリウム、ケイフッ化ナトリウム、ホウフッ化カリウムおよびホウフッ化ナトリウム固形分の何れか一種以上を分離する請求項1〜6のいずれかに記載の分離方法。7. Any one or more of potassium silicate fluoride, sodium silicate fluoride, potassium borofluoride and sodium borofluoride solids are separated from a waste liquid containing any one or more of a borofluoride compound and a silicofluoride compound. Or the separation method described in
JP2003079674A 2003-03-24 2003-03-24 Waste liquid treatment method Expired - Fee Related JP3635643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079674A JP3635643B2 (en) 2003-03-24 2003-03-24 Waste liquid treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079674A JP3635643B2 (en) 2003-03-24 2003-03-24 Waste liquid treatment method

Publications (2)

Publication Number Publication Date
JP2004283736A true JP2004283736A (en) 2004-10-14
JP3635643B2 JP3635643B2 (en) 2005-04-06

Family

ID=33293722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079674A Expired - Fee Related JP3635643B2 (en) 2003-03-24 2003-03-24 Waste liquid treatment method

Country Status (1)

Country Link
JP (1) JP3635643B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358445A (en) * 2003-04-10 2004-12-24 Miyama Kk Treatment method of boron and/or fluorine
CN100413793C (en) * 2006-02-23 2008-08-27 上海太平洋化工(集团)淮安元明粉有限公司 Treatment and special treater of waste water in making salt and nitro-group
WO2011078228A1 (en) * 2009-12-22 2011-06-30 株式会社神鋼環境ソリューション Pretreatment method and treatment facility for wastewater that contains fluorine and silicon
JP2011152541A (en) * 2011-04-07 2011-08-11 Kobelco Eco-Solutions Co Ltd Method for pretreating wastewater containing fluorine and silicon, and equipment for treating wastewater containing fluorine and silicon
JP2012050948A (en) * 2010-09-02 2012-03-15 Nippon Rensui Co Ltd Device for treating waste water and method of treating the same
JP2012143734A (en) * 2011-01-14 2012-08-02 Kurita Water Ind Ltd Method for treating hydrosilicofluoric acid-containing waste fluid
JP2012200687A (en) * 2011-03-25 2012-10-22 Kurita Water Ind Ltd Method of treating waste liquid containing hydrofluosilicic acid
JP2013087267A (en) * 2011-10-21 2013-05-13 Jfe Engineering Corp Method and apparatus for treating fluorine-containing waste
JP2013088102A (en) * 2011-10-21 2013-05-13 Jfe Engineering Corp Fluorine-containing waste treatment method, and fluorine-containing waste treatment apparatus
JP2013121904A (en) * 2011-12-09 2013-06-20 Kotoku Cleaner:Kk Production method of calcium fluoride from waste water containing fluorine
JP2014151310A (en) * 2013-02-13 2014-08-25 Toshiba Corp Water treatment method and water treatment equipment
JP2017023968A (en) * 2015-07-27 2017-02-02 学校法人早稲田大学 Method for treating boron-containing water
KR20170131688A (en) 2016-04-01 2017-11-29 사사키카가쿠야쿠힌 가부시키가이샤 Alkali metal salt-containing molded article and method for regenerating acidic aqueous solution using the same
CN113772687A (en) * 2021-11-01 2021-12-10 郑州中科新兴产业技术研究院 Method for recovering sodium bromide and sodium tetrafluoroborate from byproduct wastewater generated in synthesis of 1-butyl-3-methylimidazolium tetrafluoroborate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143440B2 (en) * 2007-02-01 2013-02-13 森田化学工業株式会社 Method and apparatus for separating and recovering acid components from waste liquid containing hydrofluoric acid, hydrochloric acid and silicohydrofluoric acid
JP5421088B2 (en) * 2009-12-15 2014-02-19 森田化学工業株式会社 Method for producing valuable materials and hydrochloric acid from waste liquid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186393A (en) * 1989-12-13 1991-08-14 Unitika Ltd Treatment of waste water containing fluorine
JPH04228401A (en) * 1990-06-01 1992-08-18 Asahi Glass Co Ltd Production of hydrogen fluoride
JPH0515882A (en) * 1991-07-08 1993-01-26 Nec Corp Method for recovering fluorine from water
JPH0866687A (en) * 1994-08-30 1996-03-12 Shinriyou:Kk Treatment of waste liquid incorporating borofluoride compound
JP2000072482A (en) * 1998-08-26 2000-03-07 Matsushita Electronics Industry Corp Regenerating method of glass cleaning solution, regenerating device therefor, cleaning method of silicate glass and cleaning device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186393A (en) * 1989-12-13 1991-08-14 Unitika Ltd Treatment of waste water containing fluorine
JPH04228401A (en) * 1990-06-01 1992-08-18 Asahi Glass Co Ltd Production of hydrogen fluoride
JPH0515882A (en) * 1991-07-08 1993-01-26 Nec Corp Method for recovering fluorine from water
JPH0866687A (en) * 1994-08-30 1996-03-12 Shinriyou:Kk Treatment of waste liquid incorporating borofluoride compound
JP2000072482A (en) * 1998-08-26 2000-03-07 Matsushita Electronics Industry Corp Regenerating method of glass cleaning solution, regenerating device therefor, cleaning method of silicate glass and cleaning device therefor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358445A (en) * 2003-04-10 2004-12-24 Miyama Kk Treatment method of boron and/or fluorine
CN100413793C (en) * 2006-02-23 2008-08-27 上海太平洋化工(集团)淮安元明粉有限公司 Treatment and special treater of waste water in making salt and nitro-group
EP2518022A4 (en) * 2009-12-22 2014-09-10 Kobelco Eco Solutions Co Ltd Pretreatment method and treatment facility for wastewater that contains fluorine and silicon
WO2011078228A1 (en) * 2009-12-22 2011-06-30 株式会社神鋼環境ソリューション Pretreatment method and treatment facility for wastewater that contains fluorine and silicon
JP2011131128A (en) * 2009-12-22 2011-07-07 Kobelco Eco-Solutions Co Ltd Method for pretreating wastewater containing fluorine and silicon and apparatus for treating wastewater containing fluorine and silicon
CN102666401A (en) * 2009-12-22 2012-09-12 株式会社神钢环境舒立净 Pretreatment method and treatment facility for wastewater that contains fluorine and silicon
EP2518022A1 (en) * 2009-12-22 2012-10-31 Kobelco Eco-solutions Co., Ltd. Pretreatment method and treatment facility for wastewater that contains fluorine and silicon
JP2012050948A (en) * 2010-09-02 2012-03-15 Nippon Rensui Co Ltd Device for treating waste water and method of treating the same
JP2012143734A (en) * 2011-01-14 2012-08-02 Kurita Water Ind Ltd Method for treating hydrosilicofluoric acid-containing waste fluid
JP2012200687A (en) * 2011-03-25 2012-10-22 Kurita Water Ind Ltd Method of treating waste liquid containing hydrofluosilicic acid
JP2011152541A (en) * 2011-04-07 2011-08-11 Kobelco Eco-Solutions Co Ltd Method for pretreating wastewater containing fluorine and silicon, and equipment for treating wastewater containing fluorine and silicon
JP2013088102A (en) * 2011-10-21 2013-05-13 Jfe Engineering Corp Fluorine-containing waste treatment method, and fluorine-containing waste treatment apparatus
JP2013087267A (en) * 2011-10-21 2013-05-13 Jfe Engineering Corp Method and apparatus for treating fluorine-containing waste
JP2013121904A (en) * 2011-12-09 2013-06-20 Kotoku Cleaner:Kk Production method of calcium fluoride from waste water containing fluorine
JP2014151310A (en) * 2013-02-13 2014-08-25 Toshiba Corp Water treatment method and water treatment equipment
JP2017023968A (en) * 2015-07-27 2017-02-02 学校法人早稲田大学 Method for treating boron-containing water
KR20170131688A (en) 2016-04-01 2017-11-29 사사키카가쿠야쿠힌 가부시키가이샤 Alkali metal salt-containing molded article and method for regenerating acidic aqueous solution using the same
CN113772687A (en) * 2021-11-01 2021-12-10 郑州中科新兴产业技术研究院 Method for recovering sodium bromide and sodium tetrafluoroborate from byproduct wastewater generated in synthesis of 1-butyl-3-methylimidazolium tetrafluoroborate
CN113772687B (en) * 2021-11-01 2022-10-18 郑州中科新兴产业技术研究院 Method for recovering sodium bromide and sodium tetrafluoroborate from byproduct wastewater generated in synthesis of 1-butyl-3-methylimidazolium tetrafluoroborate

Also Published As

Publication number Publication date
JP3635643B2 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
JP3635643B2 (en) Waste liquid treatment method
JP5943176B2 (en) Method and apparatus for treating harmful substance-containing water.
JP4954131B2 (en) Treatment method of water containing borofluoride
JP5794422B2 (en) Treatment method and treatment apparatus for removing fluorine and harmful substances
JP5915834B2 (en) Method for producing purification treatment material
KR20150120971A (en) Method and apparatus for treating borofluoride-containing water
JP3229277B2 (en) Wastewater treatment method
JP2001239273A (en) Method of treating water containing boron and fluorine
TWI263623B (en) Effluent water treatment method
JP2912934B2 (en) Method for treating wastewater containing borofluoride ions
JP2007283216A (en) Boron-containing wastewater treatment method
JP2002233881A (en) Method for treating boron-containing water
JP3672262B2 (en) Method for treating boron-containing water
JP2008200599A (en) Method for cleaning waste water containing ammonia nitrogen
JP2001232372A (en) Treatment process for water containing boron
JP2007283217A (en) Boron-containing wastewater treatment method
JP2002346574A (en) Boron-containing water treatment method
JP4583786B2 (en) Treatment method for boron-containing wastewater
JP4761612B2 (en) Treatment method for boron-containing wastewater
JP5306977B2 (en) Method for treating boron-containing water and boron removing agent
JPH0866687A (en) Treatment of waste liquid incorporating borofluoride compound
KR100390159B1 (en) Treatment agent and method for treating industrial waste-water including flourine
KR20080058077A (en) Method for treating wastewater including fluorine
JP4034218B2 (en) Wastewater treatment method
JP2002210475A (en) Treating method of waste water containing boron

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees