JP2012200687A - Method of treating waste liquid containing hydrofluosilicic acid - Google Patents

Method of treating waste liquid containing hydrofluosilicic acid Download PDF

Info

Publication number
JP2012200687A
JP2012200687A JP2011068756A JP2011068756A JP2012200687A JP 2012200687 A JP2012200687 A JP 2012200687A JP 2011068756 A JP2011068756 A JP 2011068756A JP 2011068756 A JP2011068756 A JP 2011068756A JP 2012200687 A JP2012200687 A JP 2012200687A
Authority
JP
Japan
Prior art keywords
waste liquid
liquid
fluoride
calcium
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011068756A
Other languages
Japanese (ja)
Other versions
JP5779934B2 (en
Inventor
Toru Masaoka
融 正岡
Shuhei Izawa
周平 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011068756A priority Critical patent/JP5779934B2/en
Publication of JP2012200687A publication Critical patent/JP2012200687A/en
Application granted granted Critical
Publication of JP5779934B2 publication Critical patent/JP5779934B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

PROBLEM TO BE SOLVED: To provide a method of treating waste liquid containing hydrofluosilicic acid capable of easily removing hydrofluosilicic acid in the waste liquid containing hydrofluosilicic acid using an inexpensive material, capable of efficiently collecting it as highly-pure calcium fluoride, and capable of obtaining the treatment liquid with a low degree of fluoride ions.SOLUTION: The treated waste liquid is introduced into a reaction tank 1 as a preparation process. An inorganic metal salt is injected into and reacted with the waste liquid. Solid-liquid separation is performed in a solid-liquid separation tank 3. The preparation liquid separated in the solid-liquid separation tank 3 is introduced into a collection device 4, and sequentially passed to filling tanks 4a, 4b, 4c filled with calcium carbonate particles. Thus, calcium fluoride is generated and collected. Sludge containing a silicofluoride salt separated in the solid-liquid separation tank 3 is drained and separated. The separate liquid is transferred to the reaction tank 1.

Description

本発明は、ケイフッ化水素酸を含有する廃液からフッ化カルシウムを回収する方法、さらに詳細にはケイフッ化水素酸およびフッ化水素酸を含有する廃液から高純度のフッ化カルシウムを回収する方法に関するものである。   The present invention relates to a method for recovering calcium fluoride from a waste liquid containing silicohydrofluoric acid, and more particularly to a method for recovering high-purity calcium fluoride from a waste liquid containing silicohydrofluoric acid and hydrofluoric acid. Is.

半導体等の工場ではシリコンウエハの酸化膜をフッ化水素酸でウエットエッチングする工程があり、高濃度のフッ化水素酸を含有する廃液が発生する。このような廃液の処理に関しては、環境負荷の低減とリサイクルの観点から、フッ化水素を回収する方法が種々検討されており、特にカルシウム化合物と反応させてフッ化カルシウムとして回収し、無水フッ化水素酸(AHF)等の製造原料とする方法が多く提案されている。このような回収方法では、いかに高純度のフッ化カルシウムを効率よく回収するかに努力が払われているが、ケイフッ化水素酸が含まれる廃液の場合、ケイフッ化水素酸がカルシウム化合物と反応してケイフッ化カルシウムとして析出したり、あるいは分解してケイ酸がゲル状に析出して、回収フッ化カルシウムの純度が低下するので、その対策が重要である。   In factories such as semiconductors, there is a step of wet-etching an oxide film of a silicon wafer with hydrofluoric acid, and waste liquid containing high concentration hydrofluoric acid is generated. Regarding the treatment of such waste liquid, various methods for recovering hydrogen fluoride have been studied from the viewpoint of reducing environmental burden and recycling. In particular, it is reacted with a calcium compound and recovered as calcium fluoride. Many methods for producing raw materials such as hydrogen acid (AHF) have been proposed. In such a recovery method, an effort is made to efficiently recover high-purity calcium fluoride. However, in the case of a waste liquid containing silicohydrofluoric acid, the hydrosilicofluoric acid reacts with the calcium compound. Therefore, it is precipitated as calcium silicofluoride, or decomposes and silicic acid is precipitated in a gel state, and the purity of recovered calcium fluoride is lowered.

特許文献1(特開平5−237481)には、フッ化水素酸およびケイフッ化水素酸を含有する廃液から高純度のフッ化カルシウムを回収する方法として、廃液中のケイ素濃度を希釈等により低くしてカルシウム化合物と反応させることにより、高純度のフッ化カルシウムを回収することが示されている。しかしこの方法では、廃液中のケイ素濃度を低くする手段として、希釈する方法が示されているが、このような方法では、もともとケイフッ化水素酸を高濃度で含む廃液の処理には適していない。   In Patent Document 1 (Japanese Patent Laid-Open No. 5-237481), as a method for recovering high-purity calcium fluoride from waste liquid containing hydrofluoric acid and silicohydrofluoric acid, the silicon concentration in the waste liquid is reduced by dilution or the like. It has been shown that high purity calcium fluoride can be recovered by reacting with a calcium compound. However, in this method, a method of diluting is shown as a means for lowering the silicon concentration in the waste liquid, but such a method is originally not suitable for the treatment of the waste liquid containing a high concentration of hydrofluoric acid. .

すなわち近年、太陽電池製造におけるシリコンウエットエッチング工程や、シリコンウエハ製造工程におけるガス状フッ化物によるドライエッチング工程などでは、ケイフッ化水素酸およびフッ化水素酸をそれぞれ高濃度で含有する廃液が大量に発生している。このような廃液では、希釈により濃度を調整するようなことは困難である。また希釈により濃度が低くなると、処理容量は増えるので、処理効率は低くなる。   That is, in recent years, a large amount of waste liquid containing high concentrations of hydrofluoric acid and hydrofluoric acid has been generated in silicon wet etching processes in solar cell manufacturing and dry etching processes using gaseous fluoride in silicon wafer manufacturing processes. is doing. With such a waste liquid, it is difficult to adjust the concentration by dilution. Further, when the concentration is lowered by dilution, the processing capacity is increased, so that the processing efficiency is lowered.

特許文献2(特開2009−196858)には、ケイフッ化水素酸およびフッ化水素酸を含有する廃液に、ナトリウム化合物(アルカリ)を混合して中和することにより、ケイフッ化水素酸を分解させて不溶性シリカとフッ化ナトリウム水溶液との混合物が主体のシリカスラリーを生成させ、このシリカスラリーから不溶性シリカを分離し、分離水にカルシウム化合物を添加するとともに、酸を添加してpH2以下に調整して、フッ化カルシウムを析出させて回収する方法が示されている。   In Patent Document 2 (Japanese Patent Laid-Open No. 2009-196858), silicohydrofluoric acid is decomposed by mixing and neutralizing a waste liquid containing silicohydrofluoric acid and hydrofluoric acid with a sodium compound (alkali). A silica slurry mainly composed of a mixture of insoluble silica and an aqueous solution of sodium fluoride is produced. Insoluble silica is separated from the silica slurry, and a calcium compound is added to the separated water, and an acid is added to adjust the pH to 2 or lower. The method of depositing and recovering calcium fluoride is shown.

しかし特許文献2の方法では、次のような問題点がある。
1)シリコンのウエットエッチングにはフッ硝酸系など、強酸を混合した溶液が使用されていて、このような強酸を含む廃水が生じるが、このような廃水をpH7〜10に中和するには、大量のアルカリが必要となる。
2)中和後、フッ化カルシウムとして回収するには廃水のpH2以下に下げる必要があり、大量の酸が必要となる。
3)中和工程、酸添加工程が必要であるため工程が煩雑であり、また設備費やスペースに問題が出る。
4)中和熟が発生するため冷却設備が必要となる。
However, the method of Patent Document 2 has the following problems.
1) A solution containing a strong acid such as hydrofluoric acid is used for wet etching of silicon, and wastewater containing such a strong acid is produced. To neutralize such wastewater to pH 7-10, A large amount of alkali is required.
2) To recover as calcium fluoride after neutralization, it is necessary to lower the pH of the wastewater to 2 or less, and a large amount of acid is required.
3) Since a neutralization step and an acid addition step are necessary, the steps are complicated, and there are problems in equipment costs and space.
4) Since neutralization ripening occurs, cooling equipment is required.

特許文献3(特開2000−72482)には、フルオロ珪酸およびフッ化水素酸を含
むガラス洗浄廃液に、フッ化物を添加し液中のフルオロ珪酸とフッ化物とを反応させてフルオロ珪酸塩を析出させ、このフルオロ珪酸塩を除去することにより、ガラス洗浄用溶液を再生する方法が示されている。
In Patent Document 3 (Japanese Patent Laid-Open No. 2000-72482), fluoride is added to a glass cleaning waste liquid containing fluorosilicic acid and hydrofluoric acid, and fluorosilicic acid and fluoride in the liquid are reacted to precipitate fluorosilicate. And a method for regenerating the glass cleaning solution by removing the fluorosilicate.

しかし特許文献3の方法は、廃液からフルオロケイ酸を除去して、フッ化水素酸を含むガラス洗浄液として回収する方法であり、フッ化カルシウムとして回収することは示されていない。特許文献3では、回収液のフッ化水素酸純度を高めるために、フッ化物を添加してフッ化水素酸を生成させるので、純度の高い高価なフッ化物を添加する必要がある。またフッ化水素酸の生成によりフッ化水素酸濃度が高くなるので、回収液からフッ化カルシウムを生成させるためには希釈する必要があり、無駄が多い。   However, the method of Patent Document 3 is a method in which fluorosilicic acid is removed from the waste liquid and recovered as a glass cleaning liquid containing hydrofluoric acid, and recovery as calcium fluoride is not shown. In Patent Document 3, in order to increase the hydrofluoric acid purity of the recovered liquid, fluoride is added to generate hydrofluoric acid. Therefore, it is necessary to add an expensive fluoride with high purity. Moreover, since hydrofluoric acid concentration becomes high by the production | generation of hydrofluoric acid, in order to produce | generate calcium fluoride from a collection | recovery liquid, it is necessary to dilute and there is much waste.

特開平5−237481号Japanese Patent Application Laid-Open No. 5-237482 特開2009−196858号JP 2009-196858 特開2000−72482号JP 2000-72482 A

本発明の課題は、前記のような従来の問題点を解決するため、安価な材料を用いて、ケイフッ化水素酸含有廃液中のケイフッ化水素酸を容易に除去し、高純度のフッ化カルシウムとして効率よく回収するとともに、フッ化物イオン濃度の低い処理液を得ることができるケイフッ化水素酸含有廃液の処理方法を提案することである。   In order to solve the conventional problems as described above, the object of the present invention is to easily remove hydrofluoric acid from a hydrofluoric acid-containing waste liquid using an inexpensive material, and to obtain high-purity calcium fluoride. As well as a method for treating a hydrofluoric acid-containing waste liquid capable of efficiently collecting a treatment liquid having a low fluoride ion concentration.

本発明は次のケイフッ化水素酸含有廃液の処理方法である。
(1) ケイフッ化水素酸およびフッ化水素酸を含有する廃液に、無機金属塩を添加し、難溶性のケイフッ化物塩を生成させて分離する前処理工程と、
前処理液をカルシウム化合物と反応させ、フッ化カルシウムとして回収する回収工程と
を含むことを特徴とするケイフッ化水素酸含有廃液の処理方法。
(2) 回収工程が、炭酸カルシウム充填層に前処理液を通液して反応させ、フッ化カルシウムとして回収する工程である上記(1)記載の方法。
(3) 無機金属塩がNa、K、Cs、Rb、Ba塩である上記(1)または(2)記載の方法。
(4) カルシウム化合物がカルシウムの塩化物、酸化物、水酸化物、炭酸塩または重炭酸塩ある上記(1)ないし(3)のいずれかに記載の方法。
The present invention is the following method for treating a hydrofluoric acid-containing waste liquid.
(1) a pretreatment step in which an inorganic metal salt is added to a waste liquid containing silicohydrofluoric acid and hydrofluoric acid to form a hardly soluble silicofluoride salt and separated;
And a recovery step of recovering the pretreatment liquid as calcium fluoride by reacting the pretreatment liquid with a calcium compound.
(2) The method according to (1) above, wherein the recovery step is a step of allowing the pretreatment liquid to flow through the calcium carbonate packed bed to cause a reaction, and recovering it as calcium fluoride.
(3) The method according to the above (1) or (2), wherein the inorganic metal salt is Na, K, Cs, Rb, Ba salt.
(4) The method according to any one of (1) to (3) above, wherein the calcium compound is calcium chloride, oxide, hydroxide, carbonate or bicarbonate.

本発明において、処理の対象となるケイフッ化水素酸含有廃液は、構成成分としてケイフッ化水素酸(HSiF)およびフッ化水素酸(HF)を含有する廃液である。このケイフッ化水素酸含有廃液には、他のフッ化物、その他の成分を含んでいてもよい。このようなケイフッ化水素酸含有廃液としては、太陽電池等、HF水溶液でSiをウエットエッチングする工程において排出される廃液があげられるが、他の工程から排出される廃液であってもよい。廃液中のケイフッ化水素酸の濃度は0.01〜10.0w/v%、特に0.013〜6.0w/v%、フッ化水素酸の濃度は0.1〜5.0w/v%、特に0.5〜3.0w/v%の廃液が本発明の処理に適している。本発明において、「w/v%」は「g/100mL」を意味する。 In the present invention, the hydrosilicic acid-containing waste liquid to be treated is a waste liquid containing hydrofluoric acid (H 2 SiF 6 ) and hydrofluoric acid (HF) as constituent components. The hydrofluoric acid-containing waste liquid may contain other fluorides and other components. Examples of such a hydrofluoric acid-containing waste liquid include a waste liquid discharged in a process of wet etching Si with an HF aqueous solution such as a solar battery, but may be a waste liquid discharged from another process. The concentration of silicohydrofluoric acid in the waste liquid is 0.01 to 10.0 w / v%, particularly 0.013 to 6.0 w / v%, and the concentration of hydrofluoric acid is 0.1 to 5.0 w / v%. Particularly, 0.5 to 3.0 w / v% of waste liquid is suitable for the treatment of the present invention. In the present invention, “w / v%” means “g / 100 mL”.

本発明では、このようなケイフッ化水素酸およびフッ化水素酸を含有する廃液を処理する際、難溶性のケイフッ化物塩を生成させて分離する前処理工程と、フッ化カルシウムを生成させて回収する回収工程との組合せ処理により、高純度のフッ化カルシウムを効率よ
く回収することができる。
In the present invention, when treating the waste liquid containing silicohydrofluoric acid and hydrofluoric acid, a pretreatment step for producing and separating a hardly soluble silicofluoride salt, and producing and collecting calcium fluoride are obtained. High-purity calcium fluoride can be efficiently recovered by combination processing with the recovery step.

前処理工程は、ケイフッ化水素酸およびフッ化水素酸を含有する被処理廃液に、無機金属塩を添加し、難溶性のケイフッ化物塩を生成させて分離する工程である。添加する無機金属塩は、ケイフッ化水素酸と反応して難溶性塩を生成する金属塩であればよいが、特に1価または2価の金属の塩が好ましい。このような無機金属塩としては、Na、K、Cs、Rb、Ba塩があげられるが、特に酸溶液でも析出物が溶解しないNa塩、Ba塩が好ましい。Ca塩は、添加により析出する塩が酸溶液で溶解しやすいので除かれる。金属の対イオンとなるアニオンは限定されないが、前処理工程および回収工程における析出を妨げないものが好ましく、塩化物、水酸化物、硝酸塩、炭酸塩または重炭酸塩などがあげられる。   The pretreatment step is a step of adding an inorganic metal salt to a waste liquid to be treated containing silicohydrofluoric acid and hydrofluoric acid to produce a hardly soluble silicofluoride salt and separating it. The inorganic metal salt to be added may be a metal salt that reacts with silicofluoric acid to form a hardly soluble salt, but a monovalent or divalent metal salt is particularly preferable. Examples of such inorganic metal salts include Na, K, Cs, Rb, and Ba salts. Na salts and Ba salts that do not dissolve precipitates even in an acid solution are particularly preferable. The Ca salt is removed because the salt precipitated by addition is easily dissolved in the acid solution. The anion serving as a metal counter ion is not limited, but an anion that does not interfere with precipitation in the pretreatment step and the recovery step is preferable, and examples thereof include chloride, hydroxide, nitrate, carbonate, bicarbonate and the like.

無機金属塩の添加は、無機金属塩の粉末または水溶液を被処理廃液に添加する。炭酸塩または重炭酸塩の場合は粉末で添加することができ、この場合炭酸ガスの発生により析出物が剥離するため、濃度を低くすることなく反応が速く進むので好ましい。他の塩の場合は通常水溶液の状態で添加するが、その濃度は特に限定されず、通常は1〜50重量%、好ましくは5〜25重量%程度である。   The inorganic metal salt is added by adding a powder or an aqueous solution of the inorganic metal salt to the waste liquid to be treated. In the case of carbonate or bicarbonate, it can be added in powder form. In this case, the precipitate is peeled off due to the generation of carbon dioxide gas, so that the reaction proceeds quickly without reducing the concentration, which is preferable. In the case of other salts, it is usually added in the form of an aqueous solution, but the concentration is not particularly limited, and is usually about 1 to 50% by weight, preferably about 5 to 25% by weight.

前処理工程におけるケイフッ化水素酸と無機金属塩の反応は次の〔I〕式によるものと推測される。
SiF+MxA→MxSiF↓+HA・・・・〔I〕
(〔I〕式中、MはNa、Baなどのカチオン原子を表し、xはその原子数を表し、原子数が1の場合は省略される。AはOH、Clなどのアニオン原子を表すが、式中では2価の表示となっている。)
The reaction of silicofluoric acid and the inorganic metal salt in the pretreatment step is presumed to be according to the following formula [I].
H 2 SiF 6 + MxA → MxSiF 6 ↓ + H 2 A ... [I]
(In the formula [I], M represents a cation atom such as Na or Ba, x represents the number of atoms, and is omitted when the number of atoms is 1. A represents an anion atom such as OH or Cl. In the formula, it is indicated as bivalent.)

無機金属塩は前記〔I〕式に示す通り、添加した分だけケイフッ化水素酸と反応し、直ちに難溶性のケイフッ化物塩となって析出するので、除去対象とするケイフッ化水素酸との反応当量に相当する量を添加すればよい。この添加量は正確でなくてもよく、一般的には反応当量を1とした場合、その0.8〜1.5倍、好ましくは0.9〜1.2倍程度とすることができる。無機金属塩を過剰に添加すると、廃液に含まれるフッ化水素酸が中和され、NaF、BaF等の難溶性の塩が析出する場合があるので、添加後の反応液はpH5以下、好ましくはpH4以下となる添加量とするのが好ましい。析出したケイフッ化物塩は易分離性であるため、沈降分離などの一般的な固液分離により、容易に同伴水が少ない状態で分離し、除去することができる。 As shown in the above formula [I], the inorganic metal salt reacts with silicohydrofluoric acid as much as it is added, and immediately precipitates as a hardly soluble silicofluoride salt. An amount corresponding to the equivalent may be added. The amount added may not be accurate. Generally, when the reaction equivalent is 1, it can be about 0.8 to 1.5 times, preferably about 0.9 to 1.2 times. If an excessive amount of inorganic metal salt is added, hydrofluoric acid contained in the waste liquid is neutralized, and a hardly soluble salt such as NaF or BaF 2 may be precipitated. Is preferably added at pH 4 or less. Since the precipitated silicofluoride salt is easily separable, it can be easily separated and removed with a small amount of entrained water by general solid-liquid separation such as sedimentation separation.

回収工程は、前処理工程で分離した前処理液をカルシウム化合物と反応させ、前処理液に含まれるフッ化水素酸等のフッ化物イオンをフッ化カルシウムとして回収する工程である。ここで反応させるカルシウム化合物としては、カルシウムの塩化物、酸化物、水酸化物、炭酸塩または重炭酸塩などがあげられる。カルシウム化合物を反応させる方法も限定されず、粉末または水溶液を被処理廃液に添加して反応させ、析出するフッ化カルシウムを固液分離して回収することもできるが、炭酸カルシウム充填層に前処理液を通液して反応させ、フッ化カルシウムとして回収する方法が好ましい。廃水によってはフッ化水素酸濃度がフッ化カルシウム回収法に最適となるよう、希釈してからフッ化カルシウム回収設備に移送する場合があるが、このような廃水の場合、ケイフッ化物塩の溶解度を考慮して、無機金属塩によりケイフッ化物塩を析出させて除去した後に希釈するのが好ましい。   The recovery step is a step of reacting the pretreatment liquid separated in the pretreatment step with a calcium compound to recover fluoride ions such as hydrofluoric acid contained in the pretreatment liquid as calcium fluoride. Examples of the calcium compound to be reacted here include calcium chloride, oxide, hydroxide, carbonate or bicarbonate. The method of reacting the calcium compound is not limited, and powder or an aqueous solution can be added to the waste liquid to be treated for reaction, and the precipitated calcium fluoride can be recovered by solid-liquid separation. A method is preferred in which the solution is passed through to react and recovered as calcium fluoride. Depending on the wastewater, the hydrofluoric acid concentration may be diluted and transferred to a calcium fluoride recovery facility so that the concentration of hydrofluoric acid is optimal for the calcium fluoride recovery method. In consideration, it is preferable to dilute after the silicofluoride salt is precipitated and removed with an inorganic metal salt.

回収工程の好ましい方法である炭酸カルシウム充填層に前処理液を通液して反応させ、フッ化カルシウムとして回収する方法は、例えば特許第2600569号公報に示されているが、複数の炭酸カルシウム充填層に対して前処理液をシリーズに通液して反応させ、最終段の充填層を出た液を処理液として取出す。そして反応が完結した第1段の充填層か
らフッ化カルシウムを回収し、新たに炭酸カルシウムを充填して炭酸カルシウム充填層を形成し、これを新たな最終段としてメリーゴーラウンド式に運転する方法である。
A method of collecting and reacting a pretreatment liquid through a calcium carbonate packed bed, which is a preferable method of the recovery process, and recovering it as calcium fluoride is disclosed in, for example, Japanese Patent No. 26005629. The pretreatment liquid is passed through the series to react with the layer, and the liquid that has exited the final stage packed bed is taken out as the treatment liquid. Then, calcium fluoride is recovered from the first-stage packed bed where the reaction is completed, and calcium carbonate-filled layer is formed by newly filling calcium carbonate, and this is operated in a merry-go-round manner as a new final stage. is there.

回収工程におけるフッ化水素酸とカルシウム化合物の反応は次の〔II〕式によるものと推測される。
2HF+CaAx→CaF↓+HAx・・・・〔II〕
(〔II〕式中、AxはOH、Cl、COなどのアニオン原子を表すが、式中では2価の表示となっている。)
The reaction of hydrofluoric acid and calcium compound in the recovery step is presumed to be according to the following formula [II].
2HF + CaAx → CaF 2 ↓ + H 2 Ax... [II]
(In the formula [II], Ax represents an anion atom such as OH, Cl, CO 3, etc., but in the formula, it is a divalent display.)

炭酸カルシウム充填層に前処理液を通液して反応させ、フッ化カルシウムとして回収する際、前処理液中のフッ化水素酸等のフッ化物イオンは、充填層を形成する炭酸カルシウムの粒子中に浸透して順次反応するため、反応させる量を制御しなくても前処理液中のフッ化水素酸等のフッ化物イオンはすべて反応して回収されることになる。   When the pretreatment liquid is passed through the calcium carbonate packed bed for reaction and recovered as calcium fluoride, fluoride ions such as hydrofluoric acid in the pretreatment liquid are contained in the calcium carbonate particles forming the packed bed. Therefore, all fluoride ions such as hydrofluoric acid in the pretreatment liquid are reacted and recovered without controlling the amount to be reacted.

また充填層を形成する炭酸カルシウムは、フッ化物イオンが炭酸カルシウムの粒子中に浸透して順次反応するため、炭酸カルシウム粒子の全体がフッ化カルシウムとなるので、充填層の入口側から順次反応が完結する。反応が完結した第1段の充填層全体の充填物をそのままフッ化カルシウムとして回収することができる。回収したフッ化カルシウムは高純度であるため、ドライエッチング等用の無水フッ化水素酸製造原料として利用される。   In addition, the calcium carbonate forming the packed bed reacts sequentially with the fluoride ions penetrating into the calcium carbonate particles, so the entire calcium carbonate particles become calcium fluoride. Complete. The entire packing of the first-stage packed bed after completion of the reaction can be recovered as it is as calcium fluoride. Since the recovered calcium fluoride has a high purity, it is used as a raw material for producing anhydrous hydrofluoric acid for dry etching and the like.

前処理工程で分離したケイフッ化物塩は、そのまま回収して利用したり、あるいは廃棄物として処分することもできるが、中和分解工程でアルカリと反応させてケイフッ化物塩をシリカとフッ化物塩に分解し、分離したフッ化物塩を前処理工程または回収工程へ送って、フッ化物イオンとして反応させることにより、フッ化カルシウムの回収効率をさらに高くすることができる。分離したフッ化物塩はケイフッ化物が除去されているので回収工程へ送ってもよいが、除去できないシリカやケイフッ化物を含む場合は、前処理工程へ送ってさらに反応させるのが好ましい。   The silicofluoride salt separated in the pretreatment step can be recovered and used as it is, or can be disposed of as waste. However, the silicofluoride salt can be converted into silica and fluoride salt by reacting with alkali in the neutralization decomposition step. By sending the decomposed and separated fluoride salt to the pretreatment step or the recovery step and reacting it as fluoride ions, the recovery efficiency of calcium fluoride can be further increased. The separated fluoride salt may be sent to the recovery step since the silicic fluoride has been removed, but if it contains silica or silicic fluoride that cannot be removed, it is preferably sent to the pretreatment step for further reaction.

中和分解工程においてケイフッ化物Na塩をアルカリ(NaOH)と反応させてシリカとフッ化物塩に分解する反応は次の〔III〕式によるものと推測される。
NaSiF+4NaOH→6NaF+SiO↓+2HO・・・〔III〕
It is presumed that the reaction in which the silicofluoride Na salt is reacted with alkali (NaOH) to be decomposed into silica and fluoride salt in the neutralization decomposition step is based on the following formula [III].
Na 2 SiF 6 + 4NaOH → 6NaF + SiO 2 ↓ + 2H 2 O ... [III]

以上の通り本発明によれば、前処理工程でケイフッ化水素酸およびフッ化水素酸を含有する廃液に無機金属塩を添加し、難溶性のケイフッ化物塩を生成させて分離した後に、前処理液をカルシウム化合物と反応させ、フッ化カルシウムとして回収するようにしたので、安価な材料を用いて、ケイフッ化水素酸含有廃液中のケイフッ化水素酸を容易に除去し、高純度のフッ化カルシウムとして効率よく回収するとともに、フッ化物イオン濃度の低い処理液を得ることができるなどの効果がある。   As described above, according to the present invention, after the inorganic metal salt is added to the waste liquid containing silicohydrofluoric acid and hydrofluoric acid in the pretreatment step to form a hardly soluble silicofluoride salt, the pretreatment is performed. Since the liquid was reacted with the calcium compound and recovered as calcium fluoride, the hydrofluoric acid contained in the silicohydrofluoric acid-containing waste liquid was easily removed by using an inexpensive material, and high purity calcium fluoride. As a result, it is possible to obtain a treatment liquid having a low fluoride ion concentration and the like.

実施形態のケイフッ化水素酸含有廃液の処理方法を示すフロー図である。It is a flowchart which shows the processing method of the silicofluoric acid containing waste liquid of embodiment.

図1において、1は反応槽、2は無機金属塩貯槽、3は固液分離槽、4は回収装置、5は後処理装置である。反応槽1、無機金属塩貯槽2、固液分離槽3は前処理装置を構成する。回収装置4は炭酸カルシウム粒を充填した複数の充填槽4a、4b、4cに上向流でシリーズ通液し、第1段の反応が完結した段階で充填層を入れ替えて最終段に移行するように構成されている。   In FIG. 1, 1 is a reaction tank, 2 is an inorganic metal salt storage tank, 3 is a solid-liquid separation tank, 4 is a recovery device, and 5 is a post-treatment device. The reaction tank 1, the inorganic metal salt storage tank 2, and the solid-liquid separation tank 3 constitute a pretreatment device. The recovery device 4 passes a series of liquids upward through a plurality of filling tanks 4a, 4b, and 4c filled with calcium carbonate particles, and when the first stage reaction is completed, the packed bed is replaced and the final stage is reached. It is configured.

ケイフッ化水素酸およびフッ化水素酸を含有する被処理廃液は、前処理工程としてラインL1から反応槽1に導入し、無機金属塩貯槽2からラインL2を通して無機金属塩を反応槽1に注入して反応させ、反応液をラインL3から固液分離槽3に導入して固液分離する。反応槽1では前記〔I〕式によりケイフッ化物塩が生成するので、これを固液分離槽3で固液分離する。   The waste liquid to be treated containing silicohydrofluoric acid and hydrofluoric acid is introduced into the reaction tank 1 from the line L1 as a pretreatment process, and the inorganic metal salt is injected into the reaction tank 1 from the inorganic metal salt storage tank 2 through the line L2. The reaction solution is introduced into the solid-liquid separation tank 3 from the line L3 and solid-liquid separated. In the reaction tank 1, a silicofluoride salt is generated according to the formula [I], and this is subjected to solid-liquid separation in the solid-liquid separation tank 3.

含まれるフッ化水素酸等のフッ化物イオンをカルシウム化合物と反応させて、前記〔II〕式によりフッ化カルシウムを生成させ、これを回収する。回収装置4は特許第2600569号公報に示されているように、炭酸カルシウム粒を充填した複数の充填槽4a、4b、4cから構成されているので、第1段の充填槽4aから順次上向流でシリーズ通液し、各充填槽4a、4b、4cで順次反応を進行させる。   Fluoride ions such as hydrofluoric acid contained are reacted with a calcium compound to produce calcium fluoride according to the formula [II], which is recovered. As shown in Japanese Patent No. 26005629, the recovery device 4 is composed of a plurality of filling tanks 4a, 4b, and 4c filled with calcium carbonate particles, so that the upward direction is gradually increased from the first filling tank 4a. The liquid is passed through the series in a flow, and the reaction is caused to proceed sequentially in each of the filling tanks 4a, 4b, and 4c.

第1段の充填槽4aの反応が完結した段階で、第1段の充填槽4aを切り離し、前処理液を次段の充填槽4b、4cに順次通液して処理を続行する。切り離した前記第1段の充填槽4aで生成したフッ化カルシウムをラインL5から取出して回収し、新たに炭酸カルシウムを充填して炭酸カルシウム充填層を形成する。そしてこの充填層を入れ替えた充填槽4aを充填槽4cの後段に移行させ、これを新たな最終段として接続させてメリーゴーラウンド式に運転する。回収装置4の充填槽4cの流出液はラインL6から後処理装置5に送って、凝集処理等の後処理を行い、処理液をラインL7から系外へ排出する。   When the reaction in the first stage filling tank 4a is completed, the first stage filling tank 4a is disconnected, and the pretreatment liquid is sequentially passed through the next stage filling tanks 4b and 4c to continue the processing. The calcium fluoride produced in the separated first-stage filling tank 4a is taken out from the line L5 and collected, and is newly filled with calcium carbonate to form a calcium carbonate filled layer. Then, the filling tank 4a in which the packed bed is replaced is moved to the subsequent stage of the filling tank 4c, and this is connected as a new final stage to operate in a merry-go-round manner. The effluent from the filling tank 4c of the recovery device 4 is sent from the line L6 to the post-treatment device 5, where post-treatment such as coagulation treatment is performed, and the treatment liquid is discharged out of the system from the line L7.

固液分離槽3で分離したケイフッ化物塩を含む汚泥はラインL8から取出して脱水等の処分をする。脱水ろ液は反応槽1へ返送することができる。またケイフッ化物塩を含む汚泥はラインL8から中和分解槽(図示せず)に導入して処理することもできる。   The sludge containing silicic fluoride salt separated in the solid-liquid separation tank 3 is taken out from the line L8 and disposed of such as dehydration. The dehydrated filtrate can be returned to the reaction tank 1. Sludge containing silicic fluoride salt can also be treated by introducing it into a neutralization decomposition tank (not shown) from line L8.

ケイフッ化水素酸と無機金属塩の反応は反応速度が極めて速く、反応後15分以内にケイフッ化物塩を生成し、このケイフッ化物塩は比重が大きく沈降しやすい。このため反応槽1を設けないで固液分離槽3に直接無機金属塩を添加する方法や、反応槽1を設けないで固液分離槽3の手前のラインL3に直接無機金属塩をライン注入する方法でも良い。   The reaction between silicofluoric acid and the inorganic metal salt has a very high reaction rate, and forms a silicofluoride salt within 15 minutes after the reaction. This silicofluoride salt has a large specific gravity and tends to settle. For this reason, a method of directly adding an inorganic metal salt to the solid-liquid separation tank 3 without providing the reaction tank 1 or a line injection of the inorganic metal salt directly into the line L3 in front of the solid-liquid separation tank 3 without providing the reaction tank 1 The method to do is also good.

上記の処理では、純度の高い高価なフッ化物を使用する必要がなく、通常の無機金属塩のような安価な材料を用いることができ、また被処理液を希釈しないでも、ケイフッ化水素酸含有廃液中のケイフッ化水素酸をケイフッ化物塩として容易に除去することができ、これにより高純度のフッ化カルシウムとして効率よく回収するとともに、フッ化物イオン濃度の低い処理液を得ることができる。   In the above treatment, it is not necessary to use a high-purity and expensive fluoride, and an inexpensive material such as a normal inorganic metal salt can be used. The hydrosilicofluoric acid in the waste liquid can be easily removed as a silicofluoride salt, whereby it can be efficiently recovered as high-purity calcium fluoride and a treatment liquid having a low fluoride ion concentration can be obtained.

以下、本発明の実施例、比較例について説明する。各例中、純度の%はw%である。   Examples of the present invention and comparative examples will be described below. In each case, the percentage purity is w%.

〔実施例1、2、比較例1〕:
[試験例1];ケイフッ化物塩除去試験
SiFが2.0w/v%、HFが10w/v%、HNOが3.0w/v%含まれる溶液1Lに、以下の無機金属塩を添加した。無機金属塩の添加量は、HSiFに対するモル比で、実施例1がNaClを0.5〜3.0、実施例2がBaCOを0.2〜1.5の比率で水溶液として添加した。添加後、スターラで1時間攪拌し、上澄みのSi濃度をICP発光分析装置で測定した。実施例1、2における無機金属塩の各添加モル比とSi濃度の関係(希釈の影響は補正)を表1に示す。表1に示す通り、無機金属塩添加量の増加に従い、上澄みSi濃度が低下することが確認された。HSiFに対するモル比で、実施例1のNaClは3.0、実施例2のBaCOは1.5で上澄みSi濃度は<100mg/Lとなった。
[Examples 1 and 2 and Comparative Example 1]
[Test Example 1] Silica fluoride salt removal test 1 L of a solution containing 2.0 w / v% H 2 SiF 6 , 10 w / v% HF and 3.0 w / v% HNO 3 is mixed with the following inorganic metal salt: Was added. The added amount of the inorganic metal salt is a molar ratio with respect to H 2 SiF 6 , and Example 1 is an aqueous solution in which NaCl is 0.5 to 3.0, and Example 2 is BaCO 3 in a ratio of 0.2 to 1.5. Added. After the addition, the mixture was stirred for 1 hour with a stirrer, and the Si concentration in the supernatant was measured with an ICP emission spectrometer. Table 1 shows the relationship between the molar ratios of inorganic metal salts added in Examples 1 and 2 and the Si concentration (the effect of dilution is corrected). As shown in Table 1, it was confirmed that the supernatant Si concentration decreased as the amount of inorganic metal salt added increased. In the molar ratio to H 2 SiF 6 , NaCl of Example 1 was 3.0, BaCO 3 of Example 2 was 1.5, and the supernatant Si concentration was <100 mg / L.

Figure 2012200687
Figure 2012200687

また比較例1として、48重量%のNaOHをpH7になるまで添加し、上澄みのSi濃度をICP発光分析装置で測定した。比較例1と実施例1、2の上澄Si濃度および無機金属塩使用量の関係(希釈の影響は補正)を、ブランク(無添加)のSi濃度とともに表2に示す。表2に示す通り、比較例1はHSiFだけでなくHFおよびHNOを中和する必要があるため、無機金属塩(NaOH)使用量は実施例1、2に比べ多くなることが分かる。 As Comparative Example 1, 48 wt% NaOH was added until pH 7 and the supernatant Si concentration was measured with an ICP emission spectrometer. Table 2 shows the relationship between the Si concentration of the supernatant of Comparative Example 1 and Examples 1 and 2 and the amount of inorganic metal salt used (the effect of dilution is corrected) together with the Si concentration of the blank (no addition). As shown in Table 2, since Comparative Example 1 needs to neutralize not only H 2 SiF 6 but also HF and HNO 3 , the amount of inorganic metal salt (NaOH) used may be larger than Examples 1 and 2. I understand.

Figure 2012200687
Figure 2012200687

[試験例2];反応速度試験
表1における実施例2のBaCO添加条件(モル比0.5)で、添加後の反応時間と上澄みSi濃度の関係を求めた。結果を表3に示す。表3より、無機金属塩とHSiFの反応は15分以内で概ね終了することが確認された。
[Test Example 2]; Reaction Rate Test Under the conditions of adding BaCO 3 in Example 2 in Table 1 (molar ratio 0.5), the relationship between the reaction time after the addition and the supernatant Si concentration was determined. The results are shown in Table 3. From Table 3, it was confirmed that the reaction between the inorganic metal salt and H 2 SiF 6 was almost completed within 15 minutes.

Figure 2012200687
Figure 2012200687

〔実施例3、比較例2〕:
[試験例3];フッ化カルシウム回収試験
SiFが5000mg/L(34.7mmol/L)、HFが10000mg/L(500mmol/L)含まれる溶液に対し、実施例3ではBaCO(分子量197)をHSiFに対するモル比で1.5となるよう粉末で添加し、得た上澄みの溶液50Lを、粒径0.3mm、純度99%以上のCaCO粒子を500g充填した2Lカラムからなる3塔の充填塔に順次上向流でシリーズに通水した。また比較例2では、BaCOを添加せず、同様の試験をした。
[Example 3, Comparative Example 2]:
[Test Example 3]: Calcium fluoride recovery test In contrast to the solution containing 5000 mg / L (34.7 mmol / L) of H 2 SiF 6 and 10000 mg / L (500 mmol / L) of HF, BaCO 3 ( 2 L of molecular weight 197) was added as a powder so that the molar ratio with respect to H 2 SiF 6 was 1.5, and 50 L of the obtained supernatant solution was charged with 500 g of CaCO 3 particles having a particle size of 0.3 mm and a purity of 99% or more. Water was passed through the series in an upward flow sequentially through three packed columns consisting of columns. In Comparative Example 2, the same test was performed without adding BaCO 3 .

実施例3および比較例2の通水中、第1段充填塔の入口と第3段充填塔の出口におけるSi濃度(mg/L)、HF濃度(mg/L)およびpHを測定した。また通水後、第1段充填塔から充填物を取出し、乾燥後CaFの純度(%)を測定した。これらの結果を表4に示す。 In the water flow of Example 3 and Comparative Example 2, the Si concentration (mg / L), HF concentration (mg / L) and pH at the inlet of the first stage packed tower and the outlet of the third stage packed tower were measured. Moreover, after passing water, the packing was taken out from the first stage packed tower, and after drying, the purity (%) of CaF 2 was measured. These results are shown in Table 4.

Figure 2012200687
Figure 2012200687

本発明は、ケイフッ化水素酸を含有する廃液からフッ化カルシウムを回収する方法、さらにはケイフッ化水素酸およびフッ化水素酸を含有する廃液からケイフッ化物塩を除去し、高純度のフッ化カルシウムを回収する方法に利用可能である。   The present invention relates to a method for recovering calcium fluoride from a waste liquid containing silicohydrofluoric acid, and further to removing silicofluoride salt from the waste liquid containing silicohydrofluoric acid and hydrofluoric acid to obtain high-purity calcium fluoride. It can be used for the method of recovering.

1: 反応槽、2: 無機金属塩貯槽、3: 固液分離槽、4: 回収装置、4a、4b、4c: 充填槽、5: 後処理装置。   1: reaction tank, 2: inorganic metal salt storage tank, 3: solid-liquid separation tank, 4: recovery apparatus, 4a, 4b, 4c: filling tank, 5: post-treatment apparatus.

Claims (4)

ケイフッ化水素酸およびフッ化水素酸を含有する廃液に、無機金属塩を添加し、難溶性のケイフッ化物塩を生成させて分離する前処理工程と、
前処理液をカルシウム化合物と反応させ、フッ化カルシウムとして回収する回収工程と
を含むことを特徴とするケイフッ化水素酸含有廃液の処理方法。
A pretreatment step of adding an inorganic metal salt to a waste liquid containing silicohydrofluoric acid and hydrofluoric acid to form a hardly soluble silicofluoride salt and separating it;
And a recovery step of recovering the pretreatment liquid as calcium fluoride by reacting the pretreatment liquid with a calcium compound.
回収工程が、炭酸カルシウム充填層に前処理液を通液して反応させ、フッ化カルシウムとして回収する工程である請求項1記載の方法。   The method according to claim 1, wherein the recovery step is a step of allowing the pretreatment liquid to flow through the calcium carbonate packed bed for reaction to recover as calcium fluoride. 無機金属塩がNa、K、Cs、Rb、Ba塩である請求項1ないしまたは2記載の方法。   The method according to claim 1 or 2, wherein the inorganic metal salt is Na, K, Cs, Rb, Ba salt. カルシウム化合物がカルシウムの塩化物、酸化物、水酸化物、炭酸塩または重炭酸塩ある請求項1ないし3のいずれかに記載の方法。   4. The method according to claim 1, wherein the calcium compound is calcium chloride, oxide, hydroxide, carbonate or bicarbonate.
JP2011068756A 2011-03-25 2011-03-25 Calcium fluoride recovery method Expired - Fee Related JP5779934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011068756A JP5779934B2 (en) 2011-03-25 2011-03-25 Calcium fluoride recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011068756A JP5779934B2 (en) 2011-03-25 2011-03-25 Calcium fluoride recovery method

Publications (2)

Publication Number Publication Date
JP2012200687A true JP2012200687A (en) 2012-10-22
JP5779934B2 JP5779934B2 (en) 2015-09-16

Family

ID=47182209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011068756A Expired - Fee Related JP5779934B2 (en) 2011-03-25 2011-03-25 Calcium fluoride recovery method

Country Status (1)

Country Link
JP (1) JP5779934B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962107A (en) * 2014-03-14 2014-08-06 四川师范大学 Preparation method of metal-modified humic acid defluorination adsorbing material
CN113369289A (en) * 2021-07-28 2021-09-10 嘉应学院 Treatment method for dangerous solid waste containing fluorine silicate

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170435A (en) * 1991-10-03 1993-07-09 Hashimoto Kasei Kk Method for recovering calcium fluoride from fluorine-containing etchant
JPH05237481A (en) * 1992-02-24 1993-09-17 Kurita Water Ind Ltd Treatment of waste water containing fluorine and silicon
JPH05293475A (en) * 1992-04-15 1993-11-09 Kurita Water Ind Ltd Treatment of acidic fluorine-containing water
JPH11156355A (en) * 1997-11-21 1999-06-15 Kurita Water Ind Ltd Method for treating fluorine-containing water
JP2000072482A (en) * 1998-08-26 2000-03-07 Matsushita Electronics Industry Corp Regenerating method of glass cleaning solution, regenerating device therefor, cleaning method of silicate glass and cleaning device therefor
JP2000218279A (en) * 1999-02-01 2000-08-08 Stella Chemifa Corp Method for removing calcium from water concentrated in calcium bicarbonate
JP2003033774A (en) * 2001-07-24 2003-02-04 Nippon Parkerizing Co Ltd Agents for treatment of fluorine-containing wastewater and method for treatment of fluorine-containing wastewater
JP2004283736A (en) * 2003-03-24 2004-10-14 Nishiyama Stainless Chem Kk Treating method of waste solution
JP2005021855A (en) * 2003-07-02 2005-01-27 Japan Organo Co Ltd Crystallization method of silicon/fluorine-containing wastewater
JP2009196858A (en) * 2008-02-22 2009-09-03 Ebara Corp Method and apparatus for recovering synthetic fluorite
JP2010207797A (en) * 2009-02-13 2010-09-24 Kobelco Eco-Solutions Co Ltd Method of recycling fluorine and fluorine-containing waste water treatment facility
JP2011131128A (en) * 2009-12-22 2011-07-07 Kobelco Eco-Solutions Co Ltd Method for pretreating wastewater containing fluorine and silicon and apparatus for treating wastewater containing fluorine and silicon
JP2011152541A (en) * 2011-04-07 2011-08-11 Kobelco Eco-Solutions Co Ltd Method for pretreating wastewater containing fluorine and silicon, and equipment for treating wastewater containing fluorine and silicon

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170435A (en) * 1991-10-03 1993-07-09 Hashimoto Kasei Kk Method for recovering calcium fluoride from fluorine-containing etchant
JPH05237481A (en) * 1992-02-24 1993-09-17 Kurita Water Ind Ltd Treatment of waste water containing fluorine and silicon
JPH05293475A (en) * 1992-04-15 1993-11-09 Kurita Water Ind Ltd Treatment of acidic fluorine-containing water
JPH11156355A (en) * 1997-11-21 1999-06-15 Kurita Water Ind Ltd Method for treating fluorine-containing water
JP2000072482A (en) * 1998-08-26 2000-03-07 Matsushita Electronics Industry Corp Regenerating method of glass cleaning solution, regenerating device therefor, cleaning method of silicate glass and cleaning device therefor
JP2000218279A (en) * 1999-02-01 2000-08-08 Stella Chemifa Corp Method for removing calcium from water concentrated in calcium bicarbonate
JP2003033774A (en) * 2001-07-24 2003-02-04 Nippon Parkerizing Co Ltd Agents for treatment of fluorine-containing wastewater and method for treatment of fluorine-containing wastewater
JP2004283736A (en) * 2003-03-24 2004-10-14 Nishiyama Stainless Chem Kk Treating method of waste solution
JP2005021855A (en) * 2003-07-02 2005-01-27 Japan Organo Co Ltd Crystallization method of silicon/fluorine-containing wastewater
JP2009196858A (en) * 2008-02-22 2009-09-03 Ebara Corp Method and apparatus for recovering synthetic fluorite
JP2010207797A (en) * 2009-02-13 2010-09-24 Kobelco Eco-Solutions Co Ltd Method of recycling fluorine and fluorine-containing waste water treatment facility
JP2011131128A (en) * 2009-12-22 2011-07-07 Kobelco Eco-Solutions Co Ltd Method for pretreating wastewater containing fluorine and silicon and apparatus for treating wastewater containing fluorine and silicon
JP2011152541A (en) * 2011-04-07 2011-08-11 Kobelco Eco-Solutions Co Ltd Method for pretreating wastewater containing fluorine and silicon, and equipment for treating wastewater containing fluorine and silicon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962107A (en) * 2014-03-14 2014-08-06 四川师范大学 Preparation method of metal-modified humic acid defluorination adsorbing material
CN113369289A (en) * 2021-07-28 2021-09-10 嘉应学院 Treatment method for dangerous solid waste containing fluorine silicate
CN113369289B (en) * 2021-07-28 2023-10-17 嘉应学院 Treatment method for dangerous solid waste of fluorosilicate

Also Published As

Publication number Publication date
JP5779934B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
TWI534092B (en) A waste water treatment method containing fluorine and silicon, a method for producing calcium fluoride, and a waste water treatment apparatus
JP5255861B2 (en) Synthetic fluorite recovery method and recovery device
TW201139292A (en) Method for pretreating wastewater containing fluorine and silicon and apparatus for treating wastewater containing fluorine and silicon
TWI529141B (en) Recovery and treatment of hydrofluoric acid and fluorosilicic acid waste
CN110642282A (en) Method for preparing calcium fluoride and potassium bicarbonate by using carbon dioxide
CN106277005B (en) A kind of method that ice crystal, calcium carbonate and sodium sulphate are reclaimed in the resource from calcium fluoride sludge
US20110135555A1 (en) Process for producing fluoride gas
JP6024910B2 (en) Calcium fluoride recovery method and recovery equipment
JP5779934B2 (en) Calcium fluoride recovery method
US20110311426A1 (en) Process for the preparation of fluorine compound
CN107117753A (en) A kind of method that silicon solar cell making herbs into wool devil liquor recovery is utilized
CN111377474B (en) Method and equipment for purifying calcium fluoride from carbonate-removed fluorine-containing solid waste
JP2017077993A (en) Method for producing calcium fluoride
CN103449481B (en) The method preparing lithium carbonate
TW201311574A (en) Treatment method for recycling and reusing hydrofluoric acid waste liquid (I)
JP2004018308A (en) Method of recovering and purifying calcium fluoride from byproduct salt mixture containing fluorine
JP5757092B2 (en) Method for treating hydrofluoric acid-containing waste liquid
JP2013220955A (en) Method and apparatus for producing calcium fluoride
CN104495893A (en) Cryolite preparation method
CN103864078B (en) A kind of method removing residual fluorinated hydrogen in silicofluoric acid
JPH05170435A (en) Method for recovering calcium fluoride from fluorine-containing etchant
JP2004075496A (en) Recovery method for hydrofluoric acid
KR20100092556A (en) Method and system for separating hydrofluoric acid from mixed wasted acid solution using preferential precipitaion
CN110627094A (en) Method for utilizing associated fluorine and potassium of phosphorite
CN104445210A (en) Preparation method of sodium fluosilicate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R150 Certificate of patent or registration of utility model

Ref document number: 5779934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees