JP2912934B2 - Method for treating wastewater containing borofluoride ions - Google Patents

Method for treating wastewater containing borofluoride ions

Info

Publication number
JP2912934B2
JP2912934B2 JP14536194A JP14536194A JP2912934B2 JP 2912934 B2 JP2912934 B2 JP 2912934B2 JP 14536194 A JP14536194 A JP 14536194A JP 14536194 A JP14536194 A JP 14536194A JP 2912934 B2 JP2912934 B2 JP 2912934B2
Authority
JP
Japan
Prior art keywords
fluorine
boron
added
calcium
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14536194A
Other languages
Japanese (ja)
Other versions
JPH07328645A (en
Inventor
嗣夫 橋本
琢也 内藤
稔 辻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUTERA KEMIFUA KK
Original Assignee
SUTERA KEMIFUA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUTERA KEMIFUA KK filed Critical SUTERA KEMIFUA KK
Priority to JP14536194A priority Critical patent/JP2912934B2/en
Publication of JPH07328645A publication Critical patent/JPH07328645A/en
Application granted granted Critical
Publication of JP2912934B2 publication Critical patent/JP2912934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はメッキ工場から排出され
たり、三フッ化ホウ素製造の排ガス洗浄装置から排出さ
れるホウ素を含有するフッ化物廃水の処理方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating boron-containing fluoride wastewater discharged from a plating plant or discharged from an exhaust gas cleaning apparatus for producing boron trifluoride.

【0002】[0002]

【従来の技術】ホウフッ化物イオンを含有する廃水の処
理方法としては、特開昭52−58253号では、アル
ミニウム化合物を加えてホウフッ化物イオンを分解した
後、水酸化カルシウムを添加して、pHをアルカリに調整
する方法が提案されている。しかしこの方法ではフッ素
は除去できるが、ホウ素については全く検討していな
い。
2. Description of the Related Art As a method for treating wastewater containing borofluoride ions, JP-A-52-58253 discloses a method of decomposing borofluoride ions by adding an aluminum compound and then adding calcium hydroxide to adjust the pH. A method of adjusting to alkali has been proposed. However, this method can remove fluorine but does not consider boron at all.

【0003】又特公昭60−117号ではアルミニウム
処理した溶液に、水酸化カルシウムを添加反応させた
後、一旦固液を分離して、その瀘液に再度アルミニウム
を添加し、続いてアルカリを添加してpHを10以上に調
整した後、固液を再度分離してフッ素を除去する方法を
提示している。この方法は排煙脱硫の廃水、すなわち低
濃度のフッ素やホウ素を含んだ廃水を処理し、途中で固
液分離し、再度アルミニウム化合物を添加する等作業性
が悪い欠点を有している。更にアルミニウム化合物を多
く使用しているので廃棄固形物の量が多くなる欠点を有
している。
In Japanese Patent Publication No. Sho 60-117, calcium hydroxide is added to a solution which has been treated with aluminum, and then the solid is separated from the solution. Aluminum is added again to the filtrate, followed by addition of alkali. After adjusting the pH to 10 or more, the solid-liquid is separated again to remove fluorine. This method has a drawback of poor workability such as treating wastewater of flue gas desulfurization, that is, wastewater containing low concentrations of fluorine and boron, separating solid and liquid on the way, and adding an aluminum compound again. Further, since a large amount of aluminum compound is used, there is a disadvantage that the amount of solid waste is increased.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記のような
従来法の欠点を改善し、高濃度のフッ素とホウ素を含有
する廃水を比較的簡単な且つ容易に実施できる手段で処
理して、脱フッ素および脱ホウ素する方法を開発するこ
とである。
SUMMARY OF THE INVENTION The present invention overcomes the disadvantages of the prior art described above, and treats wastewater containing high concentrations of fluorine and boron in a relatively simple and easily implementable manner. To develop a method for defluorination and deboronation.

【0005】[0005]

【問題点を解決するための手段】ホウフッ化物イオンを
含有する廃水に硫酸アルミニウムを添加し、50℃以上
の温度で反応させ、ホウフッ化物イオンを分解する第1
工程と、前記第1工程の溶液に炭酸カルシウムを添加し
て、フッ素をフッ化カルシウムとして固定する第2工程
と、第2工程のスラリー溶液に水酸化カルシウム又は
(および)塩化カルシウムを添加してpH4以下でフッ
化カルシウムを熟成させる第3工程と、第3工程のスラ
リーに50℃以下の温度で水酸化カルシウムを添加して
pHを9以上にして、ホウ素およびフッ素を不溶性化合
物に変換した後、固液分離する第4工程とからなること
を特徴とするホウフッ化物イオンを含有する廃水の処理
方法を採用することにより上記課題は解決される。
Means for Solving the Problems First, aluminum sulfate is added to waste water containing borofluoride ions and reacted at a temperature of 50 ° C. or more to decompose borofluoride ions.
A step of adding calcium carbonate to the solution of the first step to fix fluorine as calcium fluoride; and adding calcium hydroxide or (and) calcium chloride to the slurry solution of the second step. a third step of aging calcium fluoride at a pH of 4 or less, and adding calcium hydroxide to the slurry of the third step at a temperature of 50 ° C. or less to adjust the pH to 9 or more and convert boron and fluorine into insoluble compounds. The above problem is solved by employing a method for treating wastewater containing borofluoride ions, which comprises a fourth step of solid-liquid separation.

【0006】[0006]

【発明の作用】本発明に於いては、ホウフッ化物イオン
を含有する廃水をその処理の対象物としているが、フッ
素濃度が1%以上で且つホウ素濃度が500ppm以上の
高濃度廃水については本発明の処理を施す前に次の様な
前処理を行うことが好ましい。
In the present invention, wastewater containing borofluoride ions is treated, but high-concentration wastewater having a fluorine concentration of 1% or more and a boron concentration of 500 ppm or more is treated by the present invention. It is preferable to perform the following pretreatment before performing the above treatment.

【0007】即ち上記高濃度廃水に対しては、予めカリ
ウム塩を添加してフッ素およびホウ素をホウフッ化カリ
ウムとして分離除去し、廃水中のフッ素濃度を1%以下
およびホウ素濃度を500ppm以下にする前処理工程で
ホウフッ化カリウムを回収し瀘液を本発明の処理たる脱
フッ素および脱ホウ素の工程へ送る。この際使用される
カリウム塩としては水酸化カリウム、塩化カリウム、フ
ッ化カリウム等のカリウム塩が例示でき、その添加量は
廃水のフッ素濃度およびホウ素濃度に合わせて適宜にこ
れ等各濃度が上記所定濃度以下になる量で使用される。
That is, with respect to the high-concentration wastewater, potassium salts are added in advance to separate and remove fluorine and boron as potassium borofluoride, so that the fluorine concentration in the wastewater is 1% or less and the boron concentration is 500 ppm or less. The potassium borofluoride is recovered in the treatment step, and the filtrate is sent to the defluorination and deboronation step of the present invention. Examples of the potassium salt used in this case include potassium salts such as potassium hydroxide, potassium chloride, and potassium fluoride. The amount of the potassium salt is appropriately adjusted according to the fluorine concentration and the boron concentration of the wastewater. It is used in an amount below the concentration.

【0008】フッ素およびホウ素を含有する廃水中で
は、フッ素とホウ素の大部分はホウフッ酸イオンBF4 -
として存在し、一部分はヒドロキシホウフッ酸イオンB
3(OH)-として存在し、このモル比以外に過剰に存
在するフッ素やホウ素はフッ素イオンやほう酸として存
在している。BF4 -イオンが硫酸アルミニウムでpH3以
下、反応温度50℃以上の条件で30〜60分反応させ
ると分解する。分解反応は下記の推定式によると考えら
れている。
[0008] Fluorine and in waste water containing boron, most of the fluorine and boron fluoroboric acid ion BF 4 -
And a portion of which is hydroxyborate ion B
F 3 (OH) - present as, fluorine and boron present in excess in addition to the molar ratios are present as fluoride ions and boric acid. The BF 4 - ion is decomposed when reacted with aluminum sulfate at a pH of 3 or less and a reaction temperature of 50 ° C. or more for 30 to 60 minutes. The decomposition reaction is considered to be based on the following estimation formula.

【0009】2Al2(SO43+HBF4+2H2O=
4AlF(SO4)+2H2SO4+H3BO3
2Al 2 (SO 4 ) 3 + HBF 4 + 2H 2 O =
4AlF (SO 4 ) + 2H 2 SO 4 + H 3 BO 3

【0010】第1工程での硫酸アルミニウムの使用量
は、存在するBF4 -イオンのフッ素量の4.5倍以上、
すなわちAl/F=1.1以上、好ましくは1.2以上
必要である。このことは上記式でAlF3が生成するの
ではなく、AlF(SO4)が生成することと対応して
いる。
[0010] The amount of aluminum sulfate used in the first step is at least 4.5 times the amount of fluorine of the existing BF 4 - ion,
That is, Al / F needs to be 1.1 or more, preferably 1.2 or more. This corresponds to generation of AlF (SO 4 ) instead of generation of AlF 3 in the above equation.

【0011】第1工程で分解されて生成したアルミニウ
ムに結合したフッ素は、フッ素に当量の炭酸カルシウム
を添加する第2工程で、pH4以下で30〜60分処理す
ることによりフッ化カルシウムに変換される。しかし、
この酸性度の条件ではフッ化カルシウムの溶解度が大き
く、かなりのフッ化カルシウムは溶解したままである。
第2工程で炭酸カルシウムを用いるのは、pHを酸性に保
って、フッ素だけをフッ化カルシウムに変換させるため
である。ここで水酸化カルシウムを用いるとpHがあが
り、カルシウムイオンの一部が硫酸と反応して石膏を生
成するのでフッ素の固定が不充分となる。このようにフ
ッ化カルシウムの生成が不充分となると、最終工程での
フッ素およびホウ素の除去が不十分となってしまう。こ
こで炭酸カルシウムでフッ素だけを固定することがこの
方法の特長の一つである。この第2工程ではpHは4以下
であることが必要であり、pHが4より高くなると硫酸イ
オンがカルシウムイオンに消費され、アルミニウムイオ
ンも水酸化アルミニウムになってしまい、後工程でホウ
素イオンを固定出来なくなる。
Fluorine bound to aluminum formed by the decomposition in the first step is converted to calcium fluoride by treating at a pH of 4 or less for 30 to 60 minutes in a second step of adding an equivalent of calcium carbonate to the fluorine. You. But,
Under this acidity condition, the solubility of calcium fluoride is large, and considerable calcium fluoride remains dissolved.
The reason for using calcium carbonate in the second step is to convert only fluorine into calcium fluoride while keeping the pH acidic. Here, when calcium hydroxide is used, the pH rises, and a part of calcium ions reacts with sulfuric acid to form gypsum, so that fixation of fluorine becomes insufficient. When the generation of calcium fluoride is insufficient, the removal of fluorine and boron in the final step becomes insufficient. Here, fixing only fluorine with calcium carbonate is one of the features of this method. In the second step, the pH needs to be 4 or less. If the pH is higher than 4, sulfate ions are consumed by calcium ions and aluminum ions also become aluminum hydroxide, and boron ions are fixed in a later step. I cannot do it.

【0012】第3工程では、生成したフッ化カルシウム
は水酸化カルシウムでpHを4に調整し、60〜90分
処理すると、完全に析出させられる。pHが4未満であ
れば、水酸化カルシウムはまだ硫バンと反応しない。ま
た廃水に塩類、例えばフッ化マグネシウムやフッ化ナト
リウム等が1000ppm量程度以上含まれている場
合、水酸化カルシウムを使用するとpHが4より高くな
ってしまう場合がある。この場合には、水酸化カルシウ
ムに代えて塩化カルシウムを使用することが好ましい。
塩化カルシウムの使用により、たとえ廃水に上記塩類が
共存していてもpHが4より高くなることはなく、pH
を4以下に保持することができる。この理由は塩類が脱
フッ素されても水酸化物とはならず塩化物となるのでp
Hを変化させないからである。
In the third step, the generated calcium fluoride is adjusted to pH 4 with calcium hydroxide and treated for 60 to 90 minutes to be completely precipitated . If the pH is less than 4, the calcium hydroxide will not yet react with the sulphate. When the wastewater contains salts such as magnesium fluoride and sodium fluoride in an amount of about 1000 ppm or more, the pH may be higher than 4 when calcium hydroxide is used. In this case, it is preferable to use calcium chloride instead of calcium hydroxide.
Due to the use of calcium chloride, even if the above-mentioned salts coexist in the wastewater, the pH does not become higher than 4;
Can be kept to 4 or less. The reason for this is that even if the salts are defluorinated, they will not be hydroxides but chlorides.
This is because H is not changed.

【0013】また廃水に上記塩類が共存していない場合
でも塩化カルシウムを水酸化カルシウムの代わりに使用
することができるが、塩化カルシウムを使用すると塩酸
を副生し、後工程での水酸化カルシウムの使用量を増す
傾向があるので、pHが4より高くなることがない場合に
は、水酸化カルシウムを使用する方がより好ましい。
[0013] Calcium chloride can be used in place of calcium hydroxide even when the above-mentioned salts do not coexist in the wastewater. However, when calcium chloride is used, hydrochloric acid is by-produced, and calcium hydroxide in the subsequent step is not used. If the pH does not rise above 4, it is more preferable to use calcium hydroxide because it tends to increase the amount used.

【0014】またpHが4以下に保持できるかぎり塩化カ
ルシウムと水酸化カルシウムを適宜併用しても良いが、
pH制御の加減をしながら、両者の添加混合比を調整しな
ければならないので夫々単独使用の方が好ましい。
As long as the pH can be maintained at 4 or less, calcium chloride and calcium hydroxide may be used in combination.
Since it is necessary to adjust the mixing ratio of the two while adjusting the pH control, it is preferable to use each of them alone.

【0015】第2工程での処理の際に溶液のpHが3前後
になることにより、pHが4より高くなる可能性のあるこ
とが予め判定できるので、第3工程で塩化カルシウムの
使用又は水酸化カルシウムの使用の判断は容易に決定す
ることができる。
When the pH of the solution becomes about 3 during the treatment in the second step, it can be determined in advance that there is a possibility that the pH may become higher than 4. Therefore, use of calcium chloride or water in the third step The decision to use calcium oxide can be easily determined.

【0016】第4工程で第3工程のスラリーに更に水酸
化カルシウムを添加してpHを9以上に調整し、ホウ素が
不溶性固体になるまで十分反応させた後固液分離する。
pHが9より高くなると水酸化カルシウムが硫バンと反応
すると同時に遊離のほう酸とも反応して、ホウ素を含有
したエトリンガイト型の不溶性固体を生成するものと考
えられる。この生成物は脱水性が良い特長を有してい
る。
In the fourth step, calcium hydroxide is further added to the slurry of the third step to adjust the pH to 9 or more, and the mixture is sufficiently reacted until boron becomes an insoluble solid, followed by solid-liquid separation.
It is considered that when the pH is higher than 9, calcium hydroxide reacts with sulphate at the same time as free boric acid to form an insoluble ettringite-type solid containing boron. This product has the feature of good dehydration.

【0017】この条件で処理すると排水中のフッ素およ
びホウ素共10ppm以下まで低下する。第2工程以降は
加熱の必要はない。特に第4工程では反応温度を50℃
以下、好ましくは40℃以下で処理する必要がある。5
0℃より高い温度で処理するとホウ素が除去できなくな
る。50℃より高い温度ではホウ素を含んだ不溶性エト
リンガイト型の化合物の生成が阻害され、別の化合物と
なってしまいホウ素が溶解してくると考えられる。フッ
素もフッ化カルシウムとして沈殿しているが、このホウ
素を含有した不溶性の固体に吸着されるためか通常のフ
ッ化物廃水の処理時よりも排水中に含まれるフッ素の濃
度は低くなる特徴を有している。
When treated under these conditions, both fluorine and boron in the waste water are reduced to 10 ppm or less. There is no need for heating after the second step. Particularly, in the fourth step, the reaction temperature is set to 50 ° C.
Hereafter, it is necessary to process at preferably 40 ° C. or lower. 5
If the treatment is performed at a temperature higher than 0 ° C., boron cannot be removed. At a temperature higher than 50 ° C., it is considered that the formation of an insoluble ettringite-type compound containing boron is inhibited, the compound becomes another compound, and boron is dissolved. Fluorine also precipitates as calcium fluoride, but the concentration of fluorine contained in wastewater is lower than that in normal fluoride wastewater treatment, probably because it is absorbed by this insoluble solid containing boron. doing.

【0018】尚前処理工程を行った場合には即ち高濃度
のフッ素およびホウ素を含有した廃水の場合には、塩化
カリウム等のカリウム塩で処理し、ホウフッ化カリウム
の溶解度以上のものを固体として分離した時、瀘液に塩
素イオンが1〜4%程度含有されるが、本発明方法では
第4工程での水酸化カルシウムの使用量が増加するが、
脱フッ素および脱ホウ素には影響を与えない。
When the pretreatment step is performed, that is, in the case of wastewater containing high concentrations of fluorine and boron, the wastewater is treated with a potassium salt such as potassium chloride, and those having a solubility higher than that of potassium borofluoride are solidified. When separated, the filtrate contains about 1 to 4% of chloride ions. In the method of the present invention, the amount of calcium hydroxide used in the fourth step increases.
Does not affect defluorination and deboronation.

【0019】[0019]

【実施例1】フッ素3020ppm、ホウ素430ppmを含
有する廃水2000gに、硫酸アルミニウム159gを添
加して、pH=1.6、65℃で1時間反応させた。つぎ
に炭酸カルシウム20gを加えて30分撹拌した。この
時には加熱は中止していた。またpHは2.9であった。
この溶液に水酸化カルシウム21.6gを添加し、pH=
3.6で90分撹拌反応させ、フッ素を完全にフッ化カ
ルシウムとして固定した。このスラリー溶液に更に水酸
化カルシウム88gを添加し、反応温度は40℃以下で
1時間撹拌反応させた。この時のpHは9.7であった。
固液を分離した瀘液中のフッ素は10ppm、ホウ素は
0.1ppmであった。含水率60%の固形物500gが分
離された。
Example 1 159 g of aluminum sulfate was added to 2000 g of wastewater containing 3020 ppm of fluorine and 430 ppm of boron, and reacted at 65 ° C. for 1 hour at pH = 1.6. Next, 20 g of calcium carbonate was added and stirred for 30 minutes. At this time, heating was stopped. The pH was 2.9.
21.6 g of calcium hydroxide was added to this solution, and pH =
The mixture was stirred and reacted at 3.6 for 90 minutes to completely fix fluorine as calcium fluoride. 88 g of calcium hydroxide was further added to the slurry solution, and the reaction was stirred at a reaction temperature of 40 ° C. or lower for 1 hour. The pH at this time was 9.7.
The filtrate in which the solid and liquid were separated contained 10 ppm of fluorine and 0.1 ppm of boron. 500 g of a solid with a water content of 60% were separated.

【0020】[0020]

【実施例2】フッ素3020ppm、ホウ素430ppmおよ
び塩素1%を含有する廃水2000gに、硫酸アルミニ
ウム120gを加えて、pH=0.7、75℃で1時間反
応させた。つぎに炭酸カルシウム20gを加えて30分
撹拌した。この時には加熱は中止していた。またpHは
1.0であった。この溶液に水酸化カルシウム21.6
gを添加し、pH=2.9で90分撹拌反応させ、フッ素
を完全にフッ化カルシウムとして固定した。このスラリ
ー溶液に更に水酸化カルシウム116gを添加し、反応
温度は40℃以下で1時間撹拌反応をさせた。この時の
pHは9.7であった。固液を分離した瀘液中のフッ素は
6ppm、ホウ素は1.2ppmであった。含水率60%の固
形物700gが分離された。
Example 2 120 g of aluminum sulfate was added to 2000 g of waste water containing 3020 ppm of fluorine, 430 ppm of boron and 1% of chlorine, and reacted at 75 ° C. for 1 hour at pH = 0.7. Next, 20 g of calcium carbonate was added and stirred for 30 minutes. At this time, heating was stopped. The pH was 1.0. 21.6 calcium hydroxide was added to this solution.
g was added, and the mixture was stirred and reacted at pH = 2.9 for 90 minutes to completely fix fluorine as calcium fluoride. 116 g of calcium hydroxide was further added to this slurry solution, and a reaction was carried out with stirring at a reaction temperature of 40 ° C. or lower for 1 hour. At this time
pH was 9.7. The filtrate from which the solid and liquid were separated contained 6 ppm of fluorine and 1.2 ppm of boron. 700 g of a solid with a water content of 60% were separated.

【0021】[0021]

【実施例3】フッ素6.9%、ホウ素1%を含有する廃
水2300gに塩化カリウム190gを添加し反応させ、
折出したKBF4、263gを瀘過分離した。瀘液の組成
はフッ素1900ppm、ホウ素340ppmおよび塩素3.
4%であった。この溶液1000gに硫バン40gを添加
し、60℃で1時間反応させた。加熱を中止し、炭酸カ
ルシウム6gを添加しフッ素の固定を行った。さらに水
酸化カルシウムを添加しpH=4で1時間撹拌を続けた。
続いて、水酸化カルシウム100gを添加しpHを9以上
にして1時間処理した。固液を分離した瀘液中にはフッ
素は9ppm、ホウ素は1.0ppmしか含まれていなかっ
た。
Example 3 190 g of potassium chloride was added to 2300 g of waste water containing 6.9% of fluorine and 1% of boron to cause a reaction.
263 g of the precipitated KBF 4 were separated by filtration. The composition of the filtrate is 1900 ppm of fluorine, 340 ppm of boron and 3.
4%. To 1000 g of this solution, 40 g of sulphate was added and reacted at 60 ° C. for 1 hour. The heating was stopped and 6 g of calcium carbonate was added to fix the fluorine. Further, calcium hydroxide was added, and stirring was continued at pH = 4 for 1 hour.
Subsequently, 100 g of calcium hydroxide was added to adjust the pH to 9 or more, and the mixture was treated for 1 hour. The filtrate from which the solid and liquid were separated contained only 9 ppm of fluorine and 1.0 ppm of boron.

【0022】[0022]

【実施例4】フッ素3020ppmとホウ素430ppmを含
有する廃水2000gに、硫酸アルミニウム120gを添
加して、pH=0.7、60℃で1時間反応させた。つぎ
に炭酸カルシウム20gを加えて30分撹拌をした。こ
の時には加熱は中止していた。またpHは3.0であっ
た。この溶液に塩化カルシウム32gを添加し、pH=
2.9で90分撹拌反応させ、フッ素を完全にフッ化カ
ルシウムとして固定した。このスラリー溶液に更に水酸
化カルシウム116gを添加し、反応温度は40℃以下
で1時間撹拌反応をさせた。この時のpHは9.7であっ
た。固液を分離した瀘液中のフッ素は8ppm、ホウ素は
2.2ppmであった。含水率60%の固形物700gが分
離された。
Example 4 120 g of aluminum sulfate was added to 2000 g of waste water containing 3020 ppm of fluorine and 430 ppm of boron, and reacted at 60 ° C. for 1 hour at pH = 0.7. Next, 20 g of calcium carbonate was added and stirred for 30 minutes. At this time, heating was stopped. The pH was 3.0. To this solution was added 32 g of calcium chloride, and pH =
The mixture was stirred and reacted at 2.9 for 90 minutes to completely fix fluorine as calcium fluoride. 116 g of calcium hydroxide was further added to this slurry solution, and a reaction was carried out with stirring at a reaction temperature of 40 ° C. or lower for 1 hour. The pH at this time was 9.7. The filtrate in which the solid and liquid were separated contained 8 ppm of fluorine and 2.2 ppm of boron. 700 g of a solid with a water content of 60% were separated.

【0023】[0023]

【比較例1】フッ素3020ppm、ホウ素430ppmおよ
び塩素1%を含有する廃水2000gに、硫酸アルミニ
ウム120gを添加して、pH=0.7、65℃で1時間
反応させた。つぎに炭酸カルシウム20gを加えて30
分撹拌をした。またpHは1.0であった。この溶液に水
酸化カルシウム21.6gを添加し、pH=2.9で90
分撹拌反応させフッ素を完全にフッ化カルシウムとして
固定した。このスラリー溶液に更に水酸化カルシウム1
16gを添加し、1時間撹拌反応をさせた。この時のpH
は9.7であった。反応温度は最後まで65℃で行っ
た。固液を分離した瀘液中のフッ素は16ppm、ホウ素
は100ppmであった。
Comparative Example 1 120 g of aluminum sulfate was added to 2000 g of waste water containing 3020 ppm of fluorine, 430 ppm of boron and 1% of chlorine, and reacted at pH = 0.7 and 65 ° C. for 1 hour. Then add 20 g of calcium carbonate and add 30 g
The mixture was stirred for minutes. The pH was 1.0. To this solution, 21.6 g of calcium hydroxide was added, and at pH = 2.9, 90
The mixture was stirred and reacted for a minute to completely fix the fluorine as calcium fluoride. Calcium hydroxide 1 is added to this slurry solution.
16 g was added, and a stirring reaction was performed for 1 hour. PH at this time
Was 9.7. The reaction temperature was 65 ° C. until the end. The filtrate from the solid-liquid separation contained 16 ppm of fluorine and 100 ppm of boron.

【0024】[0024]

【比較例2】フッ素3020ppmとホウ素430ppmを含
有する廃水2000gに、硫酸アルミニウム120gを添
加してpH=0.7、65℃で1時間反応させた。つぎに
炭酸カルシウム20gを加えて30分撹拌をした。またp
Hは3.0であった。この溶液に水酸化カルシウムを添
加すると21.6gを添加したとき、pHが4以上になっ
た。90分撹拌反応させた。このスラリー溶液に更に水
酸化カルシウム116gを添加し、1時間撹拌反応をさ
せた。この時のpHは9.7であった。固液を分離した瀘
液中のフッ素は55ppm、ホウ素は80ppmであった。
Comparative Example 2 120 g of aluminum sulfate was added to 2000 g of waste water containing 3020 ppm of fluorine and 430 ppm of boron, and reacted at 65 ° C. for 1 hour at pH = 0.7. Next, 20 g of calcium carbonate was added and stirred for 30 minutes. Also p
H was 3.0. When calcium hydroxide was added to this solution, the pH became 4 or more when 21.6 g was added. The mixture was stirred and reacted for 90 minutes. 116 g of calcium hydroxide was further added to this slurry solution, and a stirring reaction was performed for 1 hour. The pH at this time was 9.7. The filtrate from which the solid and liquid were separated contained 55 ppm of fluorine and 80 ppm of boron.

【0025】[0025]

【発明の効果】従来困難とされて来たホウフッ化物イオ
ンを含有する廃水の処理を、ホウフッ化物イオンの分
解、フッ素イオンの固定およびホウ素の固定と各工程を
順序よく行うことで、脱フッ素および脱ホウ素を効率よ
く行えるようになった。BF3ガスを触媒として用いる
反応後の廃水や、ホウフッ化物溶液を用いるメッキの廃
液処理が処理可能となった。
According to the present invention, the treatment of wastewater containing borofluoride ions, which has been regarded as difficult, has been performed by decomposing borofluoride ions, fixing fluorine ions and fixing boron in order. Boron can be efficiently used. It has become possible to treat wastewater after reaction using BF 3 gas as a catalyst and wastewater treatment for plating using a borofluoride solution.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C02F 1/58 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C02F 1/58

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ホウフッ化物イオンを含有する廃水に硫酸
アルミニウムを添加し、50℃以上の温度で反応させホ
ウフッ化物イオンを分解する第1工程と、前記第1工程
の溶液に炭酸カルシウムを添加して、pH4以下でフッ
素をフッ化カルシウムとして固定する第2工程と、第2
工程のスラリー溶液に水酸化カルシウム又は(及び)塩
化カルシウムを添加してpH4以下でフッ化カルシウム
熟成させる第3工程と、第3工程のスラリーに50℃
以下の温度で水酸化カルシウムを添加してpHを9以上
にしてホウ素およびフッ素を、不溶性化合物に変換した
後、固液分離する第4工程からなることを特徴とするホ
ウフッ化物イオンを含有する廃水の処理方法。
1. A first step in which aluminum sulfate is added to waste water containing borofluoride ions and reacted at a temperature of 50 ° C. or higher to decompose borofluoride ions, and calcium carbonate is added to the solution in the first step. A second step of fixing fluorine as calcium fluoride at a pH of 4 or less;
A third step of adding calcium hydroxide or (and) calcium chloride to the slurry solution of the step to ripen the calcium fluoride at a pH of 4 or less;
Wastewater containing borofluoride ions, comprising a fourth step of converting boron and fluorine to insoluble compounds by adding calcium hydroxide at a temperature of not more than 9 to convert the boron and fluorine into insoluble compounds, Processing method.
【請求項2】ホウフッ化物イオンを含有する廃水が、フ
ッ素濃度が1%以上でホウ素濃度が500ppm以上の
高濃度廃水の場合に、カリウム塩を添加して、フッ素及
びホウ素をホウフッ化カリウムとして分離除去し、廃水
中のフッ素濃度を1%以下およびホウ素濃度を500p
pm以下とする前処理工程で処理をすることを特徴とす
る請求項1の処理方法。
2. A wastewater containing borofluoride ions having a fluorine concentration of 1% or more and a boron concentration of 500 ppm or more is added to a potassium salt to separate fluorine and boron as potassium borofluoride. Removed, the concentration of fluorine in wastewater is 1% or less and the concentration of boron is 500p
2. The processing method according to claim 1, wherein the processing is performed in a pre-processing step of not more than pm.
JP14536194A 1994-06-03 1994-06-03 Method for treating wastewater containing borofluoride ions Expired - Fee Related JP2912934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14536194A JP2912934B2 (en) 1994-06-03 1994-06-03 Method for treating wastewater containing borofluoride ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14536194A JP2912934B2 (en) 1994-06-03 1994-06-03 Method for treating wastewater containing borofluoride ions

Publications (2)

Publication Number Publication Date
JPH07328645A JPH07328645A (en) 1995-12-19
JP2912934B2 true JP2912934B2 (en) 1999-06-28

Family

ID=15383431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14536194A Expired - Fee Related JP2912934B2 (en) 1994-06-03 1994-06-03 Method for treating wastewater containing borofluoride ions

Country Status (1)

Country Link
JP (1) JP2912934B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026981A (en) * 2010-07-27 2012-02-09 Maezawa Ind Inc Tetrafluoroborate ion detection agent, tetrafluoroborate ion detection kit, and tetrafluoroborate ion detection method
EP2918551A4 (en) * 2012-11-07 2016-04-13 Daelim Ind Co Ltd Method for treating waste water containing fluorine component

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100356618B1 (en) * 2000-06-02 2002-10-19 소재춘 Remover of fluoride ion and treatment method for waste water comprising fluoride ion using the same
JP2004358445A (en) * 2003-04-10 2004-12-24 Miyama Kk Treatment method of boron and/or fluorine
JP4686735B2 (en) * 2005-02-02 2011-05-25 Dowaエコシステム株式会社 Fluorine-containing water treatment method
CN113060802A (en) * 2021-04-16 2021-07-02 兰州交通大学 Device and method for treating wastewater containing fluoroborate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026981A (en) * 2010-07-27 2012-02-09 Maezawa Ind Inc Tetrafluoroborate ion detection agent, tetrafluoroborate ion detection kit, and tetrafluoroborate ion detection method
EP2918551A4 (en) * 2012-11-07 2016-04-13 Daelim Ind Co Ltd Method for treating waste water containing fluorine component
US9969630B2 (en) 2012-11-07 2018-05-15 Daelim Industrial Co., Ltd. Method for treating waste water containing fluorine component

Also Published As

Publication number Publication date
JPH07328645A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
US11286181B2 (en) Treatment method and treatment apparatus for waste water containing sulfuric acid, fluorine and heavy metal ions
JP3635643B2 (en) Waste liquid treatment method
JPH0255365B2 (en)
JP2912934B2 (en) Method for treating wastewater containing borofluoride ions
JPS60117B2 (en) How to treat fluoride-containing water
US5824227A (en) Method for removing fluoride from water
DE3261009D1 (en) A method for recovering useful products from waste products obtained when manufacturing aluminium fluoride
US3755532A (en) Method of making naf or naf/aif3involving the reaction of sodium sulfate with fluosilicic acid
US4200622A (en) Purification of ammonium fluoride solutions
JP3161491B2 (en) Method of treating caustic soda waste liquid containing aluminum
JPS6253788A (en) Treatment of water containing boron fluoride
KR100390159B1 (en) Treatment agent and method for treating industrial waste-water including flourine
JP2008200599A (en) Method for cleaning waste water containing ammonia nitrogen
JPH07171577A (en) Method for treating fluorine in waste water
JP2734850B2 (en) How to treat fluorine in wastewater
JPH0333399B2 (en)
JPS6097090A (en) Treatment of water containing fluoride ion and sulfate ion
JPS5834193B2 (en) Method for treating wastewater containing borofluorine compounds
JPS614593A (en) Treatment of waste water containing borofluoride and chromium
JPH0866687A (en) Treatment of waste liquid incorporating borofluoride compound
JP2751874B2 (en) Treatment method for wastewater containing fluorine
JP6045965B2 (en) Borofluoride ion-containing wastewater treatment method and borofluoride ion-containing wastewater treatment apparatus
JP2002143607A (en) Water treating flocculant, method for producing the same and method for treating water
KR100347601B1 (en) Method for treating fluoride wastewater
JP2751875B2 (en) Treatment method for wastewater containing fluorine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990223

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees